

Moroccan Journal of Algebra and Geometry with Applications Supported by Sidi Mohamed Ben Abdellah University, Fez, Morocco

Volume 3, Issue 2 (2024), pp 338-344

Title :

Rings in which every nonzero \$S-\$weakly prime ideal is weakly prime

Author(s):

Chahrazade Bakkari & Hamza El-Mzaiti

Supported by Sidi Mohamed Ben Abdellah University, Fez, Morocco

Rings in which every nonzero *S* – weakly prime ideal is weakly prime

Chahrazade Bakkari¹ and Hamza El-Mzaiti² ^{1,2}Department of Mathematics, Faculty of Science, University Moulay Ismail, Meknes, Morocco ¹e-mail: *cbakkari@hotmail.com* ²e-mail: *elmzaiti6@gmail.com*

Communicated by Abdelhaq El Khalfi (Received 02 February 2024, Revised 24 May 2024, Accepted 30 May 2024)

Abstract. In this paper, we introduce and study a new class of rings with multiplicative subset S which we'll call S - ME-rings. A ring R with a multiplicative subset S is said to be S - ME-ring if every non-zero S-weakly prime ideal of R is weakly prime. We next study the possible transfer of the properties of being S - ME-ring in the homomorphic image, in the trivial ring extensions and the amalgamated algebra along an ideal introduced and studied by the authors of [6, 7, 8, 9]. Our results allow us to construct new original class of S - ME-rings subject to various ring theoretical properties.

2010 MSC: Primary 11R20, 11R29; Secondary 13F20.

1 Introduction

Throughout this paper, all rings considered are assumed to be commutative with non-zero identity and all modules are nonzero unital. As a motivation of this work is to study the rings in which every nonzero S-weakly prime ideal is weakly-prime.

The authors of [2] introduced and studied the concept of weakly-prime ideals. A proper ideal *P* of *R* is said to be weakly-prime ideal of *R* if for every $a, b \in R$ such that $ab \neq 0$, $ab \in P$ implies that either $a \in P$ or $b \in P$. It is shown in [2]. Theorem 3] that a proper ideal *P* is weakly prime if and only if for every $x \in R \setminus P$, $P : x = P \cup (0 : x)$, that is equivalent to say that P : x = P or P : x = 0 : x for every $x \in R \setminus P$. It is shown in [2]. Theorem 8] that a ring *R* has every proper ideal weakly prime if and only if either *R* is a local ring with unique maximal ideal m such that $m^2 = 0$ or *R* is isomorphic to direct product of two fields. Next, the authors of [13] defined the *S*-prime ideals *P* of a ring *R* as follows: a proper ideal of *R* is said to be *S*-prime if there exists $s \in S$ such that every $a, b \in R$, either $sa \in P$ or $sb \in P$; [13] Definition]. The authors [17] introduced and studied a new class of ideals which called *S*-weakly prime. A proper ideal *P* of a ring *R* with multiplicative subset *S* is said to be *S*-weakly prime if there exists $s \in S$ such that the condition holds: for every $a, b \in R$ such that $ab \neq 0$, $ab \in P$, then either $sa \in P$ or $sb \in P$; [17]. Definition 2.1].

In [11], A. El Khalfi, N. Mahdou and Y. Zahir introduced the concept of *WP*-rings. A ring *A* is called *WP*-ring if every nonzero weakly prime ideal is prime. Recently, the concept of *S*-property has an important place in commutative algebra and it draw attention by several authors. The *S*-weakly prime ideals introduced by the authors of [1], [17] is a generalization of the work of A. Hamed and A. Malek in [13]. Following [17] a proper ideal *P* is said to be *S*-weakly prime (where $S \subseteq A$ multiplicative set, and $P \cap S = \emptyset$) if there exists $s \in S$ such that the following condition holds for every $a, b \in A$: $0 \neq ab \in P$ implies that either $sa \in P$ or $sb \in P$. We denote by $\sqrt{0}$ the set for all nilpotent elements of *A*. If *A* is an integral domain, we denote its quotients field by qf(A). Let *R* be a ring and *E* an *R*-module. Then $R \propto E$, the trivial ring extension of *R* by *E*, is the ring whose additive structure is that of the external direct sum $R \oplus E$ and whose multiplication is defined by

(a, e)(b, f) := (ab, af + be) for all $a, b \in R$ and all $e, f \in E$. (This construction is also known by other terminology and other notation, such as the idealization R(+)E) (see [14, 12, 4, 16]).

Let *A* and *B* be two rings, let *J* be an ideal of *B* and let $f : A \longrightarrow B$ be a ring homomorphism. In this setting, we can consider the following sub-ring of $A \times B$:

$$A \bowtie^{j} J = \{(a, f(a) + j) \mid a \in A, j \in J\},\$$

called the amalgamation of *A* with *B* along *J* with respect to *f* (introduced and studied by D'Anna et al. [7, 9]). This construction is a generalization of the amalgamated duplication of a ring along an ideal (introduced and studied by D'Anna and Fontana [8] and denoted by $A \bowtie I$).

The present paper contains one main section with introduction. In the main section, we will introduce and study a new class of rings with multiplicative subset S which characterized by the fact that every non-zero S-weakly prime ideal is weakly prime, these rings will be called S-ME-rings. The purpose of this work is to give some methods in order to construct S-ME-rings and to give many examples of this class. We investigate the stability of the S-ME property under homomorphic image, and its transfer to various context of constructions such as trivial rings extensions and amalgamations.

2 Main results

We begin this section by the following main definition stated as follows.

Definition 2.1. A ring *R* with multiplicative subset *S* is said to be *S*-*ME*-ring if every non-zero *S*-weakly prime ideal is weakly prime.

Remark 2.2. From [17], Remark 2.2], it is straightforward to see that every ring *R* with a multiplicative subset $S \subset U(R)$; where U(R) is the units group of *R* is an *S*-*ME*-ring.

Next, we give a sufficient condition for a ring *R* to be *S*-*ME*-ring as follows.

Proposition 2.3. Let *R* be a ring with multiplicative subset *S*. If every proper ideal of *R* is *S*-weakly prime, then *R* is an *S*-ME-ring.

Proof. This follows immediately from [], Proposition 2.26] and Remark 2.2.

From [2] Theorem 8], it is shown that: every proper ideal of a ring *R* is weakly prime if and only if either *R* is a local ring such that its unique maximal ideal m satisfies $m^2 = 0$ or *R* is a direct product of two fields. The following Proposition 2.4 allows to give examples of *S*-*ME*-rings.

Proposition 2.4. Let *R* be a ring. If (*R*, m) is a local ring such that $m^2 = 0$ or *R* is a product of two fields, then *R* is an *S*-ME-ring for every multiplicative subset *S*.

Proof. This is straightforward.

Now, we study the transfer from *S*-*ME*-rings to quotient rings. For this purpose, we recall that if *R* is a ring with multiplicative subset *S* and for an ideal *I* of *R*, the subset $\overline{S} := \{s + I \mid s \in S\}$ of *R*/*I* is a multiplicative subset.

Proposition 2.5. Let R be a ring with multiplicative subset S and I be an S-weakly prime ideal of R. If R is an S-ME-ring, then R/I is an \overline{S} -ME-ring.

Proof. If Q is an \overline{S} -weakly prime ideal of R, then by [17] Proposition 2.6], there exists an S-weakly prime ideal P of R such that Q = P/I. But R is supposed an S-ME-ring, so P is a weakly prime in R, then Q is a weakly prime ideal of R/I by [2] Proposition 13]. We proved that R/I is an \overline{S} -ME-ring.

The following Propositions 2.6 and 2.8 establish that the WP-rings and S-WP-rings are not the same.

Proposition 2.6. Let *R* be a ring with multiplicative subset *S*. If both *R* is a WP-ring and *S*-ME-ring, then *R* is an *S*-WP-ring.

Proof. Assume that *R* is both a *WP*-ring and *S*-*ME*-ring. Let *P* be an *S*-weakly prime ideal of *R*. By assumption, *R* is an *S*-*ME*-ring, then *P* is an *S*-weakly prime ideal of *R*, and so *P* is a prime ideal of *R* since *R* is a *WP*-ring. It follows that *P* is an *S*-prime ideal of *R*, that means *R* is an *S*-*WP*-ring. \Box

Remark 2.7. The converse of Proposition 2.6 is not true in general: in fact, for $R = \mathbb{Z}[X]$ with multiplicative subset $S = \{2^n \mid n \in \mathbb{N}\}$. It is easy to see that *R* is both a *WP*-ring and an *S*-WP-ring but not *S*-*ME*-ring since P = 4XR is an *S*-weakly prime ideal because *P* is *S*-prime by [13, Example 1]. However, *P* is not weakly prime since $0 \neq 2 \times 2X \in P$ but both $2, 2X \notin P$.

Proposition 2.8. Let *R* be a ring with multiplicative subset *S*. If *R* is an *S*-WP-ring and every *S*-prime ideal of *R* is prime, then *R* is a WP-ring.

Proof. Let *P* be a weakly prime ideal of *R*, then *P* is an *S*-weakly prime ideal of *R*. So *P* is *S*-prime since *R* is an *S*-*WP*-ring. Then *P* is prime by assumption. \Box

Remark 2.9. The converse of the above Proposition 2.8 is not true in general: in fact, for $R = \mathbb{Z}[X]$ with multiplicative subset $S = \{2^n \mid n \in \mathbb{N}\}$. It is easy to see that *R* is both a *WP*-ring and an *S*-WP-ring but *R* does not satisfy that every *S*-prime ideal is prime since P = 4XR is an *S*-weakly prime ideal because it is an *S*-prime by [13]. Example 1]. However, *P* is not prime since $2.2X \in P$ but $2 \notin P$ and $2X \notin P$.

The following Proposition 2.10 establishes a direct connection between *S*-weakly prime ideals and prime ideals without invoking the concept of *S*-prime ideals.

Proposition 2.10. Let R be a ring with multiplicative subset S. Then the following assertions are equivalent:

- 1. R is an S-ME-domain,
- 2. Every S-weakly prime ideal of R is prime (in particular, R is an S-WP-ring).
- 3. *R* is a domain and every *S*-prime ideal of *R* is prime.

Proof. (1) \Rightarrow (2) Assume that *R* is an *S*-*ME*-domain and let *P* be an *S*-weakly prime ideal. Then, *P* is a weakly prime ideal of *R* since *R* is an *S*-*ME*-ring. So *P* is prime since *R* is an integral domain.

 $(2) \Rightarrow (1)$ Assume that every *S*-weakly prime ideal is prime. As 0 is an *S*-weakly prime ideal of *R* by hypothesis, 0 is prime and so *R* is an integral domain. Let's prove that *R* is an *S*-*ME*-ring. Let *P* be an *S*-weakly prime ideal of *R*, then *P* is a prime ideal of *R* by hypothesis, and so *P* is a weakly prime ideal of *R*. Therefore, *R* is an *S*-*ME*-ring.

(2) \Leftrightarrow (3) Follows from [1], Proposition 17].

The next Proposition 2.11 gives a sufficient condition for S-ME-rings.

Proposition 2.11. Let *R* be a ring with multiplicative subset *S*. If every *S*-prime ideal of *R* is prime and *R* is an *S*-WP-ring, then *R* is an *S*-ME-ring.

340

Proof. Let *I* be an *S*-weakly prime ideal of *R*. We claim that *I* is a weakly-prime ideal of *R*. Since *R* is an *S*-*WP*-ring, then *I* is *S*-prime and so *I* is prime by assumption. It follows that *I* is a weakly-prime ideal of *R*, and therefore, *R* is an *S*-*ME*-ring.

The converse of Proposition 2.11 is not true in general. To provide such an example, we will need the following theorem, which transfers the *S*-*ME*-ring property to the trivial ring extension.

Theorem 2.12. Let *A* be a ring with multiplicative subset S_0 and let *E* be an *A*-module. Set $R = A \propto E$ and $S = S_0 \propto E$. In this setting, the following statements hold.

- 1. If *R* is an *S*-*ME*-ring, then *A* is an S_0 -*ME*-ring.
- 2. If A is an integral domain with quotients field K and E is a K-vector space, then R is an S-ME-ring if and only if A is an S_0 -ME-ring.
- 3. Assume that *E* is a divisible *A*-module and *A* is a domain. If there exists a nonzero *S*-weakly prime ideal of *A*, then *R* is an *S*-ME-ring if and only if *A* is an S_0 -ME-ring.

To prove theorem, we need the following lemma.

Lemma 2.13. ([5] Proposition 2.20]) Let D be an integral domain and Q a divisible D-module and S be a multiplicative subset of D. Let N be a D-submodule of Q and I be an ideal of D. Then:

- 1. $I \propto Q$ is $(S \propto Q)$ -weakly prime if and only if I is S-weakly prime.
- 2. If there exists $s \in S$ such that $sQ \subset N$, then $0 \propto N$ is $(S \propto Q)$ -weakly prime.
- 3. If Q/N is S-torsion free D-module, then the following are equivalent:
 - (a) $0 \propto N$ is an $(S \propto Q)$ -weakly prime,
 - (b) $0 \propto N$ is weakly prime.

Proof of Theorem 2.12 (1) If *R* is an *S*-*ME*-ring, then $0 \propto E$ is a weakly-prime ideal of *R* by [2]. Corollary 19] and so $0 \propto E$ is an *S*-weakly prime ideal of *R*. Follows from the isomorphism $\frac{R}{0 \propto E} \cong A$ is an $(\overline{S} := \frac{S_0 \propto E}{0 \propto E})$ -*ME*-ring by Proposition 2.5 above. It follows that *A* is an S_0 -*ME*-ring.

(2) The necessity is obvious by (1). Let's prove the sufficiency. Assume that A is an S_0 -ME-ring. By [3]. Corollary 3.4], every ideal J of R is either $I \propto E$ for some ideal I of A or $0 \propto N$ for some A-submodule of E. If $J = 0 \propto N$, then it is easy to see that J is a weakly-prime ideal. If $J = I \propto E$ is an S-weakly prime ideal of R, then I is an S_0 -weakly prime ideal of A and for $a, b \in A$ with ab = 0 but $sa, sb \notin I$ for each $s \in S_0$, we get $a, b \in Ann(E)$ by [17]. Theorem 3.1]. Then I is a weakly-prime ideal of A since A is an S_0 -ME-ring. Also, if ab = 0 for $a, b \in A$, then a = 0 or b = 0 since A is an integral domain which implies that either $a \in I$ or $b \in I$. It follows, by [2], Theorem 17], that J is a weakly-prime ideal of R. So, we proved that R is an S-ME-ring.

(3) If *R* is an *S*-ME-ring, then *A* is an S_0 -ME-ring by (1).

Conversely, assume that A is an S_0 -ME-ring, E is a divisible A-module and there exists an S-weakly prime ideal I of A. By Proposition 2.3 A/I is an \overline{S}_0 -ME-ring, so $\frac{A \propto E}{I \propto E}$ is an \overline{S} -ME-ring since $\frac{A \propto E}{I \propto E} \cong \frac{A}{I}$. But E is divisible, then E = IE and therefore, $\frac{A \propto E}{I \propto E} = \frac{A \propto E}{I \propto IE}$. On other hand, $I \propto IE$ is an S-weakly prime by the above Lemma. Hence, R is an S-ME-ring.

Now, we establish that the converse of Proposition 2.11 is not true.

Example 2.14. Let $A = \mathbb{R} \propto \mathbb{R}^n$ where $n \ge 2$ and $S \propto \mathbb{R}^n$ be a multiplicative subset of A. By Theorem 2.12, A is an *S*-*ME*-ring but not a *WP*-ring by [11], Example 3.4]. By Proposition 2.8, A is not an *S*-*WP*-ring and does not satisfy that every *S*-prime ideal is prime.

In the end of this work, we will try to study the *S*-*ME*-rings in the amalgamation of rings a long an ideal. For this purpose, let us fix some notations. Let $f : A \to B$ be a rings homomorphism, let *J* be an ideal of *B* and *S* be a multiplicative subset of *A*. Define *W* the set of all nonzero *S*-weakly prime ideals *I* of *A* which satisfy the following condition: for all $a, b \in A$ such that ab = 0 and $sa, sb \notin I$ for every $s \in S$, we have that f(a)j + f(s)f(b)i + ij = 0 for each $i, j \in J$. Let *K* be an ideal of f(A) + J. With the [9]. Corollary 2.5], we define

$$I \bowtie^{j} J := \{(i, f(i) + j) \mid i \in I \& j \in J\}.$$
$$\overline{K}^{f} := \{(a, f(a) + j) \mid a \in A, \ j \in J \text{ and } f(a) + j \in K\}.$$
$$S' = \{(s, f(s)) \mid s \in S\}.$$

It is easy to check that $I \bowtie^f J$ and \overline{K}^f are ideals of $A \bowtie^f J$. If $0 \notin f(S)$, then S' is a multiplicative subset of $A \bowtie^f J$.

Proposition 2.15. Let $f : A \to B$ be a rings homomorphism, S a multiplicative subset of A and J be an ideal of B.

(1) Assume that A is an S-ME-domain. Then, $I \bowtie^f J$ is an S'-weakly prime ideal of $A \bowtie^f J$ if and only if $I \bowtie^f J$ is a weakly prime ideal of $A \bowtie^f J$.

(2) Asssume taht f(A) + J is an f(S)-ME-domain. Then, \overline{K}^f is an S'-weakly prime ideal of $A \bowtie^f J$ if and only if \overline{K}^f is a weakly-prime ideal of $A \bowtie^f J$.

Proof. (1) Assume that $I \bowtie^f J$ is an S'-weakly prime ideal of $A \bowtie^f J$. By [17], Theorem 3.6], we have that I is an S-weakly prime ideal of A and for $a, b \in A$ with ab = 0 and $sa, sb \notin I$ for every $s \in S$, we have f(a)j + f(s)f(b)i + ij = 0 for every $i, j \in J$. Then, I is a weakly prime ideal of A since A is assumed an S-ME-ring. By using [18], Theorem 2.1], we get $I \bowtie^f J$ is a weakly prime ideal of $A \bowtie^f J$.

The converse is straightforward.

(2) Assume that \overline{K}^f is an *S'*-weakly prime ideal of $A \bowtie^f J$. By [17], Theorem 3.6], we have that *K* is an f(S)-weakly prime ideal of f(A) + J and when f(s)(f(a) + j), $f(s)(f(b) + k) \notin K$ for each $s \in S$, $a, b \in A$, $j, k \in J$ and (f(a) + j)(f(b) + k) = 0, then ab = 0. So *K* is a weakly prime ideal of f(A) + J since f(A) + J is an f(S)-*ME*-ring. Thus, \overline{K}^f is a weakly prime ideal of $A \bowtie^f J$ by [18]. Theorem 2.1].

The converse is straightforward.

Proposition 2.16. Let $f : A \to B$ be a rings homomorphism, S a multiplicative subset of A and J be an ideal of B. Let H be an ideal of f(A) + J such that $f(I)J \subset H \subset J$. If $I \bowtie^f H$ is a weakly prime ideal of $A \bowtie^f J$, then I is a weakly prime ideal of A and for $a, b \in A$ such that ab = 0 but $a, b \notin I$, we have f(a)j + f(b)i + ij = 0 for every $i, j \in H$.

Proof. Assume that $I \bowtie^f H$ is weakly prime ideal of $A \bowtie^f J$. Let $a, b \in A$ with $0 \neq ab \in I$. Then (a, f(a)) and $(b, f(b)) \in I \bowtie^f H$ and $(0, 0) \neq (a, f(a))(b, f(b)) \in A \bowtie^f H$. So, $(a, f(a)) \in I \bowtie^f H$ or $(b, f(b)) \in I \bowtie^f H$. Therefore, $a \in I$ or $b \in I$. Next, assume that $a, b \notin I$ with ab = 0. Suppose that there exist $i, j \in H$ such that $f(a)j + f(b)i + ij \neq 0$. Then $(0, 0) \neq (a, f(a) + i)(b, f(b) + j) \in I \bowtie^f H$, but neither $(a, f(a) + i) \in I \bowtie^f H$ nor $(b, f(b) + j) \in I \bowtie^f H$, a contradiction.

Conversely, let $(a, f(a) + i), (b, f(b) + j) \in A \bowtie^f J$ with $(0, 0) \neq (a, f(a) + i)(b, f(b) + j) \in I \bowtie^f H$. If $0 \neq ab$, then $a \in I$ or $b \in I$. So, $(a, f(a) + i) \in I \bowtie^f H$ or $(b, f(b) + j) \in I \bowtie^f H$ (as $J \subseteq H$). If ab = 0, then we claim that $a \in I$ or $b \in I$. Deny. By assumption we have, f(a)j + f(b)i + ij = 0 for each $i, j \in H$, a contradiction since $(ab, f(a)j + f(b)i + ij) \neq (0, 0)$. Hence, $a \in I$ or $b \in I$ and so $(a, f(a) + i) \in I \bowtie^f H$ or $(b, f(b) + j) \in I \bowtie^f H$ (as $J \subseteq H$).

Theorem 2.17. With the notation above, the following statements hold:

(1) If $A \bowtie^f J$ is an *S'-ME*-ring, then every ideal in \mathcal{W} is weakly prime.

(2) Assume that $J \neq 0$ and $f^{-1}(J) \neq 0$. If (A, \mathfrak{m}) is a local ring with $\mathfrak{m}^2 = 0$ and $(f(A) + J, f(\mathfrak{m} + J))$ is a local ring with $(f(\mathfrak{m}) + J)^2 = 0$, then $A \bowtie^f J$ is an S'-ME-ring.

Proof. (1) Let $I \in W$. Then $I \bowtie^f J$ is an S'-weakly prime ideal of $A \bowtie^f J$. Indeed, let $(a, f(a) + i)(b, f(b) + j) = (ab, f(ab) + f(a)j + f(b)i + ij) \in I \bowtie^f J \setminus (0, 0)$. Hence, $ab \in I$. If $ab \neq 0$, then $sa \in I$ or $sb \in I$ for some $s \in S$. Then, $(s, f(s))(a, f(a) + i) \in I \bowtie^f J$ or $(s, f(s))(b, f(b) + j) \in I \bowtie^f J$. Now, assume that ab = 0 with $sa, sb \notin I$ for every $s \in S$. Since $I \in W$, we get f(a)j + f(s)f(b)i + ij = 0, a contradiction with $(a, f(a) + i)(b, f(b) + j) \neq 0$. Since $A \bowtie^f J$ is an S'-ME-ring, we get that $I \bowtie^f J$ is weakly prime. Then I is a weakly prime ideal of A by [18], Theorem 2.1].

(2) Assume that $J \neq 0$, $f^{-1}(J) \neq 0$, (A, \mathfrak{m}) be a local ring with $\mathfrak{m}^2 = 0$ and $(f(A) + J, f(\mathfrak{m}) + J)$ be a local ring, with $(f(\mathfrak{m}) + J)^2 = 0$. We claim that $A \bowtie^f J$ is an *S'*-*ME*-ring. Let $I \bowtie^f J$ be an *S'*-weakly prime ideal of $A \bowtie^f J$, then $I \bowtie^f J$ is a weakly prime ideal of $A \bowtie^f J$ by [18]. Theorem 2.15].

References

- [1] F. A. Almahdi, E. M. Bouba and M. Tamekkante, On weakly S-prime ideals of commutative rings, Analele Stiint. ale Univ. Ovidius Constanta Ser. Mat., 29(2), (2021), 173-186.
- [2] D. D. Anderson and E. Smith, Weakly prime ideals, Houston J. Math, 29 (4) (2003), 831-840.
- [3] D. D. Anderson and M. Winders, Idealization of a module, J. Commut. Algebra, Vol 1(1), (2009), 3-56.
- [4] C. Bakkari, S. Kabbaj and N. Mahdou, *Trivial extension definided by Prüfer conditions*, J. Pure App. Algebra 214 (2010), 53-60.
- [5] C. Bakkari and H. El-Mzaiti, Rings in which every *S*-weakly prime ideal is *S*-prime, Proceedings of the Jangjeon Mathematical Society, accepted for publication.
- [6] M. D'Anna, Construction of Gorenstein rings, J. Algebra, 306(2) (2006), 507-519.
- [7] M. D'Anna, C. A. Finacchiaro, and M. Fontana, *Amalgamated algebras along an ideal*, Comm. Algebra and Applications, Walter De Gruyter, (2009), 241-252.
- [8] M. D'Anna and M. Fontana, An amalgamated duplication of a ring along an ideal: the basic properties, J. Algebra Appl. 6(3), (2007), 443-459.
- [9] M. D'Anna, C.A. Finacchiaro, and M. Fontana, Properties of chains of prime ideals in amalgamated algebras along an ideal, J. Pure Appl. Algebra 214, (2010), 1633-1641.
- [10] A. El Khalfi, H. Kim and N. Mahdou, Amalgamation extension in commutative ring theory: a survey, a survey, Moroccan J. Algebra, Geom. Appl., 1(1) (2022), 139-182.
- [11] A. El Khalfi, N. Mahdou, and Y. Zahir, *Rings in which every nonzero weakly prime ideal is prime*, São Paulo Journal of Mathematical Sciences, 14(2),(2020), 689-697.
- [12] S. Glaz, Commutative Coherent Rings, Lecture Notes Math. 1371, Springer-Verlag, Berlin, 1989.
- [13] A. Hamed and A. Malek, *S-prime ideals of a commutative ring*, Contributions to Algebra and Geometry, 61(3) (2020), 533-542.
- [14] J. A. Huckaba, *Commutative Coherent Rings with Zero Divisors*, Marcel Dekker, New York Basel, (1988).
- [15] S. Kabbaj and N. Mahdou, Trivial Extensions Defined by Coherent-like Conditions, Comm. Algebra 32 (2004), 3937-3953.

- [16] S. Kabbaj, Matlis' semi-regularity and semi-coherence in trivial ring extensions: a survey, Moroccan Journal of Algebra and Geometry with Applications, 1(1), (**2022**), 1-17.
- [17] N. Mahdou, M. A. S. Moutui, and Y. Zahir, On S-weakly prime ideals of commutative rings, Georgian Math. J., 29 (3), (2022), 397-405.
- [18] N. Mahdou, M. A. S. Moutui, and Y. Zahir, Weakly prime ideals issued from an amalgamated algebra, Hacet. J. Math. Stat., 49 (3), (2020), pp. 1159-1167.
- [19] M. Nagata, Local rings, Interscience Tracts in Pure and Appl. Math. (1962).