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Abstract. If 3 ≤ n ≤∞, there exists a quasi-local treed domain which has Krull dimension n and is not a valtreed domain.

A consequence is that the class of valtreed domains fits properly between the class of treed domains and the class of going-

down domains. Although the class of treed domains that are not going-down domains is stable under the classical D +M

construction, the class of valtreed domains that are not going-down domains is markedly unstable under that construction.
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1 Introduction

All rings and algebras considered in this note are commutative and unital. Although our applica-
tions are to (commutative integral) domains, the proof of our main result, Theorem 2.1, depends in
part on results on spectral sets due to Hochster [20], with which familiarity is assumed. The proof
of Theorem 2.1 also depends in part on the left topology of a poset (in the sense of [3, Exercice 1,
page 89]). We assume some familiarity with that exercise, although the reader may also find it use-
ful to have access to the final paragraph of the Introduction of [13], where some background on the
left topology and on some associated concepts from [7] is reprised and augmented. For the sake
of completeness and convenience, we will begin Section 2 with a restatement of much of that just-
mentioned paragraph. One of those just-mentioned concepts, which also plays a crucial role in the
proof of Theorem 2.1, is that of an L-spectral set (where, of course, “L" stands for “L(eft topology)").
The definition of that concept and the statement of some of the results about it that will be needed
in the proof of Theorem 2.1 will be recalled either at the start of Section 2 or during the proof of
Theorem 2.1. Because the statement of Theorem 2.1 is somewhat technical, we will give a full state-
ment of that result three paragraphs hence, after providing some additional technical background.
Suffice it to say at this point that the main consequence of Theorem 2.1 is the fact the class of valtreed
domains (which was recently introduced in [9]) fits properly between the class of treed domains and
the class of going-down domains.

Recall from [4], [14] that a domain R is said to be a going-down domain if R ⊆ T satisfies GD for
each domain T containing R as a subring. (We follow [22, page 28] in letting GD denote the going-
down property of ring extensions.) The most familiar examples of going-down domains are domains
of (Krull) dimension at most 1 and Prüfer domains (cf. [4]). It is known [14, Theorem 1] that in
determining whether a domain R is a going-down domain, it suffices to check that GD is satisfied
by each ring extension of the form R ⊆ T where T is a valuation overring of R. (As usual, if R is a
domain with quotient field K , then an overring of R is an R-subalgebra of K ; and a valuation overring
of R is a valuation domain which is an overring of R.) One easy (and well known) consequence of
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the definition of a going-down domain is that the property of being a going-down domain is a local
property of domains (in the sense that a domain R is a going-down domain if and only if RM is a
going-down domain for each maximal ideal M of R). It follows that any valuation domain is a going-
down domain (since each of its localizations is a Prüfer domain). A relevant associated property is
that of a treed domain. Recall from [4] that a ring R is said to be treed if the set Spec(R) (consisting of
all the prime ideals of R) is, when considered as a poset under inclusion, a tree; that is, if no maximal
ideal of R can contain a pair of incomparable prime ideals of R. It follows easily from familiar facts
about the behavior of prime ideals in rings of fractions that the property of being a treed domain is
a local property of domains. It was shown in [4, Theorem 2.2] that any going-down domain is treed.
(A quicker proof of that fact became available by using a subsequent characterization of going-down
domains in [14, Theorem 1].) Recently, it was shown in [9, Corollary 2.8] that the integral closure
of any going-down domain R can be expressed in several interesting (and often equivalent) ways
as an intersection of valuation overrings of R. One such expression is given in condition (g) of [9,
Corollary 2.6]. For the moment, let us simply say that if a domain R is such that each of its maximal
ideals has height at least 2, then R satisfies (∗) if its integral closure R

′
(in a quotient field K of

R) can be expressed as in condition (g) of [9, Corollary 2.8]. Thus, the problem of finding a new
characterization of going-down domains reduces naturally to the following question: can one find
a property, let us call it P here, such that a quasi-local domain (R,M) of dimension at least 2 is a
going-down domain if and only if R satisfies both (∗) and P? That problem was recently solved in [9,
Corollary 2.16], where P was called the property of R being a “valtreed domain". One should note
that [9, Corollary 2.16] is a sharp result, in a sense that is explained in the next two sentences. In
[9, Example 2.11] (see also [9, Proposition 2.10], the first three sentences of the proof of [9, Theorem
2.15] and [18, Corollary 19.7 (2)]), an example was given of a quasi-local two-dimensional domain
R which is not a going-down domain (indeed, it is not even a treed domain) although its integral
closure satisfies condition (g) of [9, Corollary 2.8], along with many of the other above-mentioned
expressions as an intersection of valuation overrings of R; it follows from [9, Corollary 2.16] that R
is not a valtreed domain although R does satisfy (∗). Moreover, an example due to W. J. Lewis, which
was first presented in [15, Example 4.4] with Dr. Lewis’ kind permission, is of a quasi-local two-
dimensional (hence, necessarily valtreed) domain R which is not a going-down domain; it follows
from [9, Corollary 2.16] that R does not satisfy (∗), although R is a valtreed domain. Two paragraphs
hence, we will say more, including the definition of a valtreed domain (from which, it will be clear
why any two-dimensional treed domain is valtreed) and a precise statement of Theorem 2.1. First,
it will be convenient to devote the next paragraph to some notational conventions that have not yet
been explicitly introduced here.

All subrings, inclusions of rings, ring extensions and subalgebras considered here are unital ring
extensions. As usual, if R is a ring, Spec(R) (resp., Max(R)) denotes the set of all prime (resp., max-
imal) ideals of R; any comments of a “dimensional" nature refer to the (classical) Krull dimension,
denoted by dim(R), of an ambient ring R; ⊂ and ⊃ denote proper inclusion and proper containment,
respectively; and |S | denotes the cardinal number of a set S. If R is a domain with quotient field K
and if R is a subring of a field F (that is, if F is a field extension of K), then XF(R) denotes the set of
valuation domains of F containing R (as a subring), and R

′

F denotes the integral closure of R in F; the
set of valuation overrings of R is denoted by X(R) (= XK (R)); and, of course, R

′

K = R
′
. If R, K , F are as

above, with P ∈ Spec(R) and M ∈Max(R) such that P ⊆M, it is useful to consider the set
TF,R,M,P := {W ∈ XF(R) |W is centered on M and

there exists P ∈ Spec(W ) such that P ∩R = P };
(if F = K , the just-displayed set is denoted simply by TR,M,P ). Indeed, a standard result in multiplica-
tive ideal theory [18, Theorem 19.8] states that if R is a domain and Q ∈ Spec(R), then (RQ)

′
= ∩{V ∈

XF(R) | the center of V on R is Q}. (Recall that if R, K , F and Q are as above, with (W,N ) ∈ XF(R),
one says thatW is centered onQ (in R), or equivalently that the center ofW on R isQ, ifN ∩R =Q.) In
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particular, if (R,M) is a quasi-local domain, then R
′

is the intersection of all the valuation overrings
of R that are centered on M. Moreover, we can next explain in detail two items that were mentioned
above. First, a domain R satisfies the property that was called (∗) in the preceding paragraph if and
only if R

′
can be expressed as

∩M (∩P⊂M (∩{W ∈ XF(R) |W ∈ TF,R,M,P })),

where M ranges over the elements of Max(R) and, for each such M, P ranges over the elements of
Spec(R) satisfying 0 ⊂ P ⊂ M. Second, the “TF,R,M,P " notation plays a critical role in the following
definition. Let R, K and F be as above. Then the domain R is said to be an F-valtreed domain if,
for each M ∈ Max(R) and each pair of nonzero prime ideals P1 and P2 of R that are each properly
contained in M, one has that TF,R,M,P1

= TF,R,M,P2
; if F = K , one says “valtreed domain" instead of

“F-valtreed domain". It is obvious that any treed domain of dimension at most 2 is (vacuously) an F-
valtreed domain, regardless of whether the given domain is quasi-local. It was shown in [9, Lemma
2.14 (b)] that if F is any field containing R as a subring, then R is an F-valtreed domain if and only if
R is a valtreed domain. This interesting fact will be needed in the proof of Theorem 2.1, as that proof
will involve a domain T containing a domain R of interest and we will need to consider the quotient
field of that ring T without knowing whether T is an overring of R.

Only two more pieces of information are needed before we can finish motivating the statement
of Theorem 2.1. Part (a) of [9, Lemma 2.14] established that any going-down domain is a valtreed
domain; and part (c) of [9, Lemma 2.14] established that any valtreed domain is a treed domain.
As the above-mentioned example of Lewis is a quasi-local two-dimensional domain (hence, valtreed
domain) which is not a going-down domain, the only thing still missing from a proof of the assertion
in the second sentence of the Abstract of this note is an example of a treed domain which is not
a valtreed domain. That example, in turn, is provided by Theorem 2.1, which states that for each
integer n ≥ 3, there exists a quasi-local treed domain R such that dim(R) = n and R is not a valtreed
domain.

As indicated by the first sentence of the Abstract, the assertion that is established in Theorem 2.1
also holds in case n =∞. That fact is established in Corollary 2.4. While topological studies of spec-
tral sets (aided substantially by an appeal to a realization theorem of Hochster [20]) suffice to give a
proof of Theorem 2.1, the method of proof of Corollary 2.4 is quite different, as it involves a study of
the behavior of the “valtreed domain" property with respect to the classical D +M construction (as
well as an appeal to the finitistic result established in Theorem 2.1). The following two additional
consequences of that study seem especially noteworthy. It is shown in Corollary 2.3 (b) that the class
of valtreed domains that are not going-down domains is remarkably unstable with respect to the
classical D +M construction. (I would go so far as to view that particular instability as being patho-
logical, as it stands in sharp contrast to the fact that the classes of treed domains and of going-down
domains are each preserved and reflected by the classical D +M construction.) That instability is ac-
tually proved as a consequence of Corollary 2.3 (a), a result which gives, i.a., a new characterization
of going-down domains in terms of valtreed D +M constructions.

Theorem 2.1 gives a negative answer to one of the questions that were raised in [9, Remark 2.17
(c)], namely, whether a treed domain must be valtreed. However, we do not yet know the answers
to some other questions that were raised in [9, Remark 2.17]. Remark 2.5 reflects on some possible
extensions of (or alternate approaches to) the results in this note, while also revisiting the questions
and suggestions for future related research that were offered in parts (c)-(f) of [9, Remark 2.17].

Any unexplained material is in standard references, such as [18], [22].
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2 Results

We move at once to our main result. The analogue of Theorem 2.1 for the case where n =∞ will be
proven in Corollary 2.4.

Theorem 2.1. For each integer n ≥ 3, there exists a quasi-local treed domain R such that dim(R) = n
and R is not a valtreed domain.

Proof. We will first prove the assertion in case n = 3, and then we will show how to modify that proof
for any integer n ≥ 4.

We begin by defining a poset (Y ,≤), with Y := {y0, y1, y2, y3}, by imposing the requirements that
y3 < y2 < y0 and y3 < y1 (and |Y | = 4), with no other occurrences of “<". (As usual, a statement of the
form “a < b" means “a ≤ b and a , b".) We claim that Y is a spectral set. This claim means that there
is a ring D such that (Y ,≤) is order-isomorphic to the poset structure (Spec(D),≤D ) that is induced
by the Zariski topology on Spec(D) (where, as in [20, page 53, lines 13-14], if P and Q are prime
ideals of D, P ≤D Q means that Q is in the Zariski-topology closure of {P }). Moreover, we claim that
(Y ,≤) is an L-spectral set, in the sense of [12, page 229]. This second (and stronger) claim means
that Y L, the topological space obtained by imposing the left topology on the poset Y , is a spectral
space. (Recall from [3, Exercice 1, page 89] that an open basis for Y L consists of the sets of the form
v↓ as v runs through the elements of Y , where v↓ := {u ∈ Y | u ≤ v}; and recall from [20, page 43,
second paragraph] that a spectral space is a topological space that is homeomorphic to Spec(E) with
the Zariski topology for some ring E.) It is straightforward to check that the poset structure induced
on Y by the left topology on Y is precisely (Y ,≤). (Because Y is finite, the preceding assertion is
also an immediate consequence of either [7, Main Theorem] or [7, Corollary 2.6].) Consequently,
every L-spectral set is a spectral set. Thus, we need only prove the second claim (as the first claim
will then follow.) To that end, one need only verify the four order-theoretic conditions (α) - (δ) in
the characterization of L-spectral sets in [12, Theorem 2.4]. Since Y is finite, it is evident that the
following three conditions
(α) each nonempty linearly ordered subset of Y has a least upper bound,
(γ) Y has only finitely many maximal elements, and
(δ) for each pair of distinct elements u,v ∈ Y , there exist only finitely many elements of Y which are
maximal in the set of common lower bounds of u and v
all hold in Y . Moreover, checking (β) amounts to the (rather easy) verification that each nonempty
lower-directed subset Z of Y has a greatest lower bound z such that {y ∈ Y | z ≤ y} = {y ∈ Y | w ≤ y for
some w ∈ Z}. In fact, as noted in [12, Remark 2.5 (a)], it is a matter of universal algebra that, after
one has checked the other three conditions, the task of checking (β) can be replaced with checking
that every strictly decreasing sequence in Y stabilizes (and, since Y is finite, it is trivial to check that).
This completes the proof of the above two claims. It will also be useful to record that the following
is a list of all (seven of) the open sets of Y L:

∅,Y , {y0, y2, y3}, {y1, y3}, {y2, y3}, {y3}, and {y1, y2, y3}.

We leave it to the reader to check the just-displayed list by using the open basis {y↓ | y ∈ Y } for Y L.
Next, define a four-element linearly ordered posetX := {x0,x1,x2,x3} by imposing the requirements

that x3 < x2 < x1 < x0. (Since X has a unique maximal element, the eventual treed domain A will be
automatically quasi-local.) By considering the above-mentioned conditions (α)-(δ) in [12, Theorem
2.4], one shows easily that any finite linearly ordered set is an L-spectral set. In particular, X is an
L-spectral set (and hence, by the above comments, also a spectral set). It will be useful to record that
the following is a list of all (five of) the open sets of XL:

∅,X, {x1,x2,x3}, {x2,x3}, and {x3}.
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It is straightforward to check the just-displayed list by using the open basis {x↓ | x ∈ X} for XL.
Next, define the function ϕ : Y → X by ϕ(yi) = xi , for i = 0,1,2,3. Observe that ϕ is surjective and

order-preserving. (We have also arranged that ϕ is not an order-isomorphism. That fact will play an
important role in our proof that the eventual domain A is not valtreed. The reader may have already
perceived how we have arranged the weaker conclusion that the eventual extension of domains A ⊆ B
will not satisfy GD, the point being that although x2 ≤ x1 and ϕ(y1) = x1, there does not exist y ∈ Y
such that y ≤ y1 and ϕ(y) = x2. This single fact captures most of the novelty that distinguishes the
construction here of Y ,X andϕ from the construction of the similarly denoted quantities in the easier
proof in [13, pages 3-5].) One could use the above lists of open sets to check that ϕ is continuous
when viewed as a map Y L → XL (as it is very clear that the inverse image under ϕ of any open set
in XL is an open set in Y L). However, this detail can be avoided by appealing to [12, Lemma 2.6
(a)], which states that any order-preserving map of posets is continuous when these posets are each
equipped with the left topology. Next, recall from [20, page 43] that a map h of spectral spaces is
said to be a spectral map if h is continuous and the inverse image under h of any quasi-compact open
subset of the codomain of h is quasi-compact (and open). Since ϕ is a continuous function between
finite spectral spaces, we can also conclude that ϕ is a spectral map (the point being that the finitude
of X and Y ensures that every subset of X (resp., Y ) is quasi-compact). In short, ϕ : Y L→ XL is both
spectral and surjective.

The above data are made to order for the realization assertion in [20, Theorem 6 (b)]. This result
states that when Spec is viewed as a contravariant functor from the category of commutative rings
(and ring homomorphisms) to the category of spectral spaces (and spectral maps), then Spec is in-
vertible on the (nonfull) subcategory of all spectral spaces and surjective spectral maps. In particular,
one infers the existence of a ring homomorphism f : A→ B and homeomorphisms α : Spec(A)→ X,
β : Spec(B)→ Y , (where Spec(A) and Spec(B) are each endowed with the Zariski topology) such that
α ◦ Spec(f ) = ϕ ◦ β. It follows that Spec(f ) inherits the “surjective" property of ϕ. Moreover, since
the homeomorphisms α, β are necessarily order-isomorphisms, it also follows that Spec(f ) has all
the order-theoretic properties of ϕ. Hence, A is a quasi-local three-dimensional treed ring. (Further-
more, f does not satisfy the “homomorphism version" of the GD property.)

We next reduce to the case of injective f . Indeed, the First Isomorphism Theorem gives the fac-
torization f = j ◦ π, where π : A → A/ker(f ) is the canonical projection and j : A/ker(f ) ↪→ B is
the canonical injection. Note that Spec(π) is a homeomorphism (hence, an order-isomorphism), the
key point being that P ⊇ ker(f ) for each prime ideal P of A. (To see this, take a prime ideal Q of
B such that P = Spec(f )(Q) = f −1(Q) and observe that ker(f ) = f −1({0}) ⊆ f −1(Q). We have now
shown that Spec(π) is a continuous bijection. To conclude that Spec(π) is a homeomorphism, it is
enough to note that a standard homomorphism theorem ensures that Spec(π) is a closed map.) As
Spec(j) = (Spec(π))−1 ◦ Spec(f ), we see that Spec(j) has all the order-theoretic properties of Spec(f )
and, hence, all the order-theoretic properties of ϕ. (In particular, j does not satisfy GD.) By abus de
langage, we henceforth replace f with j, viewed as an inclusion (and thus replace A with A/ker(f )).
Notice also that (either the “old" or the “new") A is a quasi-local three-dimensional treed ring, thanks
to the order-isomorphism α and the construction of X.

Since f does not satisfy GD, we see via [10, Lemma 3.2 (a)] that the injection fred : Ared→ Bred of
associated reduced rings also does not satisfy GD. (Recall that if E is any ring, then Ered := E/

√
E,

where
√
E denotes the set of all nilpotent elements of E. It is well known that applying the Spec

functor to the canonical projection E→ Ered produces a homeomorphism. Of course, fred is defined
by a+

√
A 7→ f (a) +

√
B.) By more abus de langage, we replace f with fred, which is now viewed as an

inclusion. Observe that (the "new" ) A is a quasi-local, three-dimensional treed ring. Moreover, we
have now reduced to the case in which both A and B are reduced rings (that is, rings with no nonzero
nilpotents) each having a unique minimal prime ideal, that is, (integral) domains.

The last three paragraphs were taken, after some light editing, from a proof in [13]. That paper’s
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presentation had aimed only to produce a “spectral construction" of a treed domain that is not a
going-down domain. The domain constructed “spectrally" in [13] was minimal for its purpose, in
the sense that (it was quasi-local and) its dimension was 2. As all two-dimensional treed domains
are valtreed, we have needed to devise a more complicated construction here. That is why our poset
X needed to have cardinality (at least) 4 (and our poset Y needed to have at least that cardinality if
we were to appeal to [20, Theorem 6 (b)], as that result requires ϕ to be surjective). At this point,
in order to next show that/why the present (quasi-local, three-dimensional, treed) domain A is not a
valtreed domain, we must (once again) deviate from the proofs in [13].

Thanks to the above instances of abus de langage and the above homeomorphisms α and β, we have
domains A ⊂ B, such that Spec(A) = {0A, P ,Q,M} and Spec(B) = {0B,P ,N1,N2}, with the only proper
inclusions in these prime spectra being given by 0A ⊂ P ⊂ Q ⊂ M, 0B ⊂ P ⊂ N1, and 0B ⊂ N2. (In
detail, α and β effect the following correspondences: 0A ↔ x3, P ↔ x2, Q ↔ x1, M ↔ x0, 0B ↔ y3,
P ↔ y2, N1↔ y0, and N2↔ y1.) In addition, the element-wise definition of ϕ ensures that (of course,
0B ∩A = 0A, as well as)

P ∩A = P , N2 ∩A =Q and N1 ∩A =M.

In particular, in Spec(B), we have that P is “adjacent to" N1 (in the sense that there is no prime ideal
of B contained strictly between P and N1), and also that 0B is adjacent to both P and N2.

Next, choose any valuation overring (W,N ) of B whose center on B is P (cf. [18, Theorem 19.6]).
Since P ⊂ N1, an application of [18, Corollary 19.7 (2)] gives that there exists a valuation overring
(V ,N) of B such that V ⊂W and N∩B = N1. Let N∗ denote the intersection of all the prime ideals of
V that intersect B in N1. Since all valuation domains are quasi-local treed rings, N∗ is an intersection
of a (nonempty) chain of prime ideals of V . It follows that N∗ is a prime ideal of V [22, Theorem
9] and that N∗ ∩ B = N1. Note that N is also a prime ideal of V . Moreover, N ⊂ N∗. Indeed, this
is the only possibility, in view of the facts that N and N∗ are comparable under inclusion, with
N ∩B = P ⊂N1 = N∗ ∩B.

Put V ∗ := VN∗ . We have thatN ⊂N∗ as prime ideals of V ∗. We claim that any prime ideal I of V ∗ that
is contained strictly between N and N∗ must intersect B in P . To see this, it suffices to observe (via
standard propeties of valuation domains) that I is a prime ideal of V , use the definition of N∗, and
also use the fact thatN∩B = P andN1 = N∗∩B are adjacent in Spec(B). Consequently, since the prime
ideals of (the valuation domain) V ∗ are linearly ordered by inclusion, it follows that, besidesN1 and P ,
any other element in the image of the canonical contraction map Spec(V ∗)→ Spec(B) must be a subset
of P . By the functoriality of the Spec functor, we can now conclude that the only possible elements in
the image of the canonical contraction map Spec(V ∗)→ Spec(A) are N∗∩A = (N∗∩B)∩A =N1∩A =M,
N ∩A = (N ∩ B)∩A = P ∩A = P , and some other elements each of which is a subset of P ∩A = P .
Notice that Q is not in this list (since P ⊂ Q ⊂M). Letting F denote the quotient field of B, we have
just proven that V ∗ < TF,A,M,Q. On the other hand, we do have that V ∗ ∈ TF,A,M,P (since N∗∩A =M and
N ∩A = P ).

Although this paragraph is not required by the demands of logic, it will show that an interesting
set is nonempty. Observe that (W,N ) is a valuation ring of F whose center on B is P . Hence, the
center of W on A is P ∩A = P . Since P ⊂ Q ⊂ M in Spec(A), an application of [18, Corollary 19.7
(2)] gives that there exists a valuation ring W of F such that W ⊂W , and some chain of three prime
ideals of W (with smallest element N ) contracts to the chain P ⊂ Q ⊂M in Spec(A). It follows that
the center of W on A is M. We can now conclude that W ∈ TF,A,M,Q. In particular, TF,A,M,Q , ∅.

We saw two paragraphs ago that V ∗ ∈ TF,A,M,P \ TF,A,M,Q. Thus, P and Q are distinct nonzero
prime ideals of the domain A, each of which is a subset of a (the!) maximal ideal M of A, such that
TF,A,M,P , TF,A,M,Q. Therefore, A is not an F-valtreed domain (by the very definition of an F-valtreed
domain, which was recalled in the Introduction). Hence, by [9, Lemma 2.14 (b)], the (quasi-local
three-dimensional treed) domain A is not a valtreed domain. Taking R := A thus completes the proof
for the case n = 3.
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Next, we sketch how to modify the above proof in order to handle the case of an integer n ≥ 4.
Begin by adjoining a set of n− 3 (new) elements y−j to Y (for j = 1,2, . . . , n− 3), thereby creating a set
Yn having Y as a sub-poset, with these new elements satisfying only the following instances of “<":

y3 < y−(n−3) < . . . < y−2 < y−1 < y2.

Next, similarly adjoin a set of n − 3 (new) elements x−j to X (for j = 1,2, . . . , n − 3), thereby creating
a set Xn having X as a sub-poset, with these new elements satisfying only the following instances of
“<":

x3 < x−(n−3) < . . . < x−2 < x−1 < x2.

Next, define a function ϕn : Yn → Xn which extends ϕ by also requiring that ϕn(y−j ) = x−j for all
j = 1,2, . . . , n− 3.

The above proofs from the case n = 3 carry over with only minor modifications for the present
context where n ≥ 4. One thus gets a ring extension of domains An ⊂ Bn where An (resp., Bn) differs
in its prime spectrum from that of A (resp., B) only by having adjoined a chain of n− 3 prime ideals

P−(n−3) ⊂ . . . ⊂ P−2 ⊂ P−1 (resp., P−(n−3) ⊂ . . . ⊂ P−2 ⊂ P−1)

contained strictly between 0A and P (resp., strictly between 0B and P ) such that P−j ∩An = P−j for
all j such that 1 ≤ j ≤ n − 3. Apart from minor modifications to the argumentation that applied to
the earlier case (where n = 3), the main reason that the earlier proof also carries over to the present
context is that we have arranged that whenever 1 ≤ j ≤ n − 3, the newly adjoined prime ideal P−j
satisfies P−j ∩An ⊂ P ⊂Q, so that Q is not lain over by any of the “new" prime ideals P−j .

The upshot of the above adjunctions and reasoning in the last two paragraphs (with Yn, Xn and
ϕn having respectively replaced/extended Y , X and ϕ from the argument that had treated the case
n = 3) is that the domain An is quasi-local, treed and n-dimensional but is not a valtreed domain.
The proof is complete.

As explained in the Introduction, when Theorem 2.1 is combined with [4, Theorem 2.2], an ex-
ample of Lewis [15, Example 4.4] and [9, Lemma 2.14 (a), (c)], one gets that the class of valtreed
domains fits strictly between the class of treed domains and the class of going-down domains. We
will use the classical D +M construction (which is recalled in the next paragraph) to show that this
“fit" is somewhat uncomfortable, in the sense that it does not exhibit some stability properties that
may have been expected on the basis of some earlier results about treed domains and going-down
domains.

It is well known that if K is a field and 1 ≤ m ≤ ∞, then there exists a valuation domain (V ,M)
of the form V = K +M such that dim(V ) = m (cf. the proofs of [18, Theorem 18.3 and Corollary
18.5]). Valuation domains having this form K +M, with M , 0, have appeared often in the literature
since the mid-1930s, especially in the construction of (counter)examples having the form D +M for
suitable proper subrings D of K . For instance, I. J. Papick and the author proved in [14, Corollary]
that a domain D is a going-down domain if every (equivalently, some) corresponding D +M (arising
as above from a valuation domain K +M) is a going-down domain. It is clear from well known facts
about the prime ideals of this “classical D +M construction" (cf. [18, Exercise 12 (1)-(2), page 202])
that a domain D is treed if and only if every (equivalently, some) corresponding D +M is a treed
domain. It follows that a domain D is a treed domain but not a going-down domain if and only if
every (equivalently, some) corresponding D +M is a treed domain but not a going-down domain.
However, Corollary 2.3 (b) will establish that the class of valtreed domains that are not going-down
domains is spectacularly unstable under the classical D +M construction.

The main goal of the next several results is to study when D and/or D +M are/is valtreed. Given
their announced purpose, these results will not need to address the situation whereD is a field, say k.
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Indeed, when (V ,M) is a valuation domain of the form V = K +M where K is a field and D = k ⊆ K is
a field extension, then D +M = k +M is a pseudo-valuation domain by [19, Example 2.1] and, hence,
a going-down domain: see [6, page 560 and Proposition 2.1]. As any going-down domain is valtreed
[9, Lemma 2.14 (a)] (hence, treed, by [9, Lemma 2.14 (b)]) and any field is (vacuously) valtreed, the
subcase of the classicalD+M construction whereD is a field cannot be expected to shed new light on
the relations among the classes of treed, valtreed or going-down domains. Our examination of these
relations via the classical D +M construction begins with some fundamental technical information
developed in parts (a) and (b) of Proposition 2.2, while the process of inferring results from that
information begins in Proposition 2.2 (c)-(d).

Proposition 2.2. Let D be a domain, with quotient field k ⊃ D, and let k ⊆ K be a field extension. Let
(V ,M) be a valuation domain of the form V = K+M withM , 0. Let F be the quotient field of V . Consider
the domain R :=D+M. LetM∈Max(R). Necessarily,M = M+M for some (uniquely determined nonzero)
M ∈Max(D). Let P be a nonzero prime ideal of R such that P ⊂M. Necessarily, either (i) 0 ⊂ P ⊆M with
P ∈ Spec(V ) or (ii) P = P+M for some (uniquely determined) P ∈ Spec(D) such that P ⊂M. Then:

(a) In case (i),
TR,M,P = TR,M,M = TK,D,M,M +M (= {E +M | E ∈ TK,D,M,M}).

(b) In case (ii),
TR,M,P = TK,D,M,P +M (= {W +M | W ∈ TK,D,M,P}).

(c) If R is a valtreed domain, then D is a valtreed domain.
(d) If D is a treed domain but not a valtreed domain, then R is a treed domain but not a valtreed domain.

Proof. This paragraph will serve to justify the two “Necessarily" comments in the statement of this
result. The basic facts about the prime spectrum of the classicalD+M construction, as in [18, Exercise
12, (1)-(3), page 202], ensure that each prime ideal of R is comparable withM (under inclusion); that
the prime ideals of R which are contained in M are precisely the prime ideals of V ; and that each
prime (resp., maximal) ideal of R that contains M is uniquely expressible in the form P+M for some
prime (resp., maximal) ideal P of D. Of course, if such P is in Max(D), then P , 0 since we have
assumed that D is not a field.

We claim that if (W,N ) ∈ X(R) (= XF(R)) is such that N ∩R =M, then W does not contain V as
a subset. Deny. Then W = VQ for some Q ∈ Spec(V ) (by [22, Theorem 65], since V is a valuation
domain and R has the same quotient field as V ), whence Q ⊆N . Also since V is a valuation domain,
it follows that N =QVQ =Q. Hence,

M+M =M =N ∩R =Q∩R = (Q∩V )∩R ⊆M ∩R =M ⊂M+M

(since M , 0). This (desired) contradiction proves the above claim.
Next, we combine the above claim, the catalog of overrings of any classical D +M construction in

[2, Theorem 3.1], and the characterization in [18, Exercise 13 (2), page 203] of the classical D +M
constructions that are valuation domains. The upshot is that if (W,N ) ∈ X(R) satisfies N ∩R =M,
then W = E +M for some (uniquely determined) ring E ∈ XK (D) \ {K}, that is, for some (uniquely
determined) valuation domain E of K such that D ⊆ E ⊂ K .

(a) Assume that 0 ⊂ P ⊆M with P ∈ Spec(V ). It is clear from the definitions that TR,M,P ⊆ TR,M,M.
We will next prove the reverse inclusion; that is, assuming that (W,N ) ∈ TR,M,M, we will show that
(W,N ) ∈ TR,M,P . By assumption, W ∈ X(R) and N ∩R =M; our task is to find a prime ideal of W that
meets R in P . By the above comments, W can be (uniquely) expressed as E +M for some valuation
domain E of K such that D ⊆ E ⊂ K ; and P ∈ Spec(E +M) = Spec(W ). Thus, P = P ∩R is in the image
of the canonical contraction map Spec(W )→ Spec(R). In particular, we have shown that P is a prime
ideal of W that meets R in P . This completes the proof of the first equality asserted in (a).

Next, consider any (W,N ) where W ∈ TR,M,M is expressed as E +M as above. We will show that
E ∈ TK,D,M,M. As we already know that E ∈ XK (D), it remains only to prove that the (unique) maximal
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ideal of E meets D in M. Let I denote the maximal ideal of E. Then I +M is the maximal ideal of
E +M and we know that (I +M)∩R =M. Since

(I ∩D) +M = (I +M)∩ (D +M) = (I +M)∩R =M = M+M,

we get I ∩D = M, as desired.
The preceding paragraph established that TR,M,M ⊆ TK,D,M,M+M. To complete the proof of (a), one

need only prove the reverse inclusion. To that end, consider any (E,I) ∈ TK,D,M,M, and putW := E+M.
As E ∈ XK (D), we have W ∈ X(R); also, I ∩D = M. Moreover, the unique maximal ideal of W is I +M,
and

(I +M)∩R = (I +M)∩ (D +M) = (I ∩D) +M = M+M =M.

Thus, W ∈ TR,M,M. This completes the proof of (a).
(b) Assume that P = P+M for some (uniquely determined) P ∈ Spec(D) such that P ⊂M. Suppose

first that (W,N ) ∈ TR,M,P . Then W ∈ X(R), N ∩R =M, and some prime ideal J of W satisfies J ⊆M
and J ∩ R = P . By some of the discussion in the proof of (a) (including the claim that was proved
there), W = E +M for some (uniquely determined) valuation domain (E,I) of K such that D ⊆ E ⊂ K .
We claim that E ∈ TK,D,M,P. Since N = I +M, we have

(I ∩D) +M = (I +M)∩ (D +M) =N ∩R =M = M+M,

and so I∩D = M. To prove the above claim, it remains only to find a prime ideal of E that is contained
in M and meets D in P. As J ⊇ J ∩R = P = P+M for some (uniquely determined) P ∈ Spec(D) such
that P ⊂M, we have J ⊇M. Thus, J = Q+M for some prime ideal Q of E. Then

(Q∩D) +M = (Q+M)∩R = J ∩R = P = P+M,

whence Q∩D = P. Since Q+M = J ⊆M = M+M, we get that Q ⊆M. Hence, Q is the prime ideal
of E that we had sought. This completes the proof of the above claim. We have now proven half of
the assertion in (b).

It remains to prove that if (E,I) ∈ TK,D,M,P, then E +M ∈ TR,M,P . As E ∈ XK (D), we get that W :=
E +M ∈ X(R). By hypothesis, I ∩D = M, and so the maximal ideal of W , namely N := I +M, satisfies

N ∩R = (I +M)∩ (D +M) = (I ∩D) +M = M+M =M.

Also by hypothesis, some prime ideal Q of E satisfies Q∩D = P. Consider J := Q+M ∈ Spec(W ). We
have

J ∩R = (Q+M)∩ (D +M) = (Q∩D) +M = P+M = P .

We have shown that W ∈ TR,M,P . This completes the proof of (b).
(c) We will prove the contrapositive of the assertion; that is, we will assume that D is not valtreed

and we will then prove that R is not valtreed. By [9, Lemma 2.14 (b)], the assumption ensures (in
fact, is equivalent to) D not being a K-valtreed domain. Therefore, there exist a (necessarily nonzero)
maximal ideal M ofD and distinct nonzero prime ideals, P1 and P2, (ofD) both of which are properly
contained in M, such that TK,D,M,P1

, TK,D,M,P2
. For i ∈ {1,2}, consider

Pi := Pi +M ∈ Spec(D +M) = Spec(R).

Note that each Pi is nonzero and is properly contained in the maximal ideal M +M =M of R; also
note that P1 , P2. So, to complete the proof, it will be enough to show that TR,M,P1

, TR,M,P2
. By (b),

this is equivalent to showing that

TK,D,M,P1
+M , TK,D,M,P2

+M.
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As that is, in turn, equivalent to (showing that) TK,D,M,P1
, TK,D,M,P2

, the proof of (c) is complete.
(d) It is well known that D is treed if and only if D +M (= R) is treed. The conclusion that R is not

valtreed follows from the assumption that D is not valtreed (by the contrapositive of (c)). The proof
is complete.

The “descent" result in Proposition 2.2 (c) leads naturally to the question of whether there is a
corresponding “ascent" result, that is, whether the converse of Proposition 2.2 (c) holds in general. A
casual glance may suggest that the proof of Proposition 2.2 (c) could be reversed. However, that is,
in fact, decidedly not the case: see Corollary 2.3 (b) below.

Corollary 2.3 (a) gives our most important application of Proposition 2.2. On the one hand, the
equivalence (3)⇔ (1) in Corollary 2.3 (a) shows how the “valtreed domain" concept can be used to
give a new characterization of going-down domains. That observation stands in some contrast to the
fact that a valtreed domain need not be a going-down domain. (As explained in the second paragraph
of the Introduction, the above-mentioned example of Lewis is a valtreed domain but not a going-
down domain.) On the other hand, Corollary 2.3 (a) immediately implies Corollary 2.3 (b), a result
that reveals a surprisingly fragility within the class of valtreed domains. More specifically, while
we saw in Proposition 2.2 (d) that the class of treed domains that are not valtreed domains is stable
under the classical D +M construction, Corollary 2.3 (b) shows that the class of valtreed domains
that are not going-down domains is as unstable as possible under the classical D +M operation, in
the sense that if D is any member of that class, then D +M is not a member of that class!

Corollary 2.3. Let D be a domain, with quotient field k, and let k ⊆ K be a field extension. Suppose also
that D ⊂ K . Let (V ,M) be a valuation domain of the form V = K +M with M , 0. Then:

(a) The following three conditions are equivalent:
(1) D +M is a valtreed domain;
(2) D +M is a going-down domain;
(3) D is a going-down domain.

(b) If D is a valtreed domain but not a going-down domain, then D +M is not a valtreed domain.

Proof. It will be convenient to let R denote the domain D +M.
(a): (3)⇔ (2) by [14, Corollary]; and (2)⇒ (1) since any going-down domain is a valtreed domain

[9, Lemma 2.14 (a)]. Therefore, it will suffice to show that (1)⇒ (3).
Let us suppose, then, that R (= D + M) is a valtreed domain; our task is to prove that D is a

going-down domain. Without loss of generality, dim(D) ≥ 2. By the characterization of going-down
domains via condition (4) in [9, Theorem 2.6], this task can be reformulated as follows: to show that
for eachM∈Max(R) and each P ∈ Spec(R) such that 0 ⊂ P ⊂M, TR,M,P = TR,M,M. (Note that some of
the notation from that cited result has been harmlessly changed here in order to be more suggestive
of the notation that was used above in Proposition 2.2; note also that the field F that plays a role in
the just-cited condition (4) is being taken here to be the quotient field of R, that is, the quotient field
of V .) As it is trivial that TR,M,P ⊆ TR,M,M, it will suffice to prove the reverse inclusion.

As recalled in the first paragraph of the proof of Proposition 2.2,M can be (uniquely) expressed
as M+M with M ∈Max(D); and either (j) P is a prime ideal of V (and hence P ⊆M) or (jj) P can be
(uniquely) expressed as P+M with P ∈ Spec(D) such that 0 ⊂ P ⊂M. In case (j), our task of showing
that TR,M,M ⊆ TR,M,P is dispatched immediately by appealing to the first assertion in Proposition 2.2
(a). So, we are left to address case (jj).

In case (jj), P = P +M, with 0 ⊂ P ⊂ M in Spec(D). Then, by appealing to parts (a) and (b) of
Proposition 2.2, we can reformulate the task of showing that TR,M,M ⊆ TR,M,P as being the task of
showing that

TK,D,M,M +M ⊆ TK,D,M,P +M.
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Observe that M and P are nonzero prime ideals of R which are each properly contained in the maxi-
mal idealM of R. Hence, it follows from the assumption that R is a valtreed domain that

TR,M,M = TR,M,P .

The just-displayed equality can be reformulated, by applying Proposition 2.2 (b) twice, as

TK,D,M,0 +M = TK,D,M,P +M.

Note that TK,D,M,0 = {(W,N ) ∈ XK (D) | N ∩D = M} = TK,D,M,M. Therefore, the last display can be
rewritten as

TK,D,M,M +M = TK,D,M,P +M.

Replacing the equals sign “=" in the last display with “⊆" establishes an inclusion which we saw
above would be (and, hence, now is) enough to complete the proof of (a).

(b) Of course, (b) is immediate from (a). The proof is complete.

Note that the conclusion in Proposition 2.3 (b) would hold even without the assumption that D is
a valtreed domain. (We expect that many readers would have found the addition of that assumption
to be somewhat natural at that point, in view of Proposition 2.2 (d).) The above formulation of
Proposition 2.3 (b) was chosen in order to stand in contrast to the formulation of Proposition 2.2 (d).

As promised at the opening of this section, we can now give the infinitistic counterpart of Theorem
2.1.

Corollary 2.4. There exists a quasi-local treed domain R such that dim(R) = ∞ and R is not a valtreed
domain.

Proof. Using the first part of the proof of Theorem 2.1, choose a quasi-local treed domain D such
that dim(D) = 3 and D is not a valtreed domain. Let K be any field containing D as a subring. (For
instance, take K to be the quotient field of D.) Take (V ,M) to be any infinite-dimensional valuation
domain of the form V = K +M. Then R :=D+M has the asserted properties. Indeed, [18, Exercise 12
(4), page 203] ensures that dim(R) = dim(D)+dim(V ) = 3+∞ (=∞); R inherits the “quasi-local treed
domain" property from D; and R is not valtreed, by Proposition 2.2 (c). The proof is complete.

The penultimate paragraph of the Introduction has already explained the several purposes of our
final remark.

Remark 2.5. (a) The use of the classical D +M construction in the proof of Corollary 2.4 suggests an
alternate way to finish the proof of Theorem 2.1 for the case where 4 ≤ n <∞. To wit: let D denote
the three-dimensional treed domain which is not a valtreed domain that was found in the first part
of the proof of Theorem 2.1. Next, take (V ,M) to be any (n−3)-dimensional valuation domain of the
form V = K +M, where K is any field containing D as a subring. Then, by reasoning as in the proof
of Corollary 2.4, we get that R :=D+M is an n-dimensional treed domain but not a valtreed domain.

While the proof in the preceding paragraph lessened the amount of topological reasoning that
would be needed in an alternate proof of Theorem 2.1, note that we would have needed to delay the
presentation of this alternate proof until we had proven Proposition 2.2 (since the alternate proof’s
assertion that D +M is not valtreed depended on Proposition 2.2 (c)). For the purposes of presenting
the results in this note to a class or a seminar, that sort of delay may not be inappropriate, as the
proof of the case n = 3 of Theorem 2.1 suffices to establish the titular assertion of this note.

(b) Let us next consider a couple of other possible approaches to potential proofs of Corollary
2.4. For the first of these, we begin by recalling that the case where 4 ≤ n < ∞ had been proved in
Theorem 2.1 with the use of suitable sequences

y3 < y−(n−3) < . . . < y−2 < y−1 < y2 and
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x3 < x−(n−3) < . . . < x−2 < x−1 < x2.

In the spirit of that proof, it would be natural to try to (further) enlarge the sets Y and X by inserting
a strictly decreasing (infinite) sequence y−1 > y−2 > . . . (resp., x−1 > x−2 > . . . ) strictly between y3
and y2 (resp., strictly between x3 and x2), with y−1 adjacent to y2 (resp., x−1 adjacent to x2) but no
element of the enlarged poset Y∞ (resp., X∞) adjacent to y3 (resp., x3). There may be topological or
order-theoretic impediments to such an approach to the case n = ∞. To wit: neither Y∞ nor X∞ is
an L-spectral set, as each of these posets fails to satisfy condition (β) from [12, Theorem 2.4], the
point being that Y∞ and X∞ each contain a strictly decreasing infinite sequence (cf. [12, Remark 2.5
(a)]). Each of the sets Y∞ and X∞ can be shown to be a spectral set, with their above orderings being
induced by what Lewis and J. Ohm dubbed the “C(m) topology" in [21, page 824]: see [21, Lemma
3.1 and Theorem 3.2]. Interested readers wishing to handle the case n =∞ by modifying the method
of proof of Theorem 2.1 are advised to begin by discerning all the differences (which must exist)
between the C(m) topology and the left topology on Y∞ and X∞.

In another vein, I wish to point out that it is perhaps not surprising that certain familiar methods
that deal with finite sets of data may not easily adapt to contexts involving infinite sequences. For
instance, as evidenced by the calculations in papers such as [24] and [11], the spectral nuances of
iterating various inverse limits can be surprisingly intricate.

Lastly, let us consider whether a construction of A. M. S. Doering and Y. Lequain in [16, Example
D] could be used to prove Corollary 2.4. That example constructed an infinite-dimensional quasi-
local domain (say, let us call it (E,N ) here) that was a subring of a one-dimensional valuation domain
(let us call it (H,N ) here) such that the center of H on E is N (that is, such that N ∩ E = N ). Some
readers might still then be tempted to try to finish an analysis of the case n =∞ by using this data set
and modifying the reasoning in the proof of Theorem 2.1. However, I doubt that one could use the
data from [16, Example D] in this way, as it seems likely from the construction in [16, Example D]
of the infinite-dimensional quasi-local domain (which we have called E) that E is not treed (cf. [22,
Theorem 144]).

In yet another vein, I would like to raise the question whether gluing methods in the spirit of [16,
Example D] could be used to give an (another) alternate proof of at least some of Theorem 2.1.

(c) For more than 40 years, there have been many reasons for researchers to study certain kinds of
pullbacks that are more general than the classical D +M construction. I would advise anyone with
an interest in the possibility of generalizing Proposition 2.2 and Corollary 2.3 to the context of such
more general pullbacks to peruse [17]. As that work gave a complete topological and order-theoretic
description of the prime spectrum of a pullback (see [17, Theorem 1.4] and its consequences), I sug-
gest that the first order of such a program should be to find a pullback-theoretic generalization of the
result that we cited from [2] that would perhaps be strong enough to ensure that each relevant ring
is comparable under inclusion with the analogue of K +M. With such a result in hand, the desired
generalization of Proposition 2.2 would (probably) easily ensue. I am not aware of any interesting ex-
amples that could be constructed via such information but could not be constructed via the classical
D +M construction.

(d) We have often had occasion to mention the example of Lewis that was presented in [15, Exam-
ple 4.4]. For a somewhat more elaborate example, consider the ring constructed in [8, Example 2.3].
That ring is a quasi-local two-dimensional treed domain (hence, a valtreed domain) which is not a
going-down domain and which has the property (notably lacking in Lewis’ example) that each of its
overrings is a treed domain. It would be interesting to find other examples, or a characterization, of
domains having these properties exhibited by the domain that was constructed in [8, Example 2.3].

(e) In part (c) of [9, Remark 2.17], we raised the question of whether a treed domain must be
a valtreed domain. Theorem 2.1 and Corollary 2.4 have completely answered that question in the
negative. Accordingly, it seems appropriate to reiterate the suggestion from [9, Remark 2.17 (c)]
to develop some partial converses of [9, Lemma 2.14 (c)]. In particular, it may be useful, for some
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applications/contexts, to devise a property (]) such that valtreed domains are precisely the treed
domains that satisfy (]).

As very little time has passed since I wrote [9], very few people have even had an opportunity
to read that paper yet. So, apart from what has been presented in this paper, I am unaware of any
(other) updates that can be reported in regard to the questions that were raised in [9]. On re-reading
the suggestions for future research that were made in parts (d)-(f) of [9, Remark 2.17], I continue to
find all of them to be pertinent and timely, and so I would (continue to) direct interested readers to
those comments for specific details, references, etc.

I will close with the following two paragraphs. The first of these is brief and asks only one question
of the reader. The final paragraph suggests what would likely be a deeper research program.

To persons who have read [9, Remark 2.17 (c)-(f)] and all of Remark 2.5 (e) to this point: I would
ask you to ponder whether the results in this note and the above comments here in (e) have affected
the level of urgency that you attribute to the suggestions from [9, Remark 4.17 (c)-(f)].

As explained in the Introduction, the essential new piece in a characterization of going-down
domains was achieved in [9, Corollary 2.16], where it was shown that a quasi-local domain (R,M)
of dimension at least 2 is a going-down domain if and only if R is a valtreed domain that satisfies
condition (g) of [9, Corollary 2.8]. (That condition stipulated that R

′
is expressible as the intersection

of a certain set of valuation overrings of R.) When one considers the combined effect of [9, Corollary
2.16] and the present work, perhaps the deepest question that arises is the following. Can one replace
“valtreed" with “treed" in the above statement of [9, Corollary 2.16]? If one were able to show that
the answer to this question is negative by modifying the proof of Theorem 2.1 (which included an
appeal to a realization theorem of Hochster [20, Theorem 6 (b)]), it seems to me that one would
also have succeeded in extending the explicit results in [20] in a poset-theoretic way that realizes
ring extensions that are integral closures of other ring extensions. I would expect that any such
result on integrality which would have been obtained via the methods of category theory would be
of fundamental interest to commutative ring theorists. On the other hand, if one were able to show
that the answer to the above question is positive, it seems to me that one would likely also have
developed new interesting results connecting valuation domains and integral closures. Perhaps it
is not unrealistic to hope that any resolution of the above question could then be used to settle the
questions about the possible ascent of the “going-down domain" property under integral closures
that were raised in [5].
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