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Abstract. All rings considered are commutative. Recently, we introduced the notions of weakly IN modules and strongly

CS modules in [9]. In this article, we continue the study of these two properties, providing new characterizations and

results on the subject. In addition, we introduce and investigate modules and rings satisfying a stronger property than

that of being weakly IN.
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1 Introduction

Throughout this article, all rings considered are assumed to be commutative rings with an identity
and R denotes such a ring. All modules are unital. For any ring R, we denote by Spec(R), Max(R) and
Min(R) the set of all prime ideals of R, the set of all maximal ideals of R and the set of all minimal
prime ideals of R, respectively. We write J(R) for the Jacobson radical of R and the nilradical of R
(i.e. the set of nilpotent elements of R) is denoted by Nil(R). Let M be an R-module and let x ∈M.
By AnnR(x) and AnnR(M) we denote the annihilator of x and M, respectively; i.e. AnnR(x) = {r ∈ R |
rx = 0} and AnnR(M) = {r ∈ R | rM = 0}. The notations N ⊆M, N ≤M, or N ⊆ess M mean that N is
a subset of M, N is a submodule of M, or N is an essential submodule of M, respectively. By Z we
denote the ring of integer numbers.

In this article, we continue the study of weakly IN modules and strongly CS modules, providing
new results on the subject. Recall that a module M is called weakly IN if for any submodules N and
L of M with N ∩L = 0, AnnR(N )+ AnnR(L) = R. On the other hand, a module M is said to be strongly
CS if every submodule N of M is essential in a direct summand K having the form K = eM for some
e2 = e ∈ R. It was shown in [9, Theorem 2.8] that every strongly CS module is weakly IN. In addition,
we introduce and investigate a stronger form of being weakly IN which will be called the s-weakly
IN property (SWIN). A moduleM is said to have the SWIN if for any family {Ni | i ∈ I} of submodules
of M with ∩i∈INi = 0,

∑
i∈I AnnR(Ni) = R.

In Section 2, we begin by providing a new characterization of weakly IN modules (Proposition
2.4). Then we characterize weakly IN (and strongly CS) modules having finite uniform dimension
(Proposition 2.5 and Corollary 2.6). In Theorem 2.8, we prove that a module M has the SWIN if and
only if M is weakly IN and finitely embedded.
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In Section 3, we characterize when a direct sum of weakly IN (strongly CS) modules is again
weakly IN (strongly CS) (see Theorem 3.2 and Proposition 3.3). Also, we prove an analogous result
for modules having the SWIN (Proposition 3.6).

The aim of Section 4 is to investigate when a semisimple module is weakly IN (or strongly CS or
has the SWIN). Among other results, we prove in Proposition 4.6 that for the R-moduleM = ⊕i∈IR/mi

where Max(R) = {mi | i ∈ I}, M is weakly IN if and only if R is semilocal and M is strongly CS if and
only if R is semiperfect.

According to [18], an R-module M is called strongly Kasch if every simple R-module can be em-
bedded in M. In Section 5, we study weakly IN and strongly CS modules which are strongly Kasch.
For example, we prove in Corollary 5.9 that a ring R is semilocal (resp. semiperfect) if and only if R
has a weakly IN (resp. strongly CS) strongly Kasch R-module.

We conclude the paper by characterizing when a trivial extension has the SWIN (Theorem 2.12).

2 Modules having finite uniform dimension

The notions of weakly IN modules and strongly CS modules were introduced by the authors in [9]
and they are defined as follows:

Definition 2.1. Let M be and R-module.

(i) M is called weakly IN (for Ikeda-Nakayama) if for any submodulesN and L ofM withN∩L = 0,
there exists r ∈ R such that r ∈ AnnR(N ) and 1− r ∈ AnnR(L), that is, AnnR(N ) + AnnR(L) = R.

(ii) M is called strongly CS if for any submoduleN ofM, there exists e2 = e ∈ R such thatN ⊆ess eM.

Recall that a ring R is called CS if every ideal of R is essential in a direct summand of R. It is
clear that R is CS if and only if R, viewed as an R-module, is strongly CS. Moreover, it is shown in [7,
Theorem 6] that a ring R is CS if and only if R is a weakly IN R-module. In the following two results
we provide some characterizations of weakly IN modules and strongly CS modules. They will be
useful later. The first one is taken from [9, Theorem 2.8].

Theorem 2.2. Let R be a ring and let M be a nonzero R-module. Then the following are equivalent:

(i) M is a strongly CS R-module;

(ii) For any submodules N and L of M with N ∩ L = 0, there exists an idempotent e ∈ R such that
e ∈ AnnR(N ) and 1− e ∈ AnnR(L);

(iii) M is a weakly IN R-module and idempotents lift modulo AnnR(M).

Theorem 2.3. Let R be a ring and let M be a nonzero R-module. Then the following are equivalent:

(i) M is a weakly IN R-module;

(ii) M is a CS R-module and for any direct summand N of M, there exists r ∈ R such that N = rM
and r − r2 ∈ AnnR(M);

(iii) For any submodule N of M, there exists r ∈ R such that N ⊆ess rM and r − r2 ∈ AnnR(M);

(iv) M is strongly CS as R/AnnR(M)-module;

(v) For any submodules N and L of M with N ∩ L = 0, there exists r ∈ R such that r ∈ AnnR(N ),
1− r ∈ AnnR(L) and r − r2 ∈ AnnR(M).
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Proof. (i)⇔ (ii)⇔ (iii)⇔ (iv) follow from [9, Proposition 2.6].
(iv)⇒ (v) Use Theorem 2.2((i)⇒ (ii)).
(v)⇒ (i) This follows from the definition of a weakly IN module.

The following result is a generalization of Theorem 2.3((i)⇔ (v)).

Proposition 2.4. Let R be a ring and let M be a nonzero R-module. Then the following are equivalent:

(i) M is a weakly IN R-module;

(ii) For any submodules N1, . . . , Nn (n ≥ 2) of M with N1 ∩ · · · ∩Nn = 0, we have AnnR(N1) + · · · +
AnnR(Nn) = R;

(iii) For any submodules N1, . . . , Nn (n ≥ 2) of M with N1 ∩ · · · ∩Nn = 0, there exist f1, . . . , fn in R such
that fi ∈ AnnR(Ni) for all i ∈ {1,2, . . . ,n} and {f1, . . . , fn} is a complete set of orthogonal idempotents
of R/AnnR(M), where fi = fi + AnnR(M) for every 1 ≤ i ≤ n.

Proof. (i)⇒ (iii) Let N1, . . . ,Nn (n ≥ 2) be submodules of M satisfying the condition N1 ∩ · · · ∩Nn = 0.
From Theorem 2.3, it follows that for each k ∈ {1, . . . ,n}, there exists ek ∈ R such that e2

k −ek ∈ AnnR(M)
and Nk ⊆ess ekM. This implies that N1 ∩ · · · ∩ Nn ⊆ess e1M ∩ · · · ∩ enM. But N1 ∩ · · · ∩ Nn = 0, so
e1M∩· · ·∩ enM = 0. Therefore enen−1 · · ·e1M = 0 and hence f = enen−1 · · ·e1 ∈ AnnR(M). The following
equality is easily checked:

(1− e1) + (1− e2)e1 + · · ·+ (1− en)en−1 · · ·e1 + enen−1 · · ·e1 = 1.

Let f1 = 1−e1 and fi = (1−ei)ei−1 · · ·e1 for each i ∈ {2, . . . ,n}. It is easily seen that f 2
i −fi ∈ AnnR(M) and

fifj ∈ AnnR(M) for all i , j in {1, . . . ,n}. Moreover, we have f 1 + f 2 + · · ·+ f n + f = 1 (in R/AnnR(M)).
Consequently, f 1 +f 2 + · · ·+f n = 1. Hence, {f 1, f 2, . . . , f n} is a complete set of orthogonal idempotents
of R/AnnR(M). In addition, for each 1 ≤ i ≤ n, we have fi ∈ AnnR(Ni) since fi ∈ AnnR(eiM) and
Ni ⊆ eiM.

(iii) ⇒ (ii) Let N1, . . . ,Nn (n ≥ 2) be submodules of M with N1 ∩ · · · ∩ Nn = 0 and let f1, . . . , fn ∈
R be as in (iii). Since {f 1, f 2, . . . , f n} is a complete set of orthogonal idempotents of R/AnnR(M),
f1 + f2 + · · ·+ fn−1 ∈ AnnR(M). Hence, there exists a ∈ AnnR(M) such that (f1 +a) + f2 + · · ·+ fn = 1. But
fi ∈ AnnR(Ni) for all i ∈ {1,2, . . . ,n}, so f1 + a ∈ AnnR(N1) and AnnR(N1) + · · ·+ AnnR(Nn) = R.

(ii)⇒ (i) This is clear.

Let n be a positive integer. Recall that an R-moduleM is said to have uniform (or Goldie) dimension
n (written u.dimM = n) if there is an essential submodule N ⊆ess M that is a direct sum of n uniform
submodules, equivalently, n is the supremum of the set of integers k such that M contains a direct
sum of k nonzero submodules. If, on the other hand, no such integer n exists, we write u.dim(M) =∞.
If M = 0 we set u.dim(M) = 0. It is clear that dim(M) = 1 if and only if M is uniform. In the next two
results we characterize when a module having finite uniform dimension is strongly CS or weakly IN.

Proposition 2.5. Let M be a nonzero R-module with u.dim(M) = n for some positive integer n. Then the
following are equivalent:

(i) M is a strongly CS;

(ii) M = e1M ⊕ · · · ⊕ enM where {e1, . . . , en} a complete set of orthogonal idempotents of R such that eiM
is a uniform submodule of M for all i = 1, . . . ,n.
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Proof. (i)⇒ (ii) We will show this implication by induction on n. If n = 1, there is nothing to prove.
Assuming the implication to hold for the dimension n, we will prove it for n+ 1. Let M be a strongly
CS R-module with u.dim(M) = n+ 1. Then M contains a nonzero uniform submodule N . In view of
the fact that M is strongly CS, N ⊆ess en+1M for some e2

n+1 = en+1 ∈ R. Note that M = (1 − en+1)M ⊕
en+1M and u.dim(en+1M) = u.dim(N ) = 1. So dim((1 − en+1)M) = n since u.dim(M) = n + 1 (see [10,
Corollary 6.10]). Note that the strongly CS property is inherited by submodules by [9, Proposition
2.4]. Then (1−en+1)M is a strongly CS R-module. Now the induction hypothesis applied to (1−en+1)M
yields

(1− en+1)M = e1(1− en+1)M ⊕ e2(1− en+1)M ⊕ · · · ⊕ en(1− en+1)M,

where {e1, . . . , en} is a complete set of orthogonal idempotents of R such that each ei(1 − en+1)M (1 ≤
i ≤ n) is a uniform submodule of (1− en+1)M. Therefore

M = e1(1− en+1)M ⊕ e2(1− en+1)M ⊕ · · · ⊕ en(1− en+1)M ⊕ en+1M.

Moreover, it is easily seen that {e1(1− en+1), . . . , en(1− en+1), en+1} is a complete set of orthogonal idem-
potents of R.

(ii) ⇒ (i) This follows from [9, Theorem 3.3] and the fact that every uniform module is strongly
CS.

Corollary 2.6. Let M be a nonzero R-module with u.dim(M) = n for some positive integer n. Then the
following are equivalent:

(i) M is a weakly IN R-module;

(ii) M = r1M ⊕ r2M ⊕ · · · ⊕ rnM for some elements r1, . . . , rn of R such that riM is a uniform submodule
of M for all (1 ≤ i ≤ n) and {r1, . . . , rn} is a complete set of orthogonal idempotents of R/AnnR(M),
where r i = ri + AnnR(M) for every (1 ≤ i ≤ n).

Proof. Since u.dim(M) = n, it is clear that M considered as an R/AnnR(M)-module also has uniform
dimension n. Now the result follows from Theorem 2.3 and Proposition 2.5.

We will say that a module M has the s-weakly IN property (SWIN, for short) if for any family
{Ni | i ∈ I} of submodules of M with ∩i∈INi = 0,

∑
i∈I AnnR(Ni) = R. Clearly, every module having

the SWIN is weakly IN. Also, it is easily seen that every submodule of a module having the SWIN
inherits the property.

A module M is said to be finitely embedded (or finitely cogenerated) if E(M) � E(S1)⊕ · · · ⊕E(Sn) for
suitable simple modules S1, . . . ,Sn. A ring R is called finitely embedded if the R-module R is finitely
embedded.

Remark 2.7. (i) From [10, 19.3A] and [17, 21.4], it follows that being finitely embedded modules is
preserved by taking submodules and finite direct sums.

(ii) The following assertions are easy to check.
(a) Every finitely embedded module has finite uniform dimension.
(b) A uniform module U is finitely embedded if and only if U has a simple essential socle.

Theorem 2.8. Let M be a nonzero R-module. Then the following are equivalent:

(i) M has the SWIN;

(ii) M is weakly IN and finitely embedded;

(iii) M = r1M ⊕ · · · ⊕ rnM where r1, . . . , rn are elements of R such that each riM has a simple essential
socle and {r1, . . . , rn} is a complete set of orthogonal idempotents of R/AnnR(M), where r i =
ri + AnnR(M) for every (1 ≤ i ≤ n).
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Proof. (i)⇒ (ii) It is clear that M is weakly IN. To prove that M is finitely embedded, let {Ni | i ∈ I}
be a family of submodules of M with ∩i∈INi = 0. So

∑
i∈I AnnR(Ni) = R and hence

∑
j∈J AnnR(Nj ) = R

for some finite subset J of I . Therefore ∩j∈JNj = 0. Now using [10, Proposition 19.1], we infer that M
is finitely embedded.

(ii) ⇒ (iii) Since M is finitely embedded, u.dim(M) < ∞. Then, by Corollary 2.6, M = r1M ⊕
r2M ⊕ · · ·⊕ rnM for some elements r1, . . . , rn of R such that each riM is a uniform submodule of M and
{r1, . . . , rn} is a complete set of orthogonal idempotents of R/AnnR(M), where r i = ri + AnnR(M) for
every (1 ≤ i ≤ n). For each i, since riM is uniform and finitely embedded, riM has a simple essential
socle (see Remark 2.7(ii)).

(iii)⇒ (i) Since each riM (1 ≤ i ≤ n) is finitely embedded, it follows from Remark 2.7(i) that M is
finitely embedded. To show that M has the SWIN, take a family {Ni | i ∈ I} of submodules of M with
∩i∈INi = 0. By [10, Proposition 19.1], there exists a finite subset F of I such that ∩i∈FNi = 0. But M is
weakly IN by Corollary 2.6, so

∑
i∈F AnnR(Ni) = R by Proposition 2.4. Hence

∑
i∈I AnnR(Ni) = R. This

completes the proof.

Corollary 2.9. Let M be a faithful R-module. Then the following are equivalent:

(i) M has the SWIN;

(ii) M is weakly IN and finitely embedded;

(iii) M is strongly CS and finitely embedded;

(iv) M = e1M ⊕ · · · ⊕ enM where {e1, . . . , en} a complete set of orthogonal idempotents of R such that each
eiM (1 ≤ i ≤ n) has a simple essential socle.

Proof. (i)⇔ (ii)⇔ (iv) follow from Theorem 2.8.
(ii)⇔ (iii) comes from the fact that a faithful module is weakly IN if and only if it is strongly CS

(see Theorem 2.3).

Recall that a ring R is called subdirectly irreducible if the intersection of all its nonzero ideals is
a nonzero ideal, equivalently, R has a simple essential socle (see [11]). If the R-module R has the
SWIN (is finitely embedded), we will say that the ring R has the SWIN (is finitely embedded). Using
Corollary 2.9, we obtain the next corollary which characterizes rings having the SWIN.

Corollary 2.10. Let R be a ring. Then the following are equivalent:

(i) The ring R has the SWIN;

(ii) R is CS and finitely embedded;

(iii) R = R1 ×R2 × · · · ×Rn is a finite direct product of subdirectly irreducible rings Ri (1 ≤ i ≤ n).

Recall that a ring R is called a valuation ring if any two ideals of R are comparable. It is clear that
every valuation ring is local. The following example shows that none of the two conditions in the
statement (ii) of Corollary 2.10 implies the other.

Example 2.11. (i) Let R be a local ring with maximal ideal m and let N = E(R/m). Consider the R-
module M = N ⊕N . Then M is finitely embedded but not weakly IN since M is not square-free (see
Lemma 4.3). Moreover, note that M is a faithful R-module since AnnR(N ) = 0 by [14, Proposition
2.26 Corollary 2]. Let A = R ∝M, the trivial extension of R by M. Note that A is a finitely embedded
ring by [8, Theorem 2.10]. However, A is not a CS ring by [9, Theorem 5.4].

(ii) Let R be a valuation domain which is not a field (e.g., we can take R = Z(2), the localization of
Z at the maximal ideal 2Z). Then R is not artinian. By [10, Proposition 19.4], there exists an ideal
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I of R such that R/I is not a finitely embedded R-module. Consider the ring A = R/I . Clearly A is a
valuation ring. Then A is a uniform A-module and hence A is a CS ring. On the other hand, it is clear
that A is not a finitely embedded ring.

Let R be a ring and let M be an R-module. The abelian group R ⊕M can be endowed with the
following product: (a,x)(b,y) = (ab,ay +bx). The result is a ring called the trivial extension of R by M
denoted by R ∝M. Moreover, R becomes a subring of R ∝M and M an ideal such that M2 = 0.

After characterizing CS trivial extensions in [9], we next characterize when a trivial extension has
the SWIN.

Theorem 2.12. Let M be an R-module. Then the following assertions are equivalent:

(i) The ring A = R ∝M has the SWIN;

(ii) The R-module M ⊕AnnR(M) has the SWIN;

(iii) R satisfies the following two conditions:

(a) AnnR(M) is a direct summand of R, and

(b) both the R-modules M and AnnR(M) have the SWIN.

Proof. The proof follows from Theorem 2.8, Corollary 2.10, [8, Theorem 2.10] and [9, Theorem 5.4].
In fact, the ring A has the SWIN if and only if A is CS and finitely embedded (see Corollary 2.10).
Moreover, A is CS if and only if M⊕AnnR(M) is weakly IN if and only if M and AnnR(M) are weakly
IN R-modules and AnnR(M) is a direct summand of R by [9, Theorem 5.4]. In addition, note that A
is finitely embedded if and only if M ⊕AnnR(M) is finitely embedded if and only if M and AnnR(M)
are finitely embedded by [8, Theorem 2.10]. Now apply Theorem 2.8.

The proof of the next corollary follows immediately from Theorem 2.12.

Corollary 2.13. Let M be a faithful R-module. Then the following conditions are equivalent:

(i) The ring A = R ∝M has the SWIN;

(ii) M has the SWIN.

3 Direct sums of modules

In [9, Section 3], we characterized when a finite direct sum of weakly IN (strongly CS) modules is
again weakly IN (strongly CS). In this section, we continue our investigations by focusing on the
question of when these two concepts are preserved under an arbitrary direct sum (finite or infinite).

In Theorem 3.2 we shall characterize when a direct sum of modules is weakly IN. First we prove
the following lemma.

Lemma 3.1. Let a moduleM = ⊕i∈IMi be a direct sum of submodulesMi (i ∈ I). Assume that the following
condition holds:

(∗) ∩i∈I AnnR(Ni) +∩i∈I AnnR(Li) = R for all submodules Ni and Li of Mi with Ni ∩Li = 0 for all i ∈ I .
Then M satisfies the following two conditions:

(i) AnnR(Mj ) + AnnR(Mk) = R for all distinct j,k in I .

(ii) N = ⊕i∈I (N ∩Mi) for every submodule N of M.
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Proof. (i) Let j , k in I and let i ∈ I . We put Nj = Mj and Ni = 0 if i , j. Also, we put Lk = Mk and
Li = 0 if i , k. It is clear that Ni ∩Li = 0 for all i ∈ I . By (∗), we have ∩i∈I AnnR(Ni)+∩i∈I AnnR(Li) = R.
Hence AnnR(Mj ) + AnnR(Mk) = R. This proves (i).

(ii) follows from (i) and [4, Lemma 2.6].

Theorem 3.2. Let a moduleM = ⊕i∈IMi be a direct sum of submodulesMi (i ∈ I). Then the following
statements are equivalent:

(i) M is a weakly IN module;

(ii) ∩i∈I AnnR(Ni) +∩i∈I AnnR(Li) = R for all submodules Ni and Li of Mi with Ni ∩ Li = 0 for all
i ∈ I .

Proof. (i)⇒ (ii) For each i ∈ I , let Ni and Li be submodules ofMi such that Ni∩Li = 0. Set N = ⊕i∈INi
and L = ⊕i∈ILi . Then N and L are submodules of M such that N ∩ L = ⊕i∈I (Ni ∩ Li) = 0. From the
fact that M is weakly IN, we deduce that AnnR(N ) + AnnR(L) = R. Consequently, ∩i∈I AnnR(Ni) +
∩i∈I AnnR(Li) = R.

(ii)⇒ (i) LetN and L be two submodules ofM such thatN∩L = 0. By Lemma 3.1,N = ⊕i∈I (N∩Mi)
and L = ⊕i∈I (L ∩Mi). Since N ∩ L = 0, it follows that (N ∩Mi) ∩ (L ∩Mi) = 0 for all i ∈ I . By (ii),
∩i∈I AnnR(N ∩Mi)+∩i∈I AnnR(L∩Mi) = R. Therefore AnnR(N )+AnnR(L) = R and henceM is weakly
IN.

Proposition 3.3. Let a module M = ⊕i∈IMi be a direct sum of submodules Mi (i ∈ I). Then the following
statements are equivalent:

(i) M is strongly CS;

(ii) M satisfies the following two conditions:

(a) AnnR(Mi) + AnnR(Mj ) = R for all distinct i, j ∈ I , and

(b) for any family {Ni}i∈I where Ni ≤Mi (i ∈ I), there exists e2 = e ∈ R such that Ni ⊆ess eMi for all
i ∈ I .

Proof. (i)⇒ (ii) (a) By Theorem 2.2, M is weakly IN. Now (a) follows from the definition of a weakly
IN module.

(b) Let Ni ≤Mi (i ∈ I) and set N = ⊕i∈INi . Since M is strongly CS, there exists e2 = e ∈ R such that
⊕i∈INi ⊆ess eM = ⊕i∈IeMi . This implies that Ni ⊆ess eMi for all i ∈ I .

(ii)⇒ (i) LetN be a submodule ofM. Using (a) and [4, Lemma 2.6], we getN = ⊕i∈I (N∩Mi). By (b),
there exists e = e2 ∈ R such thatN∩Mi ⊆ess eMi for all i ∈ I . Therefore ⊕i∈I (N∩Mi) ⊆ess ⊕i∈IeMi = eM
(see [17, 17.4]). Thus N ⊆ess eM and hence M is strongly CS.

Let I1 and I2 be two nonempty subsets of a set I . Then {I1, I2} is said to be a partition of I if I1∩I2 = ∅
and I1 ∪ I2 = I .

Corollary 3.4. Let a module M = ⊕i∈IMi be a direct sum of submodules Mi (i ∈ I). Consider the following
two conditions:

(i) M is a weakly IN R-module.

(ii) Mi is a weakly IN R-module for all i ∈ I and for any partition {I1, I2} of I we have ∩i∈I1 AnnR(Mi) +
∩i∈I2 AnnR(Mi) = R.

Then (i)⇒ (ii). If, moreover, each Mi (i ∈ I) is a uniform R-module, then (ii)⇒ (i).
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Proof. (i) ⇒ (ii) Suppose that M is a weakly IN R-module. Then clearly every submodule of M is
weakly IN. In particular, each Mi (i ∈ I) is a weakly IN R-module. Now take a partition {I1, I2} of
I and let (Ni)i∈I and (Li)i∈I be such that Ni and Li are submodules of Mi for all i ∈ I with Ni =
Mi if i ∈ I1 and Ni = 0 if i ∈ I2; Li = 0 if i ∈ I1 and Li = Mi if i ∈ I2. Then Ni ∩ Li = 0 for all
i ∈ I and so ∩i∈I AnnR(Ni) +∩i∈I AnnR(Li) = R since M is weakly IN (Theorem 3.2). Consequently,
∩i∈I1 AnnR(Mi) +∩i∈I2 AnnR(Mi) = R.

(ii) ⇒ (i) Suppose that (ii) is satisfied and that each Mi (i ∈ I) is uniform. Let us prove that M
is weakly IN by using Theorem 3.2. For each i ∈ I , let Ni and Li be submodules of Mi such that
Ni ∩ Li = 0. Since each Mi is uniform, it follows that either Ni = 0 or Li = 0 for all i ∈ I . Let
I1 = {i ∈ I | Li , 0} and I2 = {i ∈ I | Li = 0}. Clearly I1 ∪ I2 = I . If I1 = ∅ or I2 = ∅, then it is clear that
∩i∈I AnnR(Ni) +∩i∈I AnnR(Li) = R. So without loss of generality we can assume that both I1 and I2
are nonempty. Then {I1, I2} is a partition of I . So, by hypothesis, ∩i∈I1 AnnR(Mi)+∩i∈I2 AnnR(Mi) = R.
Note that ∩i∈I AnnR(Li) = ∩i∈I1 AnnR(Li) and ∩i∈I AnnR(Ni) = ∩i∈I2 AnnR(Ni) sinceNi = 0 for all i ∈ I1.
Since ∩i∈I1 AnnR(Mi) ⊆ ∩i∈I1 AnnR(Li) and ∩i∈I2 AnnR(Mi) ⊆ ∩i∈I2 AnnR(Ni), we have ∩i∈I AnnR(Ni) +
∩i∈I AnnR(Li) = R. This completes the proof.

Corollary 3.5. Let a module M = ⊕i∈IMi be a direct sum of submodules Mi (i ∈ I). Consider the following
two conditions:

(i) M is a strongly CS R-module.

(ii) Mi is a strongly CS R-module for all i ∈ I and for every partition {I1, I2} of I , there exists an idempo-
tent e of R such that e ∈ ∩i∈I1 AnnR(Mi) and 1− e ∈ ∩i∈I2 AnnR(Mi).

Then (i)⇒ (ii). If, moreover, each Mi (i ∈ I) is a uniform R-module, then (ii)⇒ (i).

Proof. (i) ⇒ (ii) Suppose that M is strongly CS. Then each Mi is a strongly CS R-module by [9,
Proposition 2.4]. Now let {I1, I2} be a partition of I and put N = ⊕i∈I1Mi and L = ⊕i∈I2Mi . Then
N ∩ L = 0 and so the exists e2 = e ∈ R such that e ∈ AnnR(N ) = ∩i∈I1 AnnR(Mi) and 1− e ∈ AnnR(L) =
∩i∈I2 AnnR(Mi) (see Theorem 2.2).

(ii)⇒ (i) Suppose that the indexed set (Mi)i∈I satisfies condition (ii) and that each Mi is uniform.
For each i ∈ I , let Ni be a submodule of Mi . If Ni , 0 for every i ∈ I , then Ni ⊆ess 1Mi for all i ∈ I .
Also, if Ni = 0 for all i, then Ni ⊆ess 0Mi for all i ∈ I . Now assume that I1 = {i ∈ I | Ni = 0} , ∅ and
I2 = {i ∈ I |Ni , 0} , ∅. Then it is clear that {I1, I2} is a partition of I . So, by hypothesis, there exists
an idempotent e of R such that e ∈ ∩i∈I1 AnnR(Mi) and 1 − e ∈ ∩i∈I2 AnnR(Mi). Therefore 0 = Ni ⊆ess
eMi = 0 for all i ∈ I1 and Ni ⊆ess Mi = eMi for all i ∈ I2 since each Mi is uniform. In addition, note
that it follows easily from (ii) that AnnR(Mj ) + AnnR(Mk) = R for all distinct j , k in I . Now using
Proposition 3.3, we conclude that M is a strongly CS R-module.

Proposition 3.6. Let a module M = ⊕i∈IMi be a direct sum of submodules Mi (i ∈ I). Then the following
are equivalent:

(i) M has the SWIN;

(ii) M satisfies the following three conditions:

(a) I is a finite set,

(b) Mi has the SWIN for all i ∈ I , and

(c) AnnR(Mj ) + AnnR(Mk) = R for all distinct j,k ∈ I .
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Proof. (i) ⇒ (ii) By Theorem 2.8, M is finitely embedded and so M has finite uniform dimension.
Therefore I is a finite set. It is clear that each Mi has the SWIN since this property is closed under
submodules. Moreover, using the definition of a module having the SWIN, it follows easily that
condition (c) is also satisfied.

(ii) ⇒ (i) For any i ∈ I , it is clear that Mi is weakly IN since Mi has the SWIN. Using (c) and the
fact that I is finite, we obtain thatM is weakly IN by [9, Theorem 3.1]. Moreover, taking into account
Theorem 2.8, it follows from condition (b) that each Mi is finitely embedded. Hence M is finitely
embedded by Remark 2.7(i). Applying again Theorem 2.8, we infer that M has the SWIN.

4 Semisimple modules

In this section, we continue the study of direct sums of weakly IN modules and strongly CS modules.
But we will restrict our attention to direct sums of simple modules.

Let p be a prime ideal of R. It is not difficult to see that R/p is a uniform R-module and AnnR(R/p) =
p. Moreover, it is clear that the R-module R/p⊕R/p is not weakly IN.

Before dealing with semisimple modules, we prove the following three lemmas. The first one
follows easily from Corollary 3.4.

Lemma 4.1. Let {pi}i∈I be a family of distinct prime ideals of R and let M = ⊕i∈IR/pi . Then the following
are equivalent:

(i) M is a weakly IN R-module;

(ii) For every partition {I1, I2} of I , ∩i∈I1pi +∩i∈I2pi = R.

Next, we provide an analogue of the previous lemma for strongly CS modules.

Lemma 4.2. Let {pi}I be a family of distinct prime ideals of R and let M = ⊕i∈IR/pi . Then the following
are equivalent:

(i) M is a strongly CS R-module;

(ii) For every partition {I1, I2} of I , there exists an idempotent e of R such that e ∈ ∩i∈I1pi and 1 − e ∈
∩i∈I2pi .

(iii) Idempotents lift modulo ∩i∈Ipi and for every partition {I1, I2} of I , ∩i∈I1pi +∩i∈I2pi = R.

Proof. (i)⇔ (ii) Use Corollary 3.5.
(i)⇔ (iii) This follows from Theorem 2.2 and Lemma 4.1.

An R-module M is called square-free if it contains no nonzero submodule isomorphic to N ⊕N for
some submodule N of M, equivalently, if K and L are two submodules of M such that K ∩ L = 0 and
K � L, then K = L = 0.

Lemma 4.3. If M is weakly IN R-module, then M is square-free.

Proof. Suppose that M is weakly IN and let N and L be two submodules of M such that N ∩ L = 0
and N � L. Then AnnR(N ) + AnnR(L) = R. But N � L, so AnnR(N ) = AnnR(L) and consequently
AnnR(N ) = AnnR(L) = R. This implies that N = L = 0. This proves the lemma.

Proposition 4.4. LetM = ⊕i∈IS
(Ai )
i be a semisimple R-module, where Si (i ∈ I) are pairwise nonisomorphic

simple R-modules and Ai (i ∈ I) are nonempty sets. Then the following are equivalent:

(i) M is a weakly IN R-module;
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(ii) M is square-free (that is, each Ai (i ∈ I) is a singleton set) and for every partition {I1, I2} of I ,
∩i∈I1 AnnR(Si) +∩i∈I2 AnnR(Si) = R.

Proof. For each i ∈ I , there exists mi ∈Max(R) such that Si � R/mi .
(i)⇒ (ii) By Lemma 4.3, M is square-free. Now the second part of (i) follows from Lemma 4.1.
(ii)⇒ (i) Use Lemma 4.1.

Proposition 4.5. LetM = ⊕i∈IS
(Ai )
i be a semisimple R-module, where Si (i ∈ I) are pairwise nonisomorphic

simple R-modules and Ai (i ∈ I) are nonempty sets. Then the following are equivalent:

(i) M is a strongly CS R-module;

(ii) M is square-free and for every partition {I1, I2} of I , there exists an idempotent e of R such that
e ∈ ∩i∈I1 AnnR(Si) and 1− e ∈ ∩i∈I2 AnnR(Si).

Proof. For each i ∈ I , let mi ∈Max(R) such that Si � R/mi .
(i)⇒ (ii) Note that M is weakly IN (Theorem 2.2) and hence M is square-free by Lemma 4.3. The

second part of (ii) follows from Lemma 4.2.
(ii)⇒ (i) This follows from Lemma 4.2.

Note that the implication (d)⇒ (e) in the next result was also proved by Smith in a general setting
(see [15, Theorem 6.6]).

Proposition 4.6. Let R be a ring and let Max(R) = {mi | i ∈ I}. Consider the R-module M = ⊕i∈IR/mi .
Then the following hold true:

(i) The following are equivalent:

(a) Every square-free semisimple R-module is weakly IN;

(b) M is a weakly IN R-module;

(c) M has the SWIN;

(d) mj +∩i∈I\{j}mi = R for all j ∈ I .
(e) R is semilocal (i.e., I is finite).

(ii) The following are equivalent:

(a) Every square-free semisimple R-module is strongly CS;

(b) M is a strongly CS R-module;

(c) R is semiperfect.

Proof. (i) (a)⇒ (b) This is clear.
(b)⇒ (d) Let j ∈ I . It is clear that {{j}, I \ {j}} is a partition of I . Now apply Lemma 4.1 to get (d).
(d)⇒ (e) Let R = R/ J(R) and for any ideal a of R which contains J(R), let a = a/ J(R). Let j ∈ I . We

have mj +∩i,jmi = R. But mj ∩ (∩i,jmi) = ∩i∈Imi = J(R) = 0, so mj ⊕∩i,jmi = R. Thus, every maximal
ideal of R is a direct summand. By [13, Theorem 3.2], R is a semisimple ring and consequently R is
semilocal.

(e)⇒ (c) This follows from Proposition 3.6.
(c) ⇒ (a) It is clear that M is weakly IN. Hence (a) follows from the fact that every square-free

semisimple R-module is isomorphic to a direct summand of M.
(ii) (a)⇒ (b) This is clear since M is a square-free semisimple R-module.
(b)⇒ (c) Since M is strongly CS, M is weakly IN and idempotents lift modulo AnnR(M) = J(R) by

Theorem 2.2. Moreover, R is a semilocal ring by (i). Hence R is semiperfect.
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(c) ⇒ (a) Suppose that R is a semiperfect ring. Then R is semilocal and idempotents lift modulo
J(R) = AnnR(M). By (i), M is weakly IN. Therefore M is strongly CS by Theorem 2.2. Now (a) follows
from [9, Proposition 2.4] and the fact that every square-free semisimple R-module is isomorphic to
a submodule of M.

By [13, Theorem 3.2], every maximal ideal of a ring R is a direct summand if and only if R is a
finite direct product of fields (that is, R is semisimple). In the following lemma we give a dual result.
Recall that a ring R is called PIF (PIP) if every principal ideal is flat (projective). Note that PIP rings
are often called PP-rings or Rickart rings (see for example [10, p. 260-261]). It is clear that every PIP
ring is PIF ([10, Proposition 4.3]).

Lemma 4.7. The following are equivalent for a ring R:

(i) Every minimal prime ideal of R is a direct summand;

(ii) R is PIF and Min(R) is finite;

(iii) R is PIP and Min(R) is finite;

(iv) R is a finite direct product of integral domains.

Proof. The equivalences (ii)⇔ (iii)⇔ (iv) follow from [12, Proposition 2.2].
(i)⇒ (ii) Let p ∈ Spec(R). It is well known that

Min(Rp) = {qRp | q ∈Min(R) and q ⊆ p}.

Let q ∈ Min(R) such that q ⊆ p. Then there exists e2 = e ∈ R such that q = eR. Therefore qRp = e
1Rp

and ( e1 )2 = e
1 . Consequently, qRp is a direct summand of Rp. But Rp is an indecomposable ring (since

it is local) and qRp , Rp, so qRp = 0. Therefore Rp is an integral domain and hence R is PIF by [12,
Proposition 2.1]. Now to prove that Min(R) is finite, take a minimal prime ideal p of R. Thus p is
direct summand of R and hence p is finitely generated. Therefore any minimal prime ideal over 0 is
finitely generated. By a Theorem of D.D. Anderson (see [3]), R has only finitely many minimal prime
ideals.

(iii)⇒ (i) Since any projective module is flat, it follows that R is PIF. Now apply [12, Proposition
2.14].

Recall that a ring R is called an mp-ring if every prime ideal of R contains a unique minimal prime
ideal, or, equivalently, if every maximal ideal of R contains a unique minimal prime ideal (see [1]).

Proposition 4.8. Let R be a ring and let Min(R) = {pi | i ∈ I}. Consider the R-module M = ⊕i∈IR/pi . Then
the following are equivalent:

(i) M is a weakly IN R-module;

(ii) M is a strongly CS R-module;

(iii) R is an mp-ring and Min(R) is finite;

(iv) R/Nil(R) is a finite direct product of integral domains.

Proof. (i)⇔ (ii) Use [9, Corollary 2.10] and the fact that AnnR(M) = Nil(R).
(i) ⇒ (iv) Let j ∈ I . Since M is weakly IN, pj + ∩i,jpi = R (Lemma 4.1). Let R = R/Nil(R). For

any ideal a of R which contains Nil(R), let a = a/Nil(R). Note that pj +∩i,jpi = R and pj ∩ (∩i,jpi) =

∩i∈Ipi = Nil(R) = 0. Thus pj ⊕∩i,jpi = R. It follows that every minimal prime ideal of R is a direct
summand. Using Lemma 4.7, we infer that R is a finite direct product of integral domains.
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(iv) ⇒ (iii) By Lemma 4.7, R/Nil(R) is PIF and Min(R/Nil(R)) is finite. This implies that R is an
mp-ring (see [12, Proposition 2.1]) and that Min(R) is finite.

(iii) ⇒ (i) Let Min(R) = {p1,p2, . . . ,pn}. So M = R/p1 ⊕ · · · ⊕ R/pn. Since R is an mp-ring, it follows
easily that pi + pj = R for all i , j ∈ {1, . . . ,n}. Therefore M is weakly IN by [9, Theorem 3.1].

Proposition 4.9. Let R be a ring and let Spec(R) = {pi | i ∈ I}. Consider the R-moduleM = ⊕i∈IR/pi . Then
the following are equivalent:

(i) M is a weakly IN R-module;

(ii) M is a strongly CS R-module;

(iii) M has the SWIN;

(iv) R is semiperfect and dim(R) = 0;

(v) R is semilocal and dim(R) = 0;

(vi) R/Nil(R) is semisimple.

Proof. (i)⇔ (ii) Use [9, Corollary 2.10] and the fact that AnnR(M) = Nil(R).
(ii) ⇒ (iv) Suppose that M is strongly CS and let H = ⊕m∈Max(R)R/m. Then H is isomorphic to a

submodule of M and consequently H is also strongly CS. By Proposition 4.6(ii), R is semiperfect.
To prove that dim(R) = 0, assume to the contrary that R has a prime ideal p which is not maximal.
Then p ⊆m for some m ∈Max(R). Consider the R-module T = R/p⊕R/m. Since T is isomorphic to a
submodule of M, it follows that T is strongly CS and hence T is a weakly IN R-module. Now using
Lemma 4.1, we conclude that p+m = R, a contradiction. Hence dim(R) = 0.

(iv)⇒ (vi) This follows from the fact that J(R) = Nil(R).
(vi) ⇒ (v) Since R/Nil(R) is semisimple, it follows easily that dim(R) = dim(R/Nil(R)) = 0 and

R/ J(R) is semisimple.
(v)⇒ (iii) This follows from Proposition 4.6(i) and the fact that every prime ideal of R is maximal.
(iii)⇒ (i) This follows from the definitions of a weakly IN module and a module having the SWIN.

Corollary 4.10. Let R be a ring with Spec(R) = {pi | i ∈ I} and Min(R) = {pj | j ∈ J} (J ⊆ I). Consider the
R-modules M1 = ⊕i∈IR/pi and M2 = ⊕j∈JR/pj . Then the following are equivalent:

(i) M1 has the SWIN;

(ii) M2 has the SWIN;

(iii) R is semilocal and dim(R) = 0.

Proof. (i)⇒ (iii) This follows from Proposition 4.9.
(iii)⇒ (ii) Apply Proposition 4.9 and use the fact that M2 is isomorphic to a submodule of M1.
(ii) ⇒ (i) Let j ∈ J . As R/pj is a submodule of M2, R/pj has the SWIN. Therefore R/pj is finitely

embedded by Theorem 2.8. But R/pj is a uniform module, so E(R/pj ) � E(R/m) for some maximal
ideal m of R. This yields pj = m (see for example [14, Lemma 2.31 Corollary]). It follows that
dim(R) = 0. This implies that Spec(R) = Min(R) = Max(R) and so M1 =M2 has the SWIN.
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5 Strongly Kasch modules

In this section, we investigate strongly Kasch modules which are weakly IN (or strongly CS). Recall
that a ring R is called Kasch if every simple R-module embeds in R, equivalently, AnnR(m) , 0 for
every maximal ideal m of R (see [10, Definition 8.26 and Proposition 8.27]. This concept was gen-
eralized to a module theoretic setting by Albu and Wisbauer [2]. A module M is said to be Kasch
provided M contains a copy of every simple module in σ [M], where σ [M] is the full subcategory
of Mod-R consisting of all R-modules that are subgenerated by M. Another way to generalize the
notion of Kasch rings to modules appeared in [18]. Following Zhu, an R-module M is is said to be
strongly Kasch if every simple R-module embeds in M. It is clear that a ring R is Kasch if and only if
the R-module R is Kasch if and only if the R-module R is strongly Kasch.

Proposition 5.1. Let M be an R-module and let Max(R) = {mi | i ∈ I}. Then the following assertions are
equivalent for a nonzero R-module M:

(i) M is a strongly Kasch R-module;

(ii) HomR(N,M) , 0 for every finitely generated nonzero R-module N ;

(iii) AnnM(mi) , 0 for all i ∈ I ;

(iv) AnnM(AnnR(N )) , 0 for any nonzero finitely generated R-module N ;

(v) E(M) is a strongly Kasch R-module;

(vi) E(M) is an injective cogenerator;

(vii) ⊕i∈IR/mi is isomorphic to a submodule of M;

(viii) E(⊕i∈IR/mi) is isomorphic to a summand of E(M).

Proof. The equivalences (i)⇔ (ii)⇔ (iii)⇔ (v)⇔ (vi) come from [19, Theorem 3.9].
(ii)⇔ (iv) This follows from [16, Theorem 2.1].
(v)⇔ (viii) By [5, Corollary 3.3].
(i)⇒ (vii) Let i ∈ I and let Si be a simple submodule of M such that Si � R/mi . It is easily seen that

the sum Σi∈ISi is direct. Hence ⊕i∈IR/mi is isomorphic to a submodule of M since ⊕i∈IR/mi � ⊕i∈ISi .
(vii)⇒ (viii) This is immediate.

For an R-module M, let Z(M) denote the set of zero divisors of M, that is, the set of elements a of
R such that AnnM(a) , 0.

Remark 5.2. (i) Let R be a ring and let Max(R) = {mi | i ∈ I}. From Proposition 5.1, it follows that the
R-modules M1 = ⊕i∈IR/mi , M2 = E(⊕i∈IR/mi) and M3 = ⊕i∈IE(R/mi) are strongly Kasch.

(ii) Let M be a strongly Kasch R-module and let a ∈ R \ Z(M). Then AnnM(aR) = 0 and hence
AnnM(AnnR(R/aR)) = 0. Using Proposition 5.1, we infer that aR = R. Therefore a is invertible.

Lemma 5.3. Let M be a strongly Kasch R-module. Then the following assertions are equivalent:

(i) M is a weakly IN R-module;

(ii) N ⊆ess AnnM(AnnR(N )) for every submodule N of M.

In this case, Soc(M) ⊆ess M.
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Proof. (i)⇒ (ii) LetN be a submodule ofM. ClearlyN ⊆ AnnM(AnnR(N )). Now let L be a submodule
of M such that L ⊆ AnnM(AnnR(N )) and L∩N = 0. Since M is weakly IN, AnnR(N ) + AnnR(L) = R.
But AnnR(N ) ⊆ AnnR(L), so AnnR(L) = R. Consequently, L = 0.

(ii) ⇒ (i) Let N and L be two submodules of M such that N ∩ L = 0. By hypothesis, N ⊆ess
AnnM(AnnR(N )) and L ⊆ess AnnM(AnnR(L)). This implies thatN∩L ⊆ess AnnM(AnnR(N ))∩AnnM(AnnR(L))
and so AnnM(AnnR(N ))∩AnnM(AnnR(L)) = 0. Therefore,

AnnM(AnnR(N ) + AnnR(L)) = AnnM(AnnR(N ))∩AnnM(AnnR(L)) = 0.

Since M is strongly Kasch, it follows from Proposition 5.1 that AnnR(N ) + AnnR(L) = R.
To prove the last part, suppose that M is a weakly IN strongly Kasch R-module and let 0 ,

x ∈ M. Let m be a maximal ideal of R containing AnnR(x). Then AnnM(m) ⊆ AnnM(AnnR(x)).
Since M is strongly Kasch, there exists 0 , y ∈ M such that yR is a simple submodule of M and
m = AnnR(y). Hence, AnnM(AnnR(y)) ⊆ AnnM(AnnR(x)). This yields yR ⊆ AnnM(AnnR(x)) as yR ⊆
AnnM(AnnR(y)). Moreover, from the implication (i)⇒ (ii), we deduce that xR ⊆ess AnnM(AnnR(x)).
Consequently, xR∩ yR , 0. But yR is simple, so yR ⊆ xR. Thus, Soc(M) ⊆ess M.

Lemma 5.4. Let R be a semilocal ring having exactly n maximal ideals for some positive integer n. Let M
be a nonzero weakly IN R-module. Then M has finite uniform dimension with u.dim(M) ≤ n.

Proof. Suppose that M has an independent family {N1, . . . ,Nn+1} of n+ 1 nonzero submodules of M.
Since N1 , 0, there exists a maximal ideal m1 of R such that AnnR(N1) ⊆ m1. Similarly, AnnR(N2) ⊆
m2 for some maximal ideal m2 of R. Since N1 ∩N2 = 0 and M is weakly IN, we have AnnR(N1) +
AnnR(N2) = R. Therefore m1 , m2. We continue in this fashion to obtain maximal ideals mi such
that AnnR(Ni) ⊆mi (1 ≤ i ≤ n) and mj ,mk for j , k. Note that Max(R) = {m1, . . . ,mn}. Also, we must
have AnnR(Nn+1) ⊆ mk for some k ∈ {1, . . . ,n}. But this contradicts the fact that AnnR(Nk) ⊆ mk and
AnnR(Nk) + AnnR(Nn+1) = R. It follows that u.dim(M) ≤ n.

Theorem 5.5. LetM be a nonzero strongly Kasch R-module which is weakly IN (strongly CS). Then R
is a semilocal (semiperfect) ring. Moreover, in both cases M is a finitely embedded R-module having
the SWIN.

Proof. Let Max(R) = {mi | i ∈ I}. Since M is strongly Kasch, ⊕i∈IR/mi is isomorphic to a submodule of
M (Proposition 5.1). But M is weakly IN (strongly CS). Thus the R-module ⊕i∈IR/mi is also weakly
IN (strongly CS). Hence, R is semilocal (semiperfect) by Proposition 4.6. Using Lemma 5.4, we get
that M has finite uniform dimension. Moreover, Soc(M) ⊆ess M by Lemma 5.3. This implies that
Soc(M) is finitely generated. ThereforeM is finitely embedded (see [14, Proposition 3.18]) and hence
M has the SWIN by Theorem 2.8.

Proposition 5.6. Let R be a ring and let M be a nonzero R-module. Then the following are equivalent:

(i) M is weakly IN and strongly Kasch;

(ii) M has the SWIN and every a ∈ R \Z(M) is invertible.

Proof. (i)⇒ (ii) This is clear by Remark 5.2(ii) and Theorem 5.5.
(ii) ⇒ (i) By Theorem 2.8, M is weakly IN and finitely embedded. Therefore there exist finitely

many maximal ideals m1, m2, . . . , mn of R such that E(M) � E(R/m1) ⊕ E(R/m2) ⊕ · · · ⊕ E(R/mn). It
is clear that Z(M) = m1 ∪m2 ∪ · · · ∪mn. We claim that Max(R) = {m1,m2, . . . ,mn}. To prove this,
let m be a maximal ideal of R and let a ∈ m. Since a is not invertible, a ∈ Z(M). It follows that
m ⊆ Z(M) =m1 ∪m2 ∪ · · · ∪mn and so m = mi for some i ∈ {1,2, . . . ,n}, proving the claim. Now apply
Proposition 5.1 to conclude that M is strongly Kasch.
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The next corollary is an immediate consequence of Proposition 5.6.

Corollary 5.7. The following are equivalent for a ring R:

(i) R is CS and Kasch;

(ii) R has the SWIN and every regular element of R is invertible.

The following example shows that each of the implication “Kasch⇒ CS”and its converse need not
be true.

Example 5.8. (i) Let R, m, A and M be as in Example 2.11(i). It is clear that A is a local ring with
maximal ideal (m,M). Let x = 1 +m ∈ R/m ≤M. Since (0,x)(m,M) = 0, it follows that A is a Kasch
ring by Proposition 5.1. However, A is not CS.

(ii) Let R be an integral domain which is not a field. Then it is clear that R is a CS ring but not a
Kasch ring.

Corollary 5.9. Let R be a ring. Then the following equivalences hold:

(i) R is semilocal if and only if R has a weakly IN strongly Kasch R-module.

(ii) The following are equivalent:

(a) R is semiperfect;

(b) R has a strongly CS strongly Kasch R-module;

(c) R has a faithful strongly CS strongly Kasch R-module;

(d) R has a faithful weakly IN strongly Kasch R-module.

Proof. Let Max(R) = {mi | i ∈ I} and let N = ⊕i∈IR/mi . Then N is a strongly Kasch R-module by
Remark 5.2.

(i) (⇒) Since R is semilocal, N is weakly IN by Proposition 4.6(i).
(⇐) Let M be a weakly IN strongly Kasch R-module. Then N is isomorphic to a submodule of M

by Proposition 5.1. This implies that N is weakly IN and so R is semilocal by Proposition 4.6(i).
(ii) (c) ⇔ (d) This follows from the fact that a faithful R-module is weakly IN if and only if it is

strongly CS (see [9, Corollary 2.10]).
(c)⇒ (b) This is evident.
(b) ⇒ (a) Let M be a strongly CS strongly Kasch R-module. By Proposition 5.1, N is isomorphic

to a submodule of M and so N is also strongly CS. From Proposition 4.6(ii), it follows that R is
semiperfect.

(a)⇒ (c) Since R is semiperfect, R = R1×R2×· · ·×Rn where each Ri is a local ring. For each 1 ≤ i ≤ n,
let ni be the maximal ideal of Ri and let Ei denote the injective hull of the simple Ri-module Ri/ni .
By Proposition 5.1, Ei is a strongly Kasch Ri-module. Since each Mi is a uniform Ri-module, it is
clear that each Mi is a strongly CS Ri-module. Note that each Ei is a faithful Ri-module by [14,
Proposition 2.26 Corollary 2]. Now consider the R-module M = E1 × E2 × · · · × En. Then M is a
strongly CS R-module by induction and using [9, Lemma 3.2]. Moreover, M is a faithful R-module
since AnnR(M) = AnnR1

(E1) ×AnnR2
(E2) × · · · ×AnnRn(En) = 0. Note that an ideal a of R is maximal

if and only if there exists an integer k ∈ {1,2, . . . ,n} such that a has the form a = a1 × a2 × · · · × an with
ak = nk and ai = Ri for all i , k. It follows easily from Proposition 5.1 that M is a strongly Kasch
R-module. This finishes the proof.
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