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Abstract. The study of Gorenstein projective and injective modules has been a cornerstone in the field of Gorenstein ho-
mological algebra since these concepts were first introduced. This paper marks a significant advancement in the field by
demonstrating the integration of ¢-torsion theory into Gorenstein homological algebra. We take this exploration further
by introducing and examining the novel concepts of nonnil-Gorenstein projective and injective modules. Our study also
extends to the nonnil-Gorenstein projective and injective dimensions of a module, offering a deeper insight into their struc-
ture and implications. Furthermore, we delve into the concept of nonnil-Gorenstein global dimension of a ring, unveiling
its significance and potential applications. A key application of these innovative concepts is their use in characterizing ¢
von Neumann regular rings. This approach not only adds a new dimension to our understanding of these rings but also
highlights the versatility and depth of Gorenstein homological algebra.
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1 Introduction

We devote this introductory section to some conventions and a review of some standard background
material. All rings considered in this paper are assumed to be commutative with non-zero identity
and prime nilradical. We use Nil(R) to denote the set of nilpotent elements of R, and Z(R) to denote
the set of zero-divisors of R. A ring with Nil(R) being divided prime (i.e., Nil(R) C xR, for every
x € R\Nil(R)) is called a ¢-ring. Let H (resp., H) be the set of all rings with divided prime nilradical
(resp., divided prime nilradical but not maximal). A ring R is called a strongly ¢-ring if R € H and
Z(R) = Nil(R).

Let R be aring and M be an R-module. We define

¢-tor(M) = {x € M | sx = 0 for some s € R\ Nil(R)}.

If ¢-tor(M) = M, then M is called a ¢-torsion module, and if ¢-tor(M) = 0, then M is called a ¢-
torsion-free module. An R-module M is said to be ¢-uniformly torsion (¢-u-torsion for short) if
sM = 0 for some s € R\ Nil(R). An ideal I of R is called nonnil if I € Nil(R). A ring R is said to be
self-injective if it is an injective module over itself; if, in addition, R is Noetherian, then R is said
to be a quasi-Frobenius ring. As usual, we use pdy(M), idr(M), and fdr(M) to denote the classical
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projective, injective, and flat dimension of M, respectively. For a Noetherian ring R, Auslander
and Bridger [3] introduced the G-dimension, Gdimg (M), for every finitely generated R-module M.
They showed that Gdimz(M) < pdy(M) for every finitely generated R-module M, and equality holds
if pdg(M) is finite. Several decades later, Enochs and Jenda [15} [16] introduced the notion of the
Gorenstein projective dimension (G-projective dimension for short) as an extension of G-dimension
to modules that are not necessarily finitely generated, and the Gorenstein injective dimension (G-
injective dimension for short) as a dual notion of the Gorenstein projective dimension. To complete
the analogy with the classical homological dimension, Enochs et al. [18] introduced the Gorenstein
flat dimension. Some related references are [7},[12, 13} (15} [16}, [18}, 21}, 22]. Recall from [15] that an R-
module M is said to be Gorenstein projective (G-projective for short) if there exists an exact sequence
of projective R-modules
P: ...—P —>P0—>P0—>P1 —>

such that M = Im(PO - PO) and such that the functor Homg(—, Q) leaves P exact whenever Q is pro-
jective. The complex P is called a complete projective resolution. It is known that M is G-projective
if and only if M has a complete projective resolution P such that Exty(L, Q) = 0 for any syzygy L of P
and any module Q with finite projective dimension. The Gorenstein injective (G-injective for short)
modules are defined dully.

On the other hand, in [32]], Tang, Wang and Zhao introduced the class of ¢-rings, called ¢-von
Neumann regular rings. An R-module M is said to be ¢-flat if for every R-monomorphism f : A — B
with Coker(f) ¢-torsion, f®1: A®x M — B®g M is an R-monomorphism [32, Definition 3.1]. An
R-module M is ¢-flat if and only if M, is ¢-flat for every prime ideal p of R, if and only if My, is ¢-flat
for every maximal ideal m of R [32, Theorem 3.5]. A ¢-ring R is called a ¢-von Neumann regular
ring if all R-modules are ¢-flat. This is equivalent to stating that R/Nil(R) is a von Neumann regular
ring [32, Theorem 4.1].

The authors of [14] introduced and defined the ¢-(weak) global dimension of rings with prime
nilradical. An R-module P is said to be ¢-u-projective if Exty(P,N) = 0 for each ¢-u-torsion R-
module N [14, Definition 3.1]. The ¢-projective dimension of M over R, denoted by ¢-pdpz M, is
defined to be at most n (where n > 1 and n € IN) if either M = 0, or M # 0 and M is not ¢-u-
projective, and if it satisfies the condition Ext}s"!(M,N) = 0 for any ¢-u-torsion module N. If 1 is the
least non-negative integer for which Exts"!(M,N) = 0 for every ¢-u-torsion module N, then we set
¢-pdx M = n. If there is no such n, we set ¢-pdy M = co. An R-module E is said to be nonnil injective
if Extp(R/I,E) = 0 for all nonnil ideals of R. The ¢-injective dimension of M over R, denoted by
¢-idg M, is defined to be at most n (where n > 1 and n € IN) if either M = 0, or M # 0 and M is not
nonnil injective, and if it satisfies the condition Ext?{rl(R/I,M) = 0 for any nonnil ideal I of R. If n
is the least non-negative integer for which Ext’"!(R/I, M) = 0 for every nonnil ideal I of R, then we
set ¢p-idg M = n. If there is no such n, we set ¢-idg M = 0, and we easily have that an R-module M
of ¢-injective dimension 0 if and only if it is nonnil injective. For a ring R, its ¢-global dimension
is either 0 or the supremum of all ¢-pd(R/I), where I is a nonnil ideal of R such that R/I is not
¢-u-projective. In particular, for a ring R of Z(R) = Nil(R), its ¢-global dimension is the supremum
of ¢-pdy(R/I) for all nonnil ideals I of R.

In [2]], Anderson and Badawi introduced the class of ¢-rings called ¢p-Dedekind rings. A ¢-ring R
is said to be ¢-Dedekind if R/Nil(R) is a Dedekind domain.

This paper is divided into four sections, including the introduction. In Section 2, we define nonnil-
Gorenstein projective modules, nonnil-Gorenstein injective modules and nonnil-Gorenstein flat. We
then present some characterizations of these modules and establish that every nonnil-Gorenstein
projective (resp., nonnil-Gorenstein injective) module is Gorenstein projective (resp., Gorenstein in-
jective). We also provide examples of Gorenstein projective (resp., Gorenstein injective) modules
that are not nonnil-Gorenstein projective (resp., nonnil-Gorenstein injective). The section concludes
by establishing analogs of the well-known behavior, as demonstrated in [21} 2.5. Theorem], showing
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more precisely that nonnil-Gorenstein projective (resp., nonnil-Gorenstein injective) R-modules are
projectively (respectively, injectively) resolving.

In Section 3, we introduce analogs of Gorenstein projective and Gorenstein injective dimensions,
termed nonnil-Gorenstein projective and injective dimensions.

The final section briefly defines the nonnil-Gorenstein global dimension of a ring R as the supre-
mum of all ¢-Gpdy M, where M is an R-module. We note that G-gl.dim(R) < ¢-G.gl.dim(R) for
all rings R. We characterize rings of nonnil-Gorenstein global dimension 0 as those in which ev-
ery nonnil-injective module is projective, equivalent to every ¢-u-projective module being nonnil-
injective. We also show that ¢-rings of nonnil-Gorenstein global dimension 0 are fields. In the
second part of this section, we introduce the closed nonnil-Gorenstein global dimension of rings as
the supremum of all nonnil-Gorenstein projective dimensions of ¢-u-torsion modules. We establish
that ¢-von Neumann regular rings are strongly ¢-rings of closed nonnil-Gorenstein global dimen-
sion 0, equivalent to von Neumann regular rings being strongly ¢-rings where every ¢-u-projective
module is nonnil-injective.

To provide examples, we discuss the trivial extension. Let R be a ring and E be an R-module.
The trivial ring extension of R by E, denoted R « E, has the additive structure of the external direct
sum R @ E and multiplication defined by (a,e)(b, f) := (ab,af + be) for all a,b € Rand ¢, f € E. This
construction is also known by other terminology and notations, such as the idealization R(+)E) (see
[6} 119, (23} [24]).

For any undefined terminology and notation, readers are referred to [12},[17,[19],23}33].

2  On nonnil-Gorenstein projective, injective and flat modules

We start this section by defining two new classes of modules, which we call nonnil-Gorenstein pro-
jective and nonnil-Gorenstein injective. These two classes are sub-classes of Gorenstein projective
and Gorenstein injective, respectively.

Definition 2.1. An R-module M is said to be nonnil-Gorenstein projective (nonnil-G-projective for
short) if there exists a complete projective resolution of M, that is an exact sequence of R-modules

P: o—P—P—P'—P —..

in which all P, P/ are projective modules and M = Im(PO - PO) and such that the functor Homg(—, Q)
leaves 9 exact whenever Q is a ¢-u-projective module.

The nonnil-Gorenstein injective (nonnil-G-injective for short) modules are defined dually as fol-
lows: An R-module N is said to be nonnil-G-injective if there exists a complete injective resolution
of M, that is

&: -.—E'—SE"—SE,—E —--

such that all E;, E/ are injective modules and such that both N = Im(E® — E;) and Hom(Q, &) is a
complex exact of R-modules for every nonnil-injective module Q.

Remark 2.2. 1. It is easy to see from [17, Definition 10.2.1] that every nonnil-G-projective module is
Gorenstein projective, and so the projective dimension of every nonnil-G-projective module is either
zero or infinite by [17, Proposition 10.2.3]. Dually the nonnil-G-injective modules are Gorenstein
injective by [17, Definition 10.1.1]. Thus, the injective dimension of any nonnil-G-injective module
is either zero or infinite.

2. Every projective module P is nonnil-Gorenstein projective. In fact, the exact sequence 0 —» P —
P — 0 is a complete projective resolution of P, and for every ¢-u-projective module M, we have the
isomorphism of R-modules 0 - Homg(P, M) — Homg(P, M) — 0. In the same way, we establish that
every injective module is nonnil-G-injective.
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3. Note that a ¢-u-projective module is not necessarily a nonnil-G-projective module. For instance,
consider R := K oc K", where n > 2 and K is a field. In this case, its Gorenstein global dimension is in-
finite, as shown in [27] Corollary 3.8]. Consequently, there exists no Gorenstein projective R-module
M; in particular, M is not nonnil-G-projective by (1). However, R is a ¢-von Neumann regular ring
by [14, Theorem 5.16], which implies that M is ¢-u-projective by [14, Corollary 5.34]. Similarly, we
establish that there are nonnil-injective R-modules that are not nonnil-Gorenstein injective.

Next, we may write a complete projective resolution of an R-module M as follows:
P: —P—P—P1—Py—---. (1)

Note that M = Im(Py — P_;). Set K; := Ker(P; — P,_;) for the i-th syzygy of (I); in particular, M = K_;.
In the same way, we may write a complete injective resolution of an R-module N as follows:

&: +—E 1 —Ey—E —E;,—>---. (2)

The i-th cosyzygy K; of (2) is defined as K; := Im(E; — E;,1); in particular, N = K_;. Our first
characterization of the nonnil-G-projective modules is as follows.

Theorem 2.3. The following are equivalent for an R-module M:
1. M is nonnil-Gorenstein projective,

2. M has a complete projective resolution such that Exty(K;, Q) = 0 for every ¢-u-projective
module Q and every i-th syzygy K; of (1),

3. M has a complete projective resolution such that Extlfz(Ki,Q) = 0 for every ¢-u-projective
module Q and every i-th syzygy K; of (1) and every k > 1,

4. M has a complete projective resolution (1)) such that Extﬁ(Ki, Q) = 0 for every R-module Q of
finite ¢-projective dimension and every i-th syzygy K; of (1) and every k > 1,

5. M has a complete projective resolution (1) such that Ext}(K;, Q) = 0 for every R-module Q of
finite ¢-projective dimension and every i-th syzygy K; of (1),

6. M has a right projective resolution (i.e., ¥ :0 - M — P, - P, — ---, where each P, is
projective) such that for every ¢-u-projective module Q, both the complex Hom(%, Q) is exact
and Ext’l‘z(M, Q) = 0 for every k > 0.

Proof. (4) = (6) & (4) = (5) = (1) They are obvious.
(1) = (2) Assume that M is a ¢-Gorenstein projective module and let i € Z and Q be a ¢-u-
projective module. Then there exists a complete projective resolution of M as (I). Starting by the ex-

act sequence P, — P;,; — K; — 0, we get the exact sequence 0 - Hompg(K;, Q) —» Homg(P,,1,Q) —
Hompg(P;, 5, Q), this shows that ker(d) = Homg(K;, Q). Now, considering the exact sequence 0 — K; —

P, — K;_1 — 0, we get the exact sequence 0 — Hompg(K;_1,Q) — Homg(P;, Q) i Homg(K;, Q) —
Extllq(Ki_l, Q) — 0. Since ker(d) = Im(d) = Homg(K;, Q), we get immediately Extllz(Ki_l, Q) = 0. Since
i€ Z,we get (2), as desired.

(2) = (1) If (2) holds, then by considering the short exact sequences 0 - K — P, - K — 0 for
every i € Z, so we have 0 — Homg(K,Q) — Hompg(P;,Q) — Homg(K,Q) — 0 is exact for any ¢-u-
projective module Q. By linking these short exact sequences, we get a long exact sequence --- —
Hompg(P;y1,Q) = Hompg(P;, Q) - Homg(P,_1,Q) — ---, as desired M is ¢-Gorenstein projective.

(2) = (3) It follows from the short exact sequences 0 - K — P, - K — 0 that Extﬁ”(K,Q) ~
Extﬁ(K, Q) where K is the syzygies of the complete projective resolution. Now the assertion follows
by induction on k.
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(3) = (4) Let n = ¢-pdrQ. If n =0, then Q is ¢-u-projective and so (4) holds by hypothesis. Now,
assume that n = 0, i.e., Q is not ¢-u-projective. Following [14, Theorem 3.10], there exists an exact
sequence 0 - Q, = Q,_1 — --- = Qp — Q — 0 such that Q; is projective for all 0 <i <n-1 and
Q,, is ¢-u-projective. But considering these short exact sequences 0 -» Q, - Q,.; - K —0,,---,
0 - K — Qp — Q — 0 where K is the syzygies of the above exact sequence, so we get for all k € IN¥,
0= Extlkz(K, Q1) — Extlkg(K,K) - ExtIkQH(K, Q,) =0. So Extlkz(K,K) = 0 for every K, in particular
Extlkz(K, Q) =0, as desired.

(6) = (1) Let Pr:--- > P, > Py > M — 0 be a projective resolution of M. Since ExtIkQ(M,Q) =0
for every ¢-u-projective module Q and every k > 1, we get Hom(%r,Q) is an exact complex. Set
PruU A is the linking between Pr and & through M, we get a complete projective resolution of M
such that Hom(%r U %, Q) is an exact complex for every ¢-u-projective module Q, as desired M is
¢-Gorenstein projective. O

Dually with Theorem [2.3} the nonnil-G-injective modules are characterized as follows.
Theorem 2.4. The following are equivalent for an R-module N:
1. N is nonnil-G-injective,

2. N has a complete injective resolution H such that Extll{(Q, K;) = 0 for every nonnil-injective
module Q and every i-th cosyzygy K; of (2

2

3. N has a complete injective resolution H such that Extﬁ(Q, K;) = 0 for every nonnil-injective
module Q and every i-th cosyzygy K; of (2) and every k > 1,

4. N has a complete injective resolution such that Ext]fz(Q, K;) = 0 for every R-module Q of
finite ¢p-injective dimension, every i-th cosyzygy K; of (2) and every k > 1,

5. N has a complete injective resolution such that Ext}(Q,K;) = 0 for every R-module Q of
finite ¢-injective dimension and every i-th cosyzygy K; of (2),

6. N has a left injective resolution (i.e., & :--- > E; —» Eg = N — 0) such that for every nonnil-
injective module Q, we get the exact complex Hom(Q,.#) and Extlfg(Q, N) =0 for every k > 0.

Proof. This proof is analogous to that of Theorem |2.3|above. O

Remark 2.5. 1. If M is nonnil-G-projective with its complete projective resolution &, then by sym-
metry all images and hence all kernels and cokernels of &9 are nonnil-G-projective modules.

2. If N is nonnil-G-injective with its complete projective resolution &, then by by symmetry all
images and hence all kernels and cokernels of & are nonnil-G-injective modules.

From Theorem [2.3|we can easily deduce the following.

Corollary 2.6. 1. If M is a nonnil-G-projective module, then Extll‘Q(M,Q) = 0 for every k > 1 and every
R-module Q of finite ¢-projective dimension.

2. If N is a nonnil-G-injective module, then Ext’l‘z(Q,N) = 0 for every k > 1 and every R-module Q of
finite ¢p-injective dimension.

Recall from [32] that a ¢-ring R is said to be ¢-von Neumann regular if every R-module is ¢-flat.
It is shown in [[14] Corollary 5.34] that every ¢-von Neumann regular is characterized by the fact that
every module over it is ¢p-u-projective and nonnil-injective, i.e., every module over a ¢-von Neumann
regular ring has both finite ¢-projective and ¢-injective dimension.

Corollary 2.7. Let R be a ring in which every R-module has finite ¢-projective dimension and M be an
R-module. Then M is nonnil-G-projective if and only if M is projective.
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Corollary 2.8. Let R be a ring in which every R-module has finite ¢-injective dimension and M be an
R-module.. Then N is nonnil-G-injective if and only if N is injective.

Proof. This is easily done by Theorem O

Remark 2.9. We now justify that the class of Gorenstein projective modules generalizes the class
of nonnil-G-projective modules. In other words, the class of nonnil-G-projective modules is strictly
contained in the class of Gorenstein projective modules. Let R = K « K, where K is a field. We claim
that there exists a Gorenstein projective R-module which is not nonnil-G-projective. However, R is a
¢-von Neumann regular ring. Thus, if every Gorenstein projective R-module is nonnil-G-projective,
then R is a semisimple ring by Corollary and [27, Corollary 3.8], a desired contradiction since
Nil(R) # 0. Therefore, R contains a Gorenstein projective module which is not nonnil-G-projective.
Similarly, we can justify that there exists a Gorenstein injective R-module which is not nonnil-G-
injective.

Example 2.10. Let R = Z o« Q. Then every nonnil-G-injective R-module is injective. In fact, R is
a strongly ¢-ring and ¢-gl.dim(R) = 1 by [14, Example 6.5]. Therefore, every R-module has finite
¢-injective dimension, a conclusion supported by the fact that every nonnil ideal of R is free (see [14),
Theorem 4.1]).

The ¢-von Neumann regular rings are characterized according to the nonnil-Gorenstein projec-
tivity or nonnil-Gorenstein injectivity as follows.

Theorem 2.11. The following are equivalent for a ¢-ring R:
1. Ris a ¢-von Neumann regular ring,

2. R is a strongly ¢-ring such that every R-module has finite ¢-projective dimension and every
¢-torsion module is nonnil-G-projective,

3. R is a strongly ¢-ring such that every R-module has finite ¢-projective dimension and every
¢-u-torsion module is nonnil-G-projective,

4. R is a strongly ¢-ring such that every R-module has finite ¢-injective dimension and every
¢-torsion module is nonnil-G-injective,

5. R is a strongly ¢-ring such that every R-module has finite ¢-injective dimension and every
¢-u-torsion module is nonnil-G-injective.

Proof. (2) = (3) & (4) = (5) These are straightforward.

(1) = (2) & (1) = (4) These follow directly from [14] Corollary 5.15, Theorem 5.29 and Corollary
5.33] and the fact that every ¢-torsion R-module is zero.

(3) = (1) Let I be a nonnil ideal of R. Then R/I is a ¢-u-torsion R-module, and so R/I is nonnil-
G-projective. By Corollary[2.7, we get that R/I is projective, and so I is generated by an idempotent.
From [32, Theorem 4.1], we deduce that R is a ¢-von Neumann regular ring.

(5) = (1) Let s € R\Nil(R). Then R/sR is a ¢-u-torsion R-module, and so R/sR is nonnil-G-injective.
Thus R/sR is an injective R-module by Corollary[2.8] So we get R =sR, and so s € U(R). Therefore, R
is a ¢-von Neumann regular ring by [14, Theorem 5.14]. ]

Proposition 2.12. Every direct sums (resp., direct product) of nonnil-G-projective (resp., nonnil-G-injective)
modules is nonnil-G-projective (resp., nonnil-G-injective).
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Proof. Let {M;};c; be a family of nonnil-G-projective modules and 94 be a complete projective res-
olution of M; for each i € I. Then ). _, Z is a complete projective resolution of (., M;. By [33]
Theorem 2.1.19], we get easily that ¢, ; M; is nonnil-G-projective. Dually, we can establish the
"nonnil-G-injective" case. O

Next, we establish an analog of the well-known result [21} 2.5. Theorem]. More precisely, the
following theorem shows that the nonnil-G-projective (resp., injective) R-modules are projectively
(resp., injectively) resolving.

Theorem 2.13. Let 0 > A — B — C — 0 be a short exact sequence.

1. If C is a nonnil-G-projective module, then A is nonnil-G-projective if and only if B is nonnil-
G-projective.

2. If A is a nonnil-G-injective module, then B is nonnil-G-injective if and only if C is nonnil-G-
injective.

Proof. (1) This follows immediately from [10, Theorem 2.3 (1)].
(2) This follows immediately from [30, 2.10. Proposition]. O

Proposition 2.14. (1) Every R-module is nonnil-Gorenstein projective if and only if every ¢-u-projective
R-module is injective.

(2) Every R-module is nonnil-Gorenstein injective if and only if every nonnil-injective R-module is
projective. In particular, when the above equivalent conditions are satisfied R is quasi-Frobenius.

Proof. (1) This follows immediately from [10}, Proposition 2.4] by setting & to be the set of all ¢-u-
projective R-modules.

(2) This follows immediately from [30, 2.9. Proposition] by setting % to be the set of all nonnil-
injective R-modules. O]

Next, we will define the nonnil-Gorenstein flat R-modules as follows.

Definition 2.15. Let R be a ring and M be an R-module. We say that M is nonnil-Gorenstein flat if
there exists a complete flat resolution of M, which is an exact sequence of R-modules of the form

97;..._>1:n_)1:n71_>..._>1:1_>1:0_>1:0_>1:1_>..._>1:”_>...

where each F; is a flat R-module, and such that the complex E®r & is exact for every nonnil-injective
R-module E. Furthermore, M is isomorphic to im(Fy, — FY).

Remark 2.16. It is easy to see that every nonnil-Gorenstein flat R-module is a Gorenstein-flat.
Proposition 2.17. The class of nonnil-Gorenstein flat R-modules is closed under arbitrary direct sums.

Proof. Simply note that a (degreewise) sum of complete flat resolutions again is a complete flat reso-
lution (as tensorproducts commutes with sums). O]

Theorem 2.18. For any left R-module M, we consider the following conditions:
1. M is a nonnil-Gorenstein flat R-module,

2. The Pontryagin dual M* = Homy (M, Q/Z) is a nonnil-Gorenstein injective R-module,
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3. M admits a co-proper right flat resolution
F:0->M->F'S5Fl S5 F2 ...,

such that E ®g % is an exact complex of R-modules and Torf(E,M) = 0 for all nonnil-injective
R-modules E, and all integers i > 0.

Then (1) = (2). If R is a coherent ring, then the previous conditions are equivalent.

Proof. (1) = (2)Let F :... > F; - Fy — FY — F! — ... be a complete flat resolution, such that
M =Im(Fy — F?). Then

?+:...—>F1+—>F0+—>F8—>Pf—>...

is an exact sequence of injective R-modules, such that M* = Im(F O — Ff ) On the other hand, we
have for all nonnil-injective R-modules E,

Homgpg (E,¥ %) = Homp (E,Homy (¥ ,Q/Z)) = Homy (E ®r ¥ ,Q/Z)

which is exact. Then & * is a complete injective resolution and M™ is nonnil-Gorenstein injective.

Suppose now that R is a coherent ring.

(2) = (3) From Remark and [21), 3.6. Theorem], M admits a co-proper right flat resolution
0->M-—>F'>Fl S5F2 ...,

Let’s prove that Torf(E,M) =0 for all i > 0 and injective R-module E. Let... > F, -» F; — Fy —
M — 0 be a flat resolution of M, then 0 - M* — Fj — F] — F] — ... is an injective resolution. Let
E be an R-module, we have the following commutative diagram:

... —— Homg(E,F{) ———— Homg(E,F) ———— Homg(E,M*) — 0

l I I

e > HOmZ(E®RP1,Q/Z) > HomZ(E®RF0,Q/Z) > HomZ(E(X)RM,Q/Z) > 0

such that the upper row of the diagram is exact as M* is nonnil-Gorenstein injective, then also the
lower row is exact, which means that Torf(E,M ) = 0 for all i > 0 and every nonnil-injective R-module
E. Now, let #: --- > F| —» Fy —» M — 0 be a flat resolution of M. By linking & with %, trough M,
we get the following complete flat resolution of M:

-.F] 5 Fg>F' > F! ...

So, the following

---F”—>FO+—>F(J;—>1~"1+ — .

is a complete injective resolution of M*. Since, M* is assumed nonnil-Gorenstein injective, we get
the following exact sequence --- — Hompg(E, F'*) — Hompg(E,F**) — Homg(E,M*) — 0, that means
the sequence --- — (E®g FO)* — (E®g F°)* — (E®g M)* — 0 is exact. Hence, we get that E ®y % is
exact, as desired.

(3) = (1) By the same way as (2) = (3), we get a complete flat resolution by linking # with %,
trough M. So, the assumption, Torl-R(E,M ) = 0 for every nonnil-injective R-module E and every i > 0,
implies that the complex E ®g ¥ is exact. By assumption, the complex E Qg %, is exact. Hence,
by linking E ®r % and E ®r # through E ® M, we showed that M is a nonnil-Gorenstein flat R-
module. O]
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Remark 2.19. Let K be a field and consider R = K « K. There exists a Gorenstein flat R-module M
which is not nonnil-Gorenstein flat: in fact, from [27) Corollary 3.8] and [29, Proposition 2.3], every
R-module is a Gorenstein flat. But, R is not a von Neumann regular ring, which means that, there
exists an R-module M that not flat. If M is a nonnil-Gorenstein flat R-module, then Torﬁ(E,M )=0
for every R-module E and every k > 0 by Theorem [2.18], [14] Corollary 5.34] and Corollary[2.6] Hence,
M is flat, a contradiction.

Corollary 2.20. Let R be a coherent ring and 0 — A — B — C — 0 be a short exact sequence of R-modules.
If C is a nonnil-Gorenstein flat R-module, then A is a nonnil-Gorenstein flat R-module if and only if Bis a
nonnil-Gorenstein flat R-module.

Proof. The short exact sequence of R-modules 0 - A — B — C — 0 induces the short exact sequence
0> C" - B* - A" - 0. By Theorem if C is a nonnil-Gorenstein flat R-module then C* is a
nonnil-Gorenstein injective R-module. So, from Theorem A™ is a nonnil-Gorenstein injective
R-module if and only if B* is a nonnil-Gorenstein injective R-module. Again Theorem Ais a
nonnil-Gorenstein flat R-module if and only if B is a nonnil-Gorenstein flat R-module. O]

Theorem 2.21. Let R be a coherent ring and consider the short exact sequence of R-modules 0 —
A — B — C — 0, where A and B are nonnil-Gorenstein flat R-module. If Torf(E,C) = 0 for every
(nonnil)-injective R-module E, then C is a nonnil-Gorenstein flat R-module.

Proof. The proof follows from [30} 4.6. Proposition] if we consider E as an injective R-module. Now,
assuming that E is nonnil-injective. Considering the short exact sequence of R-modules 0 —» C* —
B* —- A" — 0. By Theorem both A* and B* are nonnil-Gorenstein injective R-modules. By
assumption, we get Exty(E,C*) = 0 for every nonnil-injective R-module E. But for every k > 1, we
get the isomorphism Extﬁ(E,Aﬂ = Extlkeﬂ(E, C*) = 0. Therefore, C* is a nonnil-Gorenstein injective
R-module. But R is a coherent ring, and so, C is a nonnil-Gorenstein flat R-module. O

Proposition 2.22. If R is coherent, then the class of nonnil-Gorenstein flat left R-modules is closed under
extensions, kernels of epimorphisms, direct sums and direct summands.

Proof. It follows immediately from [30}, 4.5. Proposition] by setting % as the set of all nonnil-injective
R-modules. ]

3 Onnonnil-G-projective, nonnil-G-injective dimensions and nonnil-G-
flat dimensions

In this section, we introduce the analogs of the Gorenstein injective dimension and the Gorenstein
projective dimension.

Definition 3.1. Let M be an R-module. Then M is said to have a finite nonnil-G-projective dimension
at most n € IN (we denote ¢-Gpdy M < n) if there exists a finite nonnil-G-projective resolution, that
is

0—-»P,—>P_1—>>P>P—>M-0, (3)

in which every P; is nonnil-G-projective. If M does not have a finite length of nonnil-G-projective
resolution, then we set ¢-Gpdy M = oo.

Dually, let N be an R-module. Then N is said to have a finite nonnil-G-injective dimension at most
n € IN if there exists a nonnil-G-injective resolution, that is

0—->N-—>Ey—>E —--—E,—0, (4)
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in which every E; is nonnil-G-injective. If N does not have a finite length of nonnil-G-injective
resolution, then we set ¢-Gidg N = co.

Remark 3.2. Obviously, an R-module M is nonnil-G-projective if and only if its nonnil-G-projective
dimension is zero. Similarly, an R-module N is nonnil-G-injective if and only if its nonnil-G-injective
dimension is zero.

Next, the following theorem is an analog of the well-known result [33}, Proposition 11.3.4].
Theorem 3.3. Let 0 > A — B — C — 0 be an exact sequence.

1. If $-Gpdy B > ¢-Gpdy C, then ¢-Gpdr A = ¢-Gpdy B.

2. If ¢-Gidg B> ¢-Gidg A, then ¢-Gidg B = ¢p-Gidg C.

Proof. We will only prove (1); the case of (2) can be dually proved with (1). Write m = ¢-Gpdr A,
n=¢-Gpdy B, and s = ¢-Gpdy C. First let s = 0, that is, C is a nonnil-G-projective module. If m < oo,
consider a nonnil-G-projective resolution

P:.---—>P,>Py1 > -—>Ph—>A>0
of A. For i >m, set P, = 0. Since C is nonnil-G-projective, there is an exact sequence
@5 Q= Qi == Q> C—0

such that each Q; is projective and each syzygy C; is nonnil-G-projective. So, we can prove that there
exists a complex exact sequence 0 > P - F — @ — 0, where each term F; = P, ® Q; of ¥ is a
nonnil-G-projective module. Denote by B; the i-th syzygy of the complex & . Then there is an exact
sequence 0 — P, — B,, - C,;, — 0. By Theorem [2.13(1), B,, is nonnil-G-projective. Thus n < m.
Hence if #n = oo, then m = oo.

Let n < co. Then there is an exact sequence 0 — F,, — --- — Fy — B — 0, where each F; is nonnil-
G-projective. Let K be the kernel of the homomorphism Fy — B. Then ¢-Gpdz Ky =n—1. Thus we
have the following commutative diagram with all exact rows and columns:

0 0
Ko Ko
0 o L ) Fo > C > 0
|
0 s A s B > C > 0
0 0

By Theorem [2.13](1), L is nonnil-G-projective, and so m < (n—1) + 1 = n. Therefore m = n. For s >0
in the general case, we can examine a nonnil-Gorenstein projective resolution of A and a complete
projective resolution of C. Now the assertion follows by applying the above discussion. O

Corollary 3.4. Let M be a nonnil-G-projective (resp., nonnil-G-injective) module and N be an R-module.
Then ¢p-Gpdr(M & N) = ¢-Gpdy N (resp., p-Gidr(M & N) = ¢p-Gidg N).
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Proof. This follows from the short exact sequence 0 > N > M®N — M — 0. If M @ N is nonnil-
G-projective, then N is also nonnil-G-projective by Theorem ). If ¢-Gpdr(M @®N) =n>0,
then we get ¢-Gpdy N = n by Theorem We can prove the "nonnil-G-injective dimension" case
dully. O

Proposition 3.5. Let M be an R-module with finite nonnil-Gorenstein injective dimension n. Then there
exist exact sequences

0O—M-—]—>F—0

with I nonnil-Gorenstein injective, id(F) < n—1, and
0—I'—>F —>M-—0
with I’ nonnil-Gorenstein injective, id (F’) < n.

Proof. It follows immediately from [30, 2.12. Proposition] by setting % as the set of all nonnil-
injective R-modules. O

Corollary 3.6. Let 0 — M — Iy — I; —> 0 be a short exact sequence of R-modules, where Iy and
Iy are nonnil-Gorenstein injective modules and Exty(I, M) = 0 for all injective R-modules I. Then M is
nonnil-Gorenstein injective.

Proof. It follows immediately from [30, 2.13. Corollary] by setting % as the set of all nonnil-injective
R-modules. ]

The following theorem is the main ingredient of the important functorial description of the nonnil-
G-projective dimension.

Theorem 3.7. The following are equivalent for an R-module M of finite nonnil-G-projective dimen-
sion:

1. ¢-GpdyM < n.
2. Extllg(M, Q) = 0 for every R-module Q with finite ¢-projective dimension and every k > n.
3. Extll‘{(M, Q) = 0 for every ¢-u-projective R-module Q and every k > n.

4. f0-P,—>P, 1 — - — P — M — 0is an exact sequence such that every P;, where 0 <i < n-1,
is a projective module, then P, is nonnil-G-projective.

5 If0—-Q, > Q.1 — - — Qy— M — 0is an exact sequence such that every Q;, where
0 <i<n-1,is a nonnil-G-projective module, then Q, is nonnil-G-projective.

6. Ext'I‘Q(M, Q) =0 for every R-module Q with finite projective dimension and every k > n.
7. Extll‘z(M, Q) = 0 for every projective R-module Q and every k > n.
Proof. Set m = ¢-Gpd M. Then there exists a nonnil-G-projective resolution
0-G,—»G,u.1—>—>G >Gy—>M-—-0 (5)

such that each G; is nonnil-G-projective. We set K; to be its i-th syzygy of (5). In particular, K_; := M.
Note that if k > m+ 1, then K;_, = Gi_;.
(5) = (1) This is straightforward.

11
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(1)=(2) Let k >0and i > —1. Then we have the short exact sequence 0 — K;,; —» G; — K; — 0. By
Theorem 2.3 we get ExtR(GZ, Q) =0, and so we have the isomorphism ExtR(K,+1, Q) Extk”( ,Q).
Since ¢-Gpdp M < n, it follows that for every k > n, Ext’l‘z(M, Q)= Extf{l(KO, Q) = = Exty(Ki 5, Q) =
Ext}(Gy_1,Q) = 0.

(2) = (3) This is straightforward.

(3) = (1) If m = 0, naturally we have m < n. Let m > 0 and set L := Ker(Gy — M). Then ¢-
Gpdi L = m—1. Take a projective module P and an epimorphism P — M. Set K := Ker(P — M).
By [33) Theorem 2.3.12], there is an exact sequence 0 > K - L& P — Gy — 0. By Corollary [3.4]
¢-Gpdgr(L®P)=m—1. By Pr0p031t10n ¢-Gpdr K = m—1. Since Extk (K, Q) = Extk r(M,Q)=0
for any k > n and any ¢-u-projective module Q, by induction m—-1<n— 1 Thus m < n.

(1) = (4) Assume that ¢-Gpdy M < n. Then there exists a nonnil-Gorenstein projective resolution
of M as follows:

0-G,—»G,.1—>—>G »-Gy—>M-—>0

in which every G; is nonnil-G-projective. By [33, Theorem 3.2.1], we get the following commutative
diagram:

0 s P, s P,y S e s By y M 0
0 s G, > Gy S s G » M 5 0

By [33}, Lemma 11.3.3], there exists an exact sequence 0 —» P, - P, 118G, — - > P®G, — Py®G; —
Gy — 0. Since Gy, Gy, ..., G, are nonnil-Gorenstein projective modules, repeated application of
Theorem [2.13]implies that P, is also nonnil-G-projective.

(4) = (5)Let0 > P, > P,y »>---— P, > Py > M — 0 be an exact sequence of R-modules such
that Py, P,..., P,_; are projective modules. Then P, is nonnil-G-projective. By [33, Theorem 3.2.1],
we get the following commutative diagram:

0 P, S P,y s Py s M 5 0
0 > Qu > Qn1 > > Qo > M > 0

Therefore, by [33, Lemma 11.3.3], there exists an exact sequence 0 - P, > P, 19Q,, —» - > P @
Q; = Py® Q1 — Qo — 0. Decompose this exact sequence into two exact sequences

0—-P,—>P_190Q,—-K—0

and
0->K—->P 2®Qu 1> >P®Q > Qy—0.

By Theorem[2.13] we deduce that K is nonnil-G-projective, since all Q; are nonnil-G-projective mod-
ules. Therefore, Q,, is nonnil-G-projective, as desired.

(5) © (6) © (7) These follow immediately from [30, 3.14. Proposition] by setting & as the set of
all ¢-u-projective R-modules. ]

Corollary 3.8. Let M be an R-module with finite nonnil-Gorenstein projective dimension. Then Gpdy M =
¢-Gpdg M. In particular, an R-module M is Gorenstein projective if and only if M is nonnil-Gorenstein
projective.

Proof. 1t follows immediately from [30} 3.15. Corollary] by setting & as the set of all ¢-u-projective
R-modules. O]
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Remark 3.9. We define 2r(R) (resp., Pr(R)) for the class of all ¢-u-projective modules (resp., all
R-modules of finite ¢-projective dimension). By Theorem the nonnil-G-projective dimension of
an R-module M is given as follows:

¢-Gpdy M = sup{i eIN |3 Q € Pr(R) such that Ext]’é(M,Q) # 0}
= sup{i eIN |3 Q € Pr(R) such that Ext}é(M,Q) # 0}.

Dually with Theorem we establish the following theorem.

Theorem 3.10. Let n € IN. Then the following are equivalent for an R-module N of finite nonnil-G-
projective dimension:

1. ¢-Gidg N <n,
2. Extﬁ(Q,N ) = 0 for every R-module Q with finite ¢-injective dimension and every k > n,
3. Extll‘{(Q,N) = 0 for every nonnil-injective R-module Q and every k > n,

4. If0 >N — Ey — E;--- —> E, — 0 such that every E;, where 0 <i <n -1, is an injective module,
then E,, is nonnil-G-injective.

5. If0 >N — Qy— Q- — Q, — 0such that every Q;, where 0 <i < n -1, is nonnil-G-injective
module, then Q,, is nonnil-G-injective.

6. Extllg(Q,N) = 0 for every injective R-module Q and every k > n,
7. Ext'fQ(Q,N ) = 0 for every R-module Q with finite injective dimension and every k > n,

Proof. The proof the first statements is similar of to that of Theorem
(5) © (6) © (7) These follow immediately from [30, 2.15. Proposition]. O

Remark 3.11. We define #(R) (resp., ¥ (R)) for the class of all nonnil-injective modules (resp., all
R-modules of finite ¢-injective dimension). By Theorem the nonnil-G-injective dimension of
an R-module N is given as follows:

¢-Gidg M = sup{i €N |3 Q € #(R) such that EX’E%(Q,M) # 0}
= sup{i €eIN|3 Qe #(R) such that Ext}é(Q,M) # O}.

Corollary 3.12. Let N be an R-module with finite nonnil-Gorenstein injective dimension. Then Gidg N =
¢-Gidg N. In particular, an R-module is nonnil-Gorenstein injective if and only if it is Gorenstein injective.

Proof. It follows immediately from [30, 2.16. Corollary] by setting % as the class of all nonnil-
injective R-modules. O

Corollary 3.13. Let 0 > A — B — C — 0 be a short exact sequence of R-modules and let n € IN. Then the
following hold.

1. If -Gpdg B <nand ¢-Gpdp C < n, then ¢p-Gpdr A < n. In particular, if both B and C are nonnil-
G-projective, then so is A.

2. If p-Gidgr A < nand ¢p-Gidg B < n, then ¢-Gidg C < n. In particular, if both A and B are nonnil-G-
injective, then so is C.

13
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Proof. (1) By Theorem|3.7|4) and [33} Theorem 2.6.6 (Horseshoe Lemma)], we get that ¢- Gpd A < oo.
So, for every k > n and every ¢-u-projective module Q, we get the exact sequence ExtR(B Q) —
Extf(A,Q) — Ext&1(C, Q). By Theorem 3.7, Extk(4,Q) = 0, i.e., p-Gpdg A < .

(2) The proof is similar to that of (1). O

Corollary 3.14. Let 0 » A — B — C — 0 be a short exact sequence of R-modules. Then:

1. If both A and B are nonnil-G-projective modules, then C is projective if and only if Ext}{(C, Q)=0
for every nonnil-G-projective module Q.

2. If both B and C are nonnil-G-injective modules, then A is injective if and only if Exth(Q,A) = 0 for
every nonnil-G-injective module Q.

Proof. (1) By Theoremn ¢-Gpdyr C <1, and so there exists a short exact sequence 0 > M — F —
C — 0, where F is projective and M is nonnil-G-projective. Since Ext}(C,M) = 0, it follows that
0—>M — F — C — 0is split, and so C is projective. The converse is straightforward.

(2) This proof is similar to that of (1). O]

Proposition 3.15. Let 0 - A — B — C — 0 be a short exact sequence of R-modules and let n € N. Then
the following hold.

1. If ¢p-Gpdg B < ¢-Gpd C, then ¢p-Gpdr A = ¢-Gpdr C — 1. In general, we get ¢-GpdzC <1 +
max{¢p-Gpdyg A, ¢-Gpdy B}.

2. If ¢-Gidg B < ¢-Gidr A, then ¢-GidrC = ¢-GidrA — 1. In general, we get ¢p-GidrA < 1 +
max{¢p-Gidg A, ¢-Gidg C}.

Proof. It follows immediately from [34, Corollary 3.7]. O
Proposition 3.16. Let R be a ring and n € IN. Then the following properties hold:

1. If -Gpdy M < n for every R-module M, then the injective dimension of any ¢-u-projective module
is at most n.

2. If ¢-Gidg N < n for every R-module N, then the projective dimension of any nonnil-injective module
is at most n.

Proof. (1) Let Q be a ¢-u-projective module and M be an R-module. Since ¢-Gpdy M < n, there
exists an exact sequence
0—P,—-P_1—>—>P—>P—->M-—D0.

where Py, P,...,P,_; are projective modules and P, is nonnil-G-projective. Then Extlg“(M,Q) =
Ext}{(Pn, Q) = 0. Therefore, idg Q < 1.
(2) This can be proved dually to (1). O

Next, we give an analog of the well-known result [33, Theorem 11.3.14 (Holm) & Theorem 11.3.15
(Christensen-Frankild-Holm)].

Proposition 3.17. Let M be an R-module with finite nonnil-Gorenstein projective dimension n, then there
exist exact sequences

0—H—>G—M—0

with nonnil-Gorenstein projective and pd(H) <n—1 and

0—M-—H —G —0.
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Proof. It follows immediately from [30} 3.11. Proposition] by setting & as the set of all ¢-u-projective
R-modules. O

We next define the nonnil-Gorenstein flat dimension of modules as follows.

Definition 3.18. Let R be a ring and M be an R-module. Then M is said to have a ¢-Gorenstein
flat dimension at most n € IN, and we write ¢-G-fdrM < n, if there exists a resolution of nonnil-
Gorenstein flat R-modules as follows

0—F,—»F,1—>-—>F —>Fp—>M-—0.
If no such resolution exists, we set ¢-G-fdrM = oo.
Proposition 3.19. Let R be a ring and M be an R-module. The following hold.
1. ¢-G-idgM™* < p-G-fdrM.
2. If Ris a coherent ring, then ¢-G-idgM™* = ¢p-G-fdr M.

Proof. (1) If ¢-G-fdrM = oo, the inequality holds. Assuming that ¢-G-fdgM < n, where n € IN.
Then, there exists a resolution of Gorenstein flat R-modules as follows

0—>»F,—»>F,1—>--—>F —>Fp—>M-—0.
The above resolution induces
0->M">Fj—>--—>F —>F | >F -0

which is a resolution of nonnil-Gorenstein injective R-modules. So, it follows that ¢-G-idgM™* < n,
as desired.
(2) This is obvious from Theorem [2.18] O

Corollary 3.20. Let R be coherent and consider the short exact sequence of R-modules0 > A — B — C —
0, where B is nonnil-Gorenstein flat. If C is nonnil-Gorenstein flat, then so is A. If otherwise n > 0, then:

(P'G'deA = (P-G-deC -1.

Proof. Considering the short exact sequence of R-modules 0 - C* — B" - A" — 0, and applying
Proposition (2) in conjunction with Proposition O

Corollary 3.21. Let R be a coherent ring. If (M) \ca is any family of R-modules, then we have an equality:

¢-G-fdr (PO My) = sup{¢p-G-fdrM, | A € A}.
Proof. This follows immediately from Proposition (2). O

Corollary 3.22. Let M be an R-module of finite ¢-Gorenstein flat dimension with R is coherent, and let n
be an integer. Then the following conditions are equivalent:

1. (P-G-de <mn,
2. ToriR(L,M) =0 for all i > n, and all R-modules L with finite ¢-injective dimension.

3. Torf(E,M) =0 for all i > n, and all nonnil-injective R-modules E.

15
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4. for every exact sequence 0 - K,, - G,_.; — ... > Gy = M — 0, where Gy,...,G,_1 are nonnil-
Gorenstein flats, then also K,, is nonnil-Gorenstein flat.
5. TorlR(L,M) =0 for all i > n, and all R-modules L with finite injective dimension.
6. Torf(E,M) =0 for all i > n, and all injective R-modules E.
Consequently, the nonnil-Gorenstein flat dimension of M is determined by the following formulas:
¢-Gfdg M = sup{i e N|3L € $-I(R) : TorR(L, M) = 0},

=sup{i € N |3E € ¢-Z(R) : Tor{(E, M) = 0},

where, ¢-I(R) (resp., ¢-IZ(R)) is the set of all nonnil-injective R-modules (resp., all R-modules with finite
¢-injective dimension).

Proof. The equivalences of the first four statements follow immediately from Proposition [3.19] (2)
and Theorem 3.10}

(4) < (5) &< (6) These follow immediately from [30, 4.9. Proposition] by setting % as the set of
all nonnil-injective R-modules. O

4 On nonnil-Gorenstein global dimension

In this section, we denote #y (resp., Jz) for the class of all R-modules (resp., for all ¢-u-torsion
R-modules). We start with the following definition of the nonnil-Gorenstein global dimension as
follows.

Definition 4.1. For a ring R, define
¢$-G-gl.dim(R) := sup{¢p-Gpdy M | M € My}, (6)
which are called the nonnil-Gorenstein global dimension of R.

Our next goal is to characterize the rings of finite nonnil-Gorenstein global dimension at most
ne€N.

Theorem 4.2. Let n € N. Then the following are equivalent for a ring R of finite nonnil-Gorenstein
global dimension R:

1. ¢-G-gl.dim(R) < n.

2. The injective dimension of any ¢-u-projective module is at most 7.

3. The projective dimension of any nonnil-injective module is at most n.
4. ¢-Gpdy M < n for any finitely generated R-module M.

5. ¢-Gpdyi(R/I) < n for any ideal I of R.

6. Extﬁ(M,N ) = 0 for any module M, any module N of finite ¢-projective dimension, and any
k>n.

7. ¢-Gidg N < n for every R-module N.
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Proof. (3) = (7) Let N be an R-module and E be a nonnil-injective R-module. Then for every k > n,
we have Ext]l;(E,N) =0, since pdg E < n. Then ¢-Gidg N < n by Theorem

(7) = (3) Let E be a nonnil-injective module and N be an R-module. Then Ext?{”(E,N) =0 by
hypothesis and Theorem Therefore, pdg E < n.

(1) = (4) = (5) These are direct.

(5) = (2) Let P be a ¢-u-projective module. Then by Theorem we get Extﬁ(R/I,P) = 0 for every
k > n and every ideal I of R. Therefore, idg P < n.

(1) © (6) This follows from Theorem

(1) © (2) The necessity follows immediately from Proposition We claim the sufficiency. Let
M be an R-module and P be a ¢-u-projective module. Then for all k > n, we get that Extll‘z(M,P) =0,
since the injective dimension of P is at most n. By Theorem 3.7} we deduce that ¢-Gpdz M < n.

(1) © (3) This is the dual of the proof of (1) & (2). O

Proposition 4.3. Let R be a ring. Then

¢-G-gl.dim(R) = sup {¢p-Gidg N | N € Ay}
=sup{Gidg N | N € Ay}
=sup{¢p-GprM | M is a finitely generated R-module}

= sup{(p—GpR(?) | I is an ideal of R}.

Proof. It follows immediately from Theorem [4.2]and [34, Theorem 4.5]. O
Proposition 4.4. Let R be a ring. Then G-gl.dim(R) < ¢-G-gl. dim(R), with equality if ¢p-G-gl.dim(R) <

Q.

Proof. This follows immediately from Remark[2.2} Corollary [3.8] [21}, 2.20. Theorem], and [33} Defi-
nition 11.4.1]. O

Recall that a ring R is said to be quasi-Frobenius (QF for short) if every projective module is
injective.

Definition 4.5. A ring R is said to be strongly quasi-Frobenius (strongly QF for short) if its nonnil-
Gorenstein global dimension is zero.

Remark 4.6. It is easy to see that every strongly QF ring is QF. The converse is not true by Remark
2.9

The following theorem is an analog of the well-known result [33, Theorem 4.6.10 (Faith-Walker)].

Theorem 4.7. The following are equivalent for a ring R of finite nonnil-Gorenstein global dimension:
1. Ris strongly QF,
2. Every nonnil-injective module is projective,
3. Every ¢-u-projective module is injective,
4. Ris QF such that every nonnil-injective module is injective,
5. Ris QF such that every ¢-u-projective module is projective,

6. Every R-module is nonnil-G-injective.
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Proof. (1) & (2) & (3) © (6) These follow immediately from Theorem 4.2
(2) © (4) This follows immediately from [33 Theorem 4.6.10 (Faith-Walker)].
(3) = (5) & (5) = (1) These follow immediately from [33] Theorem 4.6.10 (Faith-Walker)]. O

Remark 4.8. Note that a QF ring is not necessarily a strongly QF ring. In fact, for every field K, it is
easy to see that the ring R = K « K is a QF ring by [27} Corollary 3.8]. However, R is never a strongly
QF ¢-ring, since its nilradical is a ¢-u-projective R-module but not projective by [33, Proposition
6.7.12).

It is natural to ask: what are the ¢-rings of nonnil-Gorenstein global dimension 0? The following
theorem answers this question.

Theorem 4.9. If R € H, then R is a field if and only if its nonnil-Gorenstein global dimension equals
zero.

Proof. The necessity is trivial. Now we prove the sufficiency. Let R € H of nonnil-Gorenstein global
dimension 0. By Proposition and [7, Proposition 2.6], R is a QF ring. In particular, Nil(R) is
finitely generated. By [5, Lemma 2.3], either R is an integral domain or a local Artinian ring with
maximal ideal Nil(R) # 0. But if R is not an integral domain, then R is a ¢-von Neumann regular
ring. So every R-module is projective by Corollary[2.7) i.e., R is a semisimple ring, and so Nil(R) = 0,
a desired contradiction. Therefore R is an integral domain. Consequently, R is a field. O

We can give a second proof of Theorem [4.9]as follows.

Second proof of Theorem By Theorem[4.7and [31], Theorem 1.6], we deduce that if R is a strongly
QF ¢-ring, then R is a QF integral domain. Therefore, R must be a field. O

Also, there is a third proof as follows.

Third proof of Theorem First, if R € H, then R/Nil(R) is a ¢p-u-projective R-module. In fact, we
claim that Ext}{(R/Nil(R),X) = 0 for any ¢-u-torsion R-module X. Let X be a ¢p-u-torsion R-module.
We first show that Hompz(Nil(R), X) = 0. Let ¥ € Homg(Nil(R), X). Since X is a ¢p-u-torsion R-module,
sX = 0 for some s € R\ Nil(R). Since R € H, it follows that Nil(R) is a ¢-divisible R-module, and
so Nil(R) = sNil(R). Then for every n € Nil(R), we can write n = sn’ for some n’ € Nil(R), and so
y(n) = sy(n’) € sX = 0. It follows that Homg(Nil(R), X) = 0. However, it follows from the short
exact sequence 0 — Nil(R) - R — R/Nil(R) — 0 that 0 = Homz(Nil(R), X) — Extllz(R/Nil(R),X) — 0.
Therefore, R/Nil(R) is a ¢-u-projective R-module.

Now, if the nonnil-Gorenstein global dimension of R is zero, then by Theorem Ris a QF ring
such that R/Nil(R) is a projective R-module, and so Nil(R) is a projective ideal of R. It follows that
Nil(R) = 0 by [33} Proposition 6.7.12], and so R is both an integral domain and a QF-ring, that is a
field. The converse is obvious. O

As shown in Theorem 4.9} the ¢-rings with nonnil-Gorenstein global dimension 0 are precisely the
fields. Therefore, the class of ¢-rings of nonnil-Gorenstein global dimension 0 is well-established.
To extend this class, let us consider the following definition.

Definition 4.10. Let R be a ring. Define its closed nonnil-Gorenstein global dimension, denoted by
¢-G.gl.dim(R), as follows:

¢-G.gl.dim(R) := sup{¢p-Gpdy M |[M € T }. (7)

Theorem 4.11. The following are equivalent for a ring R of finite closed nonnil-Gorenstein global
dimension:
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1. ¢-G.gl.dim(R) <,

2. The ¢-injective dimension of any ¢-u-projective module is at most #,
3. The ¢-projective dimension of nonnil-injective module is at most n,
4. ¢-Gpdy M < n for any finitely generated ¢-u-torsion R-module M,

5. ¢-Gpdg(R/I) < n for any nonnil ideal I of R,

6. Ext’fz(M,N ) = 0 for any ¢-u-torsion module M, any module N of finite ¢-projective dimension,
and any k > n.

Proof. (1) = (4) = (5) These are straightforward.

(5) = (2) Let P be a ¢p-u-projective module. Then by Theorem we get Extﬁ(R/I,P) =0 for every
k > n and every nonnil ideal I of R. Therefore, ¢-idg P < n.

(1) © (6) This follows from Theorem

(1) © (2) The necessity follows immediately from Proposition We claim the sufficiency.
Let M be a ¢-u-torsion R-module and P be a ¢-u-projective module. Then for any k > n, we get
Ext’f{(M,P) = 0, since the ¢-injective dimension of P is at most n. By Theorem we deduce that
¢-Gpdy M < n.

(1) & (3) This can be proved dually with (1) & (2). O

Next, a ¢-ring R is said to be nonnil-self-injective if R is a nonnil injective module over itself. The
following theorem characterizes the ¢-von Neumann regular rings in terms of the closed nonnil-
Gorenstein global dimension.

Theorem 4.12. The following are equivalent for a strongly ¢-ring R:
1. Ris a nonnil self-injective ring,
2. Nil(R) and R/Nil(R) are nonnil injective R-modules,
3. Nil(R) is a nonnil-injective ideal of R and R/Nil(R) is a self-injective ring,
4. R/Nil(R) is a self injective ring,

5. Ris a ¢-von Neumann regular ring,

6. ¢-G.gl.dim(R) =0.

Proof. (1) = (2) Assume that R is a nonnil self-injective ring. Then Nil(R) is a nonnil injective
ideal. In fact, it is easy to see that R/Nil(R) is a ¢-torsion-free R-module, and so for any non-
nil ideal I of R, we get Homg(R/I,R/Nil(R)) = 0 by [32, Theorem 2.3]. Using the sequence 0 —
Nil(R) - R — R/Nil(R) — 0, we obtain that Ext}{(R/I, Nil(R)) = 0 since R is nonnil self-injective,
and so Nil(R) is a nonnil-injective ideal. Since Ext}z(R/I,R/Nil(R)) = Extlzz(R/I,Nil(R)), it follows that
Extll{(R/I, R/Nil(R)) = 0, and so R/Nil(R) is a nonnil injective R-module.

(2) = (1) If Nil(R) and R/Nil(R) are nonnil injective R-modules, then it is straightforward to see
that R is a nonnil self-injective ring.

(2) © (3) This follows from [31), Proposition 1.4].

(3) = (5) Let s € R\ Nil(R). Since R/Nil(R) is a nonnil-injective R-module, it is a divisible R-
module by [14, Theorem 2.9], and so there exists r € R such that 1 + Nil(R) = sr + Nil(R). Hence
sr € 1+ Nil(R) € U(R). Therefore, R\ Nil(R) c U(R). It follows that R is a local ¢-ring with maximal
ideal Nil(R). Therefore, R is a ¢-von Neumann regular ring by [14, Theorem 5.14].
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(5) = (1) This follows from [[14, Remarks 4.9 and Theorem 5.32].

(4) © (5) This follows immediately from [32, Theorem 4.1] and the fact that every self-injective
integral domain is a field.

(5) = (6) If R is a ¢-von Neumann regular ring, then each ¢-u-torsion R-module is equal zero.
Then ¢-G.gl.dim(R) = 0.

(6) = (1) Assume that R is a ¢-ring of the closed nonnil-Gorenstein global dimension 0. By Theo-
rem we deduce easily that R is nonnil-self-injective. O]

By combining Theorem and Theorem we give the following corollary.
Corollary 4.13. The following are equivalent for a ¢-ring R:
1. Ris a ¢p-von Neumann regular ring,

2. Risastrongly ¢-ring such that every R-module has finite ¢p-projective dimension and every ¢-torsion
module is nonnil-G-projective,

3. Ris a strongly ¢-ring such that every R-module has finite ¢-projective dimension and every ¢-u-
torsion module is nonnil-G-projective,

4. Ris a strongly ¢-ring such that every R-module has finite ¢p-injective dimension and every ¢-torsion
module is nonnil-G-injective,

5. R is a strongly ¢-ring such that every R-module has finite ¢p-injective dimension and every ¢-u-
torsion module is nonnil-G-injective,

6. Ris a strongly ¢-ring such that every ¢-u-projective module is nonnil-injective,

7. Ris a strongly ¢-ring such that every nonnil-injective module is ¢p-u-projective,

8. Ris a strongly ¢-ring of ¢-G.gl.dim(R) = 0.
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