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Abstract. Let L be a bounded distributive lattice. Similar to the definition of weakly J-ideals of commutative rings, we

introduce and study weakly J-filters of lattices. The main purpose of this paper is devoted to extend the notion of weakly

J-ideal property in commutative rings to weakly J-filter property in lattices.
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1 Introduction

All lattices considered in this paper are assumed to have a least element denoted by 0 and a greatest
element denoted by 1, in other words they are bounded. As algebraic structures, lattices are undoubt-
edly a natural choice of generalizations of rings. Recently, the study of algebraic structures, using
the properties of lattices, has become an research topic, leading to many intersting results . There
are growing interest in developing the algebraic theory of lattices can be found in several papers and
books (see for instance, [5, 7, 8, 9]).

Over the years, several types of ideals have been developed in order to let us fully understand
the structures of rings in general. The notion of prime ideals has a significant place in the theory
of rings, and it is used to characterize certain classes of rings. Recall from Atiyah and MacDonald
in [1], a prime ideal P of R is a proper ideal having the property that ab ∈ P implies either a ∈ P
or b ∈ P for each a,b ∈ R (also see [2, 4]). In [17], Mohamadian defined a proper ideal I of R as an
r-ideal if whenever a,b ∈ R with ab ∈ I and ann(a) = 0 imply that b ∈ I , where ann(a) = {r ∈ R : ra = 0}.
He investigated the behavior of r-ideals and compare them with other classical ideals such as prime
and maximal ideals. In [18], Tekir et al., defined and studied some subclass of r-ideals, namely, the
class of n-ideals. A proper ideal I of a ring R is called an n-ideal if whenever a,b ∈ R with ab ∈ I
and a <

√
0, then b ∈ I . For any ring R, By J(R), we denote the Jacobson radical of R. Khashan and

Bani-Ata generalized the concept of n-ideals in [15]. A proper ideal I of a ring R is called a J-ideal if
whenever a,b ∈ R with ab ∈ I and a < J(R), then b ∈ I . Khashan and Celikel [16] introduced the notion
of a weakly J-ideals, i.e. a proper ideal I of a ring R is called a weakly J-ideal if whenever a,b ∈ R with
0 , ab ∈ I and a < J(R), then b ∈ I . Let L be a bounded distributive lattice and J(L) denote the Jacobson
radical of L (i.e. to be the intersection of all the maximal filters of L). In [13], the present author,
introduced the concept of J-filters. A proper filter F of L is called a J-filter if whenever x∨y ∈ F with
x < J(L), then y ∈ F for every x,y ∈ L. Our objective in this paper is to extend the notion of weakly
J-ideal property in commutative rings to weakly J-filter property in the lattices. Among many other
results in this paper, the first, Preliminaries section contains elementary observations needed later
on.
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Section 3 is devoted to the investigate the basic properties of weakly J-filters as a new general-
ization of J-filters. A proper filter F of L is called a weakly J-filter if whenever 1 , x ∨ y ∈ F with
x < J(L), then y ∈ F for every x,y ∈ L. At first, we provide an example of lattices for which their J-
filters and weakly J-filters are the same (Theorem 3.3). Many equivalent characterizations of weakly
J-filters for any bounded distributive lattice are presented in Proposition 3.4 and Theorem 3.8. In
2003, Anderson and Smith in [1] defined weakly prime ideals which is a generalization of prime
ideals. A proper ideal P of a ring R is said to be a weakly prime if 0 , xy ∈ P for each x,y ∈ R implies
either x ∈ P or y ∈ P . A proper filter P of a lattice L is said to be a weakly prime if 1 , x ∨ y ∈ P
for each x,y ∈ L implies either x ∈ P or y ∈ P . In the Example 3.10, it is shown that, in general, the
class of weakly J-filters is not comparable with the classes of weakly prime filters. Then we justify
the relationships between these two concepts in Proposition 3.11 and Proposition 3.12. Further, for
two weakly J-filters F1 and F2 of a lattice L, we show that F1∩F2 is a weakly J-filter (see Proposition
3.13), but the converse is not true (see Example 3.14). Here, we provide some condition under which
the converse of Proposition 3.13 is true (see Theorem 3.15).

We continue in this Section by investigation the stability of weakly J-filters in various lattice-
theoretic constructions. In particular, we investigate the behavior of weakly J-filters under homo-
morphism, in factor lattices and in cartesian products of lattices (see Theorem 3.16, Corollary 3.17,
Proposition 3.18, Proposition 3.19 and Theorem 3.31). Further, for two weakly J-filters F and G of a
lattice L, we show that F ∧G is a weakly J-filter of L (see Theorem 3.21). An element x of L is called
identity join of a lattice L, if there exists 1 , y ∈ L such that x∨ y = 1. The set of all identity joins of
a lattice L is denoted by I(L). Similar to the definition of presimplifiable ring from Bouvier in [6], a
lattice L is called presimplifiable if I(L) ⊆ J(L). It is well known from Anderson and Axtell in [3] that
presimplifiable property does not pass in general to homomorphic images. However, we show that
this holds under a certain condition: If F is a weakly J-filter of a presimplifiable lattice L, then L/F is
a presimplifiable lattice (see Proposition 3.23, Theorem 3.24 and Theorem 3.27). Similar to the ide-
alization of a module over a ring (Huckaba in [14]), the remaining part of this section mainly devoted
to investigation the stability of weakly J-filters in the filterlization of a lattice and a filter. LetM be a
filter of latticeL. The filterlizationL(+)M = {(a,m) : a ∈ L,m ∈M} ofM inL is a lattice with respect to
the following definitions: (1) (a,m) = (a′ ,m′) if a = a′ and m = m′, (2) (a,m1)∧F (b,m2) = (a∧b,m1∧m2)
and (3) (a,m1)∨F (b,m2) = (a∨b, (a∨m2)∧ (b∨m1)). Here we clarify the relationships between weakly
J-filters in a lattice L and in a filterlization lattice L(+)M in Theorem 3.33.

2 Preliminaries

A poset (L,≤) is a lattice if sup{a,b} = a∨ b and inf{a,b} = a∧ b exist for all a,b ∈ L (and call ∧ the meet
and ∨ the join).

Definition 2.1. (1) A lattice L is called a distributive lattice if (a∨ b)∧ c = (a∧ c)∨ (b∧ c) for all a,b,c
in L (equivalently, L is distributive if (a∧ b)∨ c = (a∨ c)∧ (b∨ c) for all a,b,c in L).

(2) A non-empty subset F of a lattice L is called a filter, if for a ∈ F, b ∈ L, a ≤ b implies b ∈ F, and
x∧ y ∈ F for all x,y ∈ F (so if L is a lattice with 0 and 1, then 1 ∈ F, {1} is a filter of £ and 0 ∈ F if and
only if F = L).

(3) A proper filter F of L is called prime if x∨ y ∈ F, then x ∈ F or y ∈ F.
(4) A proper filter F of L is said to be maximal if G is a filter in Lwith F ⫋ G, then G = L. We define

the Jacobson radical of L, denoted by J(L), to be the intersection of all the maximal filters of L. The
set of all maximal filters of L is denoted Max(L).

(5) Let D be subset of a lattice L. Then the filter generated by D, denoted by T (D), is the intersec-
tion of all filters that is containing D. A filter F is called finitely generated if there is a finite subset
D of F such that F = T (D).



Weakly J-filters property in lattices 3

(6) A lattice L with 1 is called L-domain if a∨b = 1 (a,b ∈ L), then a = 1 or b = 1 (so L is L-domain
if and only if {1} is a prime filter of L).

(7) A lattice L is called local if it has exactly one maximal filter that contains all proper filters.
(8) If x ∈ L, then a complement of x in L is an element y ∈ L such that x∨ y = 1 and x∧ y = 0. The

lattice L is complemented if every element of L has a complement in L.
(9) If L and L′ are lattices, then a lattice homomorphism f : L→L′ is a map from L to L′ satisfying

f (x∨ y) = f (x)∨ f (y) and f (x∧ y) = f (x)∧ f (y) for x,y ∈ L.
(10) A filter G of L is called small in L, written G ≪ L, if for every filter H of L, the equality

G∧H = L implies H = L.

For undefined notations or terminologies in lattice theory, we refer the reader to [5, 7]. First we
need the following easy observation proved in [5, 7, , 9, 11].

Lemma 2.2. Let L be a lattice.
(1) A non-empty subset F of L is a filter of L if and only if x∨ z ∈ F and x∧ y ∈ F for all x,y ∈ F, z ∈ L.

Moreover, since x = x∨ (x∧ y), y = y ∨ (x∧ y) and F is a filter, x∧ y ∈ F gives x,y ∈ F for all x,y ∈ L.
(2) If F1,F2 are filters of L and a ∈ L, then F1∨F2 = {a1∨a2 : a1 ∈ F1, a2 ∈ F2} and a∨F1 = {a∨a1 : a1 ∈

F1} are filters of L and F1 ∨F2 = F1 ∩F2.
(3) Let A be an arbitrary non-empty subset of L. Then

T (A) = {x ∈ L : a1 ∧ a2 ∧ · · · ∧ an ≤ x for some ai ∈ A (1 ≤ i ≤ n)}.

Moreover, if F is a filter and A is a subset of L with A ⊆ F, then T (A) ⊆ F, T (F) = F and T (T (A)) = T (A)
(4) If L is distributive, F,G are filters of L and y ∈ L, then (G :L F) = {x ∈ L : x∨F ⊆ G}, (F :L T ({y})) =

(F :L y) = {a ∈ L : a∨ y ∈ F} and (1 :L y) = {x ∈ L : x∨ y = 1} are filters of L.
(5) If L is distributive and F1,F2 are filters of L, then F1 ∧F2 = {a1 ∧ a2 : a1 ∈ F1, a2 ∈ F2} is a filter of L

and F1,F2 ⊆ F1 ∧F2.

Lemma 2.3. [12, Lemma 3.13] Let £1 and £2 be lattices and f : £1→ £2 be a lattice homomorphism such
that f (1) = 1. The following hold:

(1) Ker(f ) = {x ∈ £1 : f (x) = 1} is a filter of £1;
(2) If f is injective, then Ker(f ) = {1};
(3) If £1 is a complemented lattice, then f is injective if and only if Ker(f ) = {1}.

3 Characterization of weakly J-filters

In this section, we collect some basic properties concerning weakly J-filters and remind the reader
with the following definition.

Definition 3.1. A proper filter F of a lattice L is called a weakly J-filter if whenever x,y ∈ L with
1 , x∨ y ∈ F and x < J(L), then y ∈ F.

Example 3.2. (1) It is easy to see that every J-filter is a weakly J-filter.
(2) Let A = {1,2,3}. Then L = {X : X ⊆ A} forms a distributive lattice under set inclusion with

greatest element A and least element ∅ (note that if x,y ∈ L, then x ∨ y = x ∪ y and x ∧ y = x ∩ y). It
can be easily seen that the set of all proper filters L is {{A},F1,F2,F3,F4,F5,F6}, where F1 = {A, {1,2}},
F2 = {A, {1,3}}, F3 = {A, {2,3}},

F4 = {A, {1,3}, {1,2}, {1}},
F5 = {A, {2,3}, {1,2}, {2}} and F6 = {A, {1,3}, {3,2}, {3}} with J(L) = F4 ∩ F5 ∩ F6 = {A}. . Set F = {A}. Then
F is not a J-filter. For example, {1,2}, {3} ∈ L with {1,2}∨ {3} ∈ F and {3} < J(L) but {1,2} < F. However,
since F is always weakly J-filter (by definition), a weakly J-filter need not be J-filter.
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The next result determines the class of lattices for which their J-filters and weakly J-filters are the
same. Compare the next theorem with Theorem 2.3 in [16].

Theorem 3.3. If L is a lattice, then the following statements are equivalent:
(1) L is a local lattice;
(2) Every proper filter of L is a J-filter;
(3) Every proper filter of L is a weakly J-filter;
(4) Every proper principal filter of L is a weakly J-filter.

Proof. (1) ⇒ (2) Let G be a proper filter of a local lattice L with unique maximal filter M and let
a,b ∈ L with a∨ b ∈ G and a < J(L) = M. Then M ∧ T ({a}) = L by maximality of M which implies that
T ({a}) = L, as M is small in L by [9, Lemma 3.1]. So 0 = a∨ c for some c ∈ L. Then a = 0 gives b ∈ G.
Thus, G is a J-filter.

The implication (2)⇒ (3)⇒ (4) Clear.
(4) ⇒ (1) Let M be a maximal filter of L. If M = {1} and 1 , a ∈ L, then {1} ⫋ T ({a}) ⊆ L gives

T ({a}) = L; hence a ≤ a∨ b = 0 for some b ∈ L. Therefore, L = {0,1} and so the result follows clearly.
Otherwise, let 1 , x ∈M. Now, T ({x}) is a weakly J-filter by (4) and 1 , x∨0 ∈ T ({x}). If x < J(L), then
0 ∈ T ({x}) which is impossible. Hence, x ∈ J(L) and J(L) = M, i.e. (1) holds.

For a filter F of a lattice L, the Jacobson radical of F, denoted by J(F), is defined as the intersection
of all maximal filters of L containing F. The following properties can be easily verified for any filters
F and G of L:

(1) F ⊆ J(F).
(2) If F ⊆ G, then J(F) ⊆ J(G).
(3) J(L) ⊆ J(F).
(4) J(J(F)) = J(F).

Proposition 3.4. If F is a proper filter of a lattice L, then the following statements are equivalent:
(1) F is a weakly J-filter of L;
(2) F ⊆ J(L) and whenever x,y ∈ L with 1 , ∨x∨ y ∈ F, then x ∈ J(F) or y ∈ F.

Proof. (1)⇒ (2) Let 1 , f ∈ F. Since 1 , f ∨ 0 ∈ F and 0 < F, we conclude that f ∈ J(L). Therefore,
F ⊆ J(L). Now, let 1 , x∨ y ∈ F with x < J(F). Since J(L) ⊆ J(F) and F is weakly J-filter, we infer that
y ∈ F.

(2)⇒ (1) Let x,y ∈ L such that 1 , x ∨ y ∈ F and x < J(L). As F ⊆ J(L), we conclude that J(F) ⊆
J(J(L)) = J(L) and so we have x < J(F). Thus, y ∈ F and F is a weakly J-filter.

The following example shows that we can find a filter F of a lattice L with {1} , F ⊆ J(L) which is
not a weakly J-filter.

Example 3.5. Assume that L = {0, a,b,c,1} is a lattice with the relations 0 ≤ a ≤ c ≤ 1, 0 ≤ b ≤ c ≤ 1,
a ∨ b = c and a ∧ b = 0. An inspection will show that the nontrivial filters of L are F1 = {1, a, c},
F2 = {1,b, c} and F3 = {1, c} with F3 ⊆ J(L) = F1 ∩ F2 = F3. But F3 is not a weakly J-filter since
1 , a∨ b = c ∈ F3 with a < J(L) and b < F3.

A lattice L is called semiprimitive if J(L) = {1}.

Corollary 3.6. If L is a semiprimitive lattice, then {1} is the only weakly J-filter of L.

Proof. This is a direct consequence of Proposition 3.4 (2).

Compare the next theorem with Theorem 2.5 in [16].
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Theorem 3.7. Let F be a weakly J-filter of L. If F is not J-filter, then F = {1}.

Proof. On the contrary, assume that F , {1}. We show that F is a J-filter. Let a,b ∈ L such that a∨b ∈ F
and a < J(L). If 1 , a∨ b ∈ F, then F is a weakly J-filter gives b ∈ F. Now, suppose that a∨ b = 1. Since
F , {1}, there exists f ∈ F such that f , 1. Clearly, a∧ f < J(L) (otherwise, a ∈ J(L) by Lemma 2.2 (1)).
Then 1 , (a∧ f )∨ (b∧ f ) = f ∈ F gives f ∧ b ∈ F. Therefore, b ∈ F by Lemma 2.2 (1). This shows that
F is a J-filter, as required.

We next give four other characterizations of weakly J-filters. Compare the next theorem with
Theorem 2.7 in [16].

Theorem 3.8. Let P be a proper filter of a lattice L. Then the following statements are equivalent:
(1) P is a weakly J-filter of L;
(2) (P :L x) = P ∪ (1 :L x) for every x < J(L);
(3) (P :L x) ⊆ J(L)∪ (1 :L x) for every x < P ;
(4) If x ∈ L and F is a filter of L with {1} , x∨F ⊆ P , then F ⊆ J(L) or x ∈ P ;
(5) If F and G are filters of L with {1} , F ∨G ⊆ P , then F ⊆ J(L) or G ⊆ P .

Proof. (1) ⇒ (2) Let x < J(L). Since the inclusion P ∪ (1 :L x) ⊆ (P :L x) is clear, we will prove the
reverse inclusion. Let y ∈ (P :L x). If x ∨ y , 1, then by (1), y ∈ P . If x ∨ y = 1, then y ∈ (1 :L x).
Therefore, (P :L x) ⊆ P ∪ (1 :L x) and so we have equality.

(2)⇒ (1) Let x,y ∈ L such that 1 , x ∨ y ∈ P and x < J(L). Since y < (1 :L x) and y ∈ (P :L x), we
conclude that y ∈ P by (2).

(1)⇒ (3) Let x < P and y ∈ (P :L x). If x∨ y , 1, then by (1), y ∈ J(L). If x∨ y = 1, then y ∈ (1 :L x).
Therefore, (P :L x) ⊆ J(L)∪ (1 :L x).

(3)⇒ (4) Let {1} , x ∨ F ⊆ P and x < P . Then (1 :L x) ⫋ (P :L x) and so F ⊆ (P :L x) ⊆ J(L) by [8,
Remark 2.3 (i)], as required.

(4)⇒ (5) On the contrary, assume that there exist filters F and G of L such that {1} , F∨G ⊆ P but
F ⊈ J(L and G ⊈ P . Since F ∨G , {1}, we conclude that there exists g ∈ G such that {1} , g ∨ F ⊆ P
which implies that g ∈ P by (4), as F ⊈ J(L). Consider g ′ ∈ G \ P . If g ′ ∨ F , {1}, then g ′ ∈ P by (4), a
contradiction. Thus, g ′ ∨ F = {1}. Since g ∧ g ′ ∈ G and g ∨ F , {1}, we infer that {1} , (g ∧ g ′)∨ F ⊆ P
and F ⊈ J(L) implies that g ∧ g ′ ∈ P ; so g ′ ∈ P by Lemma 2.1 (1) which is a contradiction.

(5) ⇒ (1) Let x,y ∈ L such that 1 , x ∨ y ∈ P and x < J(L). Set F = T ({x}) and G = T ({y}). Then
{1} , F ∨G ⊆ P and F ⊈ J(L). Now the assertion follows from (5).

Proposition 3.9. Let S be a non-empty subset of L. If F and (1 :L S) are weakly J-filters with S ⊈ F, then
(F :L S) is a weakly J-filter.

Proof. If (F :L S) = L, then 0 ∈ (F :L S) and so S ⊆ F, a contradiction. Thus, (F :L S) is a proper filter.
Let x,y ∈ L such that 1 , x ∨ y ∈ (F :L S) with x < J(L). If 1 , x ∨ y ∨ s ∈ F for every s ∈ S, then
F is a J-filter gives y ∨ s ∈ F and so y ∈ (F :L S). If x ∨ y ∨ S = {1}, then 1 , x ∨ y ∈ (1 :L S) gives
y ∈ (1 :L S) ⊆ (F :L S), as (1 :L S) is a J-filter, as needed.

In the following example, it is shown that, in general, the class of weakly J-filters is not comparable
with the classes of weakly prime filters.

Example 3.10. (1) Let L be the lattice as in Example 3.2 (2). Then the filter F5 is a prime filter (so a
weakly prime filter). On the other hand, F5 is not a weakly J-filter of L, as F5 ⊈ J(L).

(2) The collection of ideals of Z, the ring of integers, form a lattice under set inclusion which we
shall denote by Lwith respect to the following definitions: mZ∨nZ = (m,n)Z and mZ∧nZ = [m,n]Z
for all ideals mZ and nZ of Z, where (m,n) and [m,n] are greatest common divisor and least common
multiple of m,n, respectively. Note that L is a distributive complete lattice with least element the
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zero ideal and the greatest element Z. By [8, Theorem 2.9 (ii)], L \ {0} is the only maximal filter of
L and so L is a local lattice. It follows from Theorem 3.3 that every proper filter of L is a weakly
J-filter. Consider the filter P = {Z,2Z}. Since 1 , 14Z∨ 18Z = 2Z ∈ P with 14Z,18Z < P , we infer
that P is not a weakly prime filter.

Proposition 3.11. Let P be a weakly prime filter such that P ⊆ J(L). Then P is a weakly J-filter of L.

Proof. The proof is straightforward.

The following proposition provides some condition under which a weakly J-filter is a weakly
prime filter.

Proposition 3.12. Let P be a filter of L. Assume P is maximal with respect to property: P and (1 :L x) are
weakly J-filters for all x < P . Then P is a weakly prime filter in L.

Proof. Let x,y ∈ L such that 1 , x∨ y ∈ P and x < P . Set S = {x}. Then (P :L x) is a weakly J-filter by
Proposition 3.9. Since P ⊆ (P :L x), we conclude that z < P for all z < (P :L x) and so (1 :L z) is a weakly
J-filters. Therefore, we have y ∈ (P :L x) = P by maximality of P , as needed.

Proposition 3.13. Let L be a lattice. If {Fi}i∈Λ is a nonempty family of weakly J-filters of L, then ∩i∈ΛFi
is a weakly J-filter.

Proof. (1) Let a,b ∈ L such that 1 , a∨ b ∈ ∩i∈ΛFi and a < J(L). By the hypothesis, 1 , a∨ b ∈ Fi for all
i ∈Λ gives b ∈ Fi for all i ∈Λ and so b ∈ ∩i∈ΛFi , as needed.

Example 3.14. In general, the converse Proposition 3.13 is not true. For example, while F4∩F5 = {1}
is a weakly J-filters of the lattice as in 3.2 (2), non of the filters F4 and F5 are (weakly) J-filters.

The following theorem provides some condition under which the converse Proposition 3.13 is true.

Theorem 3.15. Let F1, · · · ,Fn be weakly prime filters ofLwhich are not comparable and (L\Fi)∩I(L) =
∅ for all 1 ≤ i ≤ n. Then ∩ni=1Fi is a weakly J-filter if and only if Fi is a weakly J-filter for i ∈ {1, · · · ,n}.

Proof. One side is clear by Proposition 3.13. To see the other side, let 1 , a∨ b ∈ Fi with a < J(L) and
take c ∈ (

∨
i,j Fj ) \ Fi . Therefore, a∨ b ∨ c ∈

∨n
i=1Fi = ∩ni=1Fi . If a∨ b ∨ c = 1, then c ∈ (L \ Fi)∩ I(L)

which is a contradiction So we may assume that a∨ b ∨ c , 1. Since ∩ni=1Fi is a weakly J-filter and
a < J(L), we conclude that b∨ c ∈ ∩ni=1Fi and so b∨ c ∈ Fi . This implies that b ∈ Fi , i.e. Fi is a weakly
J-filter of L.

We continue this section with the investigation of the stability of weakly J-filters in various lattice-
theoretic constructions.

Theorem 3.16. Let L be a complemented lattice. If f : L→ L′ is a lattice homomorphism such that
f (0) = 0 and f (1) = 1, then the following hold:

(1) If f is a monomorphism and K is a weakly J-filter of L′, then f −1(K) is a weakly J-filter of L.
(2) If f is an epimorphism and G is a weakly J-filter of L with ker(f) ⊆ G, then f (G) is a weakly

J-filter of L′.

Proof. (1) Let a,b ∈ L with 1 , a∨ b ∈ f −1(K) and a < J(L). Then f (a)∨ f (b) = f (a∨ b) ∈ K . We show
that f (a) < J(L′). On the contrary, assume that f (a) ∈ J(L′). Let M be a maximal filter of L. Then
f (M) , {1}, as f is a monomorphism. Let f (M) ⫋ F ⊆ L′ for some filter F of L′. The there exists
c ∈ L \M such that f (c) ∈ F \ f (M). Since M ⫋ M ∧ T ({c}), we conclude that M ∧ T ({c}) = L and
so 0 = m ∧ (c ∨ b) = (m ∧ c) ∨ (m ∧ b) for some m ∈ M and b ∈ L; hence m ∧ c = 0. It follows that
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f (m ∧ c) = f (m) ∧ f (c) = f (0) = 0 ∈ F which implies that F = L′. Thus, f (M) is a maximal filter of
L′ which implies that f (a) ∈ f (M) and so a ∈ M. Hence a ∈ J(L) which is impossible. Therefore,
f (a) < J(L′). Since by Lemma 2.3, Ker(f ) = {1}, we conclude that {1} , f (a∨b) = f (a)∨ f (b) ∈ K ; hence
f (b) ∈ K , as K is a weakly J-filter and so b ∈ f −1(K). Thus, f −1(K) is a J-filter of L.

(2) Let x,y ∈ L′ such that 1 , x ∨ y ∈ f (G) and x < J(L′). Since f is an epimorphism, there exist
a,b ∈ L such that x = f (a) and y = f (b). Then x∨y = f (a∨b) ∈ f (G) (so a∨b , 1) and then f (a∨b) = f (g)
for some g ∈ G. By the hypothesis, g ∨ g ′ = 1 and g ∧ g ′ = 0 for some g ′ ∈ L. Since f (a ∨ b ∨ g ′) =
f (a∨b)∨f (g ′) = 1, we conclude that a∨b∨g ′ ∈ ker(f ) ⊆ G; hence a∨b = (a∨b)∨ (g∧g ′) = (a∨b∨g)∧
(a∨b∨g ′) ∈ G, as G is a filter. Also, note that a < J(L) since otherwise if a ∈ J(L), then x = f (a) ∈ J(L′),
as f (J(L)) = f (

⋂
M∈Max(L)M) ⊆

⋂
M∈Max(L) f (M) ⊆ J(L′) which is impossible. Since G is a J-filter, we

infer that b ∈ G and so y = f (b) ∈ f (G), as needed.

If F is a filter of a lattice (L,≤), we define a relation on L, given by x ∼ y if and only if there exist
a,b ∈ F satisfying x∧a = y∧b. Then ∼ is an equivalence relation on L, and we denote the equivalence
class of a by a∧F and these collection of all equivalence classes by L/F. We set up a partial order ≤Q
on L/F as follows: for each a∧F,b∧F ∈ L/F, we write a∧F ≤Q b∧F if and only if a ≤ b. The following
notation below will be used in this paper: It is straightforward to check that (L/F,≤Q) is a lattice
with (a∧F)∨Q (b∧F) = (a∨b)∧F and (a∧F)∧Q (b∧F) = (a∧b)∧F for all elements a∧F,b∧F ∈ L/F.
Note that f ∧F = F if and only if f ∈ F (see [10, Remark 4.2 and Lemma 4.3]).

Corollary 3.17. Suppose L is a complemented lattice and let F,G be two proper filters of L with F ⊆ G. If
G is a weakly J-filter of L, then G/F is a weakly J-filter of L/F.

Proof. Let v : L → L/F be the natural epimorphism defined by v(x) = x ∧ F. Then ker(v) = {x ∈ L :
x ∧ F = 1 ∧ F} = F ⊆ G by [10, Lemma 4.3] and so by Theorem 3.16 (2) and [10, Lemma 4.3] that
v(G) = {x∧F : x ∈ G} = G/F is a weakly J-filter of L/F.

Proposition 3.18. Suppose L is a lattice and let F,G be two proper filters of L with F ⊆ G. Then the
followings hold:

(1) If F is a J-filter of L and G/F is a weakly J-filter of L/F, then G is a J-filter of L.
(2) If F is a weakly J-filter of L and G/F is a weakly J-filter of L/F, then G is a weakly J-filter of L.

Proof. (1) Let x,y ∈ L such that x ∨ y ∈ G and x < J(L). If x ∨ y ∈ F, then y ∈ F ⊆ G. So we may
assume that x ∨ y < F (so (x ∨ y)∧ F , F = 1∧ F). By [10, Lemma 4.3], M/F ∈ Max(L/F) if and only
if M ∈Max(L) with F ⊆M. Since F is a J-filter, we infer that F ⊆ J(L) and so clearly x ∧ F < J(L/F).
Since F = 1∧F , (x∧F)∨Q (y∧F) = (x∨y)∧F ∈ G/F by Lemma [10, Lemma 4.3] and G/F is a weakly
J-filter, we include that y ∧F ∈ G/F; hence y ∈ G, as required.

(2) The proof is similar to that in case (1) and we omit it.

One can easily show that if G is a filter of a complemented lattice L, then L/G is a complemented
lattice.

Proposition 3.19. Let F and G be two filters of a complemented lattice L. Then there is a lattice isomor-
phism φ : F/(F ∩G)→ (F ∧G)/G that sends each residue class x∧ (F ∩G) to x∧G.

Proof. At first, note that since (a∧b)∧b = a∧b for some b ∈ G and a ∈ L, we conclude that (a∧b)∧G =
a∧G. If x∧(F∩G) = y∧(F∩G), then x∧a = y∧b for some a,b ∈ F∩G ⊆ G; so x∧G = y∧G. This shows
that φ is well defined. Clearly, φ is serjective. If A = x∧ (F ∩G) and B = y ∧ (F ∩G) are elements of
F/(F∩G), then φ(A∨QB) = φ((x∨y)∧F∩G) = (x∨y)∧G = (x∧G)∨Q (y∧G) = φ(A)∨Qφ(B). Similarly,
φ(A∧QB) = φ(A)∧Qφ(B). Since Ker(φ) = {x∧(F∩G) ∈ F/(F∩G) : x∧G = 1∧G} = (F∧G)/(F∧G) = {1̄},
we infer that φ is injective by Lemma 2.3, as required.

Lemma 3.20. If G is a weakly J-filter of L, then it is small in L.
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Proof. Let K be a filter of L such that G∧K = L. Assume on the contrary, that K , L. Since K , {1}, we
conclude that K ⊆M for some maximal filter M of L by [10, Lemma 2.1]. It follows from Proposition
3.4 that G ⊆ J(L) ⊆M and so L = K ∧G ⊆M which is a contradiction. Therefore, K = L.

Compare the next theorem with Proposition 2.26 in [16].

Theorem 3.21. If G and F are weakly J-filters of a complemented lattice L, then F ∧G is a weakly
J-filter of L.

Proof. Let F and G be weakly J-filters of L. By Lemma 3.20, F ∧ G , L. Since F ∩ G is a weakly
J-filter by Proposition 3.13, then F/(F ∩G) is a weakly J-filter of L/(F ∩G) by Corollary 3.17. Now,
Proposition 3.19 gives (F ∧G)/G is a weakly J-filter of L/G. Hence, F ∧G is a weakly J-filter of L by
Proposition 3.18 (2).

Proposition 3.22. Let L be a presimplifiable lattice. Then every weakly J-filter of L is a J-filter.

Proof. At first, we show that F = {1} is a J-filter of L. Let a,b ∈ L such that a∨ b ∈ F and a < J(L). By
the hypothesis, a < I(L) and so b = 1 ∈ F. Suppose that G is a weakly J-filter of L. We show that G is a
J-filter. Let x,y ∈ L such that x∨y ∈ G and x < J(L). If x∨y , 1, then G is a weakly J-filter gives y ∈ G.
If x∨ y = 1, then {1} is a J-filter implies that y = 1 ∈ G. This shows that G is a J-filter.

Proposition 3.23. Let F be a proper filter of L. Then F is a J-filter if and only if F ⊆ J(L) and L/F is a
presimplifiable lattice.

Proof. Suppose F is a J-filter of L. Then F ⊆ J(L) by Proposition 3.4. Now, let x ∧ F ∈ I(L/F). Then
there exists F = 1∧F , y∧F ∈ L/F (so y < F) such that (x∧F)∨Q (y∧F) = (x∨y)∧F = 1∧F. So there are
elements p,q ∈ F such that (x∧p)∨ (y ∧p) = (x∨ y)∧p = 1∧ q = q ∈ F. Since F is a filter and y < F, we
conclude that y ∧p < F by Lemma 2.2 (1). As F is a J-filter and p∧ y < F, we infer that p∧ x ∈ J(L); so
x ∈ J(L). This shows that x∧ F ∈ J(L)/F = J(L/F) which gives I(L/F) ⊆ J(L/F). Conversely, let a,b ∈ L
such that a∨ b ∈ F and a < J(L). Then a∧F < J(L)/F = J(L/F) and by assumption a∧F < I(L/F). Since
(a∧ F)∨Q (b∧ F) = (a∨ b)∧ F = 1∧ F by [10, Lemma 4.3], we infer that b∧ F = 1∧ F. So there exists
c,d ∈ F such that b∧ c = 1∧ d = d ∈ F. This shows that b ∈ F. Thus, F is a J-filter.

Compare the next theorem with Proposition 2.20 in [16].

Theorem 3.24. If L is a presimplifiable lattice and F is a weakly J-filter of L, then L/F is presimpli-
fiable.

Proof. By Proposition 3.22, F is a J-filter. Now the assertion follows from Proposition 3.23.

Definition 3.25. Let F , {1} be a filter of L. An element x∧ F ∈ L/F is called strongly identity join in
L/F if there exists 1∧F , y ∧F ∈ L/F such that (x∧F)∨Q (y ∧F) = 1∧F and x∨ y , 1.

Example 3.26. One can easily show that any strongly identity join in L/F is a identity join. We
provide an example of lattices for which The converse is not true. Let L = {0, a,b,c,d,1} be a lattice
with the relations 0 ≤ a ≤ d ≤ 1, 0 ≤ b ≤ d ≤ 1, 0 ≤ c ≤ 1 and a ∧ b = a ∧ c = d ∧ c = c ∧ b = 0. Set
P = {1, a,d}. Since (b∧ P )∨Q (c∧ P ) = (b∨ c)∧ P = 1∧ P , we conclude that b∧ P is an identity join in
L/P which is not a strongly identity join.

Let F , {1} be a filter of L. The set of all strongly identity joins of a lattice L/F is denoted by
SI(L/F). A lattice L/F is called S-presimplifiable if SI(L/F) ⊆ J(L/F). The next theorem gives a more
explicit description of weakly J-filters F , {1} in terms of S-presimplifiable quotient lattices.

Compare the next theorem with Theorem 2.23 in [16].
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Theorem 3.27. Let F , {1} be a filter of L. Then the following statements are equivalent:
(1) F is a weakly J-filter of L;
(2) F ⊆ J(L) and L/F is S-presimplifiable.

Proof. (1)⇒ (2) Assume F is a weakly J-filter of L (so F ⊆ J(L) by Proposition 3.4). Let x∧F ∈ SI(L/F).
Then there exists 1∧ F , y ∧ F ∈ L/F (so y < F) such that (x ∧ F)∨Q (y ∧ F) = (x ∨ y)∧ F = 1∧ F and
x∨ y , 1 which implies that (x∨ y)∧ f = 1∧ e = e ∈ F for some e, f ∈ F. This shows that 1 , x∨ y ∈ F
by Lemma 2.2 (1). Hence, x ∈ J(L), as F is a weakly J-filter. Therefore, x∧F ∈ J(L)/F = J(L/F), i.e. (2)
holds.

(2)⇒ (1) Let a,b ∈ L such that 1 , a∨ b ∈ F and b < F. One can easily show that a∧ F is a strongly
identity join in L/F and so a∧F ∈ J(L/F) = J(L/F) by (2) which gives a ∈ J(L), i.e. (1) holds.

Definition 3.28. If S is a nonempty subset of a lattice L such that L \ J(L) ⊆ S, then S is called a
weakly J-join-subset of L if x∨ y ∈ S or x∨ y = 1 for all x ∈ L \ J(L) and all y ∈ S.

In the following proposition, we describe the relation between weakly J-filters and weakly J-join-
subsets of L.

Proposition 3.29. A filter F is a weakly J-filter of a lattice L if and only if L \ F is a weakly J-join-subset
of L.

Proof. Let F be a weakly J-filter of L. Since F ⊆ J(L) by Proposition 3.4, we conclude that L \ J(L) ⊆
L \ F. Let a ∈ L \ J(L) and b ∈ L \ F. If a∨ b = 1, then we are done. So we may assume that a∨ b , 1.
Now, we show that a∨ b ∈ L \ F. On the contrary, assume that a∨ b ∈ F. Then F is a weakly J-filter
and x < J(L) implies that y ∈ F which is a contradiction. Thus, x∨ y ∈ L \ F and so L \ F is a weakly
J-join-subset of L.

Conversely, let a,b ∈ L and 1 , a∨b ∈ F with a < J(L). Then we have b ∈ F since otherwise we would
have a∨ b ∈ L \F which is impossible. Therefore, F is a weakly J-filter of L.

Proposition 3.30. Suppose S is a weakly J-join-subset of a lattice L with S ∩∪y<J(L)(1 :L y) = ∅. If a filter
F of L is maximal with respect to the property F ∩ S = ∅, then F is a weakly J-filter of L.

Proof. On the contrary, assume that F is not a weakly J-filter of L. Then there are elements x < J(L)
and y < F such that 1 , x ∨ y ∈ F. Since F ⫋ (F :L x), we infer that (F :L x) ∩ S , ∅. Consider
s ∈ (F :L x) ∩ S. Then x ∨ s ∈ F and S is a weakly J-join-subset gives either x ∨ s ∈ S or x ∨ s = 1.
If x ∨ s ∈ S, then x ∨ s ∈ F ∩ S which is a contradiction. If x ∨ s = 1, then s ∈ S ∩ ∪y<J(L)(1 :L y), a
contradiction. Thus, F is a weakly J-filter of L.

Assume that (L)1,≤1), (L)2,≤2) are lattices and let L = L1 ×L2. We set up a partial order ≤c on L
as follows: for each x = (x1,x2), y = (y1, y2) ∈ L, we write x ≤c y if and only if xi ≤i yi for each i ∈ {1,2}.
The following notation below will be used in this paper: It is straightforward to check that (L,≤c) is
a lattice with x ∨c y = (x1 ∨ y1,x2 ∨ y2) and x ∧c y = (x1 ∧ y1,x2 ∧ y2). In this case, we say that L is a
decomposable lattice.

In the next theorem, we characterize weakly J-filters of a decomposable lattice.

Theorem 3.31. Suppose L = L1×L2 is a decomposable lattice and let F , {(1,1)} be a filter of L. Then
the following statements are equivalent:

(1) F is a weakly J-filter of L;
(2) F = F1 ×L2 where F1 is a J-filter of L1 or F = L1 ×F2 where F2 is a J-filter of L2;
(3) F is a J-filter of L.
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Proof. (1) ⇒ (2) At first, note that if P is a maximal filter of L1 and Q is a maximal filter of L2,
then M = P × L2 and M ′ = L1 ×Q are maximal filters of L and (a,0), (0,b) < J(L) for all a ∈ L1 and
b ∈ L2. Let F = F1 × F2 , {(1,1)} be a weakly J-filter of L. Suppose F1 , L1, F2 , L and consider
(1,1) , (x,y) ∈ F. Since (1,1) , (x,0)∨Q (0, y) = (x,y) ∈ F and (x,0), (0, y) < J(L), we conclude that F = L
which is impossible. So we may assume with no loss of generality that F1 , L1 and F2 = L2. Since
F , (1,1), we infer that F is a J-filter by Theorem 3.7. It remains to show that F1 is a J-filter of L1.
Let a,b ∈ L1 such that a∨ b ∈ F1 and a < J(L1). Then (a,0)∨Q (b,0) ∈ F = F1 ×L2 and (a,0) < J(L) gives
(b,0) ∈ F and so b ∈ F1, as needed.

(2)⇒ (3) We can assume that F = F1 ×L2, where F1 is a J-filter of L1. Let (a,b), (c,d) ∈ L such that
(a,b) ∨q (c,d) = (a ∨ c,b ∨ d) ∈ F and (a,b) < J(L). Then a < J(L1) and a ∨ c ∈ F1 which gives c ∈ F1.
Therefore, (c,d) ∈ F and so F is a J-filter of L. The implication (3)⇒ (1) is clear.

SupposeM is a filter of a lattice L and let L(+)M be the filterlization lattice. Let M be a module
over a commutative ring R. Anderson and Smith in [2] determine when P (+)M is a weakly prime
ideal in R(+)M. Now, we will give a similar result for weakly J-filters.

Lemma 3.32. Let L andM be as above. The following hold:
(1) If H is a filter of L(+)M, then H = G(+)K , where G is a filter of L and K is a subfilter ofM;
(2) If G is a filter of L and K is a subfilter ofM, then G(+)K is a filter of L(+)M if and only if G∨M⊆ K .
(3) J(L (+)M) = J(L) (+)M.

Proof. (1) Set G = {x ∈ L : (x,m) ∈ H for sme m ∈ M} and K = {m ∈ M : (x,m) ∈ H for sme x ∈ L}.
Let x,y ∈ G and z ∈ L. Then (x,m), (y,m′) ∈ H for some m,m′ ∈ M implies that (x ∧ y,m ∧m′) =
(x,m)∧F (y,m′) ∈ H and (x∨ z,m∨ z) = (x,m)∨F (z,1) ∈ H , as H is a filter; hence x∧ y,x∨ z ∈ G. Thus
G is a filter of L. Similarly, K is a filter ofM. Finally, it is easy to see that H = G(+)K .

(2) Suppose H = G(+)K is a filter of L(+)M and let g ∨m ∈ G∨M for some g ∈ G and m ∈M. Then
(g,1) ∈ H gives (g,1)∨F (g,m) = (g,g ∨m) ∈ H ; so g ∨m ∈ K . Thus, G ∨M ⊆ K . Conversely, assume
that G ∨M ⊆ K and let (a,n), (b,m) ∈ H and (c,x) ∈ L. Then (a,n)∧F (b,m) = (a∧ b,n∧m) ∈ H and
(a,n)∨F (c,x) = (a∨ c, (a∨ x)∧ (n∨ c) ∈ H since a∨ x ∈ G ∨M ⊆ K and n∨ c ∈ K , i.e. H is a filter of
L(+)M.

(3) One can easily show that G(+)K is a maximal filter of L(+)M if and only if G is a maximal filter
of L, i.e. (3) holds.

Compare the next theorem with Theorem 2.30 in [16].

Theorem 3.33. Let L andM be as above. If G is a filter of L and K is a filter ofM, then the following
hold:

(1) If G(+)K is a weakly J-filter of L(+)M, then G is a weakly J-filter of L.
(2) G(+)M is a weakly J-filter of L(+)M if and only if G is a weakly J-filter of L and for a,b ∈ L

with a∨ b = 1 but a < J(L) and b < G, a,b ∈ (1 :LM).

Proof. (1) Clearly, G , L. Let x,y ∈ L such that 1 , x∨y ∈ G and x < J(L). Then (1,1) , (x,1)∨F (y,1) =
(x∨ y,1) ∈ G(+)K and (x,1) < J(L)(+)M = J(L(+)M) gives (y,1) ∈ G(+)K , as G(+)K is a weakly J-filter;
hence y ∈ G.

(2) Let G(+)M be a weakly J-filter of L(+)M. Then G is a weakly J-filter of L by (1). Now, for
a,b ∈ L, assume that a ∨ b = 1 but a < J(L) and b < G. On the contrary, suppose that a < (1 :L M).
Then a ∨m , 1 for some m ∈ M. It follows that (1,1) , (a,1) ∨F (b,m) = (1, a ∨m) ∈ G(+)M but
(a,1) < J(L)(+)M and so (b,m) ∈ G(+)M which is a contradiction. Therefore, a ∈ (1 :LM). Similarly,
b ∈ (1 :L M). Conversely, let (a,n), (b,m) ∈ L(+)M such that (1,1) , (a,n) ∨F (b,m) ∈ G(+)M and
(a,n) < J(L(+)M). So a ∨ b ∈ G and a < J(L). If a ∨ b , 1, then G is a weakly J-filter gives b ∈ G
and so (b,m) ∈ G(+)M. So we may assume that a∨ b = 1 but a < J(L) and b < G. By the hypothesis,
a,b ∈ (1 :L M) and then (a,n)∨F (b,m) = (1,1) which is impossible. Therefore, a∨ b , 1 and clearly
G(+)M is a weakly J-filter of L(+)M, as required.
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