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Abstract. Let R be a commutative ring with identity and S a multiplicative subset of R. The purpose of this paper is to

introduce the concept of generalized S-prime ideals as a new generalization of prime ideals. An ideal P of R disjoint with S

is called a generalized S-prime ideal if for all α,β ∈ R there exists an s ∈ S such that αβ ∈ P implies sα ∈ P or sβ ∈ P . Several

properties, characterizations and examples concerning generalized S-prime ideals are presented. We give a relationship

between generalized S-prime ideals of a ring R and those of the idealization ring R(+)M. Also, we show that each ideal of

R disjoint with S is contained in a minimal generalized S-prime ideal of R. This extends classical well-known result on

minimal prime ideals.
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1 Introduction

Throughout this article all rings are commutative with non-zero identity. In recent years, the prime
ideals and their generalizations have an important place in commutative algebra and they draw
attention by several authors. In 2019, the concept of S-prime ideals, which is a generalization of
prime ideals, was first initiated by Hamed and Malek in [8]. Let R be a ring and S a multiplicative
subset of R. Following [8], an ideal P of R with P ∩ S = ∅ is said to be an S-prime ideal of R if there
exists s ∈ S such that for all a,b ∈ R with ab ∈ P , we have either sa ∈ P or sb ∈ P . In [8], the authors
stated and proved S-version of several classical results on prime ideals. Let P be an ideal of R disjoint
with S. It was shown in [8, Corollary 1] that P is S-prime if and only if there exists s ∈ S, such that
for all I1, . . . , In ideals of R, if I1 · · · In ⊆ P , then sIj ⊆ P for some j ∈ {1, . . . ,n}. Let I be an ideal of
R and let P1, . . . , Pn be S-prime ideals of R. The authors proved that if I ⊆ ∪ni=1Pi , then there exist
s ∈ S and j ∈ {1, . . . ,n} such that sI ⊆ Pj . This notion was generalized by several authors. According
to [10] an ideal I of R with I ∩ S = ∅ is said to be an S-primary ideal of R if there exists s ∈ S such
that for all a,b ∈ R with ab ∈ I, we have either sa ∈ I or sb ∈

√
I. Later, Yetkin Celikel and Hamed

generalize the notion of “S-primary ideals" by introducing the concept of “quasi-S-primary" ideals
of a commutative ring and study its basic properties. Following [3], a proper ideal I of R disjoint
from S is called a quasi-S-primary ideal if there exists an (fixed) s ∈ S such that for all a,b ∈ R if ab ∈ I ,
then sa ∈

√
I or sb ∈

√
I . Some generalizations of S-prime ideals can be found in [1, 3, 10, 11, 13].

Motivated by the research work on S-prime ideals in [8] and by the above generalizations of prime
ideals, in this article, we introduce a new class of a generalization of prime ideals. Let R be a ring
and S a multiplicative subset of R. An ideal P of R disjoint with S is called a generalized S-prime ideal
of R if for all α,β ∈ R there exists an s ∈ S such that αβ ∈ P implies sα ∈ P or sβ ∈ P . Note that every
S-prime ideal of R is a generalized S-prime ideal of R since the fixed element s ∈ S in “S-prime" is
dependent on the ideal P , but the element s ∈ S in the concept of “generalized S-prime" is dependent
by α and β. Recall from [12], the authors defined the concept of locally S-prime ideals of a ring R
as follow: let S a multiplicative subset of a ring R. An ideal P of R disjoint with S is called a locally
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S-prime ideal of R if whenever S−1P is a prime ideal of S−1R. Clearly that every generalized S-prime
ideal is locally S-prime (In section 2, we prove that the two concepts are equal).

In the first part of this article, we state and prove some basic properties of generalized S-prime
ideals. Clearly, every prime ideal of a ring R disjoint with a multiplicative subset S of R is a gener-
alized S-prime ideal of R. We give an example shows that the converse of the previous implication
is not true in general (Example 2.3). Also, we show that if S is a finite multiplicative subset of a
ring R, then the notions “S-prime" and “generalized S-prime" coincide (Proposition 2.2). Let R be
a commutative ring, S a multiplicative subset of R and I an ideal of R disjoint with S. Let s ∈ S, we
denote by s the equivalence class of s in R/I. Let S = {s | s ∈ S}. Then S is a multiplicative subset of
R/I. Let P be a proper ideal of R containing I such that P /I ∩ S = ∅. We show that P is a generalized
S-prime ideal of R if and only if P /I is a generalized S-prime ideal of R/I (Proposition 2.7). Also, we
give a new characterization for an ideal P of R to be a generalized S-prime ideal of R. Let P be an
ideal of R disjoint with S. It is proved in Theorem 2.9 that the following conditions are equivalent.

1. P is a generalized S-prime ideal of R.

2. P satisfies:

(i) for all α,β ∈ R, there exists an s ∈ S such that if αβ ∈ P , then sα ∈
√
P or sβ ∈

√
P .

(ii) for each x ∈ R if x2 ∈ P , then sx ∈ P for some s ∈ S.

We end the first part of this paper by giving a relationship between generalized S-prime ideals of
a ring R and those of the idealization ring R(+)M. First, let us recall the notion of idealization ring
R(+)M. Let R be a commutative ring with identity and M a unitary R-module. Then the Nagata’s
idealization of M in R (or trivial extension of R by M) is a commutative ring

R(+)M := {(r,m) |r ∈ R and m ∈M}

under the usual addition and the multiplication defined by (r1,m1)(r2,m2) = (r1r2, r1m2 + r2m1) for
all (r1,m1), (r2,m2) ∈ R(+)M. It is clear that (1,0) is the identity of R(+)M; and if S is a multiplicative
subset of R, then S(+)M and S(+)0 are multiplicative subsets of R(+)M. For an ideal P of R dis-
joint with S, we show that P (+)M is a generalized S(+)M-prime ideal of R(+)M if and only if P is
a generalized S-prime ideal of R equivalent to P (+)M is a generalized S(+)0-prime ideal of R(+)M
(Proposition2.17).

In the second part of this paper, we study minimal generalized S-prime ideals of a commutative
ring. First, we need to collect some necessary notions. Following [8], a multiplicative set S of a
commutative ring R is called weakly anti-Archimedean if for each family (sα)α∈Λ of elements of S we
have

(∩α∈ΛsαR)∩ S , ∅.

Let Q be an ideal of R disjoint with S and P a generalized S-prime ideal of R such that Q ⊆ P . We say
that P is minimal over Q if P is minimal in the set of the generalized S-prime ideals of R containing
Q. Let S be a weakly anti-Archimedean multiplicative subset of a ring R. We prove that each ideal
of R disjoint with S is contained in a minimal generalized S-prime ideal of R (Theorem 3.3). In the
particular case when S consists of units of R, we recover the following well-known result. Every
proper ideal of ring R is contained in a minimal prime ideal of R.

2 Characterizations of generalized S-prime ideal

We start this section by introducing the notion of generalized S-prime ideals.



Generalized S-prime ideals of commutative rings 281

Definition 2.1. Let R be a ring and S a multiplicative subset of R. An ideal P of R disjoint with S
is called a generalized S-prime ideal if for all α,β ∈ R there exists an s ∈ S such that αβ ∈ P implies
sα ∈ P or sβ ∈ P .

Let R be a ring and S a multiplicative closed subset of R. Following [8], an ideal P of R disjoint
with S is said to be an S-prime ideal of R if there exists an s ∈ S such that for all a,b ∈ R if ab ∈ P , then
sa ∈ P or sb ∈ P . Clearly, every S-prime ideal of R is a generalized S-prime ideal of R. Note that the
converse is true if S consists of units of R. The next result proved a relationship between the notion
“S-prime" and the concept “generalized S-prime."

Proposition 2.2. Let R be a ring, S a finite multiplicative subset of R and P an ideal of R disjoint with S.
Then the following assertions are equivalent.

1. P is an S-prime ideal of R.

2. P is a generalized S-prime ideal of R.

Proof. (1)⇒ (2). Obvious.
(2)⇒ (1). Put S = {s1, ..., sn}. Assume that P is a generalized S-prime ideal of R, and let s = s1s2 · · ·sn.

Then s ∈ S. Now, let α,β ∈ R such that αβ ∈ P . By hypothesis, skα ∈ P or skβ ∈ P for some sk ∈ S. This
implies that sα = s1 · · ·sk · · ·snα ∈ P or sβ = s1 · · ·sk · · ·snβ ∈ P ; so sα ∈ P or sβ ∈ P , and hence P is an
S-prime ideal of R.

We next give an example of a generalized S-prime ideal which is not a prime ideal.

Example 2.3. Let R = Z24 and S be the multiplicative subset of R generated by 3, i.e., S = {1,3,9}.
Let P = (6) = {0,6,12,18}. Then P is not a prime ideal of R, since 3 · 4 ∈ P but neither 3 ∈ P nor 4 ∈ P .
Moreover, P ∩ S = ∅. It is easy to show that for each α,β ∈ R such that αβ ∈ P , then 3α ∈ P or 3β ∈ P
which implies that P is a generalized S-prime ideal of R.

Remark 2.4. LetR be a ring and T ⊆ S be two multiplicatively closed subsets ofR. If P is a generalized
T -prime ideal of R such that P ∩ S = ∅, then P is also a generalized S-prime ideal of R.

The following example shows that the reverse of the previous Remark is not true in general.

Example 2.5. Let R = Z[X], S = {2n | n ∈N∪ {0}} and T = {1} ⊆U (R). Then T ⊆ S are two multiplica-
tive subsets of R. Let P = 4XZ[X]. By [8, Example 1] P is an S-prime ideal of R which implies that
P is a generalized S-prime ideal of R. Note that P is not a generalized T -prime ideal of R because
4X ∈ P but neither 1 · 4 ∈ P nor 1 ·X ∈ P .

Proposition 2.6. Let R be a ring and T ⊆ S be two multiplicatively closed subsets of R. Assume that for
each s ∈ S, there is an element t ∈ T such that st ∈ T . If P is a generalized S-prime ideal of R, then P a
generalized T -prime ideal of R.

Proof. Let α,β ∈ R such that αβ ∈ P . There exists an s ∈ S such that sα ∈ P or sβ ∈ P . By hypothesis,
there is an element t ∈ T such that st ∈ T . Let s′ = st ∈ S. Then s′α = stα ∈ P or s′β = stβ ∈ P . Hence P
is a generalized T -prime ideal of R.

Let R be a commutative ring, S a multiplicative subset of R and I an ideal of R disjoint with S. Let
s ∈ S, we denote by s the equivalence class of s in R/I. Let S = {s | s ∈ S}. Then S is a multiplicative
subset of R/I.

Proposition 2.7. Let R be a ring, S a multiplicative subset of R and I an ideal of R disjoint with S. Let P
be a proper ideal of R containing I such that P /I ∩ S = ∅. Then the following assertions are equivalent.
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1. P is a generalized S-prime ideal of R.

2. P /I is a generalized S-prime ideal of R/I .

Proof. First, note that P ∩ S = ∅ if and only if P /I ∩ S = ∅.
(1)⇒ (2). Assume that P is a generalized S-prime ideal of R, and let α,β ∈ R/I such that αβ ∈ P /I.

This implies that αβ ∈ P ; so there exists an s ∈ S such that sα ∈ P or sβ ∈ P .Hence sα ∈ P /I or sβ ∈ P /I.
(2) ⇒ (1). Let α,β ∈ R such that ab ∈ P . Then ab ∈ P /I. Since P /I is generalized S-prime ideal of

R/I, there exists an s ∈ S such that sα ∈ P /I or sβ ∈ P /I ; so sα ∈ P or sβ ∈ P . This shows that P is a
generalized S-prime ideal of R.

Let R be a ring and S a multiplicative subset of R. The saturation of S is the set S∗ = {x ∈ R : xy ∈ S
for some y ∈ R} is a multiplicative subset of R satisfying S ⊆ S∗, see [5]. Our next theorem gives
equivalent conditions for an ideal I disjoint with S to be generalized S-prime.

Theorem 2.8. Let P be an ideal of R disjoint with S. Then the following assertions are equivalent.

1. P is a generalized S-prime ideal of R.

2. P is a generalized S∗-prime ideal of R.

3. For any a ∈ R and any finitely generated ideal I of R, there exists an s ∈ S such that if aI ⊆ P ,
then sa ∈ P or sI ⊆ P .

Proof. (1) ⇒ (2). Since S ⊆ S∗, it is sufficient to show that S∗ ∩ P = ∅ by Remark 2.4. Assume that
S∗ ∩ P , ∅, and let t ∈ S∗ ∩ P . Then there exists an s ∈ S such that s = tr for some r ∈ R. Thus, we
conclude s ∈ S ∩ P , a contradiction.

(2)⇒ (3). Let a ∈ R and I = (α1, ...,αn) a finitely generated ideal of R such that aI ⊆ P . Note that for
each 1 ≤ i ≤ n, aαi ∈ aI ⊆ P . Then for each 1 ≤ i ≤ n, there exists an si ∈ S such that sia ∈ P or siαi ∈ P .
Let s = s1 · · ·sn. Then s ∈ S. Assume that sa < P . We show that sI ⊆ P . Since sa < P , sia < P for each
1 ≤ i ≤ n. This implies that for each 1 ≤ i ≤ n,

sαi = s1 · · ·si · · ·snαi ∈ P ,

because sia < P . Thus sI ⊆ P .
(3)⇒(1). Let α,β ∈ R such that αβ ∈ P . Put I = βR. Then by hypothesis, there exists an s ∈ S such

that sα ∈ P or sI ⊆ P . Thus sα ∈ P or sβ ∈ P , and hence P is a generalized S-prime ideal of R.

Next we give a new characterization for an ideal P of R disjoint with S to be generalized S-prime.

Theorem 2.9. Let P be an ideal of R disjoint with S. Then the following conditions are equivalent.

1. P is a generalized S-prime ideal of R.

2. P satisfies:

(i) for all α,β ∈ R, there exists an s ∈ S such that if αβ ∈ P , then sα ∈
√
P or sβ ∈

√
P .

(ii) for each x ∈ R if x2 ∈ P , then sx ∈ P for some s ∈ S.

Proof. (1)⇒ (2). Suppose that P is a generalized S-prime ideal of R. We show (i). Let α,β ∈ R such
that if αβ ∈ P . Since P is generalized S-prime, there exists an s ∈ S such that sα ∈ P or sβ ∈ P . This
implies that sα ∈

√
P or sβ ∈

√
P , because P ⊆

√
P . It is clearly that if P is a generalized S-prime ideal

of R, then the assertion (ii) hold.
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(2)⇒ (1). We show that P is a generalized S-prime ideal of R. Let α,β ∈ R such that αβ ∈ P . Then
there exists an s ∈ S such that sα ∈

√
P or sβ ∈

√
P .

Case 1: sα ∈
√
P . Then (sα)n ∈ P for some n ∈ N. If n is even, then n = 2k for some k ∈ N; so by

hypothesis, s1(sα)k ∈ P for some s1 ∈ S. If n is odd, then n = 2k+ 1 for some k ∈N, which implies that
(sα)2k+2 = (sα)n+1 ∈ P ; so by hypothesis, s1(sα)k+1 ∈ P for some s1 ∈ S. Thus there exists an n1 < n,
(n1 = k if n is even and n1 = k + 1 if n is odd) and s1 ∈ S such that s1(sα)n1 ∈ P . This implies that
(s1sα)n1 ∈ P ; so there exists an n1 < n, and t = s1s ∈ S such that (tα)n1 ∈ P . If we continue this process,
then we obtain, (tα)2 ∈ P or (tα)3 ∈ P for some t ∈ S. By using the hypothesis (ii), we get s′tα ∈ P for
some s′ ∈ S. So for t′ = s′t ∈ S, we have t′α ∈ P .
Case 2: sβ ∈

√
P . In the same way (case 1) we can prove that t′β ∈ P for some t′ ∈ S.

This show that P is a generalized S-prime ideal of R, and the proof is completed.

In the particular case when S = U (R) the set of units of R, we recover the following well-known
result.

Corollary 2.10. Let P be a proper ideal of a ring R. Then the following conditions are equivalent.

1. P is a prime ideal of R.

2. P satisfies:

(i) for all α,β ∈ R, such that αβ ∈ P implies α ∈
√
P or β ∈

√
P .

(ii) for each x ∈ R, x2 ∈ P implies x ∈ P .

Proposition 2.11. Let R be a commutative ring, S a multiplicative subset of R and P a generalized S-prime
ideal of R.

1. Let Q be an ideal of R such that Q∩ S , ∅. Then P ∩Q and PQ are generalized S-prime ideals of R.

2. Let Q be an ideal of R such that Q ⊆ P , then for each x ∈
√
Q, there exists an s ∈ S such that sx ∈ P .

Proof. (1). Since P ∩S = ∅, clearly we have (P ∩Q)∩S = ∅ and PQ∩S = ∅. Let αβ ∈ P ∩Q. Then sα ∈ P
or sβ ∈ P for some s ∈ S. Let t ∈ Q∩ S. Then stα ∈ P ∩Q or stβ ∈ P ∩Q. Thus P ∩Q is a generalized
S-prime ideal of R. The proof is similar for PQ.

(2). Let x ∈
√
Q, then there exists n ∈N∗ such that xn ∈Q ⊆ P . Thus x · x · · ·x ∈ P which implies that

s1x ∈ P or s1(x)n−1 ∈ P for some s1 ∈ S. If s1x ∈ P , then the prof is completed. If s1(x)n−1 ∈ P , then
s1s2x ∈ P or s2(x)n−2 ∈ P for some s2 ∈ S. If we continue this process, then we obtain tx ∈ P for some
t ∈ S.

Proposition 2.12. Let f : R → T be a ring homomorphism and S be a multiplicatively closed subset of
R such that f (S) does not contain zero. If Q is a generalized f (S)-prime ideal of T , then f −1(Q) is a
generalized S-prime ideal of R.

Proof. Note that if s ∈ f −1(Q)∩S, then f (s) ∈Q∩S, which is a contradiction. Hence, f −1(Q)∩S = ∅. Let
α,β ∈ R such that αβ ∈ f −1(Q). Then f (αβ) = f (α)f (β) ∈Q, and sinceQ is a generalized S-prime ideal
of T , there exists f (s) ∈ f (S) such that f (s)f (α) ∈ Q or f (s)f (β) ∈ Q. This implies that sα ∈ f −1(Q) or
sβ ∈ f −1(Q), and hence f −1(Q) is a generalized S-prime ideal of R.

Proposition 2.13. Let S be multiplicatively closed subset of a ring R and P an ideal of R disjoint with S.
Then P is a generalized S-prime of R if and only if S−1P is a prime ideal of S−1R.
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Proof. Note that S−1P is a proper ideal of S−1R if and only if S∩P = ∅. Assume that P is a generalized
S-prime of R, and let α,β ∈ R and s, t ∈ S with α

s
β
t ∈ S

−1P and α
s < S

−1P . Then s′αβ ∈ P for some s′ ∈ S.
Since P is a generalized S-prime ideal, there exists a t′ ∈ S such that s′t′β ∈ P and t′α < P , because
α
s < S

−1P . Thus, βt = s′t′β
s′t′t ∈ S

−1P , and hence S−1P is a prime ideal of S−1R.

Conversely, assume that S−1P is a prime of S−1R. Let α,β ∈ R such that αβ ∈ P . Then α
1
β
1 ∈ S

−1P

which implies either α
1 ∈ S

−1P or β
1 ∈ S

−1P since S−1P is prime. Thus there exist s, t ∈ S such that
either sα ∈ P or tβ ∈ P . Let s′ = st ∈ S. Then we get either s′α ∈ P or s′β ∈ P , and hence P is a
generalized S-prime of R.

Let R be a ring. We denote by Reg(R) the set of regular elements of R. Combining Proposition 2.13
and [8, Remark 1], we get the following result.

Corollary 2.14. Let S ⊆ Reg(R) be multiplicatively closed subset of a ring R and P an ideal of R disjoint
with S such that (S−1P )∩R = (P : s) for some s ∈ S. Then the following assertions are equivalent.

1. P is a generalized S-prime of R.

2. P is an S-prime of R.

3. S−1P is a prime ideal of S−1R.

Next, we characterize generalized S-prime ideals in a cartesian product of rings.

Theorem 2.15. Let R = R1 ×R2 and S = S1 × S2 where S1, S2 are multiplicatively closed subsets and
P1, P2 be ideals of rings R1, R2, respectively. Then the following assertions are equivalent.

1. P = P1 × P2 is a generalized S-prime of R.

2. P1 is a generalized S1-prime of R1 and S2 ∩ P2 , ∅ or P2 is a generalized S2-prime of R2 and
S1 ∩ P1 , ∅.

Proof. (1)⇒ (2). Assume that P = P1 × P2 is a generalized S-prime of R. Suppose that S1 ∩ P1 =
S2 ∩ P2 = ∅. Let (α,β) ∈ P . Then (α,1)(1,β) ∈ P ; so there exists an (s1, s2) ∈ S such that (s1, s2)(α,1) ∈ P
or (s1, s2)(1,β) ∈ P . Thus, we get either s2 ∈ S2 ∩ P2 or s1 ∈ S1 ∩ P1, a contradiction. Without loss of
generality, we may assume that S1∩P1 , ∅, and we will prove that P2 is a generalized S2-prime ideal of
R2. First, S2∩P2 = ∅ as S∩P = ∅. Let a,b ∈ R2 such that ab ∈ P2. Choose t ∈ S1∩P1. Hence (t,a)(1,b) ∈ P
which implies that s(t,a) ∈ P or s(1,b) ∈ P for some s = (s1, s2) ∈ S. Therefore, s2a ∈ P2 or s2b ∈ P2, as
needed.

(2)⇒ (1). Assume that P1 is a generalized S1-prime ideal of R1 and S2 ∩ P2 , ∅. Choose t ∈ S2 ∩ P2.
Let (a1, a2)(b1,b2) ∈ P for some a1,b1 ∈ R1 and a2,b2 ∈ R2. Hence a1b1 ∈ P1 which implies that sa1 ∈ P1
or sb1 ∈ P1. Now set s′ = (s, t) ∈ S. Observe that s′(a1, a2)P or s′(b1,b2) ∈ P , and thus P is a generalized
S-prime ideal of R. In the same way one can prove the claim if P2 is a generalized S2-prime of R2 and
S1 ∩ P1 , ∅.

Using Theorem 2.15, we obtain the following corollary.

Corollary 2.16. Let R = R1 × · · · ×Rn and S = S1 × · · · ×Sn, where Si ’s are multiplicatively closed subsets of
Ri ’s for all i ∈ {1, ...,n}, respectively. Then P = P1 × · · · × Pn is a generalized S-prime ideal of R if and only if
Pk is a generalized Sk-prime ideal of Rk for some k ∈ {1, ...,n} and Sj ∩ Pj , ∅ for all j ∈ {1, ...,n}\{k}.

We end this section by giving a relationship between generalized S-prime ideals of a ring R and
those of the idealization ring R(+)M. First, let us recall the notion of idealization ring R(+)M. Let R
be a commutative ring with identity and M a unitary R-module. Then the Nagata’s idealization of M
in R (or trivial extension of R by M) is a commutative ring
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R(+)M := {(r,m) |r ∈ R and m ∈M}
under the usual addition and the multiplication defined by (r1,m1)(r2,m2) = (r1r2, r1m2 + r2m1) for
all (r1,m1), (r2,m2) ∈ R(+)M. It is clear that (1,0) is the identity of R(+)M; and if S is a multiplicative
subset of R and N is an R-submodule of M, then S(+)N is a multiplicative subset of R(+)M. For an
ideal I of R and a submodule N of M, I(+)N is an ideal of R(+)M if and only if IM ⊆ N . Moreover,
the radical of I(+)N is

√
I(+)N =

√
I(+)M. Note that if S is a multiplicative subset of R, then S(+)M

and S(+)0 are multiplicative subsets of R(+)M.

Proposition 2.17. Let S be a multiplicative subset of a ring R and M be an R-module. For an ideal P of R
disjoint with S, the following statements are equivalent.

1. P (+)M is a generalized S(+)M-prime ideal of R(+)M.

2. P is a generalized S-prime ideal of R.

3. P (+)M is a generalized S(+)0-prime ideal of R(+)M.

Proof. (1)⇒(2). Let α,β ∈ R such that αβ ∈ P . Then (α,0)(β,0) ∈ P (+)M, which implies (s,m)(α,0) ∈
P (+)M or (s,m)(b,0) ∈ P (+)M for some (s,m) ∈ S(+)M. This implies that sα ∈ P or sβ ∈ P . Thus P is a
generalized S-prime ideal of R.

(2)⇒(3). Assume that (α,m1)(β,m2) ∈ P (+)M for some (a,m1), (b,m2) ∈ R(+)M. Then ab ∈ P . By hy-
pothesis, there exists an s ∈ S such that sα ∈ P or sβ ∈ P , and thus (s,0)(α,m1) ∈ P (+)M or (s,0)(β,m2) ∈
P (+)M. Hence P (+)M is a generalized S(+)0-prime ideal of R(+)M.

(3)⇒(1). Follows from Remark 2.4 as S(+)0 ⊆ S(+)M.

3 Minimal generalized S-prime ideals

Let R be a commutative ring and S a multiplicative set of R. Recall from [2] (or [7]) that R is called
an S-Noetherian ring if each ideal I of R is S-finite, i.e., there exist an element s ∈ S and a finitely
generated ideal J of R such that sI ⊆ J ⊆ I. We start this section by giving the S-invariant (using the
“generalized S-prime" concept) of the Cohen type theorem for S-Noetherian rings.

Theorem 3.1. Let S be a multiplicative subset of R. Then the following conditions are equivalent.

1. R is S-Noetherian.

2. Every generalized S-prime ideal of R is S-finite.

3. Every prime ideal of R is S-finite.

Proof. (1)⇒ (2) Obvious.
(2)⇒ (3) Assume that every generalized S-prime ideal of R is S-finite. Let P be a prime ideal of R.
Clearly if P ∩ S , ∅, then P is S-principal which implies that P is S-finite. Now, if P ∩ S = ∅, then P is
an S-prime ideal of R; so by hypothesis, P is S-finite.
(3)⇒ (1) Follows from [2, Corollary 5].

Let R be a commutative ring and S a multiplicative subset of R. Following [2], we say that S is
anti-Archimedean if ∩n≥1s

nR ∩ S , ∅ for every s ∈ S. In [8], the authors generalized this notion by
introducing the concept of weakly anti-Archimedean multiplicative set. According to [8], a multi-
plicative set S of a commutative ring R is called weakly anti-Archimedean if for each family (sα)α∈Λ of
elements of S we have

(∩α∈ΛsαR)∩ S , ∅.
Note that every weakly anti-Archimedean multiplicative set is anti-Archimedean. The converse is
not true as was observed in [4, Example 2.7.].
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Lemma 3.2. Let R be a commutative ring, S a weakly anti-Archimedean multiplicative subset of R and
(Pα)α∈Λ be a chain of generalized S-prime ideals of R. Then P = ∩α∈ΛPα is a generalized S-prime ideal of
R.

Proof. Let α,β ∈ R such that αβ ∈ P . We prove that there exists an s ∈ S such that either sα ∈ P or
sβ ∈ P . Since αβ ∈ P , then for each λ ∈ Λ, αβ ∈ Pλ; so there exists an sλ ∈ S such that sλα ∈ Pλ or
sλβ ∈ Pλ since Pλ is a generalized S-prime ideal of R. Now, as S is a weakly multiplicative set, then
(∩λ∈ΛsλR)∩S , ∅. Let s ∈ (∩λ∈ΛsλR)∩S. Then we have, for each λ ∈Λ, αβ ∈ Pλ; so sλα ∈ Pλ or sλβ ∈ Pλ.
Since s ∈ (∩λ∈ΛsλR)∩ S, then we can write s = sλaλ for some aλ ∈ R. Thus

sα = sλaλα ∈ Pλ or sβ = sλaλβ ∈ Pλ.

This shows that P is a generalized S-prime ideal of R.

Let Q be an ideal of R disjoint with S and P a generalized S-prime ideal of R such that Q ⊆ P .
We say that P is minimal over Q if P is minimal in the set of the generalized S-prime ideals of R
containing Q.

Theorem 3.3. Let S be a weakly anti-Archimedean multiplicative subset of a ring R. Then each ideal
of R disjoint with S is contained in a minimal generalized S-prime ideal of R.

Proof. Let Q be an ideal of R and let L be the set of generalized S-prime ideals containing Q. First,
we show that L , ∅. It well-known that for each ideal I of R, there exists a prime ideal of R such that I
⊆ P and P ∩S = ∅.Now, sinceQ is an ideal of R, then there exists a prime ideal P of R such thatQ ⊆ P
and P ∩S = ∅. It is easy to prove that P is a generalized S-prime ideal of R because every prime ideal
disjoint with S is generalized S-prime. This shows that P ∈ L, and thus L , ∅. On the other hand,
the set L is ordered by ” ⊇ ”. Moreover, L is inductive. Indeed, let (Pλ)λ∈Λ be a chain of elements
of L. Put P = ∩λ∈ΛPλ. By Lemma 3.2, P is a generalized S-prime ideal of R. Since for each λ ∈ Λ,
Q ⊆ Pλ, we get Q ⊆ P . Thus P is an upper bound for the chain (Pλ)λ∈Λ. Thus by Zorn’s Lemma L has
a maximal element for ” ⊇ ”. Hence Q is contained in a minimal generalized S-prime ideal of R.

We end this article by recover (using the previous Theorem) the following well-known result on
minimal prime ideals.

Corollary 3.4. Let R be a ring. Then each proper ideal of R is contained in a minimal prime ideal of R.
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