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1 Introduction
Let R be a commutative ring with 1 , 0. Then Z(R) denotes the set of all zerodivisors of R, Id(R) denotes the set of all idempotent

elements of R, U(R) denotes the set of all units of R, and Nil(R) denotes the set of all nilpotent elements of R. We recall from [6] and
[9] that R is called a divided ring if, for every prime ideal P of R, we have P ⊆ aR for every a ∈ R \ P. Let Spec(R) denote the set of
all prime ideals of R. We say Spec(R) are linearly ordered as in [3] if for every prime ideal P1,P2 of R we have P1 ⊆ P2 or P2 ⊆ P1.
We recall from [8] that a commutative ring R is called a pseudo-valuation ring abbreviated PVR if, for every prime ideal P of R and
for every a,b ∈ R, we have aP ⊆ bR or bR ⊆ aP. Recall that R is a von Neumann regular if for every a ∈ R, there is x ∈ R such that
a2x = a, that R is π-regular if for every a ∈ R, there are x ∈ R and an integer n ≥ 1 such that a2nx = an, and that R is Boolean if a2 = a
for every a ∈ R. Thus a Boolean ring is von Neumann regular and a von Neumann regular ring is π-regular. Let π− r(R) be the set of all
π-regular elements of R and vnr(R) be the set of all von Neumann regular elements of R. Recall ([4]) that a proper ideal I of R is called
an (m,n)-closed ideal of R if xm ∈ I implies xn ∈ I.

In this paper, we collect some divisibility conditions that characterize the mentioned rings above.

2 Results
Recall that Spec(R) are linearly ordered as in [3] if for every prime ideal P1,P2 of R we have P1 ⊆ P2 or P2 ⊆ P1. If I is a proper

ideal of R, then Rad(I) = {x ∈ R | xn ∈ I for some integer n ≥ 1}.

Theorem 2.1. ([5, Theorem 1]) The following statements are equivalent for a commutative ring R.

1. For each a,b ∈ R, there is an n ≥ 1 such that a | bn or b | an.

2. The prime ideals of R are linearly ordered.

3. The radical ideals of R are linearly ordered.

4. Each proper radical ideal of R is prime.

5. The radical ideals of principal ideals of R are linearly ordered.

Recall from [6] and [9] that R is called a divided ring if, for every prime ideal P of R, we have P ⊆ aR for every a ∈ R \ P.

Theorem 2.2. ([5, Proposition 2]) For an integral domain R the following are equivalent.

1. For every a,b ∈ R, we have a | b or b | an for some integer n ≥ 1.

2. For every pair of ideals I, J of R we have I ⊆ Rad(J) or Rad(J) ⊆ I.

3. For every a,b ∈ R, we have aR ⊆ Rad(b) or Rad(b) ⊆ aR.

4. R is a divided ring.

Theorem 2.3. ([6, Theorem 1]) For a commutative ring R. The following are equivalent.
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1. R is a divided ring.

2. For every a,b ∈ R, there is an integer n ≥ 1, such that anN ⊆ bR or bR ⊆ anN, where N is the set of all nonunit elements of R.

We recall from [8] that a commutative ring R is called a PVR if, for every prime ideal P of R and for every a,b ∈ R, we have aP ⊆ bR
or bR ⊆ aP.

Theorem 2.4. ( [8, Theorem 5]) Let N be the set of all nonunit elements of R. The following statements are equivalent.

1. R is a PVR.

2. For all a,b ∈ R, we have a | b (in R) or b | ac (in R) for every c ∈ N.

3. For all ideals I and J of R, we have I ⊆ J or JL ⊆ I for every proper ideal L of R.

It is clear that every chained ring is a PVR. Recall that a ring R is a chained ring if for every a,b ∈ R, we have a | b (in R) or b | a (in
R). The following is an example of a PVR that is not a chained ring.

Example 2.5. ([8, Example 10]) Let K be a field and X,Y indeterminates and I = (X2,XY,Y2). Then R = K[X,Y]/I has exactly one
maximal ideal M = (X + I,Y + I). Since zM = {0} for every z ∈ M, R is a PVR. Let a = x+ I and b = y+ I. Since a - b (in R) and b - a
(in R), we conclude that R is not a chained ring.

Theorem 2.6. ([7, Corollary 7]) For a commutative ring R. The following are equivalent.

1. R is a PVR.

2. For each a,b ∈ R and maximal ideal M of R, we have aM ⊆ bR or bR ⊆ aM.

3. For each a,b ∈ R, there is a maximal ideal M of R containing Z(R) so that aM ⊆ bR or bR ⊆ aM.

Let R be a commutative ring with total quotient ring T (R). Then R is called additively regular if for each x ∈ T (R), there is a y ∈ R
such that x+ y is a regular element of T (R). Note that Noetherian rings are additively regular rings. Recall that R is called root closed
if whenever xn ∈ R for some x ∈ T (R), then x ∈ R. For a commutative ring R, U(T (R)) is the set of all units of T (R).

Theorem 2.7. ([2, Proposition 2.2]) Let R be an additively regular ring. The following are equivalent:

1. R is root closed.

2. If xn ∈ R for some x ∈ U(T (R)) and n ≥ 1, then x ∈ R.

Recall that a ring R is called (2,3)-closed if whenever x2, x3 ∈ R for some x ∈ T (R), then x ∈ R.

Theorem 2.8. ([2, Proposition 2.3]) Let R be an additively regular ring. The following are equivalent.

1. R is (2,3)-closed.

2. If x2, x3 ∈ R for some x ∈ U(T (R)), then x ∈ R.

Theorem 2.9. ([2, Proposition 2.3]) Let R be an additively regular ring. The following are equivalent.

1. R is integrally closed.

2. If x ∈ R′ for some x ∈ U(T (R)), then x ∈ R, where R′ is the integral closure of R in T (R).

Recall ([4]) that a proper ideal I of R is called an (m,n)-closed ideal of R if xm ∈ I implies xn ∈ I.

Theorem 2.10. ([4, Theorem 3.1]) Let R be an integral domain, m and n integers with 1 ≤ n < m, and I = pkR, where p is a prime
element of R and k is a positive integer. Then the following statements are equivalent.

1. I is an (m,n)-closed ideal of R.

2. k = ma+ r, where a and r are integers such that a ≥ 0, 1 ≤ r ≤ n, a(m mod n)+ r ≤ n, and if a , 0, then m = n+ c for an integer c
with 1 ≤ c ≤ n− 1.

3. If m = bn+ c for integers b and c with b ≥ 2 and 0 ≤ c ≤ n− 1, then k ∈ {1, . . . ,n}. If m = n+ c for an integer c with 1 ≤ c ≤ n− 1,
then k ∈

⋃n
h=1{mi+ h | i ∈ Z and 0 ≤ ic ≤ n− h }.

Theorem 2.11. ([4, Theorem 3.2]) Let R be an integral domain, n a positive integer, and I = pkR, where p is a prime element of R and
k is a positive integer. Then the following statements are equivalent.

1. I is an (n+ 1,n)-closed ideal of R.

2. k = (n+ 1)a+ r, where a and r are integers such that a ≥ 0, 1 ≤ r ≤ n, and a+ r ≤ n.

3. k ∈
⋃n

h=1{ (n+ 1)i+ h | i ∈ Z and 0 ≤ i ≤ n− h }.

Moreover, |{k ∈ N | pkR is (n+ 1,n)-closed}| = n(n+ 1)/2.
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Theorem 2.12. ([4, Corollary 3.3]) Let R be an integral domain and I = pkR, where p is a prime element of R and k is a positive
integer. Then I is a (3,2)-closed ideal of R if and only if k ∈ {1,2,4}.

Theorem 2.13. ([4, Theorem 3.4]) Let R be an integral domain, m and n integers with 1 ≤ n < m, and I = pk1
1 · · · p

ki
i R, where p1, . . . , pi

are nonassociate prime elements of R and k1, . . . ,ki are positive integers. Then the following statements are equivalent.

1. I is an (m,n)-closed ideal of R.

2. p
k j
j R is an (m,n)-closed ideal of R for every 1 ≤ j ≤ i.

3. If m = bn+ c for integers b and c with b ≥ 2 and 0 ≤ c ≤ n− 1, then k j ∈ {1, . . . ,n} for every 1 ≤ j ≤ i. If m = n+ c for an integer
c with 1 ≤ c ≤ n− 1, then k j ∈

⋃n
h=1{mv+ h | v ∈ Z and 0 ≤ vc ≤ n− h } for every 1 ≤ j ≤ i.

Theorem 2.14. ([4, Corollary 3.5]) Let R be a principal ideal domain, I a proper ideal of R, and m and n integers with 1 ≤ n < m. Then
the following statements are equivalent.

1. I is an (m,n)-closed ideal of R.

2. I = pk1
1 · · · p

ki
i R, where p1, . . . , pi are nonassociate prime elements of R and k1, . . . ,ki are positive integers, and one of the

following two conditions holds.

(a) If m = bn+ c for integers b and c with b ≥ 2 and 0 ≤ c ≤ n− 1, then k j ∈ {1, . . . ,n} for every 1 ≤ j ≤ i.

(b) If m = n+ c for an integer c with 1 ≤ c ≤ n− 1, then k j ∈
⋃n

h=1{mv+ h | v ∈ Z and 0 ≤ vc ≤ n− h } for every 1 ≤ j ≤ i.

Theorem 2.15. ([4, Corollary 3.6]) Let R be an integral domain, I = pk1
1 · · · p

ki
i R, where p1, . . . , pi are nonassociate prime elements of

R and k1, . . . ,ki are positive integers, and n a positive integer. Then the following statements are equivalent.

1. I is an (n+ 1,n)-closed ideal of R.

2. k j ∈
⋃n

h=1{ (n+ 1)v+ h | v ∈ Z and 0 ≤ v ≤ n− h } for every 1 ≤ j ≤ i.

Theorem 2.16. ([4, Corollary 3.7]) Let R be a principal ideal domain, I a proper ideal of R, and n a positive integer. Then the following
statements are equivalent.

1. I is a (n+ 1,n)-closed ideal of R.

2. I = pk1
1 · · · p

ki
i R, where p1, . . . , pi are nonassociate prime elements of R and k1, . . . ,ki are positive integers, and k j ∈

⋃n
h=1{ (n+

1)v+ h | v ∈ Z and 0 ≤ v ≤ n− h } for every 1 ≤ j ≤ i.

The next theorem uses Theorem 2.10 to give an easier criterion to determine when pkR is (m,n)-closed.

Theorem 2.17. ([4, Theorem 3.8]) Let R be an integral domain, m and n integers with 1 ≤ n < m, and I = pkR, where p is a prime
element R and k is a positive integer. Then the following statements are equivalent.

1. I is an (m,n)-closed ideal of R.

2. Exactly one of the following statements holds.

(a) 1 ≤ k ≤ n.

(b) There is a positive integer a such that k = ma+ r = na+ d for integers r and d with 1 ≤ r,d ≤ n− 1.

(c) There is a positive integer a such that k = ma+ r = n(a+ 1) for an integer r with 1 ≤ r ≤ n− 1.

For fixed positive integers m and k, we next determine the smallest positive integer n such that I = pkR is (m,n)-closed. Note that
n ≤ m since every proper ideal is (m,m)-closed and that I is (m,n′)-closed for all positive integers n′ ≥ n. So this determines R(pkR).
Also, if m > 1, then n = 1 if and only if k = 1, i.e., if and only if I is a prime ideal of R. As usual, bxc is the greatest integer, or floor,
function.

Theorem 2.18. ([4, Theorem 3.10]) Let R be an integral domain and I = pkR, where p is a prime element of R and k is a positive
integer. Let m be a positive integer and n be the smallest postive integer such that I is (m,n)-closed.

1. If m ≥ k, then n = k.

2. Let m < k and write k = ma+ r, where a is a positive integer and 0 ≤ r < m.

(a) If r = 0, then n = m.

(b) If r , 0 and a ≥ m, then n = m.

(c) If r , 0, a < m, and (a+ 1)|k, then n = k/(a+ 1).

(d) If r , 0, a < m, and (a+ 1) - k, then n = bk/(a+ 1)c+ 1.
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For fixed positive integers n and k, we next determine the largest positive integer m (or ∞) such that I = pkR is (m,n)-closed. (If
I is (m,n)-closed for every positive integer m, we will say that I is (∞,n)-closed.) Of course, m can also be found using the previous
theorem. Clearly, m ≥ n since every proper ideal is (n,n)-closed, and I is (m′,n)-closed for every positive integer m′ ≤ m.

Theorem 2.19. ([4, Theorem 3.11]) Let R be an integral domain, n a positive integer, and I = pkR, where p is a prime element of R
and k is a positive integer.

1. If n ≥ k, then I is (m,n)-closed for every postive integer m.

2. Let n < k and write k = na+ r, where a is a positive integer and 0 ≤ r < n. Let m be the largest positive integer such that I is
(m,n)-closed.

(a) If a > n, then m = n.

(b) If a = n and r = 0, then m = n+ 1.

(c) If a = n and r , 0, then m = n.

(d) If a < n, r = 0, and (a− 1)|k, then m = k/(a− 1)− 1.

(e) If a < n, r = 0, and (a− 1) - k, then m = bk/(a− 1)c.

(f) If a < n, r , 0, and a|k, then m = k/a− 1.

(g) If a < n, r , 0, and a - k, then m = bk/ac.

The previous two theorems easily extend to products of principal prime ideals. In particular, we can calculate R(I) = { (m,n) ∈
N×N | I is (m,n)-closed } for every proper ideal I in a principal ideal domain or every proper principal ideal I in a unique factorization
domain.

Theorem 2.20. ([4, Theorem 3.12]) Let R be an integral domain and I = pk1
1 · · · p

ki
i R, where p1, . . . , pi are nonassociate prime elements

of R and k1, . . . ,ki are positive integers.

1. Let m be a positive integer. If n j is the smallest positive integer such that p
k j
j R is (m,n j)-closed for 1 ≤ j ≤ i, then n =

max{n1, . . . ,ni} is the smallest positive integer such that I is (m,n)-closed.

2. Let n be a positive integer. If m j is the largest positive integer (or ∞) such that p
k j
j R is (m j,n)-closed for 1 ≤ j ≤ i, then m =

min{m1, . . . ,mi} is the largest positive integer (or∞) such that I is (m,n)-closed.

Let I be a proper ideal of a commutative ring R, and R(I) = { (m,n) ∈ N×N | I is (m,n)-closed }.

Theorem 2.21. ([4, Theorem 4.1]) Let R be a commutative ring, I and J proper ideals of R, and m,n and k positive integers.

1. (m,n) ∈ R(I) for all positive integers m and n with m ≤ n.

2. If (m,n) ∈ R(I), then (m′,n′) ∈ R(I) for all positive integers m′ and n′ with 1 ≤ m′ ≤ m and n′ ≥ n.

3. If (m,n) ∈ R(I), then (km,kn) ∈ R(I).

4. If (m,n), (n,k) ∈ R(I), then (m,k) ∈ R(I).

5. If (m,n), (m+ 1,n+ 1) ∈ R(I) for m , n, then (m+ 1,n) ∈ R(I).

6. If (n,2), (n+ 1,2) ∈ R(I) for an integer n ≥ 3, then (n+ 2,2) ∈ R(I), and thus (m,2) ∈ R(I) for every positive integer m.

7. If (m,n) ∈ R(I) for positive integers m and n with n ≤ m/2, then (m+1,n) ∈ R(I), and thus (k,n) ∈ R(I) for every positive integer
k.

8. (m,n) ∈ R(I) for every positive integer m if and only if (2n,n) ∈ R(I).

9. R(I × J) = R(I)∩R(J) ⊆ R(I ∩ J).

Theorem 2.22. ([4, Theorem 4.3]) Let R be a commutative ring, I a proper ideal of R, and m and n positive integers. Let fI(m) =
min{n | I is (m,n)-closed } and gI(n) = sup{m | I is (m,n)-closed }.

1. 1 ≤ fI(m) ≤ m.

2. fI(m) ≤ fI(m+ 1).

3. If fI(m) < m, then either fI(m+ 1) = fI(m) or fI(m+ 1) ≥ fI(m)+ 2.

4. n ≤ gI(n) ≤∞.

5. gI(n) ≤ gI(n+ 1).

6. If gI(n) > n, then either gI(n+ 1) = gI(n) or gI(n+ 1) ≥ gI(n)+ 2.

Theorem 2.23. ([4, Theorem 5.1]) The following statements are equivalent for a commutative ring R.
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1. If a2 = b3 with a,b ∈ R regular, then a = c3 and b = c2 for some regular c ∈ R (i.e., R is seminormal with respect to regular
elements of R)

2. If b2 | a2 and b3 | a3 with a,b ∈ R regular, then b | a (i.e., R is (2,3)-closed with respect to units of T (R))

Let R be a commutative ring with nonzero identity. Recall that R is a von Neumann regular if for every a ∈ R, there is x ∈ R such that
a2x = a, that R is π-regular if for every a ∈ R, there are x ∈ R and an integer n ≥ 1 such that a2nx = an, and that R is Boolean if a2 = a
for every a ∈ R. Thus a Boolean ring is von Neumann regular and a von Neumann regular ring is π-regular. Let π− r(R) be the set of all
π-regular elements of R and vnr(R) be the set of all von Neumann regular elements of R. If R is a ring, then Z(R) denotes the set of all
zerodivisors of R, Id(R) denotes the set of all idempotent elements of R, U(R) denotes the set of all units of R, and Nil(R) denotes the
set of all nilpotent elements of R.

Theorem 2.24. ([3, Theorem 2.2]) Let R be a commutative ring. The following statements are equivalent.

1. a ∈ vnr(R).

2. a2u = a for some u ∈ U(R).

3. a = eu for some e ∈ Id(R) and u ∈ U(R).

4. ab = 0 for some b ∈ vnr(R) \ {a} with a+ b ∈ U(R).

5. ab = 0 for some b ∈ R with a+ b ∈ U(R).

Theorem 2.25. ([3, Theorem 2.11]) Let R be a commutative ring with 2 ∈ U(R). The following statements are equivalent.

1. vnr(R) is a subring of R.

2. The sum of any four regular elements of R is a von Neumann regular element of R.

3. Let u,v,k,m ∈ U(R) with k2 = m2 = 1. Then u(1+ k)+ v(1+m) ∈ vnr(R).

Theorem 2.26. ([3, Theorem 2.2]) Let R be a commutative ring. The following statements are equivalent.

1. a ∈ π− r(R).

2. an ∈ vnr(R) for some n ≥ 1.

3. an = eu for some e ∈ Id(R), u ∈ U(R), and n ≥ 1.

4. a = b+w for some b ∈ vnr(R) and w ∈ Nil(R).

5. a = eu+w for some e ∈ Id(R), u ∈ U(R), and w ∈ Nil(R).

6. anb = 0 for some b ∈ R, n ≥ 1 with an + b ∈ U(R).

7. ab = Nil(R) for some b ∈ R with a+ b ∈ U(R).

Theorem 2.27. ([3, Proposition 1.1]) Let R be a commutative ring with 1 , 0. The following statements are equivalent.

1. R is a von Neumann regular ring.

2. Let m ≥ 2 be a fixed integer. If x | ym for x,y ∈ R, then x | y.

3. Let x,y ∈ R. If x | yn for some integer n ≥ 1, then x | y.

4. Let x,y ∈ R. If yn = xd for some integer n ≥ 1 with d ∈ R a nonunit, then x | y.

5. All proper ideals of R are radical ideals.

6. All principal proper ideals of R are radical ideals.

Theorem 2.28. ([3, Proposition 1.2]) Let R be a commutative ring with 1 , 0. The following are equivalent.

1. T (R) is a von Neumann regular ring.

2. Let x,y ∈ R. If x | yn for some integer n ≥ 1, then x | sy for some regular element s ∈ R.

Theorem 2.29. ([3, Theorem 2.2]) Let R be a commutative ring. The following statements are equivalent.

1. T (R) is zero-dimensional ring.

2. For each x ∈ R, there is a y ∈ R and an integer n ≥ 1 such that xny = 0 and xn + y is a regular element of R.

3. For each x ∈ R, there is a y ∈ R such that xy ∈ Nil(R) and x+ y is a regular element of R.
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