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Abstract. In this paper, we compute the unit groups and the 2-class numbers of the Fröhlich’s triquadratic fields K = Q(
√

2,
√

p,
√

q),

where p and q are two prime numbers such that (p ≡ 1 (mod 8) and q ≡ 3 (mod 4)) or (p ≡ 5 or 3 (mod 8) and q ≡ 3 (mod 4)).

Furthermore, we determine some families of the fields K whose 2-class groups are trivial or cyclic non trivial, and some other families

with 2-class groups isomorphic to the Klein group.
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1 Introduction

A Fröhlich multiquadratic field of degree 2n is a real multiquadratic field of the form Fn = Q(
√

p1,
√

p2, ...,
√

pn),
where the pi’s are prime numbers. These fields are of major interest in class field theory and genus theory of
quadratic and biquadratic fields. Their study has a long history, and here we shall quote some works which
are related to the subject of this paper. In the best of our knowledge, when n ≥ 3, all the facts that we have
about the class groups of these fields concern the cyclicity of their 2-class groups and the parity of their class
numbers. For example, in [11], Fröhlich showed that if more than four finite primes are ramified in a finite
extension K/Q, then the class number of K is even and therefore Fn, with n ≥ 5 has an even class number. The
parity of the class number of the quadratic field (i.e. F1) can be determined using genus theory. The biquadratic
field (i.e. F2) was studied by Fröhlich [11], Conner and Hurrelbrink [10] and Kučera [13]. The parity of the
class numbers of Fröhlich fields of degree 8 (i.e. F3) was studied by Bulant [6] who used the method of Kučera
which is based on circular units. Furthermore, the authors of [16] determined a list of the fields F3 with pi ≡ 3
(mod 4) whose 2-class groups are cyclic non trivial. Finally, the parity of the class number of F4, was investi-
gated in [15]. We believe that after this list of interesting works, it is time to go further and discover more and
different arithmetical properties of these fields.

In the present paper, we provide the unit groups and the 2-class numbers of the Fröhlich field F3 := K =

Q(
√

2,
√

p,
√

q), where p and q are two prime numbers such that (p ≡ 1 (mod 8) and q ≡ 3 (mod 4)) or (p ≡ 5
or 3 (mod 8) and q ≡ 3 (mod 4)). Furthermore, we shall give some families of K with 2-class groups of type
(2,2). Note that the reason behind choosing this form comes from our expertise and previous studies which
showed the importance of these fields in the study of many problems of class field theory and genus theory
related to biquadratic and triquadratic fields [9, 7]. Note also that the fields K represent the first step of the
cyclotomic Z2-extension of the fields Q(

√
p,
√

q) and our results may also be very useful for studying some
problems related to Iwasawa theory on biquadratic and triquadratic fields (see [7, Theorem 3.6] for a direct
example of such applications).
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The plan of this paper is as follows; In Sec. 2, we collect some preliminary results which we shall use later.
In Sec. 3, we provide unit groups and 2-class numbers of the Fröhlich fields K = Q(

√
2,
√

p,
√

q). Therein we
give some families whose 2-class groups are trivial or cyclic non trivial. In the last section, we provide some
families of Fröhlich fields whose 2-class groups are of type (2,2).

Notations

Let k be a number field. We shall use the following notations for the rest of this paper:

? Ek: The unit group of k,

? q(k) = (Ek :
∏

i Eki) is the unit index of k, if k is multiquadratic, where ki are the quadratic subfields of k,

? h(k): The class number of k,

? h2(k): The 2-class number of k,

? h2(d): The 2-class number of a quadratic field Q(
√

d),

? εd: The fundamental unit of a real quadratic field Q(
√

d),

? N(εd): The norm of εd in the extension Q(
√

d)/Q,

? τi: Defined in Page 360,

? ki: Defined in Page 360,

? u: Defined in Lemma 2.1,

?
(
·
·

)
: The Legendre symbol.

2 Preparations

Let us start this section by recalling the method given in [17], that describes a fundamental system of units of
a real multiquadratic field K0. Let σ1 and σ2 be two distinct elements of order 2 of the Galois group of K0/Q.
Let K1, K2 and K3 be the three subextensions of K0 invariant by σ1, σ2 and σ3 = σ1σ2, respectively. Let ε
denote a unit of K0. Then

ε2 = εεσ1εεσ2(εσ1εσ2)−1,

and we have, εεσ1 ∈ EK1 , εεσ2 ∈ EK2 and εσ1εσ2 ∈ EK3 . It follows that the unit group of K0 is generated by the
elements of EK1 , EK2 and EK3 , and the square roots of elements of EK1 EK2 EK3 which are perfect squares in K0.

This method is very useful for computing a fundamental system of units of a real biquadratic number field,
however, in the case of a real triquadratic number field the problem of the determination of the unit group
becomes very difficult and demands some specific computations and eliminations, as we will see in the next
section. We shall consider the field K = Q(

√
2,
√

p,
√

q), where p and q are two distinct prime numbers. Thus,
we have the following diagram:
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K = Q(
√

2,
√

p,
√

q)
OO hh66

k1 = Q(
√

2,
√

p)
hh

k2 = Q(
√

2,
√

q)
OO

k3 = Q(
√

2,
√

pq)
66

Q(
√

2)

Figure 1: Intermediate fields of K/Q(
√

2)

Let τ1, τ2 and τ3 be the elements of Gal(K/Q) defined by

τ1(
√

2) = −
√

2, τ1(
√

p) =
√

p, τ1(
√

q) =
√

q,
τ2(
√

2) =
√

2, τ2(
√

p) = −
√

p, τ2(
√

q) =
√

q,
τ3(
√

2) =
√

2, τ3(
√

p) =
√

p, τ3(
√

q) = −
√

q.

Note that Gal(K/Q) = 〈τ1, τ2, τ3〉 and the subfields k1, k2 and k3 are fixed by 〈τ3〉, 〈τ2〉 and 〈τ2τ3〉 respectively.
Therefore, a fundamental system of units of K consists of seven units chosen from those of k1, k2 and k3, and
from the square roots of the elements of Ek1 Ek2 Ek3 which are squares in K. With these notations, we have:

Lemma 2.1. Let p be a prime number such that N(ε2p) = 1. Put ε2p = β + α
√

2p with β,α ∈ Z. Then
√
ε2p = 1√

2
(α1 +α2

√
2p), for some integers α1,α2 such that α = α1α2. It follows that:

σ 1 + τ2 1 + τ1τ2 1 + τ1τ3 1 + τ2τ3 1 + τ1
√
ε2p

σ (−1)u −ε2p (−1)u+1 (−1)u (−1)u+1 (1)

for some u in {0,1} such that 1
2 (α2

1 − 2pα2
2) = (−1)u. With εσ+τ := σ(ε)τ(ε), for any σ, τ ∈ Gal(K/Q) and for

any ε ∈ K.

To prove this lemma we need to recall the following :

Lemma 2.2 ([1], Lemma 5). Let d > 1 be a square-free integer and εd = x + y
√

d, where x, y are integers or
semi-integers. If N(εd) = 1, then 2(x + 1), 2(x− 1), 2d(x + 1) and 2d(x− 1) are not squares in Q.

Proof of Lemma 2.1. As N(ε2p) = 1, then β2 − 1 = α22p. So by Lemma 2.2, we have (β∓ 1 = α2
1 and β± 1 =

α2
22p) for some integers α1 and α2. Thus, 2β = α2

1 + α2
22p and 1

2 (α2
1 − 2pα2

2) = (−1)u, for some u in {0,1}.
Therefore, 2ε2p = 2β + 2α

√
2p = α2

12p + α2
2 + 2α2

1 + α2
22p = (α1 + α2

√
2p)2. The reader can deduce the rest

easily. �

Lemma 2.3 ([3], Theorem 6). Let p ≡ 1 (mod 4) be a prime number.

1. If N(ε2p) = −1, then {ε2, εp,
√
ε2εpε2p} is a fundamental system of units of k1 = Q(

√
2,
√

p).

2. If N(ε2p) = 1, then {ε2, εp,
√
ε2p} is a fundamental system of units of k1 = Q(

√
2,
√

p).

Lemma 2.4. Let p ≡ 1 (mod 8) and q ≡ 3 (mod 8) be two primes such that
(
p
q

)
= −1.

1. Let x and y be two integers such that ε2pq = x + y
√

2pq. Then

i. (x− 1) is a square in N,

ii.
√

2ε2pq = y1 + y2
√

2pq and 2 = −y2
1 + 2pqy2

2, for some integers y1 and y2.
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2. Let v and w be two integers such that εpq = v + w
√

pq. Then

i. (v− 1) is a square in N,

ii.
√

2εpq = w1 + w2
√

pq and 2 = −w2
1 + pqw2

2, for some integers w1 and w2.

Proof. It is known that N(ε2pq) = 1. Then, by the unique factorization in Z and Lemma 2.2 there exist some
integers y1 and y2 (y = y1y2) such that

(1) :
{

x± 1 = y2
1

x∓ 1 = 2pqy2
2,

(2) :
{

x± 1 = py2
1

x∓ 1 = 2qy2
2,

or (3) :
{

x± 1 = 2py2
1

x∓ 1 = qy2
2,

∗ System (2) can not occur since it implies −1 =

(
2qy2

2
p

)
=

(
x∓1

p

)
=

(
x±1∓2

p

)
=

(
∓2
p

)
=

(
2
p

)
= 1, which is absurd.

∗ We similarly show that System (3) and
{

x + 1 = y2
1

x− 1 = 2pqy2
2

can not occur.

Therefore
{

x− 1 = y2
1

x + 1 = 2pqy2
2

which gives the first item. The proof of the second item is analogous. �

Lemma 2.5. Let q ≡ 3 (mod 8) be a prime number.

1. Let c and d be two integers such that ε2q = c + d
√

2q. Then

i. c− 1 is a square in N,

ii.
√

2ε2q = d1 + d2
√

2q and 2 = −d2
1 + 2qd2

2, for some integers d1 and d2.

2. Let α and β be two integers such that εq = α+ β
√

q. Then

i. α− 1 is a square in N,

ii.
√

2εq = β1 + β2
√

q and 2 = −β2
1 + qβ2

2, for some integers β1 and β2.

Furthermore, for any prime number p ≡ 1 (mod 4) we have:

ε ε2 εp
√
εq

√
ε2q

ε1+τ1 −1 ε2
p −εq 1

ε1+τ2 ε2
2 −1 εq ε2q

ε1+τ3 ε2
2 ε2

p −1 −1
ε1+τ1τ2 −1 −1 −εq 1
ε1+τ1τ3 −1 ε2

p 1 −ε2q

ε1+τ2τ3 ε2
2 −1 −1 −1

Table 1: Norm maps on units

Proof. Similar to that of Lemma 2.4. �

Lemma 2.6. Let p ≡ 1 (mod 8) and q ≡ 3 (mod 8) be two primes such that
(
p
q

)
= 1.

1. Let x and y be two integers such that ε2pq = x + y
√

2pq. Then

i. (x− 1), p(x− 1) or 2p(x + 1) is a square in N,
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ii. Furthermore,

a) If (x− 1) is a square in N, then
√

2ε2pq = y1 + y2
√

2pq and 2 = −y2
1 + 2pqy2

2.

b) If p(x− 1) is a square in N, then
√

2ε2pq = y1
√

p + y2
√

2q and 2 = −py2
1 + 2qy2

2.

c) If 2p(x + 1) is a square in N, then
√

2ε2pq = y1
√

2p + y2
√

q and 2 = 2py2
1 − qy2

2.

Where y1 and y2 are two integers such that y = y1y2.

2. Let v and w be two integers such that εpq = v + w
√

pq. Then

i. (v− 1), p(v− 1) or 2p(v + 1) is a square in N,

ii. Furthermore,

a) If (v− 1) is a square in N, then
√

2εpq = w1 + w2
√

pq and 2 = −w2
1 + pqw2

2.

b) If p(v− 1) is a square in N, then
√

2εpq = w1
√

p + w2
√

q and 2 = −pw2
1 + qw2

2.
c) If 2p(v + 1) is a square in N, then √εpq = w1

√
p + w2

√
q and 1 = pw2

1 − qw2
2.

Where w1 and w2 are two integers such that w = w1w2 in a) and b), and w = 2w1w2 in c).

Proof. We proceed as in the proof of Lemma 2.4. �

Now we recall the following lemmas:

Lemma 2.7 ([14]). Let K be a multiquadratic number field of degree 2n, n ∈N, and ki the s = 2n−1 quadratic
subfields of K. Then

h(K) =
1
2v (EK :

s∏
i=1

Eki)
s∏

i=1

h(ki),

with

v =

{
n(2n−1 − 1); if K is real,

(n− 1)(2n−2 − 1) + 2n−1 − 1 if K is imaginary.

Lemma 2.8. Let q ≡ 3 (mod 4) and p ≡ 1 (mod 4) be two primes.

1. By [10, Corollary 18.4], we have h2(p) = h2(q) = h2(2q) = h2(2) = h2(−2) = h2(−q) = h2(−1) = 1.

2. If
(
p
q

)
= −1, then h2(pq) = h2(2pq) = h2(−pq) = 2, else h2(pq), h2(2pq) and h2(−pq) are divisible by 4 (cf.

[10, Corollaries 19.6 and 19.7]).

3. If q ≡ 3 (mod 8), then h2(−2q) = 2 (cf. [10, Corollary 19.6]).

3 Unit groups of real triquadratic number fields and their 2-class numbers

Keep the notations in the above section. In this section we shall compute the unit groups and the 2-class
numbers of the Fröhlich fields K.

3.1 The case: p ≡ 1 (mod 8), q ≡ 3 (mod 4) and
(
p
q

)
= −1

We shall now state and prove our first main theorem.

Theorem 3.1. Let p ≡ 1 (mod 8) and q ≡ 3 (mod 8) be two primes such that
(
p
q

)
= −1. PutK = Q(

√
2,
√

p,
√

q).

Then
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1. If N(ε2p) = −1, we have

• The unit group of K is :

EK = 〈−1, ε2, εp,
√
εq,
√
ε2q,
√
εpq,
√
ε2εpε2p,

√
√
εq
√
ε2q
√
εpq
√
ε2pq〉

• The 2-class group of K is cyclic of order 1
2h2(2p).

2. If N(ε2p) = 1, we have

• The unit group of K is :

EK = 〈−1, ε2, εp,
√
εq,
√
ε2q,
√
εpq,

√
εa

2ε
a
p
√
εq
√
εpq
√
ε2p,

√
εa

2ε
a
p
√
ε2q
√
ε2pq
√
ε2p〉,

where a ∈ {0,1} such that a ≡ 1 + u (mod 2).

• The 2-class group of K is cyclic of order h2(2p).

Proof. We shall use the method and the preparations exposed in Section 2. Therefore, we need the unit groups
of the intermediate fields k1, k2 and k3.

1. Assume that N(ε2p) = −1. By Lemma 2.3, {ε2, εp,
√
ε2εpε2p} is a fundamental system of units of k1. One

can easily deduce from Lemmas 2.5 and 2.4 that {ε2,
√
εq,
√
ε2q} and {ε2,

√
εpq,
√
ε2pq} are respectively

fundamental systems of units of k2 and k3. It follows that,

Ek1 Ek2 Ek3 = 〈−1, ε2, εp,
√
εq,
√
ε2q,
√
εpq,
√
ε2pq,

√
ε2εpε2p〉.

Let ξ be an element of K which is the square root of an element of Ek1 Ek2 Ek3 . Therefore, we can assume
that

ξ2 = εa
2ε

b
p
√
εq

c √ε2q
d √εpq

e √ε2pq
f √ε2εpε2p

g,

where a,b,c,d,e, f and g are in {0,1}.
Remark that the question now becomes about the solvability in K of the equation:

ξ2 − εa
2ε

b
p
√
εq

c √ε2q
d √εpq

e √ε2pq
f √ε2εpε2p

g = 0.

Assuming that this equation has solutions in K, we shall firstly use norm maps from K to its subextensions
to eliminate the forms with do not occur.

à Let us start by applying the norm map NK/k2 = 1 + τ2. Using Lemma 2.4 we get √ε2pq
1+τ2 = ( 1√

2
(y1 +

y2
√

2pq))×τ2( 1√
2
(y1 +y2

√
2pq)) = ( 1√

2
(y1 +y2

√
2pq))×( 1√

2
(y1−y2

√
2pq)) = 1

2 (y2
1−2pqy2) = 1

2 (−2) = −1.

Similarly we have √εpq
1+τ2 = −1. So by Table 1, we have:

NK/k2(ξ2) = ε2a
2 (−1)b · εc

q · ε
d
2q · (−1)e · (−1) f · (−1)gsε

g
2

= ε2a
2 ε

c
qε

d
2q · (−1)b+e+ f +gsε

g
2.

for some s ∈ {0,1}. Thus, b + e + f + gs ≡ 0 (mod 2). Since ε2 is not a square in k2, then g = 0. Therefore
b + e + f ≡ 0 (mod 2) and

ξ2 = εa
2ε

b
p
√
εq

c √ε2q
d √εpq

e √ε2pq
f .

à Let us apply the norm NK/k5 = 1+τ1τ2, with k5 = Q(
√

q,
√

2p). We have √εpq
1+τ1τ2 = 1 and √ε2pq

1+τ1τ2 =

−ε2pq. Then, by Table 1, we get:

NK/k5(ξ2) = (−1)a · (−1)b · (−1)c · εc
q · 1 · 1 · (−1) f · ε

f
2pq

= (−1)a+b+c+ f εc
q · ε

f
2pq.
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Thus a + b + c + f = 0 (mod 2). By Lemmas 2.5 and 2.4, none of εq and ε2pq is a square in k5. Then f = c.
Thus, a = b. Therefore,

ξ2 = εa
2ε

a
p
√
εq

f √ε2q
d √εpq

e √ε2pq
f ,

à Let us apply the norm NK/k6 = 1+τ1τ3, with k6 = Q(
√

p,
√

2q). We have √εpq
1+τ1τ3 = 1 and √ε2pq

1+τ1τ3 =

−ε2pq. Then, by Table 1, we get:

NK/k6(ξ2) = (−1)a · ε2a
p · 1 · (−1)d · εd

2q · 1 · (−1) f · ε
f
2pq

= ε2a
p (−1)a+d+ f εd

2qε
f
2pq.

Thus a + d + f = 0 (mod 2). Again by Lemmas 2.5 and 2.4, none of ε2q and ε2pq is a square in k6. Then
d = f . Therefore a = 0 and

ξ2 =
√
εq

f √ε2q
f √εpq

e √ε2pq
f .

à Let us apply the norm NK/k3 = 1 + τ2τ3, with k3 = Q(
√

2,
√

pq). Note that √εpq
1+τ2τ3 = εpq and

√
ε2pq

1+τ2τ3 = ε2pq. Then, by Table 1, we have:

NK/k3(ξ2) = (−1) f · (−1) f · εe
pq · ε

f
2pq

= εe
pq · ε

f
2pq.

By Lemma 2.4, both εpq and ε2pq are squares in k3. So we deduce nothing.

à Let us apply the norm NK/k4 = 1+τ1, with k4 = Q(
√

p,
√

q). Note that √εpq
1+τ1 = −εpq and √ε2pq

1+τ1 =

1. Then, by Table 1, we have:

NK/k4(ξ2) = (−1) f · ε
f
q · 1 · (−1)e · εe

pq · 1

= (−1) f +eε
f
qε

e
pq.

Thus, f = e and
ξ2 =

√
εq

f √ε2q
f √εpq

f √ε2pq
f .

Let us show that the square root of √εq
√
ε2q
√
εpq
√
ε2pq is an element of K. Note that one can easily

check that the 2-class group of k5 = Q(
√

2p,
√

q) is cyclic and by Lemmas 2.7 and 2.8, we have h2(k5) =
1
4q(k5)h2(2p)h2(q)h2(2pq) = 1

2q(k5)h2(2p). Using Lemmas 2.4 and 2.5, we show that q(k5) = 2. Thus
h2(k5) = h2(2p). Since K/k5 is an unramified quadratic extension, then

h2(K) =
1
2
· h2(k5) =

1
2
· h2(2p). (2)

Assume by absurd that √εq
√
ε2q
√
εpq
√
ε2pq is not a square in K. Then q(K) = 25. By Lemma 2.7, we

have:

h2(K) =
1
29 q(K)h2(2)h2(p)h2(q)h2(2p)h2(2q)h2(pq)h2(2pq) (3)

=
1
29 · 2

5 · 1 · 1 · 1 · h2(2p) · 1 · 2 · 2 =
1
4
· h2(2p).

Which is a contradiction with (2). Therefore f = 1 and √εq
√
ε2q
√
εpq
√
ε2pq is a square in K. Hence, we

have
EK = 〈−1, ε2, εp,

√
εq,
√
ε2q,
√
εpq,
√
ε2εpε2p,

√
√
εq
√
ε2q
√
εpq
√
ε2pq〉.
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2. Let us now prove the second item. Assume that N(ε2p) = 1. By Lemma 2.3, {ε2, εp,
√
ε2p} is a funda-

mental system of units of k1 and one can easily deduce from Lemmas 2.5 and 2.4 that {ε2,
√
εq,
√
ε2q} and

{ε2,
√
εpq,
√
ε2pq} are respectively fundamental systems of units of k2 and k3. So we have

Ek1 Ek2 Ek3 = 〈−1, ε2, εp,
√
εq,
√
ε2q,
√
εpq,
√
ε2pq,

√
ε2p〉.

Put
ξ2 = εa

2ε
b
p
√
εq

c √ε2q
d √εpq

e √ε2pq
f √ε2p

g,

where a,b,c,d,e, f and g are in {0,1}. Assume that ξ belongs to K. We shall proceed as above, by using the
norm maps from K to its subextensions. Note that these norms are already computed in the proof of the first
item, and we shall use (1) for the norms of √ε2p. Let u be the integer defined in Lemma 2.1.

à Let us start by applying the norm map NK/k2 = 1 + τ2. We have

NK/k2(ξ2) = ε2a
2 · (−1)b · εc

q · ε
d
2q · (−1)e · (−1) f · (−1)gu

= ε2a
2 ε

c
qε

d
2q · (−1)b+e+ f +gu.

Thus, b + e + f + gu ≡ 0 (mod 2).

à Let us apply the norm map NK/k5 = 1 + τ1τ2, with k5 = Q(
√

q,
√

2p). We have

NK/k5(ξ2) = (−1)a · (−1)b · (−1)c · εc
q · 1 · 1 · (−1) f · ε

f
2pq · (−1)g · ε

g
2p

= (−1)a+b+c+ f +g · εc
qε

f
2pqε

g
2p.

Thus, a + b + c + f + g ≡ 0 (mod 2) and c + f + g ≡ 0 (mod 2). Therefore, a = b and

ξ2 = εa
2ε

a
p
√
εq

c √ε2q
d √εpq

e √ε2pq
f √ε2p

g.

with c + f + g ≡ 0 (mod 2).

à Let us apply the norm map NK/k6 = 1 + τ1τ3, with k6 = Q(
√

p,
√

2q) . We have

NK/k6(ξ2) = (−1)a · ε2a
p · 1 · (−1)d · εd

2q · 1 · (−1) f · ε
f
2pq · (−1)gu · (−1)g

= ε2a
p · (−1)a+d+ f +ug+g · εd

2qε
f
2pq.

Thus, a + d + f + ug + g ≡ 0 (mod 2) and d = f . Therefore, a + ug + g ≡ 0 (mod 2) and

ξ2 = εa
2ε

a
p
√
εq

c √ε2q
f √εpq

e √ε2pq
f √ε2p

g.

à Let us apply the norm map NK/k3 = 1 + τ2τ3, with k3 = Q(
√

2,
√

pq). We have

NK/k3(ξ2) = ε2a
2 · (−1)a · (−1)c · (−1) f · εe

pq · ε
f
2pq · (−1)gu

= ε2a
2 ε

e
pqε

f
2pq · (−1)a+c+ f +ug.

Thus, a + c + f + ug ≡ 0 (mod 2). Therefore, from these discussions, it follows that we have:

a + e + f + ug ≡ 0 (mod 2) (4)

c + f + g ≡ 0 (mod 2) (5)

a + ug + g ≡ 0 (mod 2) (6)

a + c + f + ug ≡ 0 (mod 2) (7)
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From (4), (6) and (5), we deduce that e = c. Thus

ξ2 = εa
2ε

a
p
√
εq

c √ε2q
f √εpq

c √ε2pq
f √ε2p

g.

On the other hand, as above, we show that the 2-class group of k5 is cyclic and that we have:

h2(K) =
1
2
· h2(k5) =

1
2
·

1
4

q(k5)h2(2p)h2(q)h2(2pq)

=
1
2
·

1
4
· 4 · h2(2p) · 1 · 2

= h2(2p), (8)

and by class number formula (Lemma 2.7), we have

h2(K) =
1
29 q(K)h2(2)h2(p)h2(q)h2(2p)h2(2q)h2(pq)h2(2pq)

=
1
29 · q(K) · 1 · 1 · 1 · h2(2p) · 1 · 2 · 2 =

1
27 · q(K) · h2(2p).

Therefore, q(K) = 27.

Assume that each solution has g = 0, then by (6) a = 0. So by (5) and (4) f = c = e. Therefore, ξ2 =
√
εq

c √ε2q
c √εpq

c √ε2pq
c. Thus, q(K) = 25 or 26. Which is absurd. This implies that there must be a

solution having g = 1. So by (5), c , f , and by (6) a ≡ 1 + u (mod 2). Finally, we have

ξ2 = εa
2ε

a
p
√
εq

c √εpq
c √ε2p or εa

2ε
a
p
√
ε2q

f √ε2pq
f √ε2p,

Since q(K) = 27, then both of εa
2ε

a
p
√
εq
√
εpq
√
ε2p and εa

2ε
a
p
√
ε2q
√
ε2pq
√
ε2p are squares in K, where a ≡

1 + u (mod 2) and u is defined in Lemma 2.1. Which completes the proof.

�

3.2 The case: p ≡ 1 (mod 8), q ≡ 3 (mod 8) and
(
p
q

)
= 1

For the sake that the reader could follow the proofs of this section, we suggest to start by reading carefully the
proof of Theorem 3.1 which is exposed with some helpful details.
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The following table summarizes very useful computations which we shall use frequently.

ε Conditions ε1+τ2 ε1+τ1τ2 ε1+τ1τ3 ε1+τ2τ3 ε1+τ1

√
ε2pq

(x− 1) is a square in N −1 −ε2pq −ε2pq ε2pq 1

p(x− 1) is a square in N 1 ε2pq −ε2pq −ε2pq 1

2p(x + 1) is a square in N −1 −ε2pq ε2pq −ε2pq 1

√
εpq

(v− 1) is a square in N −1 1 1 εpq −εpq

p(v− 1) is a square in N 1 −1 1 −εpq −εpq

2p(v + 1) is a square in N −1 −1 1 −εpq εpq

Table 2: Norms maps on units

Let p ≡ 1 (mod 8) and q ≡ 3 (mod 8) be two primes such that
(
p
q

)
= 1. Then, by Lemmas 2.7 and 2.8, we

have:

h2(K) =
1
29 q(K) · h2(2p) · h2(pq) · h2(2pq). (9)

Remark 3.2. Notice that by Lemma 2.6 there are nine possibilities which will be covered case by case by the
following Theorems 3.3-3.11.

Theorem 3.3. Let p ≡ 1 (mod 8) and q ≡ 3 (mod 8) be two primes such that
(
p
q

)
= 1. PutK = Q(

√
2,
√

p,
√

q).

Assume furthermore that x− 1 and v− 1 are squares in N, where x and v are defined in Lemma 2.6.

1. If N(ε2p) = −1, we have

• The unit group of K is :

EK = 〈−1, ε2, εp,
√
εq,
√
ε2q,
√
εpq,
√
ε2εpε2p,

√
√
εqa √ε2qa √εpqa √ε2pq1+b〉

where a, b ∈ {0,1} are such that a , b and a = 1 if and only if √εq
√
ε2q
√
εpq
√
ε2pq is a square in K.

• The 2-class number of K equals 1
24−a h2(2p)h2(pq)h2(2pq).

2. Assume that N(ε2p) = 1 and define a ∈ {0,1} to satisfy a ≡ 1 + u (mod 2). Then we have

• The unit group of K is :

EK = 〈−1, ε2, εp,
√
εq,
√
ε2q,
√
εpq,

√
εar′

2 εar′
p
√
εqr′ √εpqr′ √ε2p1+s′ ,

√
εar

2 ε
ar
p
√
ε2qr √ε2pq1+s √ε2pr〉

where r,r′, s, s′ ∈ {0,1} are such that r , s (resp. r′ , s′) and r = 1 (resp. r′ = 1) if and only if
εa

2ε
a
p
√
ε2q
√
ε2pq
√
ε2p (resp. εa

2ε
a
p
√
εq
√
εpq
√
ε2p) is a square in K.



368 Moroccan Journal of Algebra and Geometry with Applications / M. M. Chems-Eddin

• The 2-class number of K equals 1
24−r−r′ h2(2p)h2(pq)h2(2pq).

Proof. 1. Assume that N(ε2p) = −1. By Lemma 2.3, {ε2, εp,
√
ε2εpε2p} is a fundamental system of units of k1.

One can easily deduce from Lemmas 2.5 and 2.4 that {ε2,
√
εq,
√
ε2q} and {ε2,

√
εpq,
√
ε2pq} are respectively

fundamental systems of units of k2 and k3. It follows that,

Ek1 Ek2 Ek3 = 〈−1, ε2, εp,
√
εq,
√
ε2q,
√
εpq,
√
ε2pq,

√
ε2εpε2p〉.

Let ξ be an element of K which is the square root of an element of Ek1 Ek2 Ek3 . Therefore, we can assume
that

ξ2 = εa
2ε

b
p
√
εq

c √ε2q
d √εpq

e √ε2pq
f √ε2εpε2p

g,

where a,b,c,d,e, f and g are in {0,1}. As x − 1 and v − 1 are squares in N, then clearly with the same
computations as in the proof of Theorem 3.1, we get :

ξ2 =
√
εq

f √ε2q
f √εpq

f √ε2pq
f .

So the first item.

2. The same computations in the second part of the proof of Theorem 3.1 give the second item.
The part concerning the 2-class number follows from the above discussions and (9). �

Theorem 3.4. Let p ≡ 1 (mod 8) and q ≡ 3 (mod 8) be two primes such that
(
p
q

)
= 1. PutK = Q(

√
2,
√

p,
√

q).

Assume furthermore that x− 1 and p(v− 1) are squares in N, where x and v are defined in Lemma 2.6. Then

1. Assume that N(ε2p) = −1. We have

• The unit group of K is :

EK = 〈−1, ε2, εp,
√
εq,
√
ε2q,
√
εpq,
√
ε2pq,

√
ε2εpε2p〉.

• The 2-class number of K equals 1
24 h2(2p)h2(pq)h2(2pq).

2. Assume that N(ε2p) = 1 and let a ∈ {0,1} be such that a ≡ 1 + u (mod 2). We have

• The unit group of K is :

EK = 〈−1, ε2, εp,
√
εq,
√
ε2q,
√
εpq,
√
ε2pq,

√
εaα

2 εaα
p
√
ε2qα

√
ε2pqα

√
ε2p1+γ〉

where α, γ ∈ {0,1} are such that α , γ and α = 1 if and only if εa
2ε

a
p
√
ε2q
√
ε2pq
√
ε2p is a square in K.

• The 2-class number of K equals 1
24−α h2(2p)h2(pq)h2(2pq).

Proof. We shall make use of (1) and Tables 1 and 2.

1. Assume that N(ε2p) = −1. Note that {ε2, εp,
√
ε2εpε2p}, is a fundamental system of units of k1. Using

Lemma 2.6, we show that {ε2,
√
εq,
√
ε2q} and {ε2, εpq,

√
ε2pq} are respectively fundamental systems of

units of k2 and k3. So we have:

Ek1 Ek2 Ek3 = 〈−1, ε2, εp, εpq,
√
εq,
√
ε2q,
√
ε2pq,

√
ε2εpε2p〉.

Let ξ be an element of K which is the square root of an element of Ek1 Ek2 Ek3 . Therefore, we can assume
that

ξ2 = εa
2ε

b
pε

c
pq
√
εq

d √ε2q
e √ε2pq

f √ε2εpε2p
g,
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where a,b,c,d,e, f and g are in {0,1}.

à Let us start by applying the norm map NK/k2 = 1 + τ2. We have √ε2εpε2p
1+τ2 = (−1)vε2, for some

v ∈ {0,1}. Then, by Tables 1 and 2, we get:

NK/k2(ξ2) = ε2a
2 · (−1)b · 1 · εd

q · ε
e
2q · (−1) f · (−1)gvε

g
2

= ε2a
2 ε

c
qε

d
2q · (−1)b+ f +gvε

g
2.

Thus, b + f + gv ≡ 0 (mod 2) and g = 0. Therefore, b = f and

ξ2 = εa
2ε

f
pε

c
pq
√
εq

d √ε2q
e √ε2pq

f .

à Let us apply the norm NK/k5 = 1 + τ1τ2, with k5 = Q(
√

q,
√

2p).Then, by Tables 1 and 2, we get:

NK/k5(ξ2) = (−1)a · (−1) f · 1 · (−1)d · εd
q · 1 · (−1) f · ε

f
2pq

= (−1)a+dεd
q · ε

f
2pq.

Thus a = d = f and
ξ2 = ε

f
2ε

f
pε

c
pq
√
εq

f √ε2q
e √ε2pq

f .

à Let us apply the norm NK/k6 = 1 + τ1τ3, with k6 = Q(
√

p,
√

2q). By Tables 1 and 2, we get:

NK/k6(ξ2) = (−1) f · ε
2 f
p · 1 · 1 · (−1)e · εe

2q · (−1) f · ε
f
2pq

= ε2a
p (−1)eεe

2qε
f
2pq.

Thus e = f = 0. Hence
ξ2 = εc

pq.

By Lemma 2.6 εpq is a square in K, therefore

EK = 〈−1, ε2, εp,
√
εq,
√
ε2q,
√
εpq,
√
ε2pq,

√
ε2εpε2p〉.

2. Assume that N(ε2p) = 1. Note that {ε2, εp,
√
ε2p}, is a fundamental system of units of k1. Using Lemma 2.6,

we show that {ε2,
√
εq,
√
ε2q} and {ε2, εpq,

√
ε2pq} are respectively fundamental systems of units of k2 and

k3. It follows that,
Ek1 Ek2 Ek3 = 〈−1, ε2, εp, εpq,

√
εq,
√
ε2q,
√
ε2pq,

√
ε2p〉.

Let ξ be an element of K which is the square root of an element of Ek1 Ek2 Ek3 . Therefore, we can assume
that

ξ2 = εa
2ε

b
pε

c
pq
√
εq

d √ε2q
e √ε2pq

f √ε2p
g,

where a,b,c,d,e, f and g are in {0,1}.

à Let us start by applying the norm map NK/k2 = 1 + τ2. By Tables 1 and 2, we have

NK/k2(ξ2) = ε2a
2 · (−1)b · 1 · εd

q · ε
e
2q · (−1) f · (−1)gu

= ε2a
2 ε

c
qε

d
2q · (−1)b+ f +gu.

Thus, b + f + gu ≡ 0 (mod 2).
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à Let us apply the norm map NK/k5 = 1 + τ1τ2, with k5 = Q(
√

q,
√

2p). By Tables 1 and 2, we have

NK/k5(ξ2) = (−1)a · (−1)b · 1 · (−1)d · εd
2q · 1 · (−1) f · ε

f
2pq · (−1)g · ε

g
2p

= (−1)a+b+d+ f +gεd
2qε

f
2pqε

g
2p.

Thus, a + b + d + f + g ≡ 0 (mod 2) and d + f + g ≡ 0 (mod 2). Therefore a = b and

ξ2 = εa
2ε

a
pε

c
pq
√
εq

d √ε2q
e √ε2pq

f √ε2p
g.

à Let us apply the norm NK/k6 = 1 + τ1τ3, with k6 = Q(
√

p,
√

2q). By Tables 1 and 2, we have

NK/k6(ξ2) = (−1)a · ε2a
p · 1 · 1 · (−1)e · εe

2q · (−1) f · ε
f
2pq · (−1)gu+g

= ε2a
p (−1)a+e+ f +g+ugεe

2qε
f
2pq.

Thus, a + e + f + g + ug ≡ 0 (mod 2) and e = f . Therefore, a + g + ug ≡ 0 (mod 2) and

ξ2 = εa
2ε

a
pε

c
pq
√
εq

d √ε2q
e √ε2pq

e √ε2p
g.

à Let us apply the norm map NK/k3 = 1 + τ2τ3, with k3 = Q(
√

2,
√

pq). By Tables 1 and 2, we get:

NK/k3(ξ2) = ε2a
2 · (−1)a · ε2c

pq · (−1)d · (−1)e · εe
2pq · (−1)gu

= ε2a
2 ε

e
2pq · (−1)a+d+e+gu.

Thus, a + d + e + gu ≡ 0 (mod 2).

à Let us apply the norm NK/k4 = 1 + τ1, with k4 = Q(
√

p,
√

q). So, by Tables 1 and 2, we get:

NK/k4(ξ2) = (−1)a · ε2a
p · ε

2a
pq · (−1)d · εd

q · 1 · 1 · (−1)gu+g

= ε2a
2 ε

2a
pq · (−1)a+d+g+guεd

q.

Thus d = 0 and so a+e+gu ≡ 0 (mod 2). Since a+g+ug ≡ 0 (mod 2), we have e = g. Since εpq is a square
in K, we can disregard it in the form of ξ2. Therefore,

ξ2 = εa
2ε

a
p
√
ε2q

e √ε2pq
e √ε2p

e,

with a + e + eu ≡ 0 (mod 2). So the result (cf. (9)).

�

Theorem 3.5. Let p ≡ 1 (mod 8) and q ≡ 3 (mod 8) be two primes such that
(
p
q

)
= 1. PutK = Q(

√
2,
√

p,
√

q).

Assume furthermore that x− 1 and 2p(v + 1) are squares in N, where x and v are defined in Lemma 2.6.

1. Assume that N(ε2p) = −1. We have

• The unit group of K is :

EK = 〈−1, ε2, εp,
√
εq,
√
ε2q,
√
εpq,
√
ε2pq,

√
ε2εpε2p〉.

• The 2-class number of K equals 1
24 h2(2p)h2(pq)h2(2pq).

2. Assume that N(ε2p) = 1 and let a ∈ {0,1} be such that a ≡ 1 + u (mod 2). We have
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• The unit group of K is :

EK = 〈−1, ε2, εp,
√
εq,
√
ε2q,
√
εpq,
√
ε2pq,

√
εaα

2 εaα
p
√
ε2qα

√
ε2pqα

√
ε2p1+γ〉

where α, γ ∈ {0,1} are such that α , γ and α = 1 if and only if εa
2ε

a
p
√
ε2q
√
ε2pq
√
ε2p is a square in K.

• The 2-class number of K equals 1
24−α h2(2p)h2(pq)h2(2pq).

Proof. 1. Assume that N(ε2p) = −1. Note that {ε2, εp,
√
ε2εpε2p}, is a fundamental system of units of k1.

Using Lemma 2.6, we show that {ε2,
√
εq,
√
ε2q} and {ε2, εpq,

√
ε2pq} are respectively fundamental systems

of units of k2 and k3. So we have:

Ek1 Ek2 Ek3 = 〈−1, ε2, εp, εpq,
√
εq,
√
ε2q,
√
ε2pq,

√
ε2εpε2p〉.

Let ξ be an element of K which is the square root of an element of Ek1 Ek2 Ek3 . Therefore, we can assume
that

ξ2 = εa
2ε

b
pε

c
pq
√
εq

d √ε2q
e √ε2pq

f √ε2εpε2p
g,

where a,b,c,d,e, f and g are in {0,1}.

à Let us start by applying the norm map NK/k2 = 1 + τ2. We have
√
ε2εpε2p

1+τ2 = (−1)v′ε2, for some v′ ∈ {0,1}. Then, by Tables 1 and 2, we get:

NK/k2(ξ2) = ε2a
2 · (−1)b · 1 · εd

q · ε
e
2q · (−1) f · (−1)gv′ε

g
2

= ε2a
2 ε

c
qε

d
2q · (−1)b+ f +gv′ε

g
2.

Thus, b + f + gv′ ≡ 0 (mod 2) and g = 0. Then b = f and

ξ2 = εa
2ε

f
pε

c
pq
√
εq

d √ε2q
e √ε2pq

f .

à Let us apply the norm NK/k5 = 1 + τ1τ2, with k5 = Q(
√

q,
√

2p). By Tables 1 and 2, we have:

NK/k5(ξ2) = (−1)a · (−1) f · 1 · (−1)d · εd
q · 1 · (−1) f · ε

f
2pq

= (−1)a+dεd
q · ε

f
2pq.

Thus a = d = f and
ξ2 = ε

f
2ε

f
pε

c
pq
√
εq

f √ε2q
e √ε2pq

f .

à Let us apply the norm NK/k6 = 1 + τ1τ3, with k6 = Q(
√

p,
√

2q). Then, by Tables 1 and 2, we get:

NK/k6(ξ2) = (−1) f · ε
2 f
p · 1 · 1 · (−1)e · εe

2q · (−1) f · ε
f
2pq

= ε2a
p (−1)eεe

2qε
f
2pq.

Thus e = f = 0. Hence
ξ2 = εc

pq.

By Lemma 2.6 εpq is a square in K, therefore

EK = 〈−1, ε2, εp,
√
εq,
√
ε2q,
√
εpq,
√
ε2pq,

√
ε2εpε2p〉.

The rest of the first item is direct from Lemma 2.7.
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2. Assume that N(ε2p) = 1. Note that {ε2, εp,
√
ε2p}, is a fundamental system of units of k1. Using Lemma 2.6,

we show that {ε2,
√
εq,
√
ε2q} and {ε2, εpq,

√
ε2pq} are respectively fundamental systems of units of k2 and

k3. It follows that,
Ek1 Ek2 Ek3 = 〈−1, ε2, εp, εpq,

√
εq,
√
ε2q,
√
ε2pq,

√
ε2p〉.

Let ξ be an element of K which is the square root of an element of Ek1 Ek2 Ek3 . Therefore, we can assume
that

ξ2 = εa
2ε

b
pε

c
pq
√
εq

d √ε2q
e √ε2pq

f √ε2p
g,

where a,b,c,d,e, f and g are in {0,1}.

à Let us start by applying the norm map NK/k2 = 1 + τ2. We have

NK/k2(ξ2) = ε2a
2 · (−1)b · 1 · εd

q · ε
e
2q · (−1) f · (−1)gu

= ε2a
2 ε

c
qε

d
2q · (−1)b+ f +gu.

Thus, b + f + gu ≡ 0 (mod 2).

à Let us apply the norm map NK/k5 = 1 + τ1τ2, with k5 = Q(
√

q,
√

2p). We have

NK/k5(ξ2) = (−1)a · (−1)b · 1 · (−1)d · εd
2q · 1 · (−1) f · ε

f
2pq · (−1)g · ε

g
2p

= (−1)a+b+d+ f +gεd
2qε

f
2pqε

g
2p.

Thus, a + b + d + f + g ≡ 0 (mod 2) and d + f + g ≡ 0 (mod 2). Therefore a = b and

ξ2 = εa
2ε

a
pε

c
pq
√
εq

d √ε2q
e √ε2pq

f √ε2p
g.

à Let us apply the norm NK/k6 = 1 + τ1τ3, with k6 = Q(
√

p,
√

2q). We have

NK/k6(ξ2) = (−1)a · ε2a
p · 1 · 1 · (−1)e · εe

2q · (−1) f · ε
f
2pq · (−1)gu+g

= ε2a
p (−1)a+e+ f +g+ugεe

2qε
f
2pq.

Thus, a + e + f + g + ug ≡ 0 (mod 2) and e = f . Therefore, a + g + ug ≡ 0 (mod 2) and

ξ2 = εa
2ε

a
pε

c
pq
√
εq

d √ε2q
e √ε2pq

e √ε2p
g.

à Let us apply the norm map NK/k3 = 1 + τ2τ3, with k3 = Q(
√

2,
√

pq). So, by Tables 1 and 2, we get:

NK/k3(ξ2) = ε2a
2 · (−1)a · ε2c

pq · (−1)d · (−1)e · εe
2pq · (−1)gu

= ε2a
2 ε

e
2pq · (−1)a+d+e+gu.

Thus, a + d + e + gu ≡ 0 (mod 2).

à Let us apply the norm NK/k4 = 1 + τ1, with k4 = Q(
√

p,
√

q). So, by Tables 1 and 2, we get:

NK/k4(ξ2) = (−1)a · ε2a
p · ε

2a
pq · (−1)d · εd

q · 1 · 1 · (−1)gu+g

= ε2a
2 ε

2a
pq · (−1)a+d+g+guεd

q.

Thus d = 0 and so a + e + gu ≡ 0 (mod 2). As a + g + ug ≡ 0 (mod 2), we have e = g. Since εpq is a square
in K (Lemma 2.6), we can disregard it in the form of ξ2. Therefore,

ξ2 = εa
2ε

a
p
√
ε2q

e √ε2pq
e √ε2p

e,

with a + e + eu ≡ 0 (mod 2). So the result (cf. (9)).
�



Arithmetic of some real triquadratic fields; Units and 2-class groups 373

Theorem 3.6. Let p ≡ 1 (mod 8) and q ≡ 3 (mod 8) be two primes such that
(
p
q

)
= 1. PutK = Q(

√
2,
√

p,
√

q).

Assume furthermore that p(x− 1) and (v− 1) are squares in N, where x and v are defined in Lemma 2.6. Then

1. Assume that N(ε2p) = −1. We have

• The unit group of K is :

EK = 〈−1, ε2, εp,
√
εq,
√
ε2q,
√
εpq,
√
ε2pq,

√
ε2εpε2p〉.

• The 2-class number of K equals 1
24 h2(2p)h2(pq)h2(2pq).

2. Assume that N(ε2p) = 1 and let be a ∈ {0,1} such that a ≡ 1 + u (mod 2). We have

• The unit group of K is :

EK = 〈−1, ε2, εp,
√
εq,
√
ε2q,
√
εpq,
√
ε2pq,

√
εaα

2 εaα
p
√
εqα
√
εpqα

√
ε2p1+γ〉

where α, γ ∈ {0,1} are such that α , γ and α = 1 if and only if εa
2ε

a
p
√
εq
√
εpq
√
ε2p is a square in K.

• The 2-class number of K equals 1
24−α h2(2p)h2(pq)h2(2pq).

Proof. 1. Assume that N(ε2p) = −1. Note that {ε2, εp,
√
ε2εpε2p}, is a fundamental system of units of k1.

Using Lemma 2.6, we show that {ε2,
√
εq,
√
ε2q} and {ε2, ε2pq,

√
εpq} are respectively fundamental systems

of units of k2 and k3. It follows that,

Ek1 Ek2 Ek3 = 〈−1, ε2, εp, ε2pq,
√
εq,
√
ε2q,
√
εpq,
√
ε2εpε2p〉.

Let ξ be an element of K which is the square root of an element of Ek1 Ek2 Ek3 . Therefore, we can assume
that

ξ2 = εa
2ε

b
pε

c
2pq
√
εq

d √ε2q
e √εpq

f √ε2εpε2p
g,

where a,b,c,d,e, f and g are in {0,1}.

à Let us start by applying the norm map NK/k2 = 1 + τ2. By Tables 1 and 2, we have:

NK/k2(ξ2) = ε2a
2 · (−1)b · 1 · εd

q · ε
e
2q · (−1) f · (−1)guε

g
2

= ε2a
2 ε

c
qε

d
2q · (−1)b+ f +guε

g
2.

Thus, b + f + gu ≡ 0 (mod 2) and g = 0. Then b = f and

ξ2 = εa
2ε

f
pε

c
2pq
√
εq

d √ε2q
e √εpq

f .

à Let us apply the norm NK/k5 = 1 + τ1τ2, with k5 = Q(
√

q,
√

2p). Then, by Tables 1 and 2, we have:

NK/k5(ξ2) = (−1)a · (−1) f · ε2c
2pq · (−1)d · εd

q · 1 · 1

= ε2c
2pq(−1)a+dεd

q.

Thus a = d = 0 and
ξ2 = ε

f
pε

c
2pq
√
ε2q

e √εpq
f .

à Let us apply the norm NK/k6 = 1 + τ1τ3, with k6 = Q(
√

p,
√

2q). By Tables 1 and 2, we have:

NK/k6(ξ2) = ε
2 f
p · ε

2c
2pq · (−1)e · εe

2q · 1

= ε2a
p ε

2c
2pq(−1)eεe

2q.
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Therefore e = 0 and
ξ2 = ε

f
pε

c
2pq
√
εpq

f .

à Let us apply the norm map NK/k3 = 1 + τ2τ3, with k3 = Q(
√

2,
√

pq). By Tables 1 and 2, we get:

NK/k3(ξ2) = (−1) f · ε2c
2pq · ε

2 f
pq = ε2c

2pqε
2 f
pq(−1) f .

Thus, f = 0 and
ξ2 = εc

2pq.

Since ε2pq is a square in K, then we have the first item.

2. Assume that N(ε2p) = 1. In this case we have: {ε2, εp,
√
ε2p}, is a fundamental system of units of k1. Using

Lemma 2.6, we show that {ε2,
√
εq,
√
ε2q} and {ε2, ε2pq,

√
εpq} are respectively fundamental systems of units

of k2 and k3. Thus,
Ek1 Ek2 Ek3 = 〈−1, ε2, εp, ε2pq,

√
εq,
√
ε2q,
√
εpq,
√
ε2p〉.

Let ξ be an element of K which is the square root of an element of Ek1 Ek2 Ek3 . Therefore, we can assume
that

ξ2 = εa
2ε

b
pε

c
2pq
√
εq

d √ε2q
e √εpq

f √ε2p
g,

where a,b,c,d,e, f and g are in {0,1}.

à Let us start by applying the norm map NK/k2 = 1 + τ2. We have

NK/k2(ξ2) = ε2a
2 · (−1)b · 1 · εd

q · ε
e
2q · (−1) f · (−1)gu

= ε2a
2 ε

c
qε

d
2q · (−1)b+ f +gu.

Thus, b + f + gu ≡ 0 (mod 2).

à Let us apply the norm NK/k5 = 1 + τ1τ2, with k5 = Q(
√

q,
√

2p). We have

NK/k5(ξ2) = (−1)a · (−1)b · ε2c
2pq · (−1)d · εd

q · 1 · 1 · (−1)g · ε
g
2p

= ε2c
2pq(−1)a+b+d+gεd

qε
g
2p.

Thus, a + b + d + g ≡ 0 (mod 2) and d = g. So a = b. Therefore,

ξ2 = εa
2ε

a
pε

c
2pq
√
εq

g √ε2q
e √εpq

f √ε2p
g.

à Let us apply the norm NK/k6 = 1 + τ1τ3, with k6 = Q(
√

p,
√

2q). We have

NK/k6(ξ2) = (−1)a · ε2a
p · ε

2c
2pq · 1 · (−1)e · εe

2q · 1 · (−1)gu+g

= ε2a
p ε

2c
2pq(−1)a+e+g+ugεe

2q.

Thus, a+e+g+ug ≡ 0 (mod 2) and e = 0. Therefore, a+g+ug ≡ 0 (mod 2). Since a+ f +gu ≡ 0 (mod 2),
we have f = g. As ε2pq is a square in K then we may put:

ξ2 = εa
2ε

a
p
√
εq

g √εpq
g √ε2p

g,

where a + g + ug ≡ 0 (mod 2). Which gives the result (cf. (9)).
�

Theorem 3.7. Let p ≡ 1 (mod 8) and q ≡ 3 (mod 8) be two primes such that
(
p
q

)
= 1. PutK = Q(

√
2,
√

p,
√

q).

Assume furthermore that p(x−1) and p(v−1) are squares in N, where x and v are defined in Lemma 2.6. Then
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1. Assume that N(ε2p) = −1. We have

• The unit group of K is :

EK = 〈−1, ε2, εp,
√
εq,
√
ε2q,
√
εpq,
√
ε2pq,

√
ε2εpε2p〉.

• The 2-class number of K equals 1
24 h2(2p)h2(pq)h2(2pq).

2. Assume that N(ε2p) = 1 and let a ∈ {0,1} be such that a ≡ 1 + u (mod 2). We have

• The unit group of K is :

EK = 〈−1, ε2, εp,
√
εq,
√
ε2q,
√
εpq,
√
ε2pq,

√
εaα

2 εuα
p
√
εqα
√
ε2qα

√
εpqα

√
ε2pqα

√
ε2p1+γ〉

where α, γ ∈ {0,1} are such that α , γ and α = 1 if and only if εa
2ε

u
p
√
εq
√
ε2q
√
εpq
√
ε2pq
√
ε2p is a square

in K.
• The 2-class number of K equals 1

24−α h2(2p)h2(pq)h2(2pq).

Proof. 1. Assume that N(ε2p) = −1. Note that {ε2, εp,
√
ε2εpε2p}, is a fundamental system of units of k1. Using

Lemma 2.6, we show that {ε2,
√
εq,
√
ε2q} and {ε2, εpq,

√
εpqε2pq} are respectively fundamental systems of

units of k2 and k3. It follows that,

Ek1 Ek2 Ek3 = 〈−1, ε2, εp, εpq,
√
εq,
√
ε2q,
√
εpqε2pq,

√
ε2εpε2p〉.

Let ξ be an element of K which is the square root of an element of Ek1 Ek2 Ek3 . Therefore, we can assume
that

ξ2 = εa
2ε

b
pε

c
pq
√
εq

d √ε2q
e √εpqε2pq

f √ε2εpε2p
g,

where a,b,c,d,e, f and g are in {0,1}.

à Let us start by applying the norm map NK/k2 = 1 + τ2. We have Then, by Tables 1 and 2, we get:

NK/k2(ξ2) = ε2a
2 · (−1)b · 1 · εd

q · ε
e
2q · 1 · (−1)guε

g
2

= ε2a
2 ε

c
qε

d
2q · (−1)b+guε

g
2.

Thus, b + gu ≡ 0 (mod 2) and g = 0. Therefore, b = 0 and

ξ2 = εa
2ε

c
pq
√
εq

d √ε2q
e √εpqε2pq

f .

à Let us apply the norm NK/k5 = 1 + τ1τ2, with k5 = Q(
√

q,
√

2p). By Tables 1 and 2, we get:

NK/k5(ξ2) = (−1)a · 1 · (−1)d · εd
q · 1 · (−1) f · ε

f
2pq

= ε
f
2pq(−1)a+d+ f εd

q.

Thus, a + d + f ≡ 0 (mod 2) and d = 0. Therefore, a = f and

ξ2 = εa
2ε

c
pq
√
ε2q

e √εpqε2pq
a.

à Let us apply the norm NK/k6 = 1 + τ1τ3, with k6 = Q(
√

p,
√

2q). Then, by Tables 1 and 2, we get:

NK/k6(ξ2) = (−1)a · 1 · (−1)e · εe
2q · (−1)a · εa

2pq

= (−1)eεe
2qε

a
2pq.

Thus e = a = 0. Therefore e = 0 and
ξ2 = εc

pq.

Since by the above Lemma εpq is a square in K so we have the first item.
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2. Assume that N(ε2p) = 1. We have {ε2, εp,
√
ε2p}, is a fundamental system of units of k1, and {ε2,

√
εq,
√
ε2q}

and {ε2, εpq,
√
εpqε2pq} are respectively fundamental systems of units of k2 and k3. So we have

Ek1 Ek2 Ek3 = 〈−1, ε2, εp, εpq,
√
εq,
√
ε2q,
√
εpqε2pq,

√
ε2p〉.

Let ξ be an element of K which is the square root of an element of Ek1 Ek2 Ek3 . Therefore, we can assume
that

ξ2 = εa
2ε

b
pε

c
pq
√
εq

d √ε2q
e √εpqε2pq

f √ε2p
g,

where a,b,c,d,e, f and g are in {0,1}.

à Let us start by applying the norm map NK/k2 = 1 + τ2. We have:

NK/k2(ξ2) = ε2a
2 · (−1)b · 1 · εd

q · ε
e
2q · 1 · (−1)gu

= ε2a
2 ε

c
qε

d
2q · (−1)b+gu.

Thus, b + gu ≡ 0 (mod 2).

à Let us apply the norm NK/k5 = 1 + τ1τ2, with k5 = Q(
√

q,
√

2p). We have

NK/k5(ξ2) = (−1)a · (−1)b · 1 · (−1)d · εd
q · 1 · (−1) f · ε

f
2pq · (−1)g · ε

g
2p.

= ε
f
2pq(−1)a+b+d+ f +gεd

qε
g
2p.

Thus, a + b + d + f + g ≡ 0 (mod 2) and d = g. Therefore, a + b + f ≡ 0 (mod 2) and

ξ2 = εa
2ε

b
pε

c
pq
√
εq

d √ε2q
e √εpqε2pq

f √ε2p
d.

à Let us apply the norm NK/k6 = 1 + τ1τ3, with k6 = Q(
√

p,
√

2q). We have

NK/k6(ξ2) = (−1)a · ε2b
p · 1 · 1 · (−1)e · εe

2q · (−1) f · ε
f
2pq · (−1)ud+d

= (−1)a+e+ f +ug+gεe
2qε

f
2pq.

Thus, a + e + f + ud + d ≡ 0 (mod 2) and e = f . Then, a + ud + d ≡ 0 (mod 2). Since b + du ≡ 0 (mod 2)
and a + b + f ≡ 0 (mod 2), we have f = d and

ξ2 = εa
2ε

ud
p ε

c
pq
√
εq

d √ε2q
d √εpqε2pq

d √ε2p
d.

Since by the above Lemma εpq is a square in K. then we can put

ξ2 = εa
2ε

ud
p
√
εq

d √ε2q
d √εpqε2pq

d √ε2p
d.

where a + ud + d ≡ 0 (mod 2). Which completes the proof.
�

Theorem 3.8. Let p ≡ 1 (mod 8) and q ≡ 3 (mod 8) be two primes such that
(
p
q

)
= 1. PutK = Q(

√
2,
√

p,
√

q).

Assume furthermore that p(x−1) and 2p(v+1) are squares in N, where x and v are defined in Lemma 2.6. Then

1. Assume that N(ε2p) = −1. We have

• The unit group of K is :

EK = 〈−1, ε2, εp,
√
εq,
√
εpq,
√
ε2pq,

√
ε2εpε2p,

√
εαp
√
ε2q1+γ √εpqε2pqα〉.

where α, γ ∈ {0,1} are such that α , γ and α = 1 if and only if εp
√
ε2q
√
εpqε2pq is a square in K
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• The 2-class number of K equals 1
24 h2(2p)h2(pq)h2(2pq).

2. Assume that N(ε2p) = 1 and let a ∈ {0,1} be such that a ≡ 1 + u (mod 2). We have

• The unit group of K is :

EK = 〈−1, ε2, εp,
√
εq,
√
ε2q,
√
εpq,
√
ε2pq,

√
εaα

2 εuα
p
√
εqα
√
ε2qα

√
εpqα

√
ε2pqα

√
ε2p1+γ〉

where α, γ ∈ {0,1} are such that α , γ and α = 1 if and only if εa
2ε

u
p
√
εq
√
ε2q
√
εpq
√
ε2pq
√
ε2p is a square

in K.

• The 2-class number of K equals 1
24−α h2(2p)h2(pq)h2(2pq).

Proof. 1. Assume that N(ε2p) = −1. Note that {ε2, εp,
√
ε2εpε2p}, is a fundamental system of units of k1. Using

Lemma 2.6, we show that {ε2,
√
εq,
√
ε2q} and {ε2, εpq,

√
εpqε2pq} are respectively fundamental systems of

units of k2 and k3. It follows that,

Ek1 Ek2 Ek3 = 〈−1, ε2, εp, εpq,
√
εq,
√
ε2q,
√
εpqε2pq,

√
ε2εpε2p〉.

Let ξ be an element of K which is the square root of an element of Ek1 Ek2 Ek3 . Therefore, we can assume
that

ξ2 = εa
2ε

b
pε

c
pq
√
εq

d √ε2q
e √εpqε2pq

f √ε2εpε2p
g,

where a,b,c,d,e, f and g are in {0,1}.

à Let us start by applying the norm map NK/k2 = 1 + τ2. By Tables 1 and 2 we have

NK/k2(ξ2) = ε2a
2 · (−1)b · 1 · εd

q · ε
e
2q · (−1) f · (−1)guε

g
2

= ε2a
2 ε

c
qε

d
2q · (−1)b+ f +guε

g
2.

Thus, b + f + gu ≡ 0 (mod 2) and g = 0. Therefore, b = f and

ξ2 = εa
2ε

b
pε

c
pq
√
εq

d √ε2q
e √εpqε2pq

b.

à Let us apply the norm NK/k5 = 1 + τ1τ2, with k5 = Q(
√

q,
√

2p). Tables 1 and 2 give:

NK/k5(ξ2) = (−1)a · (−1)b · 1 · (−1)d · εd
q · 1 · (−1)b · εb

2pq

= εb
2pq(−1)a+dεd

q.

Thus, a = d = 0. Therefore,
ξ2 = εb

pε
c
pq
√
ε2q

e √εpqε2pq
b.

à Let us apply the norm NK/k6 = 1 + τ1τ3, with k6 = Q(
√

p,
√

2q). So by Tables 1 and 2 we have

NK/k6(ξ2) = ε2b
2p · 1 · (−1)e · εe

2q · (−1)b · εb
2pq

= ε2b
2p(−1)e+bεe

2qε
b
2pq.

Thus b = e. Therefore
ξ2 = εb

pε
c
pq
√
ε2q

b √εpqε2pq
b.

By applying the other norms we deduce nothing new. Since by the above Lemma εpq is a square in K, we
have the first item.
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2. Assume that N(ε2p) = 1. We have {ε2, εp,
√
ε2p} is a fundamental system of units of k1, and {ε2,

√
εq,
√
ε2q}

and {ε2, εpq,
√
εpqε2pq} are respectively fundamental systems of units of k2 and k3. So we have

Ek1 Ek2 Ek3 = 〈−1, ε2, εp, εpq,
√
εq,
√
ε2q,
√
εpqε2pq,

√
ε2p〉.

Let ξ be an element of K which is the square root of an element of Ek1 Ek2 Ek3 . Therefore, we can assume
that

ξ2 = εa
2ε

b
pε

c
pq
√
εq

d √ε2q
e √εpqε2pq

f √ε2p
g,

where a,b,c,d,e, f and g are in {0,1}.

à Let us start by applying the norm map NK/k2 = 1 + τ2. We have:

NK/k2(ξ2) = ε2a
2 · (−1)b · 1 · εd

q · ε
e
2q · 1 · (−1)gu

= ε2a
2 ε

c
qε

d
2q · (−1)b+gu.

Thus, b + gu ≡ 0 (mod 2).

à Let us apply the norm NK/k5 = 1 + τ1τ2, with k5 = Q(
√

q,
√

2p). We have

NK/k5(ξ2) = (−1)a · (−1)b · 1 · (−1)d · εd
q · 1 · (−1) f · ε

f
2pq · (−1)g · ε

g
2p.

= ε
f
2pq(−1)a+b+d+ f +gεd

qε
g
2p.

Thus, a + b + d + f + g ≡ 0 (mod 2) and d = g. Therefore, a + b + f ≡ 0 (mod 2) and

ξ2 = εa
2ε

b
pε

c
pq
√
εq

d √ε2q
e √εpqε2pq

f √ε2p
d.

à Let us apply the norm NK/k6 = 1 + τ1τ3, with k6 = Q(
√

p,
√

2q). We have

NK/k6(ξ2) = (−1)a · ε2b
p · 1 · 1 · (−1)e · εe

2q · (−1) f · ε
f
2pq · (−1)ud+d

= ε2b
p (−1)a+e+ f +ud+dεe

2qε
f
2pq.

Thus, a + e + f + ud + d ≡ 0 (mod 2) and e = f . Then, a + ud + d ≡ 0 (mod 2). Since b + du ≡ 0 (mod 2)
and a + b + f ≡ 0 (mod 2), we have f = d and

ξ2 = εa
2ε

ud
p ε

c
pq
√
εq

d √ε2q
d √εpqε2pq

d √ε2p
d.

Since by the above Lemma εpq is a square in K. then we can put

ξ2 = εa
2ε

ud
p
√
εq

d √ε2q
d √εpqε2pq

d √ε2p
d.

where a + ud + d ≡ 0 (mod 2). Which completes the proof.
�

Theorem 3.9. Let p ≡ 1 (mod 8) and q ≡ 3 (mod 8) be two primes such that
(
p
q

)
= 1. PutK = Q(

√
2,
√

p,
√

q).

Assume furthermore that 2p(x + 1) and (v−1) are squares in N, where x and v are defined in Lemma 2.6. Then

1. Assume that N(ε2p) = −1. We have

• The unit group of K is :

EK = 〈−1, ε2, εp,
√
εq,
√
ε2q,
√
εpq,
√
ε2pq,

√
ε2εpε2p〉.
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• The 2-class number of K equals 1
24 h2(2p)h2(pq)h2(2pq).

2. Assume that N(ε2p) = 1 and let a ∈ {0,1} be such that a ≡ 1 + u (mod 2). We have

• The unit group of K is :

EK = 〈−1, ε2, εp,
√
εq,
√
ε2q,
√
εpq,
√
ε2pq,

√
εaα

2 εaα
p
√
εqα
√
εpqα

√
ε2p1+γ〉

where α, γ ∈ {0,1} are such that α , γ and α = 1 if and only if εa
2ε

a
p
√
εq
√
εpq
√
ε2p is a square in K.

• The 2-class number of K equals 1
24−α h2(2p)h2(pq)h2(2pq).

Proof. 1. Assume that N(ε2p) = −1. Note that {ε2, εp,
√
ε2εpε2p}, is a fundamental system of units of k1.

Using Lemma 2.6, we show that {ε2,
√
εq,
√
ε2q} and {ε2, ε2pq,

√
εpq} are respectively fundamental systems

of units of k2 and k3. It follows that,

Ek1 Ek2 Ek3 = 〈−1, ε2, εp, ε2pq,
√
εq,
√
ε2q,
√
εpq,
√
ε2εpε2p〉.

Let ξ be an element of K which is the square root of an element of Ek1 Ek2 Ek3 . So, we can assume that

ξ2 = εa
2ε

b
pε

c
2pq
√
εq

d √ε2q
e √εpq

f √ε2εpε2p
g,

where a,b,c,d,e, f and g are in {0,1}.

à Let us start by applying the norm map NK/k2 = 1 + τ2. By Tables 1 and 2 we have

NK/k2(ξ2) = ε2a
2 · (−1)b · 1 · εd

q · ε
e
2q · (−1) f · (−1)guε

g
2

= ε2a
2 ε

c
qε

d
2q · (−1)b+ f +guε

g
2.

Thus, b + f + gu ≡ 0 (mod 2) and g = 0. Therefore, b = f and

ξ2 = εa
2ε

b
pε

c
2pq
√
εq

d √ε2q
e √εpq

b.

à Let us apply the norm NK/k5 = 1 + τ1τ2, with k5 = Q(
√

q,
√

2p). Tables 1 and 2 give:

NK/k5(ξ2) = (−1)a · ε2b
p · ε

2c
2pq · (−1)d · εd

q · 1 · 1

= ε2b
p ε

2c
2pq(−1)a+dεd

q.

Thus, a = d = 0. Therefore,
ξ2 = εb

pε
c
2pq
√
ε2q

e √εpq
b.

à Let us apply the norm NK/k6 = 1 + τ1τ3, with k6 = Q(
√

p,
√

2q). So by Tables 1 and 2 we have

NK/k6(ξ2) = ε2b
p · ε

2c
2pq · (−1)e · εe

2q · 1

= ε2b
p ε

2c
2pq(−1)eεe

2q.

So e = 0 and therefore,
ξ2 = εb

pε
c
2pq
√
εpq

b.

à Let us apply the norm map NK/k3 = 1 + τ2τ3, with k3 = Q(
√

2,
√

pq). So, by Tables 1 and 2, we get:

NK/k3(ξ2) = (−1)b · ε2c
2pq · ε

e
pq

= ε2c
2pq · (−1)bεb

pq.

Thus, b = 0 and so ξ2 = εc
2pq. Since by Lemma 2.6, ε2pq is a square in K, then we have the result.
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2. Assume that N(ε2p) = 1. In this case we have

Ek1 Ek2 Ek3 = 〈−1, ε2, εp, ε2pq,
√
εq,
√
ε2q,
√
εpq,
√
ε2p〉.

Let ξ be an element of K which is the square root of an element of Ek1 Ek2 Ek3 . So, we can assume that

ξ2 = εa
2ε

b
pε

c
2pq
√
εq

d √ε2q
e √εpq

f √ε2p
g,

where a,b,c,d,e, f and g are in {0,1}.

à Let us start by applying the norm map NK/k2 = 1 + τ2. We have:

NK/k2(ξ2) = ε2a
2 · (−1)b · 1 · εd

q · ε
e
2q · (−1) f · (−1)gu

= ε2a
2 ε

c
qε

d
2q · (−1)b+ f +gu.

So we have b + f + gu ≡ 0 (mod 2).

à Let us apply the norm NK/k5 = 1 + τ1τ2, with k5 = Q(
√

q,
√

2p). We have

NK/k5(ξ2) = (−1)a · (−1)b · ε2pq · (−1)d · εd
q · 1 · 1 · (−1)g · ε

g
2p.

= ε
f
2pq(−1)a+b+d+gεd

qε
g
2p.

Thus, a + b + d + g ≡ 0 (mod 2) and d = g. Therefore, a = b and

ξ2 = εa
2ε

a
pε

c
2pq
√
εq

d √ε2q
e √εpq

f √ε2p
d,

à Let us apply the norm NK/k6 = 1 + τ1τ3, with k6 = Q(
√

p,
√

2q). We have

NK/k6(ξ2) = (−1)a · ε2a
p · ε

2c
2pq · 1 · (−1)e · εe

2q · (−1)ud+d

= ε2a
p ε

2c
2pq(−1)a+e+ud+dεe

2q.

Thus, a + e + ud + d ≡ 0 (mod 2) and e = 0. Then, a + ud + d ≡ 0 (mod 2). As the above discussions imply
a + f + du ≡ 0 (mod 2), then f = d. Therefore;

ξ2 = εa
2ε

a
pε

c
2pq
√
εq

d √εpq
d √ε2p

d,

Since by Lemma 2.6, ε2pq is a square in K, then we can put

ξ2 = εa
2ε

a
p
√
εq

d √εpq
d √ε2p

d,

where a + ud + d ≡ 0 (mod 2). Which completes the proof.
�

Theorem 3.10. Let p ≡ 1 (mod 8) and q ≡ 3 (mod 8) be two primes such that
(
p
q

)
= 1. PutK = Q(

√
2,
√

p,
√

q).

Assume furthermore that 2p(x+1) and p(v−1) are squares in N, where x and v are defined in Lemma 2.6. Then

1. Assume that N(ε2p) = −1. We have

• The unit group of K is :

EK = 〈−1, ε2, εp,
√
ε2q,
√
εpq,
√
ε2pq,

√
ε2εpε2p,

√
εαp
√
εq1+γ √εpqε2pqα〉,

where α, γ ∈ {0,1} are such that α , γ and α = 1 if and only if εp
√
εq
√
εpqε2pq is a square in K
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• The 2-class number of K equals 1
24−α h2(2p)h2(pq)h2(2pq).

2. Assume that N(ε2p) = 1 and let a ∈ {0,1} be such that a ≡ 1 + u (mod 2). We have

• The unit group of K is :

EK = 〈−1, ε2, εp,
√
ε2q,
√
εpq,
√
ε2pq,

√
ε2p,

√
εαp
√
εq1+γ √εpqε2pqα〉

where α, γ ∈ {0,1} are such that α , γ and α = 1 if and only if εp
√
εq
√
εpqε2pq is a square in K.

• The 2-class number of K equals 1
24−α h2(2p)h2(pq)h2(2pq).

Proof. 1. Assume that N(ε2p) = −1. Note that {ε2, εp,
√
ε2εpε2p}, is a fundamental system of units of k1. Using

Lemma 2.6, we show that {ε2,
√
εq,
√
ε2q} and {ε2, εpq,

√
εpqε2pq} are respectively fundamental systems of

units of k2 and k3. It follows that,

Ek1 Ek2 Ek3 = 〈−1, ε2, εp, εpq,
√
εq,
√
ε2q,
√
εpqε2pq,

√
ε2εpε2p〉.

Let ξ be an element of K which is the square root of an element of Ek1 Ek2 Ek3 . Therefore, we can assume
that

ξ2 = εa
2ε

b
pε

c
pq
√
εq

d √ε2q
e √εpqε2pq

f √ε2εpε2p
g,

where a,b,c,d,e, f and g are in {0,1}.

à Let us start by applying the norm map NK/k2 = 1 + τ2. By Tables 1 and 2 we have

NK/k2(ξ2) = ε2a
2 · (−1)b · 1 · εd

q · ε
e
2q · (−1) f · (−1)guε

g
2

= ε2a
2 ε

c
qε

d
2q · (−1)b+ f +guε

g
2.

Thus, b + f + gu ≡ 0 (mod 2) and g = 0. Therefore, b = f and

ξ2 = εa
2ε

b
pε

c
pq
√
εq

d √ε2q
e √εpqε2pq

b,

à Let us apply the norm NK/k5 = 1 + τ1τ2, with k5 = Q(
√

q,
√

2p). Tables 1 and 2 give:

NK/k5(ξ2) = (−1)a · (−1)b · 1 · (−1)d · εd
q · 1 · ε

b
2pq

= (−1)a+b+dεd
qε

b
2pq.

Thus, a + b + d = 0 (mod 8) et d = b. Therefore, a = 0 and

ξ2 = εb
pε

c
pq
√
εq

b √ε2q
e √εpqε2pq

b.

à Let us apply the norm NK/k6 = 1 + τ1τ3, with k6 = Q(
√

p,
√

2q). So by Tables 1 and 2 we have

NK/k6(ξ2) = ε2b
p · 1 · 1 · (−1)e · εe

2q · ε
b
2pq

= ε2b
p ε

b
2pq(−1)eεe

2q.

So e = 0 and therefore,
ξ2 = εb

pε
c
pq
√
εq

b √εpqε2pq
b.

As εpq is a square in K, then we can put ξ2 = εb
p
√
εq

b √εpqε2pq
b. By applying 1 + τ2τ3, 1 + τ3 and 1 + τ1,

we deduce thing new. So the first item.
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2. In this case we have:

Ek1 Ek2 Ek3 = 〈−1, ε2, εp, εpq,
√
εq,
√
ε2q,
√
εpqε2pq,

√
ε2p〉.

Let ξ be an element of K which is the square root of an element of Ek1 Ek2 Ek3 . Therefore, we can assume
that

ξ2 = εa
2ε

b
pε

c
pq
√
εq

d √ε2q
e √εpqε2pq

f √ε2p
g,

where a,b,c,d,e, f and g are in {0,1}.

à Let us start by applying the norm map NK/k2 = 1 + τ2. We have:

NK/k2(ξ2) = ε2a
2 · (−1)b · 1 · εd

q · ε
e
2q · (−1) f · (−1)gu

= ε2a
2 ε

c
qε

d
2q · (−1)b+ f +gu.

Thus, b + f + gu ≡ 0 (mod 2).

à Let us apply the norm NK/k5 = 1 + τ1τ2, with k5 = Q(
√

q,
√

2p). We have

NK/k5(ξ2) = (−1)a · (−1)b · 1 · (−1)d · εd
q · 1 · ε

f
2pq · (−1)g · ε

g
2p.

= (−1)a+b+d+gεd
qε

f
2pqε

g
2p.

Thus, a + b + d + g ≡ 0 (mod 2) and d + f + g ≡ 0 (mod 2).

à Let us apply the norm NK/k6 = 1 + τ1τ3, with k6 = Q(
√

p,
√

2q). We have

NK/k6(ξ2) = (−1)a · ε2b
p · 1 · 1 · (−1)e · εe

2q · ε
f
2pq · (−1)ug+g

= ε2b
p ε

f
2pq(−1)a+e+ug+gεe

2q.

Thus, a + e + ug + g ≡ 0 (mod 2) and e = 0. Then, a + ug + g ≡ 0 (mod 2). Since b + f + gu ≡ 0 (mod 2)
and a + b + d + g ≡ b + d + ug ≡ 0 (mod 2), this implies that f = d. The equality d + f + g ≡ 0 (mod 2) gives
g = 0. Thus, a = 0 and b = f . Therefore,

ξ2 = ε
f
pε

c
pq
√
εq

f √εpqε2pq
f .

As εpq is a square in K, then we can put ξ2 = ε
f
p
√
εq

f √εpqε2pq
f .

�

Theorem 3.11. Let p ≡ 1 (mod 8) and q ≡ 3 (mod 8) be two primes such that
(
p
q

)
= 1. PutK = Q(

√
2,
√

p,
√

q).

Assume furthermore that 2p(x + 1) and 2p(v + 1) are squares in N, where x and v are defined in Lemma 2.6.
Then

1. Assume that N(ε2p) = −1. We have

• The unit group of K is :

EK = 〈−1, ε2, εp,
√
εq,
√
ε2q,
√
εpq,
√
ε2pq,

√
ε2εpε2p〉.

• The 2-class number of K equals 1
24 h2(2p)h2(pq)h2(2pq).

2. Assume that N(ε2p) = 1 and let a ∈ {0,1} be such that a ≡ 1 + u (mod 2). We have
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• The unit group of K is :

EK = 〈−1, ε2, εp,
√
εq,
√
ε2q,
√
εpq,
√
ε2pq,

√
εaα

2 εuα
p
√
εpqε2pqα

√
ε2p1+γ〉

where α, γ ∈ {0,1} are such that α , γ and α = 1 if and only if εa
2ε

u
p
√
εpqε2pq

√
ε2p is a square in K.

• The 2-class number of K equals 1
24−α h2(2p)h2(pq)h2(2pq).

Proof. 1. Assume that N(ε2p) = −1. Note that {ε2, εp,
√
ε2εpε2p}, is a fundamental system of units of k1. Using

Lemma 2.6, we show that {ε2,
√
εq,
√
ε2q} and {ε2, εpq,

√
εpqε2pq} are respectively fundamental systems of

units of k2 and k3. It follows that,

Ek1 Ek2 Ek3 = 〈−1, ε2, εp, εpq,
√
εq,
√
ε2q,
√
εpqε2pq,

√
ε2εpε2p〉.

Let ξ be an element of K which is the square root of an element of Ek1 Ek2 Ek3 . Therefore, we can assume
that

ξ2 = εa
2ε

b
pε

c
pq
√
εq

d √ε2q
e √εpqε2pq

f √ε2εpε2p
g,

where a,b,c,d,e, f and g are in {0,1}.

à Let us start by applying the norm map NK/k2 = 1 + τ2. By Tables 1 and 2 we have

NK/k2(ξ2) = ε2a
2 · (−1)b · 1 · εd

q · ε
e
2q · 1 · (−1)guε

g
2

= ε2a
2 ε

c
qε

d
2q · (−1)b+ f +guε

g
2.

Thus, b + gu ≡ 0 (mod 2) and g = 0. Therefore, b = 0 and

ξ2 = εa
2ε

c
pq
√
εq

d √ε2q
e √εpqε2pq

f ,

à Let us apply the norm NK/k5 = 1 + τ1τ2, with k5 = Q(
√

q,
√

2p). Tables 1 and 2 give:

NK/k5(ξ2) = (−1)a · ε2b
p · 1 · (−1)d · εd

q · 1 · ε
f
2pq

= ε2b
p (−1)a+dεd

qε
f
2pq.

Thus, a = d = f . Therefore,
ξ2 = εa

2ε
c
pq
√
εq

a √ε2q
e √εpqε2pq

a.

à Let us apply the norm NK/k6 = 1 + τ1τ3, with k6 = Q(
√

p,
√

2q). So by Tables 1 and 2 we have

NK/k5(ξ2) = (−1)a · ε2b
p · 1 · 1 · (−1)e · εe

2q · ε
a
2pq

= ε2b
p ε

a
2pq(−1)e+bεe

2q.

So a = e = 0. Thus,
ξ2 = εc

pq.

So the first item.

2. In this case we have:

Ek1 Ek2 Ek3 = 〈−1, ε2, εp, εpq,
√
εq,
√
ε2q,
√
εpqε2pq,

√
ε2p〉.

Let ξ be an element of K which is the square root of an element of Ek1 Ek2 Ek3 . Thus, we can assume that

ξ2 = εa
2ε

b
pε

c
pq
√
εq

d √ε2q
e √εpqε2pq

f √ε2p
g,
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where a,b,c,d,e, f and g are in {0,1}.

à Let us start by applying the norm map NK/k2 = 1 + τ2. We have:

NK/k2(ξ2) = ε2a
2 · (−1)b · 1 · εd

q · ε
e
2q · 1 · (−1)gu

= ε2a
2 ε

c
qε

d
2q · (−1)b+gu.

Thus, b + gu ≡ 0 (mod 2).

à Let us apply the norm NK/k5 = 1 + τ1τ2, with k5 = Q(
√

q,
√

2p). We have

NK/k5(ξ2) = (−1)a · (−1)b · 1 · (−1)d · εd
q · 1 · ε

f
2pq · (−1)g · ε

g
2p.

= (−1)a+b+d+gεd
qε

f
2pqε

g
2p.

Thus, a + b + d + g ≡ 0 (mod 2) and d + f + g ≡ 0 (mod 2).

à Let us apply the norm NK/k6 = 1 + τ1τ3, with k6 = Q(
√

p,
√

2q). We have

NK/k6(ξ2) = (−1)a · ε2b
p · 1 · 1 · (−1)e · εe

2q · ε
f
2pq · (−1)ug+g

= ε2b
p ε

f
2pq(−1)a+e+ug+gεe

2q.

Thus, a + e + ug + g ≡ 0 (mod 2) and e = 0. Then, a + ug + g ≡ 0 (mod 2). Since b + gu ≡ 0 (mod 2)
and a + ug + g ≡ 0 (mod 2), this implies that a + b + g ≡ 0 (mod 2). As a + b + d + g ≡ 0 (mod 2) (resp.
d + f + g ≡ 0 (mod 2)), then d = 0 (resp. f = g). Therefore,

ξ2 = εa
2ε

gu
p ε

c
pq
√
εpqε2pq

g √ε2p
g,

with a + ug + g ≡ 0 (mod 2). By applying the other norms we deduce nothing new. So we have the second
item.

�

3.3 The cases: p ≡ 5 or 3 (mod 8) and q ≡ 3 (mod 4)

The following theorem provide some families with odd class number and explicit unit groups.

Theorem 3.12. Let p and q be two primes. Put K = Q(
√

2,
√

p,
√

q). Then

1. If p ≡ 3 (mod 8), q ≡ 7 (mod 8) and
(

p
q

)
= 1,

EK = 〈−1, ε2,
√
εq,
√
ε2q,
√
εp,
√
ε2pq, 4

√
ε2qεpqε2pq,

4
√
ε2

2εqε2qεpε2p 〉.

2. If p ≡ 3 (mod 8), q ≡ 7 (mod 8) and
(

p
q

)
= −1,

EK = 〈−1, ε2,
√
εq,
√
ε2p,
√
εpq,
√
ε2pq, 4

√
εqεpε2pεpqε2pq,

4
√
ε2

2ε2qεpqε2pq 〉.

3. If p ≡ 5 (mod 8), q ≡ 7 (mod 8) and
(

p
q

)
= 1,

EK = 〈−1, ε2, εp,
√
εq,
√
ε2q,
√
εpq,
√
ε2εpε2p, 4

√
ε2qεpqε2pq〉.
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4. If p ≡ 5 (mod 8), q ≡ 7 (mod 8) and
(

p
q

)
= −1,

EK = 〈−1, ε2, εp,
√
εq,
√
ε2q,
√
εpq,
√
ε2εpε2p,

4
√
ε2

2εqεpqε2pq〉.

5. If p ≡ 5 (mod 8), q ≡ 3 (mod 8) and
(

p
q

)
= 1, then

EK = 〈−1, ε2, εp,
√
εq,
√
ε2q,
√
εpq,
√
ε2εpε2p,

4
√
ε2

pε2qεpqε2pq〉.

6. If p ≡ 5 (mod 8), q ≡ 3 (mod 8) and
(

p
q

)
= −1,

EK = 〈−1, ε2, εp,
√
εq,
√
ε2q,
√
εpq,
√
ε2εpε2p,

4
√
ε2

2ε
2
pεqεpqε2pq〉.

7. If p ≡ q ≡ 3 (mod 8), then

EK = 〈−1, ε2,
√
εp,
√
ε2p,
√
εq,
√
εpq, 4
√
εpεqε2pq, 4

√
ε2pε2qε2pq〉.

Furthermore, in all the above cases the class number of K is odd.

Proof. The points 4, 5 and 6 are proved in [9] and [7] respectively. The proof of the rest demands very long
computations as above, however we suggest to the reader proceed as in the proof of Theorem 3.1 or [7, Theorem
2.5] to construct a detailed prove. �

4 Some families of Fröhlich triquadratic fields whose 2-class groups are of
type (2,2)

Now we can give some families of real triquadratic number fields whose 2-class groups are of type (2,2).

Theorem 4.1. Let p ≡ 1 (mod 8) and q ≡ 3 (mod 8) be two primes such that
(
p
q

)
= 1. PutK = Q(

√
2,
√

p,
√

q).

Then the 2-class group of K is of type (2,2) in the following cases:

1. h2(pq) = h2(2pq) = 2 · h2(2p) = 4 and (x− 1) or (v− 1) is not square in N.

2. N(ε2p) = −1, h2(pq) = h2(2pq) = h2(2p) = 4 and one of the following conditions is satisfied:

a. (x− 1) and 2p(v + 1) are squares in N,

b. (x− 1) and p(v− 1) are squares in N,

c. p(x− 1) and (v− 1) are squares in N,

d. p(x− 1) and p(v− 1) are squares in N,

e. 2p(x + 1) and (v− 1) are squares in N,

f. 2p(x + 1) and 2p(v + 1) are squares in N,

where x and v are defined in Lemma 2.6.
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Proof. We shall prove the first item and the reader can similarly prove the second one. So assume that we are
in conditions of the first item. Note that by [13, Theorem 2], we have N(ε2p) = 1. Using Lemmas 2.7 and 2.6,
we get h2(k3) = 1

4q(k3) · 4 · 4 = 8, where k3 = Q(
√

2,
√

pq).Therefore, as by [2] the 2-rank of the class group of
k3 equals 2, the 2-class group of k3 is of type (2,4). By the second items of Theorems 3.4, 3.5, 3.6, 3.7, 3.8, 3.9,
3.10 and 3.11, we have h2(K) = 1

24−α h2(2p)h2(pq)h2(2pq), for some α ∈ {0,1}. If we assume that α = 0, then
h2(K) = 1

24 · 2 · 4 · 4 = 2. This implies that the 2-class group of K is cyclic, but this is impossible by class field
theory and the fact that K/k5 is an unramified quadratic extension. Therefore, h2(K) = 4. Now, let us show that
the 2-class group of K is not cyclic. By [4, Theorem 4.1, (iii)], k3 admits three quadratic extensions K1 = K and
the conjugate extensions K2 := k3(

√
α∗1) and K3, all contained in Q(

√
2,
√

p,
√

q,
√
α∗1) which is an unramified

extension of k3 of degree 4, where the α∗1 is (the element attached to p) defined in [4, Theorem 4.1, (iii)]. So by
the group theoretic properties given in [5, p. 110] the 2-class group of K is not cyclic. Hence the 2-class group
of K is of type (2,2). �

Remark 4.2. For a continuation of this work, we refer the reader to the paper [8] which is dedicated to the
computation of the unit group of the fields Q(

√
2,
√

p,
√

q), where p ≡ 1 (mod 8) and q ≡ 7 (mod 8) are two
prime numbers.
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