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Abstract. In this paper, we compute the unit groups and the 2-class numbers of the Frohlich’s triquadratic fields K = Q( V2, VP> VD),
where p and ¢ are two prime numbers such that (p = 1 (mod 8) and ¢ = 3 (mod 4)) or (p =5 or 3 (mod 8) and g = 3 (mod 4)).
Furthermore, we determine some families of the fields K whose 2-class groups are trivial or cyclic non trivial, and some other families
with 2-class groups isomorphic to the Klein group.
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1 Introduction

A Frohlich multiquadratic field of degree 2" is a real multiquadratic field of the form F,, = Q(~/p1, /P2, .- VPn)s
where the p;’s are prime numbers. These fields are of major interest in class field theory and genus theory of
quadratic and biquadratic fields. Their study has a long history, and here we shall quote some works which
are related to the subject of this paper. In the best of our knowledge, when n > 3, all the facts that we have
about the class groups of these fields concern the cyclicity of their 2-class groups and the parity of their class
numbers. For example, in [[11], Frohlich showed that if more than four finite primes are ramified in a finite
extension K/Q, then the class number of K is even and therefore F,, with n > 5 has an even class number. The
parity of the class number of the quadratic field (i.e. F'1) can be determined using genus theory. The biquadratic
field (i.e. F3) was studied by Frohlich [11], Conner and Hurrelbrink [[10] and Kucera [[13]. The parity of the
class numbers of Frohlich fields of degree 8 (i.e. F3) was studied by Bulant [[6] who used the method of Kucera
which is based on circular units. Furthermore, the authors of [[16] determined a list of the fields F'3 with p; =3
(mod 4) whose 2-class groups are cyclic non trivial. Finally, the parity of the class number of Fy4, was investi-
gated in [[15]]. We believe that after this list of interesting works, it is time to go further and discover more and
different arithmetical properties of these fields.

In the present paper, we provide the unit groups and the 2-class numbers of the Frohlich field F3 := K =
Q( V2, \/P- \/q), where p and g are two prime numbers such that (p =1 (mod 8) and ¢ =3 (mod 4)) or (p =5
or 3 (mod 8) and ¢ = 3 (mod 4)). Furthermore, we shall give some families of K with 2-class groups of type
(2,2). Note that the reason behind choosing this form comes from our expertise and previous studies which
showed the importance of these fields in the study of many problems of class field theory and genus theory
related to biquadratic and triquadratic fields [9, [7]. Note also that the fields K represent the first step of the
cyclotomic Z-extension of the fields Q(+/p, 4/g) and our results may also be very useful for studying some
problems related to Iwasawa theory on biquadratic and triquadratic fields (see [/, Theorem 3.6] for a direct
example of such applications).
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The plan of this paper is as follows; In Sec. 2, we collect some preliminary results which we shall use later.

In Sec. 3, we provide unit groups and 2-class numbers of the Frohlich fields K = Q( V2, \/P, V/q). Therein we
give some families whose 2-class groups are trivial or cyclic non trivial. In the last section, we provide some
families of Frohlich fields whose 2-class groups are of type (2,2).

Notations

*

2

Let k be a number field. We shall use the following notations for the rest of this paper:

Ey: The unit group of &,

q(k) = (Ey : [1; Ex,) is the unit index of &, if k is multiquadratic, where k; are the quadratic subfields of k,
h(k): The class number of k,

hy(k): The 2-class number of &,

hy(d): The 2-class number of a quadratic field Q( \/c_l),

£4: The fundamental unit of a real quadratic field Q( Vd),

N(g4): The norm of g; in the extension Q( \/2) /Q,

7;: Defined in Page [360]

k;: Defined in Page 360

u: Defined in Lemma[2.1]

(f): The Legendre symbol.

Preparations

Let us start this section by recalling the method given in [[17]], that describes a fundamental system of units of

a real multiquadratic field Ky. Let 01 and o be two distinct elements of order 2 of the Galois group of Ky/Q.
Let K1, K> and K3 be the three subextensions of Ky invariant by o1, 0 and 03 = 0107, respectively. Let
denote a unit of K. Then

&% = e ee”2 (71 72)7 !,

and we have, e€”! € Ek,, ee”? € Eg, and ”'€7? € Ek,. It follows that the unit group of K is generated by the
elements of Ex,, Ex, and Ek,, and the square roots of elements of Ex, Ex, Ex, which are perfect squares in K.

This method is very useful for computing a fundamental system of units of a real biquadratic number field,

however, in the case of a real triquadratic number field the problem of the determination of the unit group
becomes very difficult and demands some specific computations and eliminations, as we will see in the next
section. We shall consider the field K = Q( V2, \/P. \/q), where p and g are two distinct prime numbers. Thus,
we have the following diagram:
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K = Q(V2, VP, V)

k1=Q(V2,vp)  k=Q(V2,vV9  k3=Q(V2,ypg

Q(V2)
Figure 1: Intermediate fields of K/Q( V2)

Let 71, 2 and 73 be the elements of Gal(K/Q) defined by

T1(V2)==V2, 71(y/P)= D, (V9 = V4.
(V2)= V2, Tn(yP)=-+P. T2(NVD)= VG
3(V2)= V2,  m(yP)= VP T3(ND = -4

Note that Gal(K/Q) = (11,72, 73) and the subfields k1, k; and k3 are fixed by (13), (72) and {7, 73) respectively.
Therefore, a fundamental system of units of K consists of seven units chosen from those of &k, k> and k3, and
from the square roots of the elements of Ey, Ex, E, which are squares in K. With these notations, we have:

Lemma 2.1. Let p be a prime number such that N(g3,) = 1. Put &5, = B+ a+/2p with B,a € Z. Then
Ve = %(al + as \/2p), for some integers a1,y such that @ = ayay. It follows that:

o l+m | 1+7im2 | 1+713 | 1+ 7073 1+1

@0’ (_l)u —&2) (_1)u+1 (_l)u (_1)u+1

)

for some u in {0,1} such that %(a/% - 2pcx%) = (=D, With &7*7 := o(&)1(e), for any o, T € Gal(K/Q) and for
any e e K.

To prove this lemma we need to recall the following :

Lemma 2.2 ([, Lemma 5). Let d > 1 be a square-free integer and 4 = x + y \d, where x, y are integers or
semi-integers. If N(eg) = 1, then 2(x + 1), 2(x — 1), 2d(x + 1) and 2d(x — 1) are not squares in Q.

Proof of Lemma[2.1} As N(ey,) = 1, then 2 — 1 = a*2p. So by Lemma 2.2, we have (BF 1 = a/% and B+ 1=
a%Zp) for some integers a; and ap. Thus, 28 = a% + a%Zp and %(a? - 2pa/§) = (=1)*, for some u in {0, 1}.
Therefore, 2&2, = 28+ 2a+/2p = cy%Zp + cy% + 20% + a%Zp = (@1 + @2 +2p)*. The reader can deduce the rest
easily. O

Lemma 2.3 ([3]], Theorem 6). Let p =1 (mod 4) be a prime number.
1. If N(&3p) = —1, then {3, &), \[€2E,E2)} is a fundamental system of units of ki = Q( V2, \DP).
2. If N(&yp) = 1, then {&2,&p, \[€2p) is a fundamental system of units of ki = Q( V2, \P).

Lemma 2.4. Let p=1 (mod 8) and g =3 (mod 8) be two primes such that (E) =-1.

q

1. Let x and y be two integers such that £3p4 = X +y+/2pq. Then

i. (x—1)isa square in N,

. 28 =y1+y2+4/2pgand 2 = —y% + 2pqy§, for some integers y| and y,.
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2. Letv and w be two integers such that ,5 = v +w+/pq. Then
i. (v—1)isasquareinN,
. 28y =wi +w2+/pgand?2 = —w% + pqw%, for some integers wi and w».

Proof. It is known that N(&2p,) = 1. Then, by the unique factorization in Z and Lemma@ there exist some
integers y; and y, (y = y1y2) such that

] xilzy% ) xilzpy% ] xilz2py%
: { x$1:2pqy§, @: xi1:2qy%, or (3: xilzqy%,
72 — — —_
* System (2) can not occur since it implies —1 = (26%) = (%) = (“}:2) = (%2) = (1%) =1, which is absurd.
— 2
* We similarly show that System (3) and { x+l=x , cannot occur.
x—1=2pqy;
x—1=y7? . . . . .

Therefore i l= leqyz which gives the first item. The proof of the second item is analogous. m]

- 2

Lemma 2.5. Let g =3 (mod 8) be a prime number.
1. Let ¢ and d be two integers such that €2y = c +d \/Z Then

i. ¢c—1isasquare in N,
. 28y =d+d; \/Z and 2 = —d% + 2qd2, for some integers d and d».

2. Let @ and 8 be two integers such that e, = a + +/q. Then

i. @—1is asquare in N,
. \2e,=P1+B2+qand 2 = —ﬁ% + qﬁ%, for some integers 31 and 3.

Furthermore, for any prime number p =1 (mod 4) we have:

18 &) eg VEq | Ve

+71 _ _

s] 21 £y &g 1
+77 _

81 8% 21 &g &2
+73 _ _

& & | & 1 1

e [ 1 [ 1] —g | 1

1+T| T3 _ 2 _
g 1 £ 1 £2g
g e [ -1 -1 | -1

Table 1: Norm maps on units

Proof. Similar to that of Lemma[2.4] i

Lemma 2.6. Let p=1 (mod 8) and g =3 (mod 8) be two primes such that (g) =1

1. Let x and y be two integers such that £5p4 = X +y+/2pq. Then

1. (x—=1), p(x—1)or2p(x+1)isasquare in N,
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ii. Furthermore,
a) If (x—1)is a square in N, then @ =y1+»m m and 2 = —y% + 2pqy§.
b) If p(x—1) is a square in N, then M =y1\/p+y2 \/Z] and 2 = —py% + 2qy%.
¢) If2p(x+1)is asquare in N, then \|2&2p4 =y \/E+y2 \gand?2 = 2py% - qy%.

Where y1 and y, are two integers such that y = y1y».
2. Letv and w be two integers such that £,5 = v +w+/pq. Then

. v=1), pv=1)or2p(v+1)isasquareinN,

1. Furthermore,
a) If (v—1) is a square in N, then |2ep, = w1 + w2 +/pq and 2 = —W% +pqw§.
b) If p(v—1)is a square in N, then \/qu =wi\p+wrfgand2 = —pw% + qw%.
¢) If2p(v+1) is a square in N, then \[€,; =wi+p+wa+/gand 1= pw% - qw%.

Where wi and wy are two integers such that w = wiw, in a) and b), and w = 2wws in c).
Proof. We proceed as in the proof of Lemma 2.4} i
Now we recall the following lemmas:

Lemma 2.7 ([14]]). Let K be a multiquadratic number field of degree 2", n € IN, and k; the s = 2" — 1 quadratic
subfields of K. Then

h(K) = %(EK ] E ]i[h(ki),

s
i=1 i=1

with

b n(2”_l —-1); if K is real,
|l =D +2""1 -1 ifK is imaginary.

Lemma 2.8. Let g =3 (mod 4) and p=1 (mod 4) be two primes.
1. By [I0, Corollary 18.4], we have hy(p) = ha(q) = ha(2q) = ha(2) = hp(=2) = hao(—q) = hp(-1) = L.

2. If(g) = —1, then hy(pq) = ho(2pq) = ha(—pq) = 2, else ha(pq), h2(2pq) and hy(—pq) are divisible by 4 (cf.
[L0 Corollaries 19.6 and 19.7]).

3. If g=3 (mod 8), then hy(—2q) =2 (cf. [IOl Corollary 19.6]).

3 Unit groups of real triquadratic number fields and their 2-class numbers

Keep the notations in the above section. In this section we shall compute the unit groups and the 2-class
numbers of the Frohlich fields K.

3.1 The case: p=1 (mod 8),¢g=3 (mod 4) and (g) -1

We shall now state and prove our first main theorem.

Theorem 3.1. Let p =1 (mod 8)and ¢ =3 (mod 8) be two primes such that (E) =—-1. PutK=Q( V2, P V-
q
Then



Arithmetic of some real triquadratic fields; Units and 2-class groups 363

1. If N(e2p) = -1, we have

e The unit group of K is :

Ex = <_178238pa \/3_, VE2> VEpg> VE2EPE2p \/\/g_q V€29 VEpq V82pq>

e The 2-class group of K is cyclic of order %hz(Zp).

2. If N(e2p) = 1, we have
e The unit group of K is :

Ex: = (=1.£2.6p. VB, V5. \Epg: \[#4555 VEy VEpg V3. €465 VB2 VB VER).

where a € {0,1} such thata =1+ u (mod 2).

e The 2-class group of K is cyclic of order sy (2p).
Proof. We shall use the method and the preparations exposed in Section[2} Therefore, we need the unit groups

of the intermediate fields &k, kp and k3.

1. Assume that N(g,) = —1. By Lemma {€2.€p, \[E2€pE2)) 1s a fundamental system of units of k;. One
can easily deduce from Lemmas PLSl and that {&2, \/&4, \&24} and {&2, \/€pq, \/E2pq} are respectively
fundamental systems of units of k, and k3. It follows that,

EklEsz/Q = <_1982a8p’ \/8_’ VSZ s Vgp > ngp > V828p82p>~

Let & be an element of K which is the square root of an element of Ey, Ey, Ey,. Therefore, we can assume
that

—828 Véq© Ve V‘Spq \/821%1 V&28p€ap°,

where a,b,c,d,e, f and g are in {0, 1}.
Remark that the question now becomes about the solvability in K of the equation:

_‘92‘9 VEd V2" NEpg \erpg NE2EPER® = 0.

Assuming that this equation has solutions in K, we shall firstly use norm maps from K to its subextensions
to eliminate the forms with do not occur.

w [ et us start by applying the norm map Nx /i, = 1+ 12. Using Lemmawe get Vezpq“m = (%(yl +

V2 \2P@) X125 01 +y2 V2P9)) = (501 +32 V2pg) X (50 =32 y2pg) = 307 2pgy2) = 3(-2) = - 1.
Similarly we have /z,;!*™ = —1. So by Table we have:

Ne@) = -1 -g5-65 - (-1 (1) - (-1)°c}

2a ¢ d _1\bt+et+f+gs 8
£ €485, - 5.

for some s € {0,1}. Thus, b+ e+ f+gs=0 (mod 2). Since &; is not a square in k, then g = 0. Therefore
b+e+ f=0 (mod 2) and

£ = el Vg VEry' \Eng' Ny

w Let us apply the norm Ng i, = 147172, with ks = Q(+/g, 4/2p). We have \/qul”m =l and w/zazpql”ﬂ2 =
—&2pg- Then, by TableEI, we get:

D D2 (D11 (1) ]

2pq
_1\atbte+f o S
(-1) £ 8h

Ny s (€2)
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Thus a+b+c+ f =0 (mod 2). By Lemmas [2.5/and [2.4] none of &, and &3, is a square in ks. Then f = c.
Thus, a = b. Therefore,

2 d
£ = 256, ey VB2 VEn VE2pd

 Let us apply the norm Nx i, = 1+7173, with kg = Q(+/p, \/Zj). We have \/qul”m =1and w/szpql”m =
~&2pq- Then, by Table [T} we get:

Nk (€%)

142 (=) (= e
(-1 epal(l) gqu(l) €2

2a, q\a+d+f _d _f
sp( 1) £2482pg"

Thus a+d+ f =0 (mod 2). Again by Lemmas [2.5/and [2.4} none of &>, and &), is a square in k. Then
d = f. Therefore a = 0 and

€ = V& VB! Ve Nz
we [et us apply the norm NK/k3 =1+ 113, with k3 = Q( \/Z \/]71) Note that mlﬂ'z?‘g = &) and
\E2pg T2 = £2p4. Then, by Table we have:

(- (=1 - & .y

pPq4 “2pq
_ e

P4 “2pq’

N iy (€%)

By Lemma@ both &, and &3, are squares in k3. So we deduce nothing.

w Let us apply the norm Nx i, = 1+71, with k4 = Q(+/p, 4/¢). Note that ﬁqul”l = —gpq and \lszpql”' =
1. Then, by Table[I] we have:

(_l)f.gc/;. 1 (=15 - 1

P
te f
(-1 *epel,.

N i, (€)

Thus, f = e and
£ = V&) e V! Ny

Let us show that the square root of +/g; /€24 \/€pq \/E2pq 18 an element of K. Note that one can easily
check that the 2-class group of ks = Q(+/2p, 4/q) is cyclic and by Lemmas and we have hy(ks) =

LqUks)ha2p)ha(@ha(2pq) = Lq(ks)ha(2p). Using Lemmas [2.4] and .5 we show that g(ks) = 2. Thus
ho(ks) = ha(2p). Since K/ks is an unramified quadratic extension, then

1 1
hy(K) = 3 “hy(ks) = 3 -hy(2p). 2

Assume by absurd that /€, /€24 \/€pq \/E2pq 18 DOt a square in K. Then g(K) = 2°. By Lemma , we
have:

ha(K)

1
?Q(K)hz(2)h2(P)hz(Q)hz(Zp)hz(ZQ)hz(pQ)hz(ZM) 3)

I 5 1
= —-22:1-1-1-hh(2p)-1-2-2==-h(2p).
% 2(2p) 7 1(2p)
Which is a contradiction with (Z). Therefore f = 1 and VEq \E2q \JEpq \[€2pq 18 @ square in K. Hence, we
have

Ex =(-1,&2,&)p, \/8_q, VE2g> VEpg> VE2EPELp, \/\/g_q‘VSZq Vepg \Ve2pq)-
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2. Let us now prove the second item. Assume that N(ey,) = 1. By Lemma @ {€2,€p, \[E2p} 1s a funda-
mental system of units of k; and one can easily deduce from Lemmas PE' andPZf' that {&2, \/&4, \E24} and

{€2, \/Epg> \[E2pq} are respectively fundamental systems of units of k, and k3. So we have

EklEszk3 = <_138298p’ '\/S_’ ng ’ V‘gp ’ V82p ’ V82p>

Put

_328 VEq© Ve \/‘9pq \/521%1 \/5217 ’

where a,b,c,d,e, f and g are in {0, 1}. Assume that £ belongs to K. We shall proceed as above, by using the
norm maps from K to its subextensions. Note that these norms are already computed in the proof of the first

item, and we shall use (T)) for the norms of /&3 »- Let u be the integer defined in Lemma@

m Let us start by applying the norm map Nk, = 1 +7,. We have

N @) = &% (=155, - (=D - (=1) - (=1)¥"

2a ¢ d _1\b+e+f+gu
£ €485, (-1 .

Thus,b+e+ f+gu=0 (mod 2).
w Let us apply the norm map Nx i = 1 + 7172, with ks = Q(+/g, 4/2p). We have

Nijis@) = (=D (=DP - (=1 ve - 11 (=1 8y (=1)F - &

_1\a+b+tctf+g | c
=) 8‘18517q8217

Thus,a+b+c+ f+g=0 (mod 2) and c+ f + g =0 (mod 2). Therefore, a = b and

_‘92‘9 VEd Ve NEpg \orpg’ VER"

withc+ f+¢g=0 (mod 2).
w Let us apply the norm map Nx i, = 1 + 7173, with kg = Q(+/p, \/Z]) . We have

Nii @) = (=1 g 1- (=D ef 1 (=1 8] - (=1 (=1

2a  (_q1\a+d+frug+g . f
g, (=1 824 2

Thus,a+d+ f+ug+g=0 (mod 2) and d = f. Therefore, a+ug+ g =0 (mod 2) and

—328 Ved V2 Veng® Verpg VERt.

s Let us apply the norm map Ng i, = 1 + 7273, with k3 = Q( V2, \pq). We have

Nigjis (€3) R G DERTCH VARG DR A CR Do

2a _e _1\a+c+f+ug
2 pqsgpq (-1) .

Thus, a+c+ f+ug =0 (mod 2). Therefore, from these discussions, it follows that we have:

a+e+ f+ug=0 (mod 2)
c+f+g=0 (mod2)
a+ug+g=0 (mod 2)

a+c+f+ug=0 (mod 2)

“4)
&)
(6)
(7

365
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From (), (6) and (5), we deduce that e = ¢. Thus
~ el VB VER Vo Ve v

On the other hand, as above, we show that the 2-class group of ks is cyclic and that we have:

1 1
ha(K) = = - ha(ks) + 74ks)2(2p)ha(ha(2pg)

N =N =

-%-4-h2(2p)- 1-2
= h(2p), (®)

and by class number formula (Lemma[2.7), we have

1
ha(K) 75 1M (P)ho()h22p)h2 22 (p@)h2(2q)

1 1
= 5590 1-1-1-h(2p)-1-2-2= - q(K) - h2(2p).

Therefore, ¢(K) = 27

Assume that each solution has g = 0, then by (6) @ = 0. So by (§) and @) f = ¢ = e. Therefore, &> =
V&G VE2 \Epq" \Ezpq - Thus, q(K) = 2> or 2°. Which is absurd. This implies that there must be a
solution having g = 1. So by @), ¢ # f, and by (6) a = | + u (mod 2). Finally, we have

—828 \/_ Vep 01'828 \/82 \/82,, NP

Since g(K) = 27 then both of s‘zls; 7 \VEpqg \E2p and s w/sz V&2pq \/€2p are squares in K, where a =
14+u (mod 2) and u is defined in Lemma@ Which completes the proof.

3.2 Thecase: p=1 (mod 8),g=3 (mod 8) and (2) =1
q

For the sake that the reader could follow the proofs of this section, we suggest to start by reading carefully the
proof of Theorem 3.1 which is exposed with some helpful details.



Arithmetic of some real triquadratic fields; Units and 2-class groups 367

The following table summarizes very useful computations which we shall use frequently.

& Conditions 81+T2 81+nrz 81+T1T3 81+T2T3 81+T‘
(x—1)is asquare in N -1 —&pg | —E2pq E2pq 1
VE2pg p(x—1)is asquare in N 1 E2pq —&pq | —E2pq 1
2p(x+1)isasquareinN | -1 —&2pq E2pq —E2pq 1
(v—1)is asquare in N -1 1 1 Epg —&pg
VEpg | p(v—1)is asquare in N 1 -1 1 —&pg | —Epq
2p(v+1)isasquareinN | -1 -1 1 —Epq Epg

Table 2: Norms maps on units

Let p=1 (mod 8) and ¢ =3 (mod 8) be two primes such that (B) = 1. Then, by Lemmas and we
q

have:

1
ha(K) = FCI(K) -ha(2p) - ha(pq) - h2(2pg). €))

Remark 3.2. Notice that by Lemma [2.6] there are nine possibilities which will be covered case by case by the

following Theorems [3.3}3.11}

Theorem 3.3. Let p =1 (mod 8) and ¢ =3 (mod 8) be two primes such that 2) =1. Put K=0Q( V2, \D: ND-

Assume furthermore that x — 1 and v — 1 are squares in N, where x and v are defined in Lemma 2.6
1. If N(e2p) = -1, we have
e The unit group of K is :

Ex = <_1a82"9pa \/3_, VE€2q> VEpg> VE2EPE2P, \/\/S_qa V€24 \Epq® \/52pql+b>
where a, b € {0, 1} are such that a # b and a = 1 if and only if /&, \/€24 \/€pq \/E2pq 1S @ square in K.

e The 2-class number of K equals ﬁhz(Zp)hz(pq)thpq).

2. Assume that N(g;),) = 1 and define a € {0, 1} to satisfy a = 1 + u (mod 2). Then we have
e The unit group of K is :
Ex = (—1,82,8,,, \/8_, ’_82 , (_8p , \/5?/8?,” \/8_qu f_gpqr/ 82p1+s,, \/8czzr8;17r 82qr 32pql+s /_82pr>

where r,7’,s, s’ € {0,1} are such that r # s (resp. ' # §’) and r = 1 (resp. ' = 1) if and only if

8‘218]“, VE2g \€2pq \JE2p (rESD. 8‘218?) VEq \Epq \/E2p) 1s a square in K.
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e The 2-class number of K equals =—h2(2p)h2(pg)h2(2pq).

Proof. 1. Assume that N(g;,) = —1. By Lemma@ {€2,€p, \[E2€pE2)} 1s a fundamental system of units of k.

One can easily deduce from Lemmas@and that {e2, 1&g, €24} and {&2, \/€pq, \/E2pg} are respectively
fundamental systems of units of k» and k3. It follows that,

EklEsz/Q = <_1’82’8p’ \/8_’ V82 ’ Vgp ’ ngp ’ V828p82p>'

Let £ be an element of K which is the square root of an element of Ey, Ey, Ey,. Therefore, we can assume
that

—828 Ved NE2" \Epa \erpg NE2EER,

where a,b,c,d,e, f and g are in {0,1}. As x—1 and v — 1 are squares in N, then clearly with the same
computations as in the proof of Theorem 3.1} we get :

£ = Veg! Ve \Ere! Ve
So the first item.

2. The same computations in the second part of the proof of Theorem [3.1| give the second item.
The part concerning the 2-class number follows from the above discussions and (9). O

Theorem 3.4. Let p=1 (mod 8) and g =3 (mod 8) be two primes such that 2y 1. Put K = Q( V2, P V-
q

Assume furthermore that x — 1 and p(v — 1) are squares in N, where x and v are defined in Lemma[2.6] Then
1. Assume that N(&2,) = —1. We have

e The unit group of K is :

EK:<_178298[)7 '\/8_9 V82 ’ Vgp ’ ngp ’ V828]782p>'

e The 2-class number of K equals %hz(Zp)hz(pq)hz(qu).

2. Assume that N(&3,) = 1 and let a € {0, 1} be such thata =1 +u (mod 2). We have

e The unit group of K is :

Ex ={-1,&2,&p, \Eq: \E29» VEPg» VE2pqs \/ 00 \E2qY \E2pg® VELTY)
where «a, y € {0, 1} are such that @ # y and @ = 1 if and only if ggsf, VE24 \/E2pq \/E€2p is a square in K.
e The 2-class number of K equals ﬁhz(Zp)hz(pq)hz(qu).
Proof. We shall make use of (I) and Tables[T]and 2}

1. Assume that N(gz,) = —1. Note that {e3,¢), \/€28,82,}, is a fundamental system of units of kj. Using
Lemma @ we show that {&, Veqs V&) and {&2,&p4, \/€2pq} are respectively fundamental systems of
units of kp and k3. So we have:

EklEszk3 = <—1,82,8p,8pq, \/8_9 V82 s ngp s V828p82p>'

Let & be an element of K which is the square root of an element of Ey, Ey, Ey,. Therefore, we can assume
that

52_83 ves, \/_ V€2 \/821%1 Verep€rp®,
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where a,b,c,d,e, f and g are in {0, 1}.

w et us start by applying the norm map Nk, = 1 +72. We have 1/8281782,,1”2 = (-=1)"&y, for some
v €{0,1}. Then, by Tables[T]and 2] we get:

2“ (=P .82.8§q (=1 (—l)gvs§

2a c.d _1\b+f+gv &
£ €489, -1 5.

Nk, (€%)

Thus, b+ f+ gv=0 (mod 2) and g = 0. Therefore, b = f and
& = &56)55 VB VB2 \E2q

s Let us apply the norm N, = 1 + 1172, with ks = Q(+/g, 4/2p).Then, by Tablesand we get:

N = (DD 1D a1 6]
— (_1)a+d‘9¢d] .ggpq.

Thusa=d = f and
é—‘z = 856,‘;8;{1 \/s_qf \/82[16 \/82qu.

s Let us apply the norm Ng i, = 1 + 7173, with kg = Q(+/p, \/Z). By Tablesand we get:

(_1)f.82f. 11 .(_1)6.8§q.(_1)f.8f

2pq

Nk (€%)

2
€ a( 1° 82(1 2Pq

Thus e = f = 0. Hence

2 _ ¢
& =&py-

By Lemma[2.6|), is a square in K, therefore
Ex =(-1,&2,&p, \Eg, \E2¢> \Epgs VE2pg> \E2EPELY)-

. Assume that N(g;),) = 1. Note that {&2,&), \/€2,}, is a fundamental system of units of k;. Using Lemma
we show that {&, \/E4, \/€24} and {&2,&p, \/E2pq} are respectively fundamental systems of units of k» and
k3. It follows that,

Ek]Eszk3 = <_178298p78pq’ \/‘9_’ V82 > V82p > V82p>’

Let & be an element of K which is the square root of an element of Ey, Ey, Ey,. Therefore, we can assume
that

& = £5eb0eS e o2 Nemng! ezt
where a,b,c,d, e, f and g are in {0, 1}.
w et us start by applying the norm map Nk, = 1 + 72. By Tables |I| and|2|, we have

Ne@) = &% (1) 18585 - (1) - (=1

2u c.d _1\b+f+gu
£ €487, (-1 .

Thus, b+ f+gu=0 (mod 2).

369
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w [et us apply the norm map N,k = 1 + 7172, with ks = Q(+/g, 4/2p). By Tablesand we have

N s (€%)

(=) (=1)? -1 .(_1)d.8¢21q. 1 .(_1)f.g-§pq.(_1)g.8§p

_  (_1\atb+d+f+g d g
= D ‘92118517482#

Thus,a+b+d+ f+g=0 (mod 2) and d+ f + g =0 (mod 2). Therefore a = b and
2 d
& = e3¢0 \Eq' Ve NE2pg' VEDE-

w Let us apply the norm N, = 1 + 7173, with kg = Q(+/p, \/Z). By Tablesand@ we have

Nk @) = (=12 1-1-(=1)° &b - (=D &) - (=1

rq

2a, _q1\at+e+f+g+ug e S
sp( 1) £24%2pg"

Thus,a+e+ f+g+ug=0 (mod 2) and e = f. Therefore, a+ g +ug =0 (mod 2) and
fz = 838;8;‘1 \/qﬁ‘_qd \/82,16 Vszpqe Vsng.
et us apply the norm map Ng i, = 1 + 7273, with k3 = Q( V2, \/pq). By Tablesand we get:

Ne@) = &% ()" g (=D (=) &5, - (= 1)*"

2a e _1\a+d+e+gu
&5 82pq'( 1) .

Thus,a+d+e+gu=0 (mod 2).
s Let us apply the norm Ng i, = 1 + 71, with kg = Q(+/p, 4/9). So, by Tablesand we get:

Ne i, (€%)

(-1)* .812;1 .g% . (_1)51.82. 1-1-(=1)%*8

2a 2a  (_1\a+d+g+gu d
€5 €pg (-1 &g

Thusd =0and soa+e+gu=0 (mod 2). Since a+g+ug =0 (mod 2), we have e = g. Since &, is a square
in K, we can disregard it in the form of 52. Therefore,

&= 6465 \E2 NEImg NETs
with a + e +eu=0 (mod 2). So the result (cf. ().
m]
Theorem 3.5. Let p=1 (mod 8) and g =3 (mod 8) be two primes such that (E =1.Put K = Q(V2, P> V-
Assume furthermore that x — 1 and 2p(v + 1) are squares in N, where x and v are defined in Lemma[2.6]
1. Assume that N(g,) = —1. We have

e The unit group of K is :

Ex ={-1,&2,&p, &g \€29> \Epg> \E2pq> VE2EpELY)-

e The 2-class number of K equals %hz(Zp)hz(pq)hz(qu).

2. Assume that N(g,) = 1 and let a € {0, 1} be such thata =1 +u (mod 2). We have
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e The unit group of K is :

Ex ={-1,&2,&p, \Eq: \E29» VEpg» VE2pqs \/ 00 \E2qY \E2pg® VEL' )
where @, y € {0, 1} are such that @ # y and @ = 1 if and only if 8‘218?, V&2g \€2pq \[€2p 18 a square in K.

e The 2-class number of K equals 24 5= 2p)ha(pg)ha(2pg).

Proof. 1. Assume that N(ey,) = —1. Note that {e2,&), \/£2,€2,}, is a fundamental system of units of k;.
Using Lemma@ we show that {g;, Vg 24} and {&2,&pq, \/E2pq} are respectively fundamental systems
of units of k> and k3. So we have:

EklEszkg, = <_1’82a8pa8pq’ \/8_9 ng > ngp s V828p82p>'

Let & be an element of K which is the square root of an element of Ey, Ey, Ey,. Therefore, we can assume
that

&= 8332 Epg \/_ G \/821%1 Ve2EpE2p”,
where a,b,c,d,e, f and g are in {0, 1}.
w Let us start by applying the norm map N, = 1 +712. We have
\/ml”z = (=1)" &y, for some V' € {0, 1}. Then, by Tablesand we get:

Ngjin@) = &3 (=1)" 1-&0- &5, - (1) - (~1)*"&3

2a c . d (_1\b+f+gV &
£ €485, (-1 5.

Thus, b+ f+ gV =0 (mod 2) and g =0. Then b = f and

& = ehepesy VEq' VB VEapy
s Let us apply the norm Ng i, = 1 + 7172, with ks = Q(+/g, @). By Tablesand we have:
DD D1 (=) e

(_1)a+d8d X gf

q “2pq’

2
NK/ks(f ) 2pq

Thusa=d = f and
= 5£ 8;5;(1 Ved' Ve Verpg -

w Let us apply the norm N, = 1 + 7173, with kg = Q(+/p, \/Z). Then, by Tablesand we get:

N @) = (D) 11 (=185 - (-1 8]

2
“( l)eszqszpq

Thus e = f = 0. Hence
2 _ ¢
& =g,

By Lemma2.6|&), is a square in K, therefore

Ex ={(-1,&2,&p, &g, \€29> \Epg> VE2pq> VE2EpELY)-

The rest of the first item is direct from Lemma 2.7
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2. Assume that N(g2p) = 1. Note that {&2,&p, 1/€2)}, is a fundamental system of units of k;. Using Lemma@
we show that {&, 1[4, \/€24} and {&2,&p,, \/E2pq} are respectively fundamental systems of units of k» and
k3. It follows that,

Ek]Eszkg = <_178298p78pq’ \/‘9_’ V82 > ngp > V82p>

Let £ be an element of K which is the square root of an element of Ey, Ey, Ey,. Therefore, we can assume

that

&= £56)€ ebes \/_ Ve’ Verpg' \ERS,
where a,b,c,d,e, f and g are in {0, 1}.
> Let us start by applying the norm map N, = 1 +7,. We have

Ng i, (€%)

2“.(_1)17 -1 .gg.ggq (=D (=18

2a _c d _1\b+f+gu
£ €487, (-1 .

Thus, b+ f+ gu=0 (mod 2).
s Let us apply the norm map Nx x5 = 1 + 7172, with ks = Q(+/g, 4/2p). We have

Nejig@€) = (=D (D21 (=1 e 1 (=1 8] - (~1)% -85

_ b+d d g
= (=1)*tb+ +f+g82qg£pq82p'
Thus,a+b+d+ f+g=0 (mod 2)andd + f+ g =0 (mod 2). Therefore a = b and

& = e3¢0y VEg ! N2 NE2pg NE2®-
ws [ et us apply the norm Nk g = 1 + 1173, with kg = Q( \/_, \/Z) We have

(_1)0.8127“ SR RICH VLo (1) el (=1)8uts

Ng ks (€9) 24

2a, _q1\a+e+f+g+ f
ep“( 1)arer/Ts ”gegqezpq.
Thus,a+e+ f+g+ug=0 (mod 2) and e = f. Therefore, a + g+ ug =0 (mod 2) and

§2 _ 8c21 g€ \/— (—82 ,_8217 ,—
s Let us apply the norm map Ng i, = 1 + 7273, with k3 = Q( V2, \/Pq). So, by Tablesand we get:

Ne@) = &% (=) g (=D (=) &5, - (= 1)

2a e _1\a+d+e+gu
£ €pg” (-1 .

Thus,a+d+e+gu=0 (mod 2).
w Let us apply the norm Ng i, = 1 + 71, with ks = Q(~/p, +/¢9). So, by Tablesand we get:

Negjy (€)= (=D el (1)l 1.1 (=1)s"*s
— 8%(1 %7?1 ( 1)a+d+g+gu d

Thusd =0andsoa+e+gu=0 (mod 2). Asa+g+ug =0 (mod 2), we have e = g. Since g, is a square
inK (Lemma , we can disregard it in the form of &2, Therefore,

= €58, V24" VE2pq" V€'
with a + e +eu=0 (mod 2). So the result (cf. ().
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Theorem 3.6. Let p =1 (mod 8) and ¢ =3 (mod 8) be two primes such that Py 1. Put K = Q( V2, \D: ND-
q
Assume furthermore that p(x — 1) and (v — 1) are squares in N, where x and v are defined in Lemma@ Then

1. Assume that N(g,) = —1. We have

e The unit group of K is :

Ex =(-1,&2,&p, \Eq, \E29> \Epgs VE2pq> \E2EPEL)-
e The 2-class number of K equals z—ﬂh2(2p)h2(pq)h2(2pq).

2. Assume that N(g;,) = 1 and let be a € {0, 1} such that a = 1 +u (mod 2). We have

e The unit group of K is :

Ex =(-1,€2.8p, \Eq: \E2» VEpg» VE2pgr \JES €Y \EG NEpg® VELL'HY)
where @, y €{0, 1} are such that @ # y and @ = 1 if and only if &5}, \/€4 \/€pq 4/€2p s a square in K.
e The 2-class number of K equals 24%ahg(2p)hg(pq)hz(qu).
Proof. 1. Assume that N(&,) = —1. Note that {&2,&), \/€2€,€2,}, is a fundamental system of units of kj.

Using Lemma@ we show that {&7, \/&4, \/€24} and {&2,&2p4, \/€pq} are respectively fundamental systems
of units of k, and k3. It follows that,

Ew Ep, Exy; = (—1,82,8p,82pq> \Eq» \E295 \Epg> \E2EpELD)-

Let & be an element of K which is the square root of an element of Ej, Ey, Ey,. Therefore, we can assume
that

fz = 8gsb8§pq \/_ Ve© w/ap NG
where a,b,c,d,e, f and g are in {0, 1}.
L et us start by applying the norm map Nk, = 1 + 7. By Tables |I| and|2|, we have:

Ne i, (€%)

2“ (-1 .83.834 (=D (_1)gug§
s%asgsgq (—1)b+f+g”8§.

Thus, b+ f+gu=0 (mod 2) and g =0. Then b = f and
&= sggf‘ggpq \/‘9_qd Ve V‘gqu-

w Let us apply the norm Ng i, = 1 + 7172, with ks = Q(+/g, 4/2p). Then, by Tablesand we have:

D" (=D e50 - (=D g 1-1

N ks (€2)

gzpq( 1)a+d d

Thusa=d =0 and ;
2
3 :‘gp‘ggpq V824€ V‘gqu‘

w Let us apply the norm N, = 1 + 7173, with kg = Q(+/p, \/Z). By Tablesand@ we have:

2
Nig s (69) s,,f &3, (—1)° g5, 1

e e
8 82pq( 1) £
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Therefore e = 0 and _
2
6 = Slf’ggpq Vgqu'

s Let us apply the norm map Ng i, = 1 + 7273, with k3 = Q( V2, VPq)- By Tablesand we get:

2
Nep@) = (1 a3, e = e30,e50(-1).

Thus, f =0 and
2 _ ¢
& =&y

Since &), 1s a square in K, then we have the first item.

2. Assume that N(g;,) = 1. In this case we have: {;,&),, 4/€2)}, is a fundamental system of units of k;. Using
Lemma@, we show that {&2, \/g;, \/€24} and {2, €24, \/Epq} are respectively fundamental systems of units
of kp and k3. Thus,

Ek]Esz]Q = <_178298p782pq3 \/‘9—, V82q7 Vgp ’ V82p>

Let & be an element of K which is the square root of an element of Ey, Ey, Ey,. Therefore, we can assume
that

&= s‘z‘gf,sgpq \/s_qd N Vequ e,
where a,b,c,d,e, f and g are in {0, 1}.
L et us start by applying the norm map Nk, = 1 +72. We have

Nej @) = & (=10 1-8)-&5, - (=1 - (=1)*"

2a c.d _1\b+Sf+gu
£ €480, (-1 .

Thus, b+ f+gu=0 (mod 2).
 Let us apply the norm Ng i, = 1 + 7172, with ks = Q(+/g, 4/2p). We have

Nejs@) = (D" (=D -g50 - (DT85 1-1-(=1)8 -5

( 1)(l+b+d+g d g

‘92174 E485p-

Thus,a+b+d+g=0 (mod 2) and d = g. So a = b. Therefore,
&= 26pE2pq VE4" V€24 Verd Ve2".

w Let us apply the norm N i, = 1 + 7173, with k¢ = Q(~/p, 4/2¢9). We have

N @) = (=D -gpt a3 - 1-(=1) -5 - 1-(=1)5"*¢

2a a+e+g+ug
£, 82pq( 1) 82(]

Thus, a+e+g+ug =0 (mod 2) and e = 0. Therefore, a+g+ug =0 (mod 2). Since a+ f+gu =0 (mod 2),
we have f' = g. As &), is a square in K then we may put:

= 856 \6g® \Epg® \E2p°s

where a + g+ ug =0 (mod 2). Which gives the result (cf. (9)).
O

Theorem 3.7. Let p =1 (mod 8) and g =3 (mod 8) be two primes such that P)_ 1. Put K = Q( V2, P V-
q

Assume furthermore that p(x — 1) and p(v — 1) are squares in N, where x and v are defined in Lemma@ Then
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1. Assume that N(g&3,) = —1. We have

e The unit group of K is :

Ex =({-1,&2,&p, \€g, \€24> VEpg> \E2pgs \E2EPELP)-
e The 2-class number of K equals %h2(2p)h2(pq)h2(2pq).
2. Assume that N(g;,) = 1 and let a € {0, 1} be such that a =1 +u (mod 2). We have

e The unit group of K is :

Exc = (~1.62,6p. Vg VB2 VEpas VB \ 5" VEQ" VB2 B Vg VB )

where @, y € {0, 1} are such that @ # y and @ = 1 if and only 1fs \/_ VE2q \VEpq \E2pq \/€2p 18 a square
in K.

e The 2-class number of K equals 241,0 ha2p)ha(pg)ha(2pq).

Proof. 1. Assume that N(g2),) = —1. Note that {e2, &, \/€2€,€2}, is a fundamental system of units of k;. Using

Lemma@ we show that {&2, \/&;, \/&24} and {&2,&p4, \/Epg€2pg} are respectively fundamental systems of
units of kp and k3. It follows that,

Ek] Eszkg = <_1’8258p78pq’ V‘g ’ V82 ) Vgpqupq7 \/828])82]?>'

Let & be an element of K which is the square root of an element of Ey, Ey, Ey,. Therefore, we can assume
that

&= 53 Ehe, \/_ V€24 \/317613217(1 V&28p€ap°,
where a,b,c,d, e, f and g are in {0, 1}.
w Let us start by applying the norm map N, = 1 +72. We have Then, by Tables |I| and|2|, we get:
Ng@) = & (=10 1-80-85 - 1-(-1)%"}

_ 2a cd o 1\btgu 8
= £ 8.8, (=1)"""es.

Thus, b+ gu =0 (mod 2) and g = 0. Therefore, b = 0 and
= 838 Veq! Ver, NEpaEapg
w Let us apply the norm Ng i, = 1 + 7172, with ks = Q(+/g, y/2p). By Tablesand we get:
Niis @) = (=1 1-(=D"-s-1-(-D/ -]
gf ( 1)a+d+f8;i.

2pq
Thus, a+d+ f =0 (mod 2) and d = 0. Therefore, a = f and

2
& = &36pq Vo2 VEpaB2pq"-
w et us apply the norm N i, = 1 + 7173, with k¢ = Q(~/p, 4/2¢). Then, by Tablesand we get:

Nep@) = (<D0 1 (=1 e, (<D
(=1 34834

Thus e = a = 0. Therefore ¢ = 0 and
2 _
£ =g
Since by the above Lemma &, is a square in K so we have the first item.
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2. Assume that N(&2,) = 1. We have {&;,&), 4/€2p}, 1s a fundamental system of units of kj, and {&2, /g5, \/&24}
and {&2, &4, \[Epg€2pq} are respectively fundamental systems of units of k and k3. So we have

Ew Ep, Ex; = (=1,82,8p,8pg: \Eq» €29 \[EpgE2pg> \E2p)-

Let & be an element of K which is the square root of an element of Ej, Ey, Ey,. Therefore, we can assume
that

&= Sg Ehes \/_ VE&2q 'Vgpqup &%,
where a,b,c,d, e, f and g are in {0, 1}.
w et us start by applying the norm map Nk, = 1 +72. We have:

Ng i, (€%)

20 (=11 .gg.ggq - (=1)8

2a c.d (_1\b+gu
£ €48y, -1 .

Thus, b+ gu=0 (mod 2).
s Let us apply the norm Ng i, = 1 + 7172, with ks = Q(+/g, 4/2p). We have

Nejig@) = (=D (D21 (=gl 1 (=D - g] (=18

— ggpq( 1)a+b+d+f+g8 82p
Thus,a+b+d+ f+g=0 (mod 2) and d = g. Therefore, a+ b+ f =0 (mod 2) and

&= 38 € £pE; \/_ Vo2, NepeEang' \E2p'
w Let us apply the norm Ng i, = 1 + 7173, with kg = Q(+/p, \/Z). We have

(_l)a'Sf)b'l‘1'(—1)6-8§q'(—1)f-€f .(_l)ud+d

2pq
_  (_1\atetfrugtg e _J
= (-1 &8 v

Thus,a+e+ f+ud+d=0 (mod 2) and e = f. Then, a+ud +d =0 (mod 2). Since b+ du =0 (mod 2)
anda+b+ f=0 (mod 2), we have f =d and

Nk (€%)

2 d
&= 838” & 7 V&g \/82 \/Squ‘zp \/82
Since by the above Lemma &, is a square in K. then we can put

—sgs"d\/_ \/82 \/quszp \/82

where a+ ud +d =0 (mod 2). Which completes the proof.
]

Theorem 3.8. Let p =1 (mod 8)and ¢ =3 (mod 8) be two primes such that (2) =1. Put K=0Q( V2, \D: \ND-
q
Assume furthermore that p(x—1) and 2p(v + 1) are squares in N, where x and v are defined in Lemma@ Then

1. Assume that N(&;,) = —1. We have

e The unit group of K is :

Ex =(-1,&2,&p, \&g> VEpg: \E2pg» VE2EpELP, \/8$ V2 Y \EpgE2pe™)-
where a, y € {0, 1} are such that & # y and @ = 1 if and only if &), \/€24 \/Epg€2pq is a square in K
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e The 2-class number of K equals 2—14h2(2p)h2(pq)h2(2pq).

2. Assume that N(g,) = 1 and let a € {0, 1} be such that a =1 +u (mod 2). We have

e The unit group of K is :

Exc = (=12, VEq: VB2, VEps: Vs e VEQ" V3" VR \Eap” V2 ")

where a, y € {0, 1} are such that @ # y and @ = 1 if and only if £5&), \/E5 \/€24 \/Epq \/E2pq \/E2p 1S @ square
in K.
e The 2-class number of K equals #hz(Zp)hz(pq)hz(qu).
Proof. 1. Assume that N(g2),) = —1. Note that {&, &, \/€28€2)}, is a fundamental system of units of k. Using

Lemma@, we show that {&2, \/&;, \/E24} and {£2,&pq, \EpgE2pq) are respectively fundamental systems of
units of kp and k3. It follows that,

Ek] E]QE]('; = <_178278p78pq’ VS ’ V82 ) \/qugzpq’ \/828])82]?)‘

Let £ be an element of K which is the square root of an element of Ey, Ey, Ey,. Therefore, we can assume
that

2 &b
&= 8621 cq \/_ V€24 \/gpq‘92pq Ve&28pE2p°,
where a,b,c,d, e, f and g are in {0, 1}.
w L et us start by applying the norm map Nk, = 1+ 72. By Tables |I| and|2| we have

Za (=P -1 .83.83(] (=D (_1)gu8§

Ng i, (€%)

2a c.d _1\b+frgu 8
£ €480, (-1 5.

Thus, b+ f+ gu=0 (mod 2) and g = 0. Therefore, b = f and
€ = 838,800 Veq' o2’ VEaE2pq -
w Let us apply the norm Ni i = 1 + 7172, with ks = Q(+/q, v/2p). Tablesandgive:

News@) = DD 1 (=D sf-1- (-1 )
— 8gpq(—1)“+d d

Thus, a = d = 0. Therefore,
_gp‘gpq‘/‘g m

w Let us apply the norm N, = 1 + 7173, with kg = Q(+/p, \/Z). So by Tables andwe have

Nej(@) = e 1-(=1)° -5 - (-1 -

e+b b
( D 2482174

Thus b = e. Therefore
2
= ‘9178174 V€29 V"’"Pq52p

By applying the other norms we deduce nothing new. Since by the above Lemma &, is a square in K, we
have the first item.
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2. Assume that N(&2p) = 1. We have {&;,&p, 4/€2)} is a fundamental system of units of kj, and {&2, /g5, \/&24}
and {&2, &4, \[Epg€2pq} are respectively fundamental systems of units of k and k3. So we have

EklEszk3 = <_1582’8pa8pq7 \/‘9—7 ng > V‘gpq82pq’ V82p>-

Let & be an element of K which is the square root of an element of Ey, Ey, Ey,. Therefore, we can assume
that

&= 8288 &) Epq 7 Ve NEpatad’ \ER,
where a,b,c,d, e, f and g are in {0, 1}.
w Let us start by applying the norm map N/, = 1 + 7. We have:

Nej@) = &% (=10 18-85, - 1-(=1)*"
= s%”agsgq (—1ybrsu,

Thus, b+ gu=0 (mod 2).
w Let us apply the norm Ng i, = 1 + 7172, with ks = Q(+/g, 4/2p). We have

Nejig@) = (=D (D21 (=gl 1 (=D &f (=18

_ a+b+d+f+g d_8
- ggpq( 1) €4%2

Thus,a+b+d+ f+g=0 (mod 2) and d = g. Therefore, a+b+ f =0 (mod 2) and

& = &5e) 00 VEq" Ve NEgEapg’ VE2

w Let us apply the norm Ni i, = 1 + 7173, with kg = Q(+/p, \/Z). We have

( l)a 2b 141 ( l)e 82 ( 1)f gf (_1)ud+d

Nigji () 24

2b, a+e+f+ud+d f
sp( 1) £24%2pg"

Thus,a+e+ f+ud+d=0 (mod 2) and e = f. Then, a +ud +d =0 (mod 2). Since b+ du =0 (mod 2)
anda+b+ f=0 (mod 2), we have f =d and

2 a ud &€
£ = =€), &g Véq \/82 Vquszp \/82 .
Since by the above Lemma &, is a square in K. then we can put

—862181”1\/_ Vo2, VEpgeapg Ve

where a + ud +d =0 (mod 2). Which completes the proof.
]

Theorem 3.9. Let p=1 (mod 8) and g =3 (mod 8) be two primes such that e 1. Put K = Q( V2, P> VD).
q
Assume furthermore that 2p(x+ 1) and (v — 1) are squares in N, where x and v are defined in Lemma@ Then

1. Assume that N(g,) = —1. We have

e The unit group of K is :

Ex =(-1,&2,&p, \Eg, \E29> \Epgs VE2pg> VE2EPEL)-
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e The 2-class number of K equals 2—14h2(2p)h2(pq)h2(2pq).
2. Assume that N(g;,) = 1 and let a € {0, 1} be such thata =1 +u (mod 2). We have

e The unit group of K is :
Ex = (~L.&2.8p. VEq. VE2» VEpq VE2pg: \JE2E4" VB \Epg® VED'™Y)

where a, y € {0, 1} are such that @ # y and @ = 1 if and only if sgaf, VEq VEpq \/E2p 1s a square in K.
e The 2-class number of K equals ;- ah2(2p)h2(pq)h2(2pq)

Proof. 1. Assume that N(ey,) = —1. Note that {e2,&), \/£2,€2,}, is a fundamental system of units of k;.
Using Lemma 2.6] we show that {&, /24, 1824} and {&2, &2, \/Epq} are respectively fundamental systems
of units of k, and k3. It follows that,

Ev EEr, =(=1,82,&p,€2pq: \Eq> \E2gs \Epgs \JE2EpELD)-
Let & be an element of K which is the square root of an element of Ey, Ey, Ey,. So, we can assume that
2 b
&= 828 sgpq e \/82 \/sp \/8281782 ,

where a,b,c,d, e, f and g are in {0, 1}.
m Let us start by applying the norm map Ng i, = 1+ 72. By Tables [T|and 2] we have

Ng i, (€%)

20 NS '83'8§q (=D (—l)g”g‘;
8%“828514 (—1)b+f+g”8§.

Thus, b+ f+ gu=0 (mod 2) and g = 0. Therefore, b = f and
€ = 838,55, VBq" VB2 \Epg -
w Let us apply the norm N i, = 1 + 7172, with ks = Q(+/g, \/Z). Tablesandgive:
Nij@) = (=D& -g50,- (1) -5 1-1

2b 2c¢ a+d d
£ szpq( 1)

Thus, a = d = 0. Therefore,
=gb 82pq \/82 \/e,,

ws [ et us apply the norm NK//% =1+ 711713, wWith kg = Q( \/_, \/Z) So by Tables andwe have

Nee@) = &) a5, (=15, -1

2b 2c e e
&y 82pq( 1) g

So e = 0 and therefore,

82pq VSP
w [ et us apply the norm map Ng i, = 1 + 72713, with k3 = Q( V2, 2, 4/Pq9). So, by Tablesand we get:

Nej@) = (D)P-g55, -85,
- 82pq (= l)b

Thus, b =0 and so &2 = 8§pq' Since by Lemma &2pq 18 a square in K, then we have the result.
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2. Assume that N(g;;) = 1. In this case we have
EklEszk3 = <_178298p782pq’ \/8_’ ng ’ Vgp ’ V82p>'
Let & be an element of K which is the square root of an element of Ey, Ey, Ey,. So, we can assume that

2 b
&= 8‘218 sgpq \/_ NG \/gp €2,°,
where a,b,c,d,e, f and g are in {0, 1}.
L et us start by applying the norm map N, = 1 +72. We have:

2a (=1 .gg.ggq (=D (=18

2a c.d _1\b+Sf+gu
£ €485, (-1 .

Ng i, (€)

Sowehave b+ f+gu=0 (mod 2).
ws T et us apply the norm Ni s = 1+ 1172, with ks = Q( \/_, Vv2p). We have

Nejks (€%) (—D“-<—1>b-82pq-<—1>”’-sz,’-1-1-(—1)g-s§p.

a+b+d+g .d &8
ggpq( ) 8q 2p

Thus,a+b+d+g=0 (mod 2) and d = g. Therefore, a = b and

fz—sgsaeépq\/_ VE© \/8[, N

ws [ et us apply the norm Ni g = 1 + 1173, with kg = Q( \/_, \/Z) We have

Niee@) = (=D&t e50, - 1- (=17 -5, - (=1)""*

2a 2c a+e+ud+d
o 82pq( 1)

2q

Thus, a+e+ud+d=0 (mod 2) and e = 0. Then, a+ ud +d =0 (mod 2). As the above discussions imply
a+ f+du=0 (mod 2), then f = d. Therefore;

2 _ a.a.C d d d
& = 88,8, VEq Vepg Ve
Since by Lemma 2.6} &2, is a square in K, then we can put

_828 \/_ \/sp \/821, ,

where a+ud +d =0 (mod 2). Which completes the proof.
]

Theorem 3.10. Let p=1 (mod 8) and ¢ =3 (mod 8) be two primes such that P _ 1. Put K =Q( V2, P V-
q
Assume furthermore that 2p(x+1) and p(v—1) are squares in N, where x and v are defined in Lemma@ Then

1. Assume that N(g,) = —1. We have

e The unit group of K is :

Ex =(-1,82,&p, \[€29: VEpg> \E2pg+ \E2EpE2ps \/8% VEG Y \EpgEapg®),
where @, y € {0, 1} are such that @ # y and @ = 1 if and only if &, \/; \/Epg€2pq is a square in K
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e The 2-class number of K equals 24 5= 2p)ha (pg)ha(2pg).

2. Assume that N(g,) = 1 and let a € {0, 1} be such that a = 1 +u (mod 2). We have

e The unit group of K is :

Ex =(-1,&2,&p, \/€2¢> VEpg> \E2pq> \/E2 ,\/ef,f VY VEPGE2pg®)

where @, y € {0, 1} are such that @ # y and @ = 1 if and only if &, \/€; \/Epg&2p4 1S @ square in K.

e The 2-class number of K equals 241,0 hy(2p)ha (pg)ha(2pq).

Proof. 1. Assume that N(g2),) = —1. Note that {&, &, \/28€2)}, is a fundamental system of units of k1. Using
Lemma@ we show that {&2, \/g4, \/€24} and {&2,&p, \/Epg€2pg} are respectively fundamental systems of
units of kp and k3. It follows that,

Ey ELEr, = (=1,82,€p,Epq, \Eq» \E29» \EpgE2pq> \E2EPELY)-

Let £ be an element of K which is the square root of an element of Ey, Ey, Ey,. Therefore, we can assume
that

2 &b
&= 8621 &) \/_ Ve2q \/gpq‘92pq Ve&28pe2p°,
where a,b,c,d, e, f and g are in {0, 1}.
w Let us start by applying the norm map Nk, = 1 + 7. By Tables |I| and|2| we have

2“ (=P .821 85, -1/ (—1)%e$

Za c.d _1\b+frgu 8
&) €€, (-1 5.

Nk, (€%)

Thus, b+ f+ gu =0 (mod 2) and g = 0. Therefore, b = f and
2 b
& = 56065, VEq" \E2," \EpaB2ng »

s Let us apply the norm Ng i, = 1 + 7172, with ks = Q(+/g, y/2p). Tablesandgive:

Nigis ) = (=1 (=D 1- (=1 185,

a+b+d d b
(=D Szpq

Thus,a+b+d =0 (mod 8) et d = b. Therefore, a = 0 and

= spapq \/_ \/82 \/Squ‘Qp

w Let us apply the norm Ng i, = 1 + 7173, with kg = Q(+/p, \/Z). So by Tables andwe have

NK/k(,(fz) Zb'l'l'(—l)e~g§q.gb

2pq
82bsgpq( l)esgq
So e = 0 and therefore,
= ebet, VB NEpgEaps'-

As gp, is a square in K, then we can put 62 = sp \/s_q \/quszpq . By applying 1 + 1573, 1 + 73 and 1 + 71,
we deduce thing new. So the first item.
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2. In this case we have:
E EEl, = (=1,82,8p,8pg: VEq> VE24» VEPgE2pq> \E2D)-

Let & be an element of K which is the square root of an element of Ey, Ey, Ey,. Therefore, we can assume
that

é-‘z = 3‘2’,917 Cq \/_ Vé2q \/é‘pqé‘zpq Vept,
where a,b,c,d, e, f and g are in {0, 1}.

w Let us start by applying the norm map N/, = 1 +72. We have:

Nejo@) = &% (=10 1-&] -85 - (=1 - (=1)*"

2a _c d _1\b+Sf+gu
£y €480, (-1 .

Thus, b+ f+gu=0 (mod 2).
ws [ et us apply the norm Ni s = 1+ 1172, with ks = Q( \/_, Vv2p). We have

N s (€2)

G R Ca VR B Ve A RS C DAl

_1\at+b+d+g d
=D nggpqSZP

Thus,a+b+d+g=0 (mod 2)andd + f + g =0 (mod 2).
s Let us apply the norm Ng i, = 1 + 7173, with kg = Q(+/p, \/Z). We have

Nigjio@) = (=D g2 11 (=1 &5 &) - (~1)"€*

2pq

2b f a+e+ug+g
£, 2pq( 1) 824

Thus, a+e+ug+g=0 (mod 2) and e = 0. Then, a+ug+ g =0 (mod 2). Since b+ f + gu =0 (mod 2)
anda+b+d+g=b+d+ug=0 (mod 2), this implies that f = d. The equality d+ f +g =0 (mod 2) gives
g=0. Thus, a =0 and b = f. Therefore,

_gp \/_ ‘Vqu@pq .

As &, is a square in K, then we can put &2 = s; NN =y
O

Theorem 3.11. Let p=1 (mod 8) and g =3 (mod 8) be two primes such that (1—)) =1. PutK=Q( V2, VP> V-

Assume furthermore that 2p(x + 1) and 2p(v + 1) are squares in N, where x and v are defined in Lemma@
Then

1. Assume that N(g3,) = —1. We have

e The unit group of K is :

EK:<_1’82’8]77 \/S_, V82 B Vgp B V82p ’ V828p82p>'
e The 2-class number of K equals 2—14/12(2p)hz(pq)h2(2pq).

2. Assume that N(g,) = 1 and let a € {0, 1} be such thata =1 +u (mod 2). We have
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e The unit group of K is :

Ex =(-1,&, Eps VEG> VE29> VEpg> VE2pq> \/8308%@ VEpg€2pq” V82p1+y>
where a, y € {0, 1} are such that @ # y and @ = 1 if and only if 8;8}4) VEpqg€2pq \/E2p 18 a square in K.

e The 2-class number of K equals 24 5= 2p)ha (pg)ha(2pg).

Proof. 1. Assume that N(g2),) = —1. Note that {e2, &), 1/€2€,€2}, is a fundamental system of units of k;. Using
Lemma@ we show that {&2, \/&;, \/&24} and {&2,&p4, \/Epg€2pg} are respectively fundamental systems of
units of kp and k3. It follows that,

Ek] E]QE]('; = <_178278p78pq’ VS ’ V82 ) \/gpqupq7 \/828])82]?)‘

Let & be an element of K which is the square root of an element of Ej, Ey, Ey,. Therefore, we can assume
that

& = e5e)0y VB, VB2 NEpgPrpg NE2EPER,
where a,b,c,d, e, f and g are in {0, 1}.
s Let us start by applying the norm map Nk, = 1 + 7. By Tables |I| and|2| we have

2a X (—l)b -1 ‘82'5§q -1 .(_1)gu8§

_ 2a c.d _1\b+f+gu _8
= & &48," (-1 5.

Nk, (€%)

Thus, b+ gu =0 (mod 2) and g = 0. Therefore, b = 0 and
= £4¢5, VEr! VB2 \EpaFans

m Let us apply the norm Ng i, = 1 + 7172, with ks = Q( /g, y2p). Tables|1]and [ give:

2b a+d .d
81’ (_ 1) qgépq

Nejis (€9) qu

Thus, a = d = f. Therefore,

_‘92‘9 Veq“ V24" \EpgEapg”

w Let us apply the norm N, = 1 + 7173, with kg = Q(+/p, \/Z). So by Tables andwe have

Neps@) = (D8 1-1- (1) 85,85,
— 82bsgpq( l)€+b e
So a =e =0. Thus,
&=,

So the first item.

2. In this case we have:
Ek] Eszkg = <_1a82’8pa€pq7 Vg s ng ’ Vqu‘gqu’ V82p>'
Let & be an element of K which is the square root of an element of Ek] Ej, E,. Thus, we can assume that

52_83 ve, \/_ VE€2q ‘VqugZp &2,
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where a,b,c,d,e, f and g are in {0, 1}.
w Let us start by applying the norm map Nk, = 1 + 2. We have:

Nigji, (€% e%“ (-1 -gg-ggq. 1-(=1)8"

2 d b+
82a82824 S(=1)°rEH,

Thus, b+ gu=0 (mod 2).
w Let us apply the norm Ng i, = 1 + 71172, with ks = Q(+/g, 4/2p). We have

N @) = (=D (=DP 1 (=1 g 18] (D& .
_ b+d+g d S 8
= (=1)*P* +38q82pq82p.

Thus,a+b+d+g=0 (mod 2) andd+ f+ g =0 (mod 2).
ws | et us apply the norm NK/k6 =1+ 1173, wWith kg = Q( \/_, \/Z) We have

Nici (63 = (=10 11 (=185 &) - (=1)"67%

2b f  (_1\atetugtg e
£y 82pq( 1) £

Thus, a+e+ug+g =0 (mod 2) and e = 0. Then, a+ug+ g =0 (mod 2). Since b+ gu =0 (mod 2)
and a +ug + g = 0 (mod 2), this implies thata+ b+ g =0 (mod 2). Asa+b+d+g =0 (mod 2) (resp.
d+ f+g=0 (mod 2)), then d =0 (resp. f = g). Therefore,

2 a.gu
&= s‘zlsp s;q VEpa€2pq® €S,

with a+ug+ g =0 (mod 2). By applying the other norms we deduce nothing new. So we have the second
item.
O

3.3 Thecases: p=5or3 (mod 8) and g =3 (mod 4)

The following theorem provide some families with odd class number and explicit unit groups.

Theorem 3.12. Let p and ¢ be two primes. Put K = Q( V2, \P, \q). Then

1. Ifp=3 (mod 8), g=7 (mod 8) and(E)z 1,
q

Ex =(-1,&, VEg> V€2¢> VEP> VE2pgs VSZquqSqu, \4,8%8q82q5p82p ).

2. If p=3 (mod 8), g =7 (mod 8) and(g): -1,
q

4
Ex =(-1,&2, V&g, \e2p, Vepg: Verpg» \Eq€pE2pEpaE2pg» \/3582431%1321%1 )

3. If p=5 (mod 8), ¢ =7 (mod 8) and (g): 1,

Ex = <_1,32,8p, \/8_, VE2q: VEpg> VE2EpEL, \4/52quq52pq>-
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4. If p=5 (mod 8),g=7 (mod 8) and (g) =-1,

Ex = (-1,€2,8p, \Eq: V24> VEpg> VE2EPE2p, \j4 Sggquq‘92pq>-
5. If p=5 (mod 8), g=3 (mod 8) and (‘l—;) =1, then

Ex =(=1,62,6p, VEq, VB> \Epg» VEIEpE2p: \[Ep824EpgE2pg)-

6. If p=5 (mod 8), ¢ =3 (mod 8) and (3): -1,
q

Ex =(-1,&2,&p, \Eg, \E2g> \Epgs VE2EpELp, N s%s%sqapqszpq).
7. If p=g=3 (mod 8), then

Ex =(-1,e, VEp> VE2p» \/g_v VEpg> \A‘/gpgqé‘qu, \4/82p82q52pq>-

Furthermore, in all the above cases the class number of K is odd.

Proof. The points 4, 5 and 6 are proved in [9] and [7] respectively. The proof of the rest demands very long
computations as above, however we suggest to the reader proceed as in the proof of Theorem[3.T]or [[7, Theorem
2.5] to construct a detailed prove. O

4 Some families of Frohlich triquadratic fields whose 2-class groups are of
type (2,2)

Now we can give some families of real triquadratic number fields whose 2-class groups are of type (2,2).
Theorem 4.1. Let p =1 (mod 8) and ¢ =3 (mod 8) be two primes such that (2) =1. Put K=0Q( V2, \D: ND-
q
Then the 2-class group of K is of type (2,2) in the following cases:
1. ha(pg) = ha(2pq) =2-hy(2p) =4 and (x — 1) or (v — 1) is not square in N.
2. N(&zp) = —1, ha(pq) = h2(2pq) = h(2p) = 4 and one of the following conditions is satisfied:

a. (x—1)and 2p(v + 1) are squares in N,
b. (x—1)and p(v—1) are squares in N,

p(x—1)and (v—1) are squares in N,

/& o

p(x—1) and p(v—1) are squares in N,

o

2p(x+1) and (v—1) are squares in N,

a

2p(x+1) and 2p(v + 1) are squares in N,

where x and v are defined in Lemma 2.6

385
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Proof. We shall prove the first item and the reader can similarly prove the second one. So assume that we are
in conditions of the first item. Note that by [[13| Theorem 2], we have N(g2,,) = 1. Using Lemmas |Z7| and@
we get hp(k3) = %q(l@) -4.4 =8, where k3 = Q( V2, v/Pq)-Therefore, as by [2]] the 2-rank of the class group of

k3 equals 2, the 2-class group of k3 is of type (2,4). By the second items of Theorems[3.4} [3.3] 3.6} 3.7, 3-8 3-9]
and 3.11| we have hy(K) = 515h2(2p)ha(pg)ha(2pq), for some a € {0,1}. If we assume that o = 0, then

hy(K) = 57 -2-4-4 = 2. This implies that the 2-class group of K is cyclic, but this is impossible by class field
theory and the fact that K/ks is an unramified quadratic extension. Therefore, /17 (K) = 4. Now, let us show that
the 2-class group of K is not cyclic. By [4, Theorem 4.1, (iii)], k3 admits three quadratic extensions K; = K and

the conjugate extensions Ky := k3( /aT) and K3, all contained in Q( V2, P Va4, /aT) which is an unramified

extension of k3 of degree 4, where the 7 is (the element attached to p) defined in [4, Theorem 4.1, (iii)]. So by
the group theoretic properties given in [S, p. 110] the 2-class group of K is not cyclic. Hence the 2-class group
of K is of type (2,2). O

Remark 4.2. For a continuation of this work, we refer the reader to the paper [8] which is dedicated to the
computation of the unit group of the fields Q( V2, \/P, \q), where p =1 (mod 8) and g =7 (mod 8) are two
prime numbers.
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