

Moroccan Journal of Algebra and Geometry with Applications Supported by Sidi Mohamed Ben Abdellah University, Fez, Morocco

Volume 3, Issue 2 (2024), pp 279-287

Title :

Generalized \$S\$-prime ideals of commutative rings

Author(s):

Ahmed Hamed

Supported by Sidi Mohamed Ben Abdellah University, Fez, Morocco

Generalized S-prime ideals of commutative rings

Ahmed Hamed

Department of Mathematics, Faculty of Sciences, University of Monastir, Monastir, Tunisia e-mail: hamed.ahmed@hotmail.fr

Communicated by Suat Koç

(Received 09 November 2023, Revised 13 February 2024, Accepted 22 February 2024)

Abstract. Let *R* be a commutative ring with identity and *S* a multiplicative subset of *R*. The purpose of this paper is to introduce the concept of generalized *S*-prime ideals as a new generalization of prime ideals. An ideal *P* of *R* disjoint with *S* is called a generalized *S*-prime ideal if for all $\alpha, \beta \in R$ there exists an $s \in S$ such that $\alpha\beta \in P$ implies $s\alpha \in P$ or $s\beta \in P$. Several properties, characterizations and examples concerning generalized *S*-prime ideals are presented. We give a relationship between generalized *S*-prime ideals of a ring *R* and those of the idealization ring R(+)M. Also, we show that each ideal of *R* disjoint with *S* is contained in a minimal generalized *S*-prime ideal of *R*. This extends classical well-known result on minimal prime ideals.

Key Words: Generalized *S*-prime ideal, *S*-prime ideal. **2010 MSC**: 13A15.

1 Introduction

Throughout this article all rings are commutative with non-zero identity. In recent years, the prime ideals and their generalizations have an important place in commutative algebra and they draw attention by several authors. In 2019, the concept of S-prime ideals, which is a generalization of prime ideals, was first initiated by Hamed and Malek in [8]. Let R be a ring and S a multiplicative subset of R. Following [8], an ideal P of R with $P \cap S = \emptyset$ is said to be an S-prime ideal of R if there exists $s \in S$ such that for all $a, b \in R$ with $ab \in P$, we have either $sa \in P$ or $sb \in P$. In [8], the authors stated and proved S-version of several classical results on prime ideals. Let P be an ideal of R disjoint with S. It was shown in [8]. Corollary 1] that P is S-prime if and only if there exists $s \in S$, such that for all I_1, \ldots, I_n ideals of R, if $I_1 \cdots I_n \subseteq P$, then $sI_j \subseteq P$ for some $j \in \{1, \ldots, n\}$. Let I be an ideal of R and let P_1, \ldots, P_n be S-prime ideals of R. The authors proved that if $I \subseteq \bigcup_{i=1}^n P_i$, then there exist $s \in S$ and $j \in \{1, ..., n\}$ such that $sI \subseteq P_j$. This notion was generalized by several authors. According to 10 an ideal I of R with $I \cap S = \emptyset$ is said to be an S-primary ideal of R if there exists $s \in S$ such that for all $a, b \in R$ with $ab \in I$, we have either $sa \in I$ or $sb \in \sqrt{I}$. Later, Yetkin Celikel and Hamed generalize the notion of "S-primary ideals" by introducing the concept of "quasi-S-primary" ideals of a commutative ring and study its basic properties. Following [3], a proper ideal I of R disjoint from *S* is called a *quasi-S-primary* ideal if there exists an (fixed) $s \in S$ such that for all $a, b \in R$ if $ab \in I$, then $sa \in \sqrt{I}$ or $sb \in \sqrt{I}$. Some generalizations of S-prime ideals can be found in [1, 3, 10, 11, 13].

Motivated by the research work on *S*-prime ideals in [8] and by the above generalizations of prime ideals, in this article, we introduce a new class of a generalization of prime ideals. Let *R* be a ring and *S* a multiplicative subset of *R*. An ideal *P* of *R* disjoint with *S* is called a *generalized S*-prime ideal of *R* if for all $\alpha, \beta \in R$ there exists an $s \in S$ such that $\alpha\beta \in P$ implies $s\alpha \in P$ or $s\beta \in P$. Note that every *S*-prime ideal of *R* is a generalized *S*-prime ideal of *R* since the fixed element $s \in S$ in "*S*-prime" is dependent on the ideal *P*, but the element $s \in S$ in the concept of "generalized *S*-prime" ideals of a ring *R* as follow: let *S* a multiplicative subset of a ring *R*. An ideal *P* of *R* disjoint with *S* is called a *locally*

S-prime ideal of *R* if whenever $S^{-1}P$ is a prime ideal of $S^{-1}R$. Clearly that every generalized *S*-prime ideal is locally *S*-prime (In section 2, we prove that the two concepts are equal).

In the first part of this article, we state and prove some basic properties of generalized *S*-prime ideals. Clearly, every prime ideal of a ring *R* disjoint with a multiplicative subset *S* of *R* is a generalized *S*-prime ideal of *R*. We give an example shows that the converse of the previous implication is not true in general (Example 2.3). Also, we show that if *S* is a finite multiplicative subset of a ring *R*, then the notions "*S*-prime" and "generalized *S*-prime" coincide (Proposition 2.2). Let *R* be a commutative ring, *S* a multiplicative subset of *R* and *I* an ideal of *R* disjoint with *S*. Let $s \in S$, we denote by \overline{s} the equivalence class of *s* in *R*/*I*. Let $\overline{S} = {\overline{s} \mid s \in S}$. Then \overline{S} is a multiplicative subset of *R*/*I*. Let *P* be a proper ideal of *R* containing *I* such that $P/I \cap \overline{S} = \emptyset$. We show that *P* is a generalized *S*-prime ideal of *R* if and only if *P*/*I* is a generalized \overline{S} -prime ideal of *R*/*I* (Proposition 2.7). Also, we give a new characterization for an ideal *P* of *R* to be a generalized *S*-prime ideal of *R*. Let *P* be an ideal of *R* disjoint with *S*. It is proved in Theorem 2.9 that the following conditions are equivalent.

- 1. *P* is a generalized *S*-prime ideal of *R*.
- 2. *P* satisfies:
 - (i) for all $\alpha, \beta \in R$, there exists an $s \in S$ such that if $\alpha \beta \in P$, then $s\alpha \in \sqrt{P}$ or $s\beta \in \sqrt{P}$.
 - (ii) for each $x \in R$ if $x^2 \in P$, then $sx \in P$ for some $s \in S$.

We end the first part of this paper by giving a relationship between generalized *S*-prime ideals of a ring *R* and those of the idealization ring R(+)M. First, let us recall the notion of idealization ring R(+)M. Let *R* be a commutative ring with identity and *M* a unitary *R*-module. Then the *Nagata's idealization* of *M* in *R* (or *trivial extension* of *R* by *M*) is a commutative ring

$$R(+)M := \{(r, m) | r \in R \text{ and } m \in M\}$$

under the usual addition and the multiplication defined by $(r_1, m_1)(r_2, m_2) = (r_1r_2, r_1m_2 + r_2m_1)$ for all $(r_1, m_1), (r_2, m_2) \in R(+)M$. It is clear that (1, 0) is the identity of R(+)M; and if *S* is a multiplicative subset of *R*, then S(+)M and S(+)0 are multiplicative subsets of R(+)M. For an ideal *P* of *R* disjoint with *S*, we show that P(+)M is a generalized S(+)M-prime ideal of R(+)M if and only if *P* is a generalized *S*-prime ideal of *R* equivalent to P(+)M is a generalized S(+)0-prime ideal of R(+)M(Proposition[2.17]).

In the second part of this paper, we study minimal generalized *S*-prime ideals of a commutative ring. First, we need to collect some necessary notions. Following [8], a multiplicative set *S* of a commutative ring *R* is called *weakly anti-Archimedean* if for each family $(s_{\alpha})_{\alpha \in \Lambda}$ of elements of *S* we have

$$(\cap_{\alpha \in \Lambda} s_{\alpha} R) \cap S \neq \emptyset.$$

Let *Q* be an ideal of *R* disjoint with *S* and *P* a generalized *S*-prime ideal of *R* such that $Q \subseteq P$. We say that *P* is *minimal over Q* if *P* is minimal in the set of the generalized *S*-prime ideals of *R* containing *Q*. Let *S* be a weakly anti-Archimedean multiplicative subset of a ring *R*. We prove that each ideal of *R* disjoint with *S* is contained in a minimal generalized *S*-prime ideal of *R* (Theorem 3.3). In the particular case when *S* consists of units of *R*, we recover the following well-known result. Every proper ideal of ring *R* is contained in a minimal prime ideal of *R*.

2 Characterizations of generalized *S*-prime ideal

We start this section by introducing the notion of generalized *S*-prime ideals.

Definition 2.1. Let *R* be a ring and *S* a multiplicative subset of *R*. An ideal *P* of *R* disjoint with *S* is called a generalized *S*-prime ideal if for all $\alpha, \beta \in R$ there exists an $s \in S$ such that $\alpha\beta \in P$ implies $s\alpha \in P$ or $s\beta \in P$.

Let *R* be a ring and *S* a multiplicative closed subset of *R*. Following [8], an ideal *P* of *R* disjoint with *S* is said to be an *S*-prime ideal of *R* if there exists an $s \in S$ such that for all $a, b \in R$ if $ab \in P$, then $sa \in P$ or $sb \in P$. Clearly, every *S*-prime ideal of *R* is a generalized *S*-prime ideal of *R*. Note that the converse is true if *S* consists of units of *R*. The next result proved a relationship between the notion "*S*-prime" and the concept "generalized *S*-prime."

Proposition 2.2. Let R be a ring, S a finite multiplicative subset of R and P an ideal of R disjoint with S. Then the following assertions are equivalent.

- 1. *P* is an *S*-prime ideal of *R*.
- 2. *P* is a generalized *S*-prime ideal of *R*.

Proof. $(1) \Rightarrow (2)$. Obvious.

 $(2) \Rightarrow (1)$. Put $S = \{s_1, ..., s_n\}$. Assume that *P* is a generalized *S*-prime ideal of *R*, and let $s = s_1 s_2 \cdots s_n$. Then $s \in S$. Now, let $\alpha, \beta \in R$ such that $\alpha\beta \in P$. By hypothesis, $s_k\alpha \in P$ or $s_k\beta \in P$ for some $s_k \in S$. This implies that $s\alpha = s_1 \cdots s_k \cdots s_n \alpha \in P$ or $s\beta = s_1 \cdots s_k \cdots s_n \beta \in P$; so $s\alpha \in P$ or $s\beta \in P$, and hence *P* is an *S*-prime ideal of *R*.

We next give an example of a generalized S-prime ideal which is not a prime ideal.

Example 2.3. Let $R = \mathbb{Z}_{24}$ and S be the multiplicative subset of R generated by $\overline{3}$, i.e., $S = \{\overline{1}, \overline{3}, \overline{9}\}$. Let $P = (\overline{6}) = \{\overline{0}, \overline{6}, \overline{12}, \overline{18}\}$. Then P is not a prime ideal of R, since $\overline{3} \cdot \overline{4} \in P$ but neither $\overline{3} \in P$ nor $\overline{4} \in P$. Moreover, $P \cap S = \emptyset$. It is easy to show that for each $\alpha, \beta \in R$ such that $\alpha\beta \in P$, then $\overline{3}\alpha \in P$ or $\overline{3}\beta \in P$ which implies that P is a generalized S-prime ideal of R.

Remark 2.4. Let *R* be a ring and $T \subseteq S$ be two multiplicatively closed subsets of *R*. If *P* is a generalized *T*-prime ideal of *R* such that $P \cap S = \emptyset$, then *P* is also a generalized *S*-prime ideal of *R*.

The following example shows that the reverse of the previous Remark is not true in general.

Example 2.5. Let $R = \mathbb{Z}[X]$, $S = \{2^n | n \in \mathbb{N} \cup \{0\}\}$ and $T = \{1\} \subseteq U(R)$. Then $T \subseteq S$ are two multiplicative subsets of R. Let $P = 4X\mathbb{Z}[X]$. By [8, Example 1] P is an S-prime ideal of R which implies that P is a generalized S-prime ideal of R. Note that P is not a generalized T-prime ideal of R because $4X \in P$ but neither $1 \cdot 4 \in P$ nor $1 \cdot X \in P$.

Proposition 2.6. Let R be a ring and $T \subseteq S$ be two multiplicatively closed subsets of R. Assume that for each $s \in S$, there is an element $t \in T$ such that $st \in T$. If P is a generalized S-prime ideal of R, then P a generalized T-prime ideal of R.

Proof. Let $\alpha, \beta \in R$ such that $\alpha\beta \in P$. There exists an $s \in S$ such that $s\alpha \in P$ or $s\beta \in P$. By hypothesis, there is an element $t \in T$ such that $st \in T$. Let $s' = st \in S$. Then $s'\alpha = st\alpha \in P$ or $s'\beta = st\beta \in P$. Hence P is a generalized T-prime ideal of R.

Let *R* be a commutative ring, *S* a multiplicative subset of *R* and *I* an ideal of *R* disjoint with *S*. Let $s \in S$, we denote by \overline{s} the equivalence class of *s* in *R*/*I*. Let $\overline{S} = {\overline{s} | s \in S}$. Then \overline{S} is a multiplicative subset of *R*/*I*.

Proposition 2.7. Let R be a ring, S a multiplicative subset of R and I an ideal of R disjoint with S. Let P be a proper ideal of R containing I such that $P/I \cap \overline{S} = \emptyset$. Then the following assertions are equivalent.

- 1. *P* is a generalized *S*-prime ideal of *R*.
- 2. P/I is a generalized \overline{S} -prime ideal of R/I.

Proof. First, note that $P \cap S = \emptyset$ if and only if $P/I \cap \overline{S} = \emptyset$.

(1) \Rightarrow (2). Assume that *P* is a generalized *S*-prime ideal of *R*, and let $\overline{\alpha}, \overline{\beta} \in R/I$ such that $\overline{\alpha}\overline{\beta} \in P/I$. This implies that $\alpha\beta \in P$; so there exists an $s \in S$ such that $s\alpha \in P$ or $s\beta \in P$. Hence $\overline{s\alpha} \in P/I$ or $\overline{s\beta} \in P/I$.

(2) \Rightarrow (1). Let $\alpha, \beta \in R$ such that $ab \in P$. Then $\overline{ab} \in P/I$. Since P/I is generalized \overline{S} -prime ideal of R/I, there exists an $\overline{s} \in \overline{S}$ such that $\overline{s\alpha} \in P/I$ or $\overline{s\beta} \in P/I$; so $s\alpha \in P$ or $s\beta \in P$. This shows that P is a generalized S-prime ideal of R.

Let *R* be a ring and *S* a multiplicative subset of *R*. The saturation of *S* is the set $S^* = \{x \in R : xy \in S \text{ for some } y \in R\}$ is a multiplicative subset of *R* satisfying $S \subseteq S^*$, see [5]. Our next theorem gives equivalent conditions for an ideal *I* disjoint with *S* to be generalized *S*-prime.

Theorem 2.8. Let *P* be an ideal of *R* disjoint with *S*. Then the following assertions are equivalent.

- 1. *P* is a generalized *S*-prime ideal of *R*.
- 2. *P* is a generalized S^* -prime ideal of *R*.
- 3. For any $a \in R$ and any finitely generated ideal *I* of *R*, there exists an $s \in S$ such that if $aI \subseteq P$, then $sa \in P$ or $sI \subseteq P$.

Proof. (1) \Rightarrow (2). Since $S \subseteq S^*$, it is sufficient to show that $S^* \cap P = \emptyset$ by Remark 2.4. Assume that $S^* \cap P \neq \emptyset$, and let $t \in S^* \cap P$. Then there exists an $s \in S$ such that s = tr for some $r \in R$. Thus, we conclude $s \in S \cap P$, a contradiction.

 $(2) \Rightarrow (3)$. Let $a \in R$ and $I = (\alpha_1, ..., \alpha_n)$ a finitely generated ideal of R such that $aI \subseteq P$. Note that for each $1 \le i \le n$, $a\alpha_i \in aI \subseteq P$. Then for each $1 \le i \le n$, there exists an $s_i \in S$ such that $s_i a \in P$ or $s_i \alpha_i \in P$. Let $s = s_1 \cdots s_n$. Then $s \in S$. Assume that $sa \notin P$. We show that $sI \subseteq P$. Since $sa \notin P$, $s_i a \notin P$ for each $1 \le i \le n$. This implies that for each $1 \le i \le n$,

$$s\alpha_i = s_1 \cdots s_i \cdots s_n \alpha_i \in P$$
,

because $s_i a \notin P$. Thus $sI \subseteq P$.

(3) \Rightarrow (1). Let $\alpha, \beta \in R$ such that $\alpha\beta \in P$. Put $I = \beta R$. Then by hypothesis, there exists an $s \in S$ such that $s\alpha \in P$ or $sI \subseteq P$. Thus $s\alpha \in P$ or $s\beta \in P$, and hence P is a generalized S-prime ideal of R.

Next we give a new characterization for an ideal *P* of *R* disjoint with *S* to be generalized *S*-prime.

Theorem 2.9. Let *P* be an ideal of *R* disjoint with *S*. Then the following conditions are equivalent.

- 1. *P* is a generalized *S*-prime ideal of *R*.
- 2. *P* satisfies:
 - (i) for all $\alpha, \beta \in R$, there exists an $s \in S$ such that if $\alpha\beta \in P$, then $s\alpha \in \sqrt{P}$ or $s\beta \in \sqrt{P}$.
 - (ii) for each $x \in R$ if $x^2 \in P$, then $sx \in P$ for some $s \in S$.

Proof. (1) \Rightarrow (2). Suppose that *P* is a generalized *S*-prime ideal of *R*. We show (i). Let $\alpha, \beta \in R$ such that if $\alpha\beta \in P$. Since *P* is generalized *S*-prime, there exists an $s \in S$ such that $s\alpha \in P$ or $s\beta \in P$. This implies that $s\alpha \in \sqrt{P}$ or $s\beta \in \sqrt{P}$, because $P \subseteq \sqrt{P}$. It is clearly that if *P* is a generalized *S*-prime ideal of *R*, then the assertion (ii) hold.

(2) \Rightarrow (1). We show that *P* is a generalized *S*-prime ideal of *R*. Let $\alpha, \beta \in R$ such that $\alpha\beta \in P$. Then there exists an $s \in S$ such that $s\alpha \in \sqrt{P}$ or $s\beta \in \sqrt{P}$.

Case 1: $s\alpha \in \sqrt{P}$. Then $(s\alpha)^n \in P$ for some $n \in \mathbb{N}$. If *n* is even, then n = 2k for some $k \in \mathbb{N}$; so by hypothesis, $s_1(s\alpha)^k \in P$ for some $s_1 \in S$. If *n* is odd, then n = 2k + 1 for some $k \in \mathbb{N}$, which implies that $(s\alpha)^{2k+2} = (s\alpha)^{n+1} \in P$; so by hypothesis, $s_1(s\alpha)^{k+1} \in P$ for some $s_1 \in S$. Thus there exists an $n_1 < n$, $(n_1 = k \text{ if } n \text{ is even and } n_1 = k + 1 \text{ if } n \text{ is odd})$ and $s_1 \in S$ such that $s_1(s\alpha)^{n_1} \in P$. This implies that $(s_1s\alpha)^{n_1} \in P$; so there exists an $n_1 < n$, and $t = s_1s \in S$ such that $(t\alpha)^{n_1} \in P$. If we continue this process, then we obtain, $(t\alpha)^2 \in P$ or $(t\alpha)^3 \in P$ for some $t \in S$. By using the hypothesis (ii), we get $s't\alpha \in P$ for some $s' \in S$. So for $t' = s't \in S$, we have $t'\alpha \in P$.

Case 2: $s\beta \in \sqrt{P}$. In the same way (case 1) we can prove that $t'\beta \in P$ for some $t' \in S$.

This show that *P* is a generalized *S*-prime ideal of *R*, and the proof is completed.

In the particular case when S = U(R) the set of units of *R*, we recover the following well-known result.

Corollary 2.10. Let P be a proper ideal of a ring R. Then the following conditions are equivalent.

- 1. *P* is a prime ideal of *R*.
- 2. P satisfies:
 - (i) for all $\alpha, \beta \in \mathbb{R}$, such that $\alpha\beta \in P$ implies $\alpha \in \sqrt{P}$ or $\beta \in \sqrt{P}$.
 - (ii) for each $x \in R$, $x^2 \in P$ implies $x \in P$.

Proposition 2.11. Let R be a commutative ring, S a multiplicative subset of R and P a generalized S-prime ideal of R.

- 1. Let Q be an ideal of R such that $Q \cap S \neq \emptyset$. Then $P \cap Q$ and PQ are generalized S-prime ideals of R.
- 2. Let Q be an ideal of R such that $Q \subseteq P$, then for each $x \in \sqrt{Q}$, there exists an $s \in S$ such that $sx \in P$.

Proof. (1). Since $P \cap S = \emptyset$, clearly we have $(P \cap Q) \cap S = \emptyset$ and $PQ \cap S = \emptyset$. Let $\alpha\beta \in P \cap Q$. Then $s\alpha \in P$ or $s\beta \in P$ for some $s \in S$. Let $t \in Q \cap S$. Then $st\alpha \in P \cap Q$ or $st\beta \in P \cap Q$. Thus $P \cap Q$ is a generalized *S*-prime ideal of *R*. The proof is similar for *PQ*.

(2). Let $x \in \sqrt{Q}$, then there exists $n \in \mathbb{N}^*$ such that $x^n \in Q \subseteq P$. Thus $x \cdot x \cdots x \in P$ which implies that $s_1x \in P$ or $s_1(x)^{n-1} \in P$ for some $s_1 \in S$. If $s_1x \in P$, then the prof is completed. If $s_1(x)^{n-1} \in P$, then $s_1s_2x \in P$ or $s_2(x)^{n-2} \in P$ for some $s_2 \in S$. If we continue this process, then we obtain $tx \in P$ for some $t \in S$.

Proposition 2.12. Let $f : R \to T$ be a ring homomorphism and S be a multiplicatively closed subset of R such that f(S) does not contain zero. If Q is a generalized f(S)-prime ideal of T, then $f^{-1}(Q)$ is a generalized S-prime ideal of R.

Proof. Note that if $s \in f^{-1}(Q) \cap S$, then $f(s) \in Q \cap S$, which is a contradiction. Hence, $f^{-1}(Q) \cap S = \emptyset$. Let $\alpha, \beta \in R$ such that $\alpha\beta \in f^{-1}(Q)$. Then $f(\alpha\beta) = f(\alpha)f(\beta) \in Q$, and since Q is a generalized S-prime ideal of T, there exists $f(s) \in f(S)$ such that $f(s)f(\alpha) \in Q$ or $f(s)f(\beta) \in Q$. This implies that $s\alpha \in f^{-1}(Q)$ or $s\beta \in f^{-1}(Q)$, and hence $f^{-1}(Q)$ is a generalized S-prime ideal of R.

Proposition 2.13. Let S be multiplicatively closed subset of a ring R and P an ideal of R disjoint with S. Then P is a generalized S-prime of R if and only if $S^{-1}P$ is a prime ideal of $S^{-1}R$.

Proof. Note that $S^{-1}P$ is a proper ideal of $S^{-1}R$ if and only if $S \cap P = \emptyset$. Assume that *P* is a generalized *S*-prime of *R*, and let $\alpha, \beta \in R$ and $s, t \in S$ with $\frac{\alpha}{s} \frac{\beta}{t} \in S^{-1}P$ and $\frac{\alpha}{s} \notin S^{-1}P$. Then $s'\alpha\beta \in P$ for some $s' \in S$. Since *P* is a generalized *S*-prime ideal, there exists a $t' \in S$ such that $s't'\beta \in P$ and $t'\alpha \notin P$, because $\frac{\alpha}{s} \notin S^{-1}P$. Thus, $\frac{\beta}{t} = \frac{s't'\beta}{s't't} \in S^{-1}P$, and hence $S^{-1}P$ is a prime ideal of $S^{-1}R$.

Conversely, assume that $S^{-1}P$ is a prime of $S^{-1}R$. Let $\alpha, \beta \in R$ such that $\alpha\beta \in P$. Then $\frac{\alpha}{1}\frac{\beta}{1} \in S^{-1}P$ which implies either $\frac{\alpha}{1} \in S^{-1}P$ or $\frac{\beta}{1} \in S^{-1}P$ since $S^{-1}P$ is prime. Thus there exist $s, t \in S$ such that either $s\alpha \in P$ or $t\beta \in P$. Let $s' = st \in S$. Then we get either $s'\alpha \in P$ or $s'\beta \in P$, and hence P is a generalized S-prime of R.

Let *R* be a ring. We denote by Reg(R) the set of regular elements of *R*. Combining Proposition 2.13 and [8], Remark 1], we get the following result.

Corollary 2.14. Let $S \subseteq Reg(R)$ be multiplicatively closed subset of a ring R and P an ideal of R disjoint with S such that $(S^{-1}P) \cap R = (P:s)$ for some $s \in S$. Then the following assertions are equivalent.

- 1. *P* is a generalized *S*-prime of *R*.
- 2. P is an S-prime of R.
- 3. $S^{-1}P$ is a prime ideal of $S^{-1}R$.

Next, we characterize generalized S-prime ideals in a cartesian product of rings.

Theorem 2.15. Let $R = R_1 \times R_2$ and $S = S_1 \times S_2$ where S_1 , S_2 are multiplicatively closed subsets and P_1 , P_2 be ideals of rings R_1 , R_2 , respectively. Then the following assertions are equivalent.

- 1. $P = P_1 \times P_2$ is a generalized *S*-prime of *R*.
- 2. P_1 is a generalized S_1 -prime of R_1 and $S_2 \cap P_2 \neq \emptyset$ or P_2 is a generalized S_2 -prime of R_2 and $S_1 \cap P_1 \neq \emptyset$.

Proof. (1) \Rightarrow (2). Assume that $P = P_1 \times P_2$ is a generalized *S*-prime of *R*. Suppose that $S_1 \cap P_1 = S_2 \cap P_2 = \emptyset$. Let $(\alpha, \beta) \in P$. Then $(\alpha, 1)(1, \beta) \in P$; so there exists an $(s_1, s_2) \in S$ such that $(s_1, s_2)(\alpha, 1) \in P$ or $(s_1, s_2)(1, \beta) \in P$. Thus, we get either $s_2 \in S_2 \cap P_2$ or $s_1 \in S_1 \cap P_1$, a contradiction. Without loss of generality, we may assume that $S_1 \cap P_1 \neq \emptyset$, and we will prove that P_2 is a generalized S_2 -prime ideal of R_2 . First, $S_2 \cap P_2 = \emptyset$ as $S \cap P = \emptyset$. Let $a, b \in R_2$ such that $ab \in P_2$. Choose $t \in S_1 \cap P_1$. Hence $(t, a)(1, b) \in P$ which implies that $s(t, a) \in P$ or $s(1, b) \in P$ for some $s = (s_1, s_2) \in S$. Therefore, $s_2a \in P_2$ or $s_2b \in P_2$, as needed.

 $(2) \Rightarrow (1)$. Assume that P_1 is a generalized S_1 -prime ideal of R_1 and $S_2 \cap P_2 \neq \emptyset$. Choose $t \in S_2 \cap P_2$. Let $(a_1, a_2)(b_1, b_2) \in P$ for some $a_1, b_1 \in R_1$ and $a_2, b_2 \in R_2$. Hence $a_1b_1 \in P_1$ which implies that $sa_1 \in P_1$ or $sb_1 \in P_1$. Now set $s' = (s, t) \in S$. Observe that $s'(a_1, a_2)P$ or $s'(b_1, b_2) \in P$, and thus P is a generalized S-prime ideal of R. In the same way one can prove the claim if P_2 is a generalized S_2 -prime of R_2 and $S_1 \cap P_1 \neq \emptyset$.

Using Theorem 2.15, we obtain the following corollary.

Corollary 2.16. Let $R = R_1 \times \cdots \times R_n$ and $S = S_1 \times \cdots \times S_n$, where S_i 's are multiplicatively closed subsets of R_i 's for all $i \in \{1, ..., n\}$, respectively. Then $P = P_1 \times \cdots \times P_n$ is a generalized S-prime ideal of R if and only if P_k is a generalized S_k -prime ideal of R_k for some $k \in \{1, ..., n\}$ and $S_i \cap P_i \neq \emptyset$ for all $j \in \{1, ..., n\} \setminus \{k\}$.

We end this section by giving a relationship between generalized *S*-prime ideals of a ring *R* and those of the idealization ring R(+)M. First, let us recall the notion of idealization ring R(+)M. Let *R* be a commutative ring with identity and *M* a unitary *R*-module. Then the *Nagata's idealization* of *M* in *R* (or *trivial extension* of *R* by *M*) is a commutative ring

$$R(+)M := \{(r, m) | r \in R \text{ and } m \in M\}$$

under the usual addition and the multiplication defined by $(r_1, m_1)(r_2, m_2) = (r_1r_2, r_1m_2 + r_2m_1)$ for all $(r_1, m_1), (r_2, m_2) \in R(+)M$. It is clear that (1, 0) is the identity of R(+)M; and if *S* is a multiplicative subset of *R* and *N* is an *R*-submodule of *M*, then S(+)N is a multiplicative subset of R(+)M. For an ideal *I* of *R* and a submodule *N* of *M*, I(+)N is an ideal of R(+)M if and only if $IM \subseteq N$. Moreover, the radical of I(+)N is $\sqrt{I(+)N} = \sqrt{I}(+)M$. Note that if *S* is a multiplicative subset of *R*, then S(+)Mand S(+)0 are multiplicative subsets of R(+)M.

Proposition 2.17. Let S be a multiplicative subset of a ring R and M be an R-module. For an ideal P of R disjoint with S, the following statements are equivalent.

- 1. P(+)M is a generalized S(+)M-prime ideal of R(+)M.
- 2. *P* is a generalized *S*-prime ideal of *R*.
- 3. P(+)M is a generalized S(+)0-prime ideal of R(+)M.

Proof. (1) \Rightarrow (2). Let $\alpha, \beta \in R$ such that $\alpha\beta \in P$. Then $(\alpha, 0)(\beta, 0) \in P(+)M$, which implies $(s, m)(\alpha, 0) \in P(+)M$ or $(s, m)(b, 0) \in P(+)M$ for some $(s, m) \in S(+)M$. This implies that $s\alpha \in P$ or $s\beta \in P$. Thus *P* is a generalized *S*-prime ideal of *R*.

(2) \Rightarrow (3). Assume that $(\alpha, m_1)(\beta, m_2) \in P(+)M$ for some $(a, m_1), (b, m_2) \in R(+)M$. Then $ab \in P$. By hypothesis, there exists an $s \in S$ such that $s\alpha \in P$ or $s\beta \in P$, and thus $(s, 0)(\alpha, m_1) \in P(+)M$ or $(s, 0)(\beta, m_2) \in P(+)M$. Hence P(+)M is a generalized S(+)0-prime ideal of R(+)M.

(3) \Rightarrow (1). Follows from Remark 2.4 as $S(+)0 \subseteq S(+)M$.

3 Minimal generalized *S*-prime ideals

Let *R* be a commutative ring and *S* a multiplicative set of *R*. Recall from [2] (or [7]) that *R* is called an *S*-Noetherian ring if each ideal *I* of *R* is *S*-finite, *i.e.*, there exist an element $s \in S$ and a finitely generated ideal *J* of *R* such that $sI \subseteq J \subseteq I$. We start this section by giving the *S*-invariant (using the "generalized *S*-prime" concept) of the Cohen type theorem for *S*-Noetherian rings.

Theorem 3.1. Let *S* be a multiplicative subset of *R*. Then the following conditions are equivalent.

- 1. *R* is *S*-Noetherian.
- 2. Every generalized S-prime ideal of R is S-finite.
- 3. Every prime ideal of *R* is *S*-finite.

Proof. $(1) \Rightarrow (2)$ Obvious.

(2) \Rightarrow (3) Assume that every generalized *S*-prime ideal of *R* is *S*-finite. Let *P* be a prime ideal of *R*. Clearly if $P \cap S \neq \emptyset$, then *P* is *S*-principal which implies that *P* is *S*-finite. Now, if $P \cap S = \emptyset$, then *P* is an *S*-prime ideal of *R*; so by hypothesis, *P* is *S*-finite. (3) \Rightarrow (1) Follows from [2]. Corollary 5].

Let *R* be a commutative ring and *S* a multiplicative subset of *R*. Following [2], we say that *S* is *anti-Archimedean* if $\bigcap_{n\geq 1} s^n R \cap S \neq \emptyset$ for every $s \in S$. In [8], the authors generalized this notion by introducing the concept of weakly anti-Archimedean multiplicative set. According to [8], a multiplicative set *S* of a commutative ring *R* is called *weakly anti-Archimedean* if for each family $(s_{\alpha})_{\alpha \in \Lambda}$ of elements of *S* we have

$$(\cap_{\alpha \in \Lambda} s_{\alpha} R) \cap S \neq \emptyset.$$

Note that every weakly anti-Archimedean multiplicative set is anti-Archimedean. The converse is not true as was observed in [4, Example 2.7.].

Lemma 3.2. Let R be a commutative ring, S a weakly anti-Archimedean multiplicative subset of R and $(P_{\alpha})_{\alpha \in \Lambda}$ be a chain of generalized S-prime ideals of R. Then $P = \bigcap_{\alpha \in \Lambda} P_{\alpha}$ is a generalized S-prime ideal of R.

Proof. Let $\alpha, \beta \in R$ such that $\alpha\beta \in P$. We prove that there exists an $s \in S$ such that either $s\alpha \in P$ or $s\beta \in P$. Since $\alpha\beta \in P$, then for each $\lambda \in \Lambda$, $\alpha\beta \in P_{\lambda}$; so there exists an $s_{\lambda} \in S$ such that $s_{\lambda}\alpha \in P_{\lambda}$ or $s_{\lambda}\beta \in P_{\lambda}$ since P_{λ} is a generalized *S*-prime ideal of *R*. Now, as *S* is a weakly multiplicative set, then $(\bigcap_{\lambda \in \Lambda} s_{\lambda}R) \cap S \neq \emptyset$. Let $s \in (\bigcap_{\lambda \in \Lambda} s_{\lambda}R) \cap S$. Then we have, for each $\lambda \in \Lambda$, $\alpha\beta \in P_{\lambda}$; so $s_{\lambda}\alpha \in P_{\lambda}$ or $s_{\lambda}\beta \in P_{\lambda}$. Since $s \in (\bigcap_{\lambda \in \Lambda} s_{\lambda}R) \cap S$, then we can write $s = s_{\lambda}a_{\lambda}$ for some $a_{\lambda} \in R$. Thus

$$s\alpha = s_{\lambda}a_{\lambda}\alpha \in P_{\lambda} \text{ or } s\beta = s_{\lambda}a_{\lambda}\beta \in P_{\lambda}.$$

This shows that *P* is a generalized *S*-prime ideal of *R*.

Let Q be an ideal of R disjoint with S and P a generalized S-prime ideal of R such that $Q \subseteq P$. We say that P is minimal over Q if P is minimal in the set of the generalized S-prime ideals of R containing Q.

Theorem 3.3. Let *S* be a weakly anti-Archimedean multiplicative subset of a ring *R*. Then each ideal of *R* disjoint with *S* is contained in a minimal generalized *S*-prime ideal of *R*.

Proof. Let *Q* be an ideal of *R* and let \mathcal{L} be the set of generalized *S*-prime ideals containing *Q*. First, we show that $\mathcal{L} \neq \emptyset$. It well-known that for each ideal *I* of *R*, there exists a prime ideal of *R* such that $I \subseteq P$ and $P \cap S = \emptyset$. Now, since *Q* is an ideal of *R*, then there exists a prime ideal *P* of *R* such that $Q \subseteq P$ and $P \cap S = \emptyset$. It is easy to prove that *P* is a generalized *S*-prime ideal of *R* because every prime ideal disjoint with *S* is generalized *S*-prime. This shows that $P \in \mathcal{L}$, and thus $\mathcal{L} \neq \emptyset$. On the other hand, the set \mathcal{L} is ordered by " \supseteq ". Moreover, \mathcal{L} is inductive. Indeed, let $(P_{\lambda})_{\lambda \in \Lambda}$ be a chain of elements of \mathcal{L} . Put $P = \bigcap_{\lambda \in \Lambda} P_{\lambda}$. By Lemma 3.2 *P* is a generalized *S*-prime ideal of *R*. Since for each $\lambda \in \Lambda$, $Q \subseteq P_{\lambda}$, we get $Q \subseteq P$. Thus *P* is an upper bound for the chain $(P_{\lambda})_{\lambda \in \Lambda}$. Thus by Zorn's Lemma \mathcal{L} has a maximal element for " \supseteq ". Hence *Q* is contained in a minimal generalized *S*-prime ideal of *R*.

We end this article by recover (using the previous Theorem) the following well-known result on minimal prime ideals.

Corollary 3.4. Let R be a ring. Then each proper ideal of R is contained in a minimal prime ideal of R.

Acknowledgments

The author would like to thanks the referee for his/her careful considerations.

References

- [1] F. Almahdi, E. M. Bouba and M. Tamekkante, On weakly *S*-prime ideals of commutative rings, An. St. Uni. Ovidius Constanta 29 (2021), 173-186.
- [2] D. D. Anderson and T. Dumitrescu, S-Noetherian rings, Comm. Algebra 30 (2002), 4407-4416.
- [3] E.Y. Celikel and A. Hamed, Quasi-S-primary ideals of commutative rings, Comm. Algebra 51(10) (2023), 4285-4298.

- [4] D. E. Dobbs, Ahmes Expansions of Formal Laurent Series and a Class of Nonarchimedean Integral Domains, J. Algebra 103 (1986), 193-201.
- [5] R. Gilmer, Multiplicative Ideal Theory, *Marcel Dekker*, New York, 1972.
- [6] A. Hamed, S-strong Mori domain of A + XB[X], Moroccan J. Algebra Geom. Appl. 1(2) (2022), 183-188.
- [7] A. Hamed and S. Hizem, Modules satisfying the S-Noethrian property and S-accr, Comm. Algebra 44 (2016), 1941-1951.
- [8] A. Hamed and A. Malek, *S*-prime ideals of a commutative ring, Beitr. Algebra Geom. 61 (2020), 533-542.
- [9] N. Mahdou, A. Mimouni and Y. Zahir, On weakly prime ideals and weak Krull dimension, Moroccan J. Algebra Geom. Appl. 2(2) (2023), 307-314.
- [10] S. Visweswaran, Some results on S-primary ideals of a commutative ring, Beitr. Algebra Geom. 63 (2021), 1-20.
- [11] E. S. Sevim, T. Arabaci, Ü. Tekir and S. Koç, On S-prime submodules, Turkish J. Math. 43 (2019), 1036-1046.
- [12] E.S. Sevim and T. Arabaci, Locally S-prime ideals, Comptes rendus de l'Academie bulgare des Sciences 73(12) (2020), 1650-1657.
- [13] G. Ulucak, Ü. Tekir and S. Koç, On-S-2-absorbing submodules and vn-regular modules, An. Univ. Ovidius Const. -Ser. Mat. 28(2) (2020), 239-257.