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Abstract. Assuming minimal background in algebra and topology, we give a proof that for a domain A, the stalk of the
structure sheaf of the affine scheme Spec(A) at a point P is Ap. While being more accessible than the standard proof,
the proof that is given here leaves few or no ambiguities or questions concerning the foundations of mathematics. Such
ambiguities arise inevitably in the standard proof which considers, more generally, A to be an arbitrary commutative
ring with 1. An appendix surveys some of the history involving such ambiguities in the mathematical and philosophical
literature of the past 100 years.

Key Words: Integral domain, Zariski topology, localization, stalk, sheaf, Hilbert symbol, direct limit, commutative ring.
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1 Introduction

All rings considered here are assumed to be associative and unital; except in Appendix II and in
comments about Appendix II in this Introduction, all rings are also considered to be commutative.
All inclusions of rings, ring extensions, subrings, algebras and ring/algebra homomorphisms will be
assumed unital. Proper inclusions will be denoted by C. In connection with any commutative ring A,
we will use the following standard notation: U(A) denotes the set of units of A; Spec(A) denotes the
set of all prime ideals of A; and if ¢ € A, then A, denotes the localization of A at the multiplicatively
closed set generated by c (that is, at {c" | n > 0}, where ¢ := 1). Tt will be convenient to refer to a
(commutative) integral domain as a domain.

Let A be a ring and let X = Spec(A) endowed with the Zariski topology. Recall that a basic open
set in that topology is of the form X, (more often nowadays denoted by D(a)), which for any element
a € A, is defined by

X,:={PeX|agP}.

Now, let P be a point of the topological space X (that is, let P be a prime ideal of A). For more than 60
years, the fundamental fact that has allowed objects isomorphic to X (along with certain morphisms
in some category) to constitute the affine foundations of modern algebraic geometry is that X can be
given the structure of a local ringed space whose structure sheaf has its stalk at the point P given by
the direct limit

lim A, = lim A,

— —

PeX, acA\P
which is canonically isomorphic to Ap (as A-algebras).

The isomorphism that was just mentioned presents challenges in virtually every classroom where

it is taught. (The same can be said of the implicit assumption in the preceding paragraph that student

" o

readers are familiar with terms such as “local ringed space", “structure sheaf", “stalk" and “direct
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limit".) The challenges to the students can be overwhelming. In Appendix I, I list 31 specific ques-
tions that can arise (and, in my experience, have often arisen) when an instructor presents a proof
of the above isomorphism verbatim as it had been given in a well-respected, time-honored textbook.
These questions are part of a blizzard of queries that many students (and their teachers) encounter
when trying to understand the standard proof of the above isomorphism for the general context
that was given above. The reality of the situation is that, except for the unusual class populated by
students whose undergraduate studies included much of what most universities consider graduate-
level material, the typical student in a beginning graduate-level course on modern algebraic geome-
try is simply not ready for a presentation emulating the austere sophistication of Grothendieck and
Dieudonné (as in [15]]). Put simply, in my experience, many students in such a course simply do not
have the background to appreciate (that is, to understand) the above isomorphism in the generality
that I have stated it. For instance, those students may not yet have heard of the notions of a direct
limit or a sheaf (or the stalk of a sheaf or the “germ" of a function at a point). Most instructors
should probably not simply assume that their students have already taken some relevant courses
on subjects such as algebraic topology or differential geometry or high-dimensional real or complex
analysis. Bearing in mind that in any lecture or conversation, a teacher should expect their audience
to be able to carry away at most two or three of the most salient facts from that interaction, the fol-
lowing question naturally arises in the mind of someone planning to teach the above isomorphism.
(I am now addressing some of the challenges that instructors must decide how to face.) How should
a teacher (dare I say/insert, “best") first acquaint students with the just-mentioned isomorphism if
those students have (essentially only) the following mathematical background: apart from fields (and
possibly polynomial rings), the only rings that they have studied are domains; they are comfortable
with fractions in the context of a fixed quotient field of a domain; they are familiar with prime ideals
in the context of Z (perhaps also in the context of polynomial rings in one indeterminate over a field,
perhaps more generally in the context of Euclidean domains, perhaps more generally in the context
of principal ideal domains) and they have seen the definition of a prime ideal for some class of do-
mains broader than the singleton set {Z}? In short, while students in such a course have had some
exposure to point-set topology (also known as general topology), it is often the case they have not
studied algebraic topology or graduate-level analysis (so, to repeat, they typically have no knowledge
of topics such as sheaves, direct limits, inverse limits, germs of functions, etc.).

Section 2 contains my suggested answer to the above question of how an instructor should/could/may

best plan their first presentation of the isomorphism h_r)npex A, = Ap. That answer has worked well

in classes populated with a majority of students having the kind of background described in the
preceding paragraph. The detailed approach in Section 2 is occasionally presented in an informal,
conversational style, somewhat as one may expect from time to time during a lecture, and readers
should feel free to alter that specific content in accordance with their teaching style (and the compo-
sition and the perceived needs of their audience). As mentioned above, Appendix I mentions some
of the ambiguities that can distract students who are trying to understand the standard proof for
the general context. In my opinion, the proof in Section 2 avoids essentially all of those ambiguities.
Of course, those ambiguities must be addressed at some time, but let us remember that “sufficient
unto the moment is the complexity thereof". That maxim which I just “recalled" (honestly, I really
just invented it) is part of the time-honored “cyclic method" approach to learning which we have
all experienced and which most good teachers instinctively use in teaching most classes. Among
teachers of calculus and analysis, there is general agreement that one should first learn about lim-
its, continuity and ¢-0 arguments for real-valued functions of one real variable, then cycle back to a
deeper study (with teachers expecting deeper understanding from students) of these topics in subse-
quent courses (for instance, on advanced calculus) while studying real-valued functions of “several”
(finitely many real) variables, and only then cycle back to yet deeper studies of these topics in a va-
riety of courses (on subjects such as complex variables, metric spaces, differentiable manifolds, etc.).
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Similarly, among teachers of topology, there is general agreement that students should have some
of the just-mentioned experience before being placed into a course on point-set topology (or some
deeper topic). There was a time, essentially when Birkhoff and MacLane wrote their 1941 text in-
troducing the axiomatic “modern algebra" movement from Europe to an English-reading audience
in North America, that algebraists were similarly devoted to the cyclic method of teaching. Indeed,
even in the 1953 revised edition of their textbook, Birkhoff and Mac Lane scarcely speak of “rings",
while emphasizing instead the study of Z and integral domains. When and why, I must earnestly
ask, did teachers of algebra decide to emphasize almost-maximal generality in beginning courses?
You may protest and say that some textbooks on abstract algebra nowadays still adopt a “domains
first" approach — and you would be correct to assert that. But, now that we seem to have agreed on
the usefulness and appropriateness of such an approach, why should we not also agree that there
should be a time and place to implement it at the beginning of a course on modern algebraic geome-
try? How, a busy and harried teacher may well ask, can I do that —where should I look for advice on
how to do that? I humbly suggest that Section 2 gives what is at least a start to the answer to such
honorable questions.

Two other appendices should be mentioned here. In my experience while doing research on do-
mains, I have encountered a significant number of workers in the field whose work avoids using any
categorical or homological methods or references. In several cases, I have found these workers to
be very intelligent and inspiringly creative, especially in constructing elaborate examples, but often
without their being aware of some useful methods to generalize such constructions or their con-
texts. Sometimes, workers of this kind prefer ideal-theoretic, rather than module-theoretic, meth-
ods. Sometimes, they prefer their “domains" to be rngs (that is “domains which need not have a
multiplicative identity"). Because I believe that workers such as these could offer more to the math-
ematical mainstream by adopting module-theoretic methods and the appropriateness of assuming
that domains should have a multiplicative identity, I have written Appendix II. As I believe that “De
gustibus non est disputandum,” I cannot hope to prove that the just-mentioned colleagues have mis-
placed priorities or values. I can only hope that Appendix II will give food for thought to many. If any
reader feels that my comments in this paragraph have insulted you or your mathematical heritage,
please accept my sincere apology. My intent is honorable, even if you may conclude that my actual
efforts have been clumsy or unseemly. The path to self-improvement can be strewn with reversals,
misunderstanding and suspicion. I mean well and I wish you well.

Finally, let me say a few words about Appendix III. This has to do with a theme that underlies
many of the above-mentioned 31 questions that often arise when students are shown the traditional
proof that h_)mpeX A, = Ap. For more than 100 years, serious scholars of (meta)mathematics have

a

striven to find an appropriate universe of discourse and to understand how to arrange and access the
objects of that universe. Many working algebraists are familiar with some of the history involving the
Axiom of Choice and the Well-Ordering Principle, but I would expect that few readers of this article
know much about Hilbert’s attempt in 1923 to sidestep such topics by introducing what he called the
operators € and 7. [ would also not expect that many readers would know that there is, to this day,
ongoing research extending Hilbert’s work and forming a school of “epsilontic calculus?. Appendix
III gives a brief account of some current work of that school of thought, along with contributions due
to Hilbert, Bourbaki and Grothendieck in regard to what I have described as “the above-mentioned
ambiguities".

As usual, /| denotes the cardinal number of a set /. Any unexplained material is standard, as in
[4], [12], [16].
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2 A proof for integral domains

Good day, students. Today, you will begin to understand what is perhaps the most important isomor-
phism at the heart of the “local" aspects of modern algebraic geometry. As you have often heard me
say, this material, although it will be new to almost all of you, is being brought to you by the people
who arranged the curricula for your earlier studies. So, in order to anticipate at least a part of what
you should expect, let us begin with a special case, a very familiar context, where A is a (commu-
tative unital integral) domain with quotient field K. As you know, K ={c/d |ce€ Aand 0 #d € A}.
Recall that K is really a ring of fractions A4\o. So, the elements of K are really equivalence classes.
But, since domains do not have any interesting zero divisors, the underlying equivalence relation is
especially simple, namely: if ¢y, dy, ¢, d, € A with both d; and d, being nonzero, then (cy,d;) is equiv-
alent to (c,,d,) if and only if cyd, = c,d; in A (in which case, we have the same equivalence classes,
c1/dy = c3/d,). Now — and this is important if today’s special case is going to be easily understood
— I am going to ask you to forget about thinking of these fractions as equivalence classes. After all,
you have been working with fractions (albeit, of integers) since elementary school. And I believe that
you are very comfortable in working with them, without having to worry about where such fractions
may “live". Inside that “home" where they live — which is the quotient field K that we fixed above —
we will establish the kind of isomorphism that we want by building a special kind of union, called a
directed union, of certain rings of fractions that are each subsets of that “home", K. In a later class,
you will learn that when A is only a commutative ring, it is not so intuitively easy to understand
where the various relevant rings of fractions live and the directed unions that we will see today will
be generalized to “direct limit" processes by which these rings are somehow combined. Suffice it to
say here that understanding direct limits will require you to do some additional foundational work.
But, fortunately, none of that additional work will be necessary here today, where all of our rings of
interest will be domains.

So, we're back to considering a domain A with quotient field K. Can you think of a way to build
K as a union of some interesting rings that contain A? No? Well, let me suggest trying the rings
of the form A,. Recall that if 0 2 a € A, then A, := {c/a" € K| c € A,n > 1}. Isn’t it clear that
A C A, CK for all such 4, and also that Ug,,caA, = K? Yes? Yes! Good! What? Oh, you'd like to
see an example. Sure! Let’s consider A :=Z, so K := Q, and let’s take a := 2. Then in this example,
A,=2Z,={c/2" € Q|ceZ n>1}. And in this example, 3/4 € A, but 4/3 ¢ A,. Is that all clear now?
Good! Let’s move on.

It would be nice if the “building blocks" A, were all “comparable", in the sense that whenever a;
and a, are nonzero elements of the domain A, then either A, C A, or A, C A, . If that happens,
then the set of the rings A, is linearly ordered (some people call that sort of thing “totally ordered")
and the building blocks would “line up" neatly. What a terrific way that would be to visualize K! Un-
fortunately, most familiar domains do not have those building blocks line up linearly. For instance,
if A=2Z, then A, and Aj are not comparable, since 3/2 € A, \ A3 and 2/3 € A3\ A,. But, for any
domain A, the union of the building blocks is an example of what is called a “directed union", in the
following sense: if a; and a, are any nonzero elements of A, there there exists some nonzero element
a € Asuchthat A, CA,and A,, C A,. Can anyone suggest how to find such an element a? What?
Yes, taking a := aya, does work. Thank you for that input. Do you all see why both A, and A,, are
contained in A, ,,? Some of you are shaking your heads. Well, please consider this: if ce Aand n > 1,
then c/a = ca}/(aya,)". Right? Good - you're all nodding your heads. Isn't it great when we can use
some old familiar algebra, even arithmetic, to validate a conjecture? Well, I'm glad that you're still
with me.

Let’s summarize what we’ve done so far. If A is a domain with quotient field K, then K is the
directed union of the domains of the form A, as a runs through the set A\ {0}. More formally,
K = Ugep\ 04, Let’s spend some time explaining what it means for that index set to be “directed".
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Most folks agree that a set I, equipped with a binary relation < on I, is called a directed set if the
following three conditions hold: < is reflexive (you know that this means that i <i for all i € I); <
is transitive (you know that this means that if 7,7,k € I satisfy i < j and j <k, then i < k); and < is
directed (for most of you, this may be a new concept: this means that if i,j € I, then there exists
k € I such that i < j and j < k). Isn’t it clear that we have shown that K is a directed union of the
domains A, where 0 # a € A. What’s that? Oh, you want to know how to define the relation < in this
case, right? Well, as in most cases involving sets with enriched structures (some people call these
“concrete categories"), the relevant relation is either inclusion or reverse inclusion. These two kinds
of relations are often directed because, if U and V are subsets of W, then U NV is a subset of both
U and V, while both U and V are subsets of U U V. Of course, the theory of an a enriched structure
is often richer than set theory, since U NV and/or U U V may not share the same kind of enriched
structure that U and V shared. In our example, if a; and 4, are nonzero elements of a domain A,
then A, NA,, is a domain, but it may not be of the form A, for some a € A. Moreover, A, UA, may
not even be a domain. In fact, it may not be closed under addition — for homework, please construct
an example showing this fact. Fortunately, our example does not need to use intersections or unions
to establish the “directed" property. Do you recall that both A, and A,, are subsets of A, ,,? Good!
That is why we were able to view K as being a directed union of the rings A,. What’s that? Yes, I only
verified the third axiom for a directed set. You see, the other two axioms are about reflexivity and
transitivity, and those properties always hold because of basic set theory for any relation < which has
been induced by either inclusion or reverse inclusion. I apologize for not mentioning that earlier.
Please keep it in mind for the future, because I probably won’t remember to say it again!

You may be wondering if the above relation < could have been described, perhaps using some
equations, in terms of the “arithmetic" of the domain A. Yes, that can — and should — be done. We
will do it below, in Proposition [2.1](d).

Now, let’s begin to generalize the above result to the context that really matters here: A is still a
domain, but another piece of data is a prime ideal P of A. (Remember that can be summarized by
writing P € Spec(A).) You will come to see that what we did above really treated the case P = 0 (which
is a prime ideal of A because A is a domain). The general fact that we are aiming for is the following;:

UaeA\P A, =Ap

describes Ap as a directed union of the domains A, as a ranges over the directed index set A\ P. You
can easily modify the above reasoning to see that Ap is the just-displayed union. And that union is
directed, once again because both A, and A,, are contained in A, ,,. But this time, where P may not
be 0, it may be less obvious why a;a, is admissible. Earlier (when P = 0), we just used the fact that A
was assumed to be a domain to conclude that a;a,, being the product of two nonzero elements of a
domain, must be nonzero. Why, in the present situation, is a;a4, admissible? In other words, if both
a; and a, are elements of A\ P, why is a;a, also an element of A\ P? Thank you for that answer. It
is absolutely right. The answer is: precisely because P is a prime ideal of A! And do you know what
that suggests? That last fact did not use the “domain" property of A. Maybe some of this analysis
could carry over more generally, to arbitrary commutative rings. Let’s spend some time looking into
that possibility. Don’t worry — we will return to the context of domains long before any blizzard of
ambiguities has been forecast by your local mathematical weatherperson.

Let’s ease into the general case with a short paragraph involving some review and some topology,
then get “radical" (sorry for the bad pun) in the following paragraph, and then get the result (Propo-
sition which holds the key to a better understanding of the index set for the above directed
union(s).

Let A be a commutative (unital) ring. Consider the set X := Spec(A). For each ce A, let X, :={P €
X | c e P}. (So, for instance, Xy =0 and X; = X.) Recall (cf. [4, Exercises 15 and 17, page 127]) that
X can be given the structure of a topological space via the Zariski topology, by taking the sets of the
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form X, (as ¢ runs though the elements of A) as a basis for the open sets. Indeed, given the above
information about X, and X;, one gets this topological conclusion directly from the definition of a
prime ideal of a commutative ring, as that easily gives that X, N X, = X, forall a,b € A.

It is well known (cf. [4, Proposition 1.14], [12}, Corollary 2.10], [16, Theorem 26]) that if I is an
ideal of a (commutative unital) ring A, then the radical of I (in A) is the following ideal of A:

VI := {u € A | there exists an integer n > 1 such that u" € I} =

N{P € Spec(A)|I C P}.

Part (b) of the next result shows that the above open basis of the Zariski topology can be described in
terms of radicals of principal ideals. Part (d) of the next result shows that if the ambient commutative
(unital) ring A is a domain, then the above open basis of the Zariski topology can also be described
in terms of rings of fractions of the form A, (with a € A).

Proposition 2.1. (a) Let A be a (commutative unital) ring. Let a,b € A. Then X, C X, if and only if
VAa € VAD.

(b) Let A be a (commutative unital) ring. Let a,b € A. Then X, = Xy, if and only zf\/A_b = VAa.

(c) Let A be a (commutative unital) domain, with quotient field K. Let a,b € A such that a # 0. Then
VAa € VAD (that is, X, C Xp) if and only if Ay, C A, (that is, if and only if Ay is a (unital) subring of A,
inside K).

(d) Let A be a (commutative unital) domain, with quotient field K. Let a,b € A. Then VAa = VAb (that
is, X, = Xyp) if and only if A, = Ay (that is, if and only if A, and Ay, are (unital, but possibly zero) subrings
of each other).

Proof. (a) We have the following equivalences and implications: X, C X, © X\ X, 2 X\ X, & {P €
X|laeP)2{PeX|beP)=>n{PeX|acPiCnPeX|beP} o VAa C VAb & a e VAb & there
exists an integer n > 1 and an element a € A such that a” = ab. This (more than) proves the “only
if" assertion. To prove the converse, suppose that VAa C VADb. Our task is to prove that X, C X;;
equivalently, that if P is a prime ideal of A such that a ¢ P, then b ¢ P. This, in turn, follows easily
from P being a prime ideal of A, since the above reasoning gives an equation a" = ab with n > 1 and
a€A.

(b) It suffices to combine (a) with the assertion obtained by reversing the roles of a and b in (a).

(c) The first parenthetical comment follows from (a); the second parenthetical comment follows
from the fact that the operations of addition and multiplication in both A, and A; are induced by the
corresponding operations in K.

Let us first prove the “only if" assertion. Since a € VAD, there is an equation a” = ab for some 1 > 1
and a € A. As a # 0 by hypothesis, then neither a nor b is 0 (since A is a domain). Therefore, as
Ax = A, (as subsets of K) for all nonzero elements ¢ € A and all integers k > 1, we have, in view of
the assumption that a # 0, that 1/b = a/(ab) = a/a" in K, whence 1/b € A;» = A,, and then it follows
easily that A, C A, (as subsets of K).

For the converse, suppose that A, C A,. Then, working in the quotient field K of A, we have 1/b =
a/a" for some a € A and some integer n > 1. Thus a”" = ab, whence a € \/E, whence VAa C \/E, as
desired.

(d) In view of (b), it suffices, if neither a nor b is 0, to apply (c).

It remains to consider the cases(s) where either a = 0 or b = 0 (or both). This situation requires
separate treatment because of the existence of nilpotent elements. Indeed, notice that if A were only
assumed to be a commutative (unital) ring, then ¢ € A satisfies X, = 0 if and only if c is nilpotent;
and, still assuming only that A is a commutative ring, notice that c € A satisfies c € VA -0 if and only
if c is nilpotent. As the present A is assumed to be a (commutative unital) domain, the assumption
that VAa = VAb (equivalently, X, = X;,), when coupled with the assumption (of the prevailing case)
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that either a = 0 or b = 0, ensures that both a and b equal 0 in the domain A. Similarly, while working
with the domain A, we have that the assumption that A, = A;, when coupled with the assumption
that either a = 0 or b = 0, ensures that both A, and A; are zero rings, whence both a and b equal 0 in
the domain A. Thus, under the assumption that either a = 0 or b = 0 (or both), we have:

VAa=VAb ©a=0=b o A, =A,.

It is perhaps worth pointing out that when a4 and b are each equal to the same element 0 € A, the use
of that element 0 € A in the construction of both of the relevant rings of fractions, A, and A, gives
that A, = Ag = A, whence A, and A, are equal as rings, although that ring is a zero ring and not a
(unital) subring of K. O

The hypothesis that A is a domain allows the conclusion, via Proposition (d), that VAa = VAb C
A implies that A, and A; are equal rings, to be unambiguous. However, if A had been assumed only
to be a commutative (unital) ring, we could hope to (at best) conclude that A, and A, are isomorphic
rings. Consequently, if one attempts to apply a functor to an unspecified one of the pertinent rings
that is isomorphic to A,, it becomes unclear (that is, ambiguous; that is, known only up to isomor-
phism) as to what is meant by the alleged result of such an application. Yet, that is exactly the sort
of thing that the literature does, many times over, in this general area when working with commu-
tative (unital) rings A. I believe that during your initial exposure to the ring-theoretic foundations
of modern algebraic geometry, there is no urgent reason for you to be bombarded with a blizzard
of ambiguities. The term “blizzard" is not mere hyperbole here, as you will see if you read my cri-
tique in Appendix I of two well-respected expositions of the general case. Also, you will see, if you
read Appendix III, that worries concerning the meaning and well-definedness of such applications
of functions or functors to unspecified isomorphic copies of a known object have been the topic of
ongoing studies for more than 100 years. To temporarily avoid (that is, to forestall) the ambiguities
which arise in the general case, we will usually assume for the rest of this section that the ambient
(commutative unital) ring A is a domain. Occasionally, we may pause to explain where/how that
restriction to domains has simplified matters and avoided ambiguity, but typically we will leave it to
you, the reader, to be alert to such instances. I believe that the following is a sound principle, both
for students and for researchers: while reading each step of a proof, ask yourself if the step follows as
indicated and also ask yourself if the conclusion of the step would have been possible under weaker
assumptions.

Remark 2.2. Consider the form of the statement that li_n)lpex A, = Ap. How could one come to

understand this statement if it were expressed in its most efficient form? If the ring A is “far" from
being a domain then, even if a and b are elements of A such that X, = Xj, it is by no means clear that
A, and Ay are the same mathematical object, because there is no obvious universe containing both A,
and A; within which one could compare A, and A; (in order to see if they are the same). As one can
quickly see by tweaking the proof of Proposition if X, = X, then A, = A;,. But that is palpably
not the same as saying that A, = A,! Fortunately, we have seen in Proposition (d) that if Ais a
domain, then any quotient field of A is the desirable kind of universe, as we showed that if X, = X,
for nonzero elements a and b of a domain A (with quotient field K), then we do have A, = A, (as
subsets of K). This suggests that a more efficient (or economical or elegant) description of l'l>nP€X A,

a

should be possible, especially if A is a domain, if one were to impose an appropriate equivalence
relation of the index set. That is what we will do five paragraphs hence. This completes the remark.

For a fixed domain A (with given quotient field K) and a fixed prime ideal P of A, a reading of
Proposition (b) suggests (correctly) that it would be useful to define the following equivalence
relation ~on A\ P. If a,b € A\ P, we say that a ~ b if and only if VAa = VAbD; equivalently, if and
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only if X, = X;; equivalently (by Proposition[2.1](c)), that A, = A, (as A-subalgebras of K). Note also
that by defining ~ in this way, c € A\ P ensures that ¢ # 0 (for the more general context where A is
a commutative ring, c € A\ P would ensure that c is not nilpotent), so that the fussiness involving
“such that a # 0" in the statement of Proposition[2.1](c) will usually not be a concern as we work with
(A and) P.

With A, K and P fixed as above, it may occasionally be necessary to denote the above equivalence
relation ~ by ~4\p. If a € A\ P, the ~-equivalence class represented by a will be denoted by

[a] or [a]. or [a]NA\P

with the appropriate notation to be chosen in any given situation as simply as possible, solely in
order to avoid ambiguity.

Let us examine more carefully our earlier description of Ap as the directed union U,c\pA,. How,
more precisely, can this directed union be understood to have been expressed in the form U;¢R;
for some directed union of rings R; indexed by some directed set I? Obviously, one should take
I := A\ P, with the “dummy index" i being replaced by the dummy index a, and with the ring R;,
or rather R,, then being taken to be A,. But what is the precise order relation < that is underlying
this directed union? In other words, if 2 and b are elements of A \ P, what does/should it mean to
say that a < b? The answer to this question comes from Proposition (d). Indeed, if we say that
for a,b € A\ P, the definition of a < b is that A; C A, (in the quotient field K), then everything falls
into place rigorously as desired, because this relation < is, indeed, reflexive, transitive and directed
(with the last of these properties holding since both A, and A, are subsets of A;;). Notice also that
if a,b € A\ P as above, then we have the following additional formulations of the above equivalence
relation, thanks to Proposition a<b e X, CX, © VAb C VAa.

The above understanding of Ap as the directed union U,e4\pA, can be made “crisper" ( some would
say, “sharper"” or “more economical" or “more elegant") by using the above equivalence relation ~=
~a\p- In a moment, I will explain how to do that. When that has been accomplished, I hope that
you will agree that we will have a new description of Ap as a new directed union which merits the
just-mentioned laudatory adjectives. But my main reason for getting to that new description has
to do with some ambiguities in the literature. You see, the literature is not entirely uniform as to
the definition of a directed index set. Of course, this fact affects the definition of a directed union
(and it also affects, more generally, the definition of a direct limit). While the literature does agree
that the binary relation < on a directed set should be reflexive, transitive and directed (as in the
definition that we have been working with here), a noticeable minority of the literature also requires
< to be antisymmetric (in the usual sense, namely, that if i,j € I satisfy i < j and j <7, then i = j).
Unfortunately, requiring the above relation < on A\ P to be antisymmetric would mean that whenever
elements a and b of A\P satisfy A, = Aj;, then one would need to have a = b. That sad situation, for the
prime ideal P = 0, would imply that a® = a for each nonzero element of the domain A. And that would
imply that A = IF,, which is not all what we wanted in this attempt to say something interesting and
useful about all domains A. So, to placate the above-mentioned minority, the promised “moment"
has passed/come, and it is now time to introduce an equivalence relation < which will allow us to
replace the index set A\ P with the set of ~-equivalence classes from A \ P. That will be done in the
next paragraph.

Given a domain A and a prime ideal P of A, we can define a binary relation on the equivalence
classes of the equivalence relation ~=~4\p as follows. If [a] and [b] are such equivalence classes,
let us say that [a] < [b] if and only if a < b. (To avoid ambiguity, you may occasionally prefer to
use the notation “<,p" instead of “<".) Notice that the binary relation < has been well defined
(for if [a;] = [a;] and [b;] = [by] with a; ~ b;, then we have A, = A, and A, = A;,, along with
A, € Ay, whence A, C Ay, .) Moreover, it is easy to see (please check this, but do not hand it in as
homework, as it really is very easy) that < inherits each of the properties of reflexivity, transitivity
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and directedness from <, and so < endows the set of ~4\p-equivalence classes with the structure
of a directed set. Furthermore, this structure has the additional property that is cherished by the
“noticeable minority", namely, that < is antisymmetric. Indeed, if [a] := [a]., , and [b] := [b].,
satisfy [a] < [b] and [b] < [a], then a < b and b < a, whence A, C A; and A, C A,, whence A, = Ay,
whence a ~4\p b, whence [a] = [b], as desired. Thus, we now have what everyone can agree is a
description of Ap as a “directed union" (and, by taking P := 0, one would get a description of the
quotient field of A as “a directed union"), namely,

Ap = U A,

[a] is a ~4\p—equivalence class

Ignoring the mini-controversy concerning the definition of a directed set, let us consider a claim to
the effect that the last display is more “elegant" than our earlier result that (if P is a prime ideal
of a domain A, then) Ap = Uzea\pA,. By sending each a to its equivalence class [a], one obtains a
surjection from the second index set to the first index set. (One could, instead, have noted that the
Axiom of Choice gives an injection from the first index set to the second index set.) However, it
would be wrong to conclude that, in general, the first index set is “smaller than" the second index
set. While the cardinal number of the first index set is less than or equal to the cardinal number of
the second index set, those cardinal numbers could be, depending on A and P, equal infinite cardinal
numbers. Consider, for instance, A := Z and P := 2A. Since the set of odd integers is denumerable,
this example satisfies |A \ P| = Xy. In other words, the second index set in this example has cardinal
number Nj. So, in view of the above-mentioned injection, the first index set in this example is either
finite or denumerable. In fact, that first index set is denumerable, since it has a fairly prominent
denumerable subset. Let’s pause a moment. Did you find or guess what that denumerable subset
is? No? Well, thanks for trying. The subset that I noticed is the set of <, p-equivalence classes
represented by odd prime numbers. The underlying fact is a gem from elementary number theory:
if g and r are distinct odd prime numbers, then Z; = Z,. (You can check that this follows from the
Fundamental Theorem of Arithmetic.) Since any subset of a finite set is finite, we have proved that
the first index set in this example is denumerable; that is, it has cardinal number K. I will leave this
example by asking you to ponder the following question: should you call the first index set (in this
example) “more elegant" than the second index set (in this example) even though these sets have the
same cardinal number?

In looking at various books for the main result that we proved today, you may have come across
statements such as

li_>rn F(X,) = Ap or h_r)n F(X,) = Ap.
PeX, aeA\P

So, you know that ”li_)m” is a standard notation for direct limit, and that is a generalization of directed
union. You may have realized that F is what is usually called the structure sheaf of the affine scheme
X :=Spec(A). (Most algebraic geometers denote F by Oy.) Given that we have focused on the result
that Ugca\pA, = Ap (When P is a prime ideal of a domain A), you have probably also surmised that
F(X,) = A, (although it may not yet be clear to you whether that equation is a definition or a proven
fact). It would be natural for you to wonder what sort of binary relation is being imposed on the
index set A\ P in the just-displayed statements from the literature. (Let’s skim over the technical but
important difference between a direct limit and a directed set, and agree that there is something like
an underlying ordering on A \ P going on in those statements from the literature.) Remember (cf.
Proposition that when P is a prime ideal of a domain A, a < b used to mean that A, C A, and
for that context, that this condition was equivalent to X;, C X,. If b is “later than" a in the relevant
directed union or direct limit process (that is, if a is “less than or equal to" b in some sense), it is
traditional to have X;, C X, so that “later" indexes give “smaller" neighborhoods, and the “functorial”
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behavior of the sheaf F gives a “restriction map" from F(X,) to F(Xj), that is, from A, to A;. For
our familiar domain-theoretic context, this is just the inclusion map A, <> A;. For more general
ring-theoretic contexts, you will eventually develop enough intuition, based on repeated exposure
and familiarity with examples, to appreciate whether/when/why restriction maps can or should be
regarded as inclusion maps. It will take a while, but I am confident that you can do it. In time, the
general setting will seem as natural to you as it was today when you worked with fractions inside a
fixed quotient field.

I would like to point out that it is possible to extend the above reasoning in today’s main result by
generalizing from the multiplicatively closed set A\ P (where P is a prime ideal of a domain A) to
the case where S is an arbitrary (nonempty) multiplicatively closed subset of a domain A such that
0 ¢ S. As homework, please do the following. Show, under these conditions, that the ring of fractions
Ag is a directed union of the domains A, as the elements a run through the set S. It will be part of
the assignment for you to decide what the ordering is on the relevant directed set I (remember to
identify I and its ordering and to prove that I is directed!). You will also need to explain how, if a
and b are suitably related by that ordering, one has that A, C A, (inside the given quotient field K of
A). If you wish, for extra credit, you may also try to find conditions under which you can reduce the
size of the index set by setting up a suitable equivalence relation on S and letting the “new" indices
be the corresponding equivalence classes (instead of the “old" indices which were elements of S).

Next, as an additional step in preparing you for some of the “wrinkles" that may arise when A is
a commutative (unital) ring, but not necessarily a domain, let us notice some of what may be gained
by slightly tweaking the proof of Proposition[2.1] Suppose that a,b € A. Then: X}, C X, = there exists
an integer n > 1 and an element « € A such that b" = a@a. Now suppose that, in fact, X;, € X,. It will
be desirable for the resulting A-algebra homomorphism f : A, — A;, (which sends c¢/a™ to ca™/b"",
for all ¢ € A and integers m > 1) to be injective. (Notice that such f exists, thanks to the universal
mapping property of rings of fractions, since a/1 is a unit in Ay; indeed, it has multiplicative inverse
a/b" there.) To accomplish this injectivity, some fine-tuning will be necessary in regard to the ring
elements 2 and b that will come under consideration in the general case (when A is not necessarily a
domain). Rather than delving into that fine-tuning here, let us simply notice why there was no such
difficulty in case A is a domain (with quotient field K). In that context, with a and b each nonzero
elements of a domain A such that b" = aa for some integer n > 1 and some (necessarily nonzero)
element @ € A, we were actually working with a (directed) union in the above argument. Indeed,
one gets that A, C A, there since, if c € A and m is a positive integer, then ¢/a™ = ca™/b"" in K and,
hence, in A.

There will be more fine-tuning as you continue to study the affine scheme Spec(A) (for an arbitrary
commutative ring A) and its role in the “local" part of modern algebraic geometry. In addition to what
we have just seen here, you will learn new machinery, involving things called direct limits, sheaves
and stalks. You will also learn why F(U) is called the “sections of the sheaf 7 over the open set U".
That should help you to understand better or more easily some material that you have seen or will
see in some courses on topology or analysis (especially, in regard to the “germs" of functions at a
point). You will certainly learn that if F is the structure sheaf of the affine scheme X = Spec(A), then
“the ring of global sections" F(X) is isomorphic to A. (Here’s one final exercise: give a quick proof
of this fact, using only information from today’s class.) That may lead you to study other historically
important representation theorems where a given ring is realized (up to isomorphism) as the ring of
global sections of some sheaf on some topological space.

Congratulations! You are about to dive into the really geometric part of algebraic geometry. But
that’s enough for today.
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3 Appendix I: Comparison with the traditional proof

For many years during the 1960s, graduate students in an algebraic geometry course learned the
modern approach to the basics of that subject by reading some notes [19] (with red front and back
covers) that were affectionately known as “the red Mumford". (The only alternative at that time was
to read the variety of French language material that was being produced by Grothendieck and his fol-
lowers.) In retrospect, Mumford did a good job at getting to the basics, while providing background
and examples that were sufficient for his intended audience. I would like to begin this appendix by
reviewing Mumford’s five-line proof in [19, page 40] that (to use the notation of our Section 2 but
now for an arbitrary commutative ring A), the stalk of the structure sheaf (I will denote that sheaf by
F) at a point P of X := Spec(A) (that is, at a prime ideal P of A) is Ap. Apart from some notational
changes, the following is only a slight rewording of Mumford’s proof:
“Since the sets of the form X, give a basis of the Zariski topology of Spec(A), we have that the stalk
of the sheaf F [of course, Mumford denotes F by O] at the point P [of course, Mumford denotes P
by x]is

lim F(U) = lim F(X,;) = lim A,.

IE)J IE(: a@)O

Since all restriction maps in our sheaf are injective, this is just U,(p).0A,, which is clearly Ap."

An objective reading of the above argument raises, in order, 31 questions. (The Introduction
promised a “blizzard of queries"!) These questions are collected, together with some comments, as
the following seven items:

(i) What does the first equal sign in the display really mean? If two objects (such as the partners
in that asserted equality) are each only defined up to isomorphism, what sense does it make to say
that those objects are equal? Would it not make more sense to say, instead, that those objects are
isomorphic? Or, given that those objects are each only defined up to isomorphism, would an assertion
of isomorphism here mean the same thing as your assertion of equality here? With respect, I must
ask: is your assertion of equality even meaningful? Was it intentional or was it a typo?

(ii) I suppose that the answer to last part of the above set of questions is that you intended to use
that equal sign and there was no typo, as I have now seen that you have continued to use equal signs
two more times. Let me ask next about a quantity on the right-hand side of the first equal sign in
the display. What does “F(X,)" really mean? I understand that for each relevant element a, the set
X, is well defined and so is F(X,). But in reading about direct limits over directed sets, it was not
clear to me if a directed set must be asymmetric. (I know that it must be reflexive, transitive and
directed.) Looking online, I see that many people are confused, like I am, about how direct limits
are defined, asking whether the index set that we are discussing is what they call an “order" or what
they call a “preorder”. Since P is given and a is somehow varying, should the subscript of “lim" on
the right-hand side of the second equal sign in the display be, instead, a specific statement about the
behavior of a, or perhaps, about the behavior of an equivalence class (for some equivalence relation
that you have not mentioned) represented by a? If the answer to the last question is “Yes", what is
that equivalence relation and what sense does it then make to speak of “F(X,)"? After all, if elements
a,a; € A are such that X, = X, , I can probably believe that 7 (X, ) = F(X,,) - would you please
give or assign a proof of this fact? — but I would need to be convinced that 7 (X, ) = F(X,,). Was
that a hidden part of the message that you were trying to convey here? Is this question somehow
linked to the questions listed under (i)? Will some or all of these concerns in (ii) dissipate if we just
decide to not worry whether the index set is asymmetric? I wish that I had asked this part of my
question earlier when you covered direct limits, but it only occurred to me now when I saw how you
were using them. Maybe no one has ever asked you this before, so perhaps your lesson plans did not
anticipate such a question from the audience. If so, please excuse me and I'll wait a bit longer for
you to think about this before you answer.

11
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(iii) I have a comment about the index set on the right-hand side of the second equal sign in the
display. This is the kind of “specific statement about the behavior of 4" that I mentioned in (ii).
Would it have been better — or possible —to go directly from the first direct limit to the third direct
limit in the display? If so, that would eliminate some (maybe all) of my concerns in (ii) above. By the
way, thank you for explaining the notation “a(P)" earlier (on the preceding page of [19]]), when you
said/wrote that “The elements of F(U) can be viewed as functions on U." I was certainly ready to
understand that part of the display!

(iv) I am going to have several questions about your phrase “This is just ...." First, what did you
intend the word “This" to refer to?

(v) Next, still about your phrase “This is just", I would like to ask: did you intend the word “is" to
refer to “is equal to" or “is isomorphic to"?

(vi) Here are my final questions about your phrase “This is just”". What did you mean by the word
“just” there? Did you mean “equal to" or “isomorphic to"? I remember that when we covered direct
limits, you mentioned that every directed union is isomorphic to a direct limit over a directed set.
But is the converse true? In particular, are there some instances of ”li—>mpexa F(X,)" that should not

be viewed as being isomorphic to directed unions? Would your answer to this last question depend
on whether we had grouped the various elements a into equivalence classes as suggested above? If
so, what is the relevant equivalence relation?

(vii) Why is your union “Ugp).0A," well defined? I was always taught that a meaningful union of
the form Ujc; W; requires that the objects W; be well understood sets and that there exists a universe
which contains each of these sets W; as a subset. Is that really the case here? I do not know whether
you intended the elements a to range over a subset of A or over certain equivalences classes (again:
if so, what is the relevant equivalence relation?), but regardless of your answer to that question, I do
not see how there could exist some universe containing each of the relevant sets A, because each of
these “sets" is only defined up to isomorphism. What sense doers it make to talk about a union of
things that are only defined up to isomorphism? And what sense would it make for such a union, if it
were well defined, to be equal to something like Ap, which is itself only defined up to isomorphism?
Are these kinds of questions related to what I was asking about in (i) (and occasionally later)? Has
some group of mathematical leaders somehow agreed that mathematicians are working in an ideal
Platonic world where all isomorphic objects are equal? If so, I did not get that memo and, unlike
Leibnitz, I do not necessarily believe in a “pre-established harmony"! Who or what has somehow
ordered everything to work so well together? Is some kind of well ordering being supposed and
used? Excuse me, I am only trying to learn and understand, but I must add, with respect: your
saying “which is clearly" did not seem at all clear to me.

As I recall, the courses in modern algebraic geometry that I took (which were taught by Professors
George Rinehart and Stephen Lichtenbaum) presented the above proof (and prepared the class for
it) almost exactly as in [19].

Let us next review how, a few years later, Atiyah-Macdonald approached the above result. One
should note that although Mumford’s notes may have been written under time pressure and were
compiled into a “Preliminary version" of the first three chapters of a foreseen book, Atiyah and Mac-
donald had the advantage of the passage of time and their book was not explicitly a “preliminary
version". Also, because of the intentionally small size of [4]], much of the substance of that book is
to be found in its exercises. Prior to the actual exercise stating, in effect, that 1i_1r)1P€U.7-'(U) = Ap,
Atiyah-Macdonald did a good job of covering the Zariski topology (having the sets of the form X, as
an open basis), direct limits and rings of fractions. We next essentially reproduce the five parts of [4)],
Exercise 23, page 47]. As before, in order to assure uniformity of notation for comparison purposes,
the following summary is the result of only a light editing of what Atiyah and Macdonald wrote in
that exercise. As before, we are considering a commutative ring A, X := Spec(A) has been equipped
with the Zariski topology, and the structure sheaf of this affine scheme is being denoted by F. Here,
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then, are the five parts of the pertinent exercise from [4]:

(i) If U = X, for some a € A, show that F(U) := A, depends only on U and not on a.

(ii) Let U = X}, be another basic open set in X such that U C U (= X,). Show that there is an equation
of the form b" = ua for some integer n > 0 and some u € A, and use this to define a homomorphism
p:F(U)— F(U') (that is, A, — Ap) by c/a™ +— cu™/b™". Show that p depends only on U and U
This homomorphism is called the restriction homomorphism.

(iii) If U = U’, then p is the identity map.

(iv) If U 2 U 2 U are basic open sets in X, show that the composite of the restriction homomor-
phisms F(U) — F(U') and F(U') — F(U") is the restriction homomorphism F(U) — F(U").

(v) If P is a prime ideal of A, show that li_)mPeU F(U)=Ap.

In commentary after (v), Atiyah-Macdonald went on to state (again, I will lightly edit their nota-
tion) the following: “The assignment sending each basic open set U to the ring F (U), together with
the restriction homomorphisms p satisfying the conditions in (iii) and (iv), constitutes a presheaf of
rings on the basis of open sets {X, | a € A}" and that “(v) says that the stalk of this presheaf at P is the
(quasi-)local ring Ap."

For the most part, I would prefer to let the reader decide the following three things: which, if
any, of the earlier 31 questions about the presentation in [19] applies to the presentation in [4];
whether any new questions arise as a result of that presentation in [4]; and whether the presentations
in [19] and/or [4] would be preferable to the presentation that I gave (for domains A) in Section
2, when the reader is considering how to present the “stalk" result to his/her/their class. Before
leaving instructor/readers with such weighty matters (after all, you surely know your students, their
background and their needs better than I do!), I would like to close this appendix by making three
sets of points.

First, in teaching graduate courses on commutative ring theory several times at two state universi-
ties, I have often given a fuller treatment, than in either [19] or [4], of the identification (of Ap as) the
stalk of the structure sheaf of Spec(A) at a prime ideal P of the commutative ring A. Occasionally,
because of time pressure in such a course, I have covered only the special case for domains A, as in
Section 2 above. But in all those courses, I took/found the time to explain what a sheaf is and why
the construction at hand actually produces a sheaf. I did so, in part, because I have found the cate-
gorical concepts of an equalizer and a coequalizer to be helpful and illuminating, both for research
and in teaching, on several occasions. Also, graduate students specializing in analysis, topology and
differential geometry have told me that my comments along those lines had been helpful to them in
their research. Speaking of teaching, I am uncomfortable in speaking of “the stalk of a presheaf at
a point" (as Atiyah-Macdonald did), but perhaps this sort of worry is a personal one that the reader
need not be concerned about.

Second, while exercises do not have the same purpose as lecture material, each should be clearly
stated, and so, if only for the sake of completeness and fairness, I would like to raise a few questions
and/or comments in regard to the presentation in [4, Exercise 23, page 47]. (Yes, that process did
begin in the preceding paragraph — thank you for noticing that.) It seems natural to me to ask what
Atiyah-Macdonald intended to mean by the phrase “depends on" in (i)? One could ask a similar ques-
tion about Atiyah-Macdonald’s (ii). In regard to their (ii), one could also ask if the name “restriction
homomorphism" should be appended by something like “from F(U) to F(U')". Given the previous
sentence, I must admit that I found it heartening to see the plural in “restriction homomorphisms"
in Atiyah-Macdonald’s commentary after (v).

Third, the following advice/principle will, I hope, meet with universal acceptance. Any graduate
course on modern algebraic geometry should cover in detail the “stalk" result for the general context
of an arbitrary commutative ring A. Whether or not that coverage should be preceded (either in
class or as homework) with the special case where A is a domain (as given in Section 2) is a decision
that should be up to the instructor (or instructors) who is (are) responsible for such a course. While
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someone in my position can offer advice, please let me repeat: you surely know your students, their
background and their needs better than I do!

4 Appendix II: Should a domain have a multiplicative identity element?

Let R be an rng. (Some authors write “a rng" instead of “an rng". Which option is appropriate
grammatically depends on how one pronounces “rng" — should it be like “urng" or like “rung"? -
and there is no universal agreement about that pronunciation.) Then with respect to addition, R is
an abelian group, that is, a Z-module. Consider the mathematical object R := Z® R, the external
direct sum of Z and R as an abelian group under addition, but also equipped with a multiplication,
given by

(nq,1)(ny, 1) = (nyny, 1ty + npry + 111p)for allny, ny, € Zandry,ry € R.

It is straightforward to check that R is a (unital) ring under the above operations, with multiplicative
identity element (1,0). Also, there is an injective rng homomorphism 6 : R — R, given by r — (0,7)
for all r € R. It is customary to use 6 to view R as a subrng of the (unital) ring R. Of course, there
would be no practical reason to use the above construction if the given rng R is known to be a ring
(that is, if it is known to have a multiplicative identity element, say 1g). Indeed, in that case, the
above rng homomorphism 6 would not be unital, the point being that 6(1g) = (0,1z) € R is distinct
from the multiplicative identity element (1, 0) of R.

At one time, many writers of textbooks on “ring theory" appreciated that one should introduce
students early to constructions like the one given in the preceding paragraph. It seemed to take until
the late 1960s, or perhaps even the mid-1970s, until a sizable majority of the community coalesced
around the idea that a “ring" should have a multiplicative identity element, whereas an “rng" pos-
sesses all the properties of a ring except possibly that of having a multiplicative identity element.
So, when one is reading textbooks on ring theory that were written long ago, one must take care to
understand which definition of “ring" the author is using. Yet, there is often much to be gained from
reading old textbooks. One such book that comes to mind is [18]]. After I finished the master’s degree
and just before I moved to the United States to study for the doctorate, a former professor suggested
that I should read [18] to learn something about rings. (He was aware that although I had extensive
knowledge of group theory and matrix theory, I had never heard the word “ring" uttered in a class-
room.) In reading [18]], I developed a quick respect for ring theory. Even the second section of the
first chapter of [18]] had a couple of challenging homework problems. That same section (to be pre-
cise, page 8 of that book) contained McCoy’s version of the construction in the preceding paragraph.
(To be accurate, I should point out the following ultimately insignificant difference: where the above
construction used the external direct sum Z®R, McCoy had used the external direct sum R&Z, with
the necessary concomitant changes in the definition of multiplication.) McCoy’s version of “embed-
ding a ring [I would say “an rng"] in a ring with unity" [I would omit “with unity"] was actually
better tailored to the ring R at hand. Indeed, it used essentially what we did in the above paragraph
if R has characteristic 0, but replaced Z with the ring of integers modulo # if the characteristic of R
is some positive integer n. (By definition, the characteristic of an rng is the smallest positive integer
n such that the sum of n copies of each element of R is 0, if such an n exists; and the characteristic
of an rng R is taken to be 0 if no such n exists. Notice that this definition of the characteristic of an
rng is, in the case of positive finite characteristic, really talking about the exponent of the additive
group of R. Notice also that the characteristic of a/the zero rng is 1, a situation that has led some
workers to argue that the notations Z/1Z or Z; should be used for “the" zero ring, since one could
then say that the characteristic of Z/nZ is n for all positive integers n. It is worth recording that no
one has been foolish enough to suggest extending this practice by letting the notations Z/0Z or Z,
stand for the ring of integers, although Z does have characteristic 0.) It is interesting to note that the
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definition of “characteristic" had not been finalized as recently as 1953, as that is when the revised
edition of the classic textbook, “A survey of modern algebra," by Birkhoff and Mac Lane defined the
characteristic of Z to be co (while acknowledging in a footnote that “most" authors had decided to
say that the usage “characteristic co" should be replaced by “characteristic 0").

When I was a pre-doctoral student trying to learn about rings and linear transformations on my
own, an appealing aspect of the approach to modern algebra in the above-mentioned textbook by
Birkhoff and Mac Lane is that (as opposed to the “groups first" approach in the popular textbook,
“Topics in algebra," by Herstein) they defined “characteristic" only for domains. That “domains first"
approach suited me well, as I was quite comfortable with fields and I was becoming comfortable
with some domains (notably, Z and polynomials rings in one indeterminate over a field). I wonder if
the researcher in commutative algebra that I became (spending many years studying many classes of
domains) would agree with his younger self that the embedding of an rng in a ring is worth teaching
to today’s students.

Following [12]], a “domain" is defined to be a nonzero commutative rng with no nonzero zero-
divisors. With that usage, a “domain" need not be unital, that is, it need not be a ring. For me (and, I
suspect, for most readers of this article), a “domain" is unital, that is, it is a ring. That has also been
my belief ever since I learned about domains. As my doctoral research had been on what is nowa-
days called arithmetic algebraic geometry, it was natural for me to see a “domain" as an example of
a (necessarily unital) commutative ring. I had not heard of multiplicative ideal theory (or [12] or
Robert Gilmer) until almost the end of my postdoctoral year at UCLA (and it was a noncommutative
ring theorist, Julius Zelmanowitz, who informed me of the area and who suggested that I familiar-
ize myself with [12]). The fact that a significant number of commutative ring theorists and other
mathematicians do not believe that a “domain" needs to be unital was brought to my attention in an
anecdote that I relate in the next paragraph. (That anecdote does not reflect me in the highest moral
light, but I do find it amusing and instructive — I hope that you will, too.)

One weekday around noon several decades ago, I left my office and went to the mathematics
department’s mail room to see if the daily mail had been delivered. Discovering that the current
issue of the MAA’s Monthly magazine had just arrived, I took my copy of that magazine back to my
office and quickly turned to the problem section. I found a problem that seemed to be in commutative
algebra (that was a rare occurrence in that section of the Monthly during that period of history) and I
set to work on it. The problem was about domains, and within moments, I had solved the problem by
using a standard tool, the ring-theoretic generalization of the classical result on extending valuations
(as in [12, Theorem 19.6] or [16, Theorem 56]). I quickly printed (by hand) my solution, handed it
to a secretary to be typed appropriately (professors did not have typewriters or computers at that
time, but we did have secretaries to type for us), received the typed copy for proofreading just a few
minutes later, found the typing to be perfect (that is, accurate), and managed to get my submitted
solution mailed to the MAA before the departmental mail was picked up that day. Surely, I thought,
with the MAA office just one or two days away by normal mail, my solution had a good chance
of being the first to be received. I eagerly awaited the eventual issue of the Monthly magazine,
expecting to see my name next to the published solution. (I promised you that this anecdote would
make me look all too human.) To my dismay, my name only appeared in the alphabetic list under
the heading “also solved by". The published solution did not look familiar to me. But when I saw
that the solution was due to Robert Gilmer, my dismay disappeared. At that point in time, Gilmer
was indisputably the world leader in multiplicative ideal theory (and perhaps, more generally, on
the topic of domains). My feelings were further assuaged when I read Gilmer’s solution and realized
that it differed significantly from my solution. In fact, Gilmer’s solution seemed slightly longer than
mine. (Yes, more human frailty is on exhibit here, but the story is nearly over.) More importantly,
Gilmer’s solution did not use the assumption that the ambient domain was unital. (Remember that
the definition of a “domain" in [12] does not require the unital property.) So, quite likely, I had
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achieved a Pyrrhic victory, in that my solution was probably the first to arrive at the office of the MAA
Monthly, but Gilmer’s solution was eventually deemed to be better by the powers that be, presumably
because his solution assumed less (and, therefore by the standards that most mathematics would use
for such matters, was the “better”, more elegant solution). This experience taught me the following
valuable lesson: although some things are easier to do when an rng happens to be unital, one should
always be alert to the possibility that a result that has just been proved could be susceptible to a
different line of reasoning, perhaps coming from a different mathematical genre, leading to a more
elegant/economical proof.

The last few paragraphs may have caused some readers who are aficionados of domains to wonder
if “domains" really should be unital. At this point, I cannot claim that the above material has con-
vincingly presented the case for an affirmative answer. I do think, however, that the next paragraph
will help to make that case (especially in the minds of any of the just-mentioned aficionados who are
not yet convinced about this matter). I also think that the development of algebra during the past 60
years will also help to make that case. In that regard, following the next paragraph, please see the
subsequent seven paragraphs. There, you will find what I consider to be the most convincing reasons
why domains should be unital. Those seven paragraphs give what was, in my experience as a stu-
dent and a young professional, the beginning of a series of critical observations about modules. The
material in the initial five of those seven paragraphs comes from an exercise (that I recall working
nearly 60 years ago) from van der Waerden’s classic textbook “Modern Algebra."

First, recall that the comments at the beginning of this section embedded any rng R as a subrng
of some (unital) ring R. However, if R happened to be a domain, then that construction could not
be guaranteed to produce a ring R which is a domain. Indeed, if the characteristic of R is some
prime number p, then that ring R is definitely not a domain, the point being that if r is any nonzero
element of R, then (0,7)-(p,0) = (0,pr) = (0,0) = 0 in R. However, we show next that a more suitable
embedding is available. For clarity, let us change notation and begin with a domain D (in the sense
of [12]) which is definitely not unital. To avoid trivialities, one supposes that D = {0}, since the/a
zero ring cannot be a unital subring of any unital domain. According to [12], D has a quotient field,
say K. (More generally, I learned from a seminar talk by Kaplansky at UCLA in the spring quarter of
1970 that special cases of what we now call rings of fractions Rg were anticipated (long ago, before I
was born) by workers such as Grell, with the role of 1 in Rg being played by the fraction s/s for any
element s € S. For more about this, see [12]] and [18} pages 138-139].) I will next show that D can
be embedded as a subrng of some domain D such that D is a unital domain and D also has K as its
quotient field. (As [12] emphasizes the importance of such an “overring" extension in multiplicative
ideal theory, I find this result, whose proof will follow next, to be especially persuasive.) Observe
that K is a ring, with multiplicative identity element 1 = s/s for any nonzero element s of D. Take D
to be the subring of K that is generated by D and 1. (In other words, take D to be the intersection of
all the subrings of K which contain D and, necessarily, 1.) Then D is a (unital) subring of K (since
D is a subrng of K such that 1 € D), so D is a “domain with 1". Of course, we also have that D is a
subrng of D and that K is a quotient field of D.

The benefits of changing from predominantly ideal-theoretic reasoning to module-theoretic rea-
soning in commutative ring theory were widely recognized and took hold during the late 1950s and
1960s, producing many useful generalizations and new methods. Prior to that, in part because of
the embedding result discussed in the first paragraph of this section, there was natural interest in
deciding whether a “module" over a (unital) ring should, by definition, be required to be unital.
Many mathematicians were convinced that this question should be answered in the affirmative (and
I concur with them) because of the following result from van der Waerden’s textbook. Let R be a not
necessarily commutative (but unital) ring and let M be a left module over R. Then M can be uniquely
expressed as an internal direct sum of (not necessarily unital left) R-modules, M = M & M,, where
M, is a unital (left) R-module and the action of R on M, is like the action of a zero ring on M, (in the
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sense that r-m = 0 for all » € R and all m € M,).

Proof of uniqueness: Suppose that M = M1 ® M, = N; & N,, where M; and N are each unital (left)
R-modules and R acts as a zero ring on both M, and N,. We will prove that M; = N; and M; = N,.
Suppose first that u € M;. By hypothesis, u = v+ w for some uniquely determined v € N; and w € N,.
Then u —v = w satisfies

u-v=1l-u-1l-v=1-(u-v)=1-w=0-w=0,

whence u = v. Hence M; C N;. Similarly, Ny € M;. Thus M; = Nj.
Suppose next that x € M,. Then x = y + z for some uniquely determined y € N; and z € N,. Then
x —z =y satisfies

x-z=y=1yp=1-(x-2)=1-x-1-2=0-x-0-2=0-0=0,

whence x = z. Hence M, C N,. Similarly, N, € M,. Thus M, = N,. This completes the proof of the
uniqueness assertion.

Proof of existence: Let My := {x € M | 1 -x = x}. It is straightforward to check that M; contains 0
and is closed under scalar multiplication from R, sums and differences, and so M is a not necessarily
unital R-submodule of M. But M, is then also clearly a unital R-module. Next, let M, :={y € M |
1.y = 0}. It is straightforward to check that M, contains 0 and is closed under scalar multiplication
from R, sums and differences, and so M, is a not necessarily unital R-submodule of M. In fact, R acts
as a zero ring on M, since,if re Rand y e M, thenr-y=(r-1)-y =r-(1-y) =r-0 = 0. It remains only
to prove that M is the internal direct sum of M; and M,, that is, that My + M, = M and M; "M, = 0.

LetueM.Putv:=1-uand w:=u—-v. Observethat 1 -v=1-(1-u)=(1-1)-u=1-u =v, whence
v € My; and, since we have just noted that 1. u =v=1-v,wehave l-w=1-u—-1-v =v-v =0, whence
1-w =0, whence w € M,. Hence u = v+w € M; + M,, and so M C M; + M,. The reverse inclusion
is obvious, and so M; + M, = M. Finally, we need only show that if z € M; N M,, then z = 0. This, in
turn, holds since 0 =1-z (as ze M) and 1-z =z (as z € M;). This completes the proof of the existence
assertion. This completes the proof.

I would suggest that the main point to be gleaned from the result in the past five paragraphs is this.
Because of the nature of the direct summands in the direct sum decomposition M = M; & M,, that
result has reduced the study of non necessarily unital modules to the following two studies: the study
of unital modules and the study of abelian groups (because a not necessarily unital module on which
the ambient ring acts as a zero ring is nothing more than an abelian group). Hence, from the point of
view of a ring-theorist, “modules" should be unital, as other considerations involving “not necessarily
unital modules" have been reduced to (abelian) group theory. If a reader believes that my conclusion
is outlandish, I can assure you that it is torn from the pages of history. Specifically (yes, here comes
another anecdote): each academic year during the late 1960s and early 1970s, UCLA’s mathematics
department hosted promising postdocs, some folks on sabbatical, some mid-career specialists and
senior leaders in a particular field of mathematics (the field varied annually). The field in 1969-70
was “Algebra", and I was lucky enough to be invited to participate as a Visiting Professor for the
entire year. Many of the visitors were present for only three weeks, during which such visitors were
obliged to give three lectures per week. One of the year-long visitors, S. A. Amitsur, gave three
lectures a week for the entire academic year. More than half of those lectures were devoted to a
theorem that he had only recently proved. The statement of the theorem could be given in many
formulations, some of which involved noncommutative ring theory (and were thus of interest to
many of those present for the “Algebra year") and one of which involved classical geometries (and
hence was of interest to me, largely because of my masters studies in 1964-65 in Canada). At the
end of his last lecture, Amitsur declared that, from the point of view of a ring theorist, he had
just completed the solution of the overall problem that his lectures had been devoted to. There
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was a stunned silence in the crowd, as none of us in attendance could “connect the dots". Amitsur
sensed our confusion (perhaps he had anticipated it) and then, with a twinkle in his eye, he added
a fuller explanation. His analysis had reduced the overall problem at hand to a problem in group
theory and so, he concluded, our interest in it, as ring-theorists, was now at an end. One by one, the
audience members grinned as the wisdom of Amitsur’s comment sank into their understanding, and
we rose in applause of Amitsur’s great accomplishment. While the preceding five paragraphs concern
much, much lower-level mathematics, I suggest that they have made a similar point, hopefully as
convincingly as Amitsur did in 1970.

The late 1950s and 1960s witnessed what has been called an “invasion” (I would prefer the term
“infusion”) of homological algebra into many areas of algebra. This use of homological and categor-
ical predilections has continued and, in my opinion, has enriched much of algebra and its applica-
tions. A principal effect has been that there is now widespread agreement that ring homomorphisms
and algebra homomorphisms should be unital. Of course, one would argue, algebras should be unital
since rings should be unital and, after all, an extension involving commutative rings is an example
of an algebra, is it not? More generally, given a commutative ring R and an R-algebra S (for a com-
mutative ring R, this means that there is a ring homomorphsim f from R to the center of S), it has
long been traditional to view S as a (left) R-module via r-s := f(r)s for all r € R and all s € S. By
taking s := 1, we see that the only way for this module to be unital (and we have been arguing that
modules should be unital) is for f to be unital. Once one agrees that algebra homomorphisms should
be unital, one must agree that ring homomorphisms should be unital (the point being that every ring
is a Z-algebra).

I hope that this section has given the reader some food for thought. When it comes to a discussion
of values, one cannot hope to prove that one’s views are “correct” and that others’ views are “wrong."
I can only hope that this section will be of help to anyone who is hesitating as to whether their rings
(or their modules or their homomorphisms) should be unital. I will have accomplished my goal for
this section if such readers understand better what they may expect to gain or lose as a result of any
particular decision they may make about such matters.

5 AppendixIIl: Some professional preoccupations with beginners’ angst

Some of the questions that were raised in Appendix I indicate that many beginning students of cat-
egory theory and/or algebraic geometry express concerns about the use of the definite article “the"
instead of the indefinite articles “a" or “an" in describing a mathematical object that is only well de-
fined up to isomorphism. (Such angst is often manifested in regard to constructions such as Ag or

lim. A;, and it is only compounded by the use of notation such as lim A,, which contains at
—iel —>PeX,

least two such stimuli for concern.) As a beginning graduate student and later in doing my doctoral
research, such worries arose naturally in the course of my reading and my research. For instance,
the n'" piece of Amitsur’s cochain complex (cf. [3]]) is obtained by applying the units functor U (also
known as G,,) to the tensor product, over a given field K, of n+ 1 copies of a field extension L of
K. Tt is natural to ask what it means to apply a functor to something that is only defined up to
isomorphism, and so I had some concern about the well-definedness of Amitsur’s cochains. That
concern compounded when I needed to address the (co)homology groups inferred from Amitsur’s
cochain complex, since the n™ such group was defined as the quotient group of the group of n'®
cocycles modulo the group of n'h coboundaries. It is natural to ask what it means to be the factor
group G/N when a group G and its normal subgroup N are each only defined up to isomorphism.
Such concerns intensified during the first week of my doctoral research, as part of my assignment
for that week was to read [7)] where, inter alia, Amitsur’s field extension K C L was generalized to any
(perhaps one should add “faithful") commutative algebra (over a commutative ring) and the units
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functor U was generalized to any abelian group-valued functor on a suitable category of algebras. Of
course, the relevant cohomology groups were generalized. For an R-algebra S and a functor F, the
associated 1" cohomology group was denoted by H"(S/R,F). That was quite a first week of work,
as my assignment also included reading a book about profinite groups. (That actually was not as
difficult, even though it mixed algebra with topology, because the relevant inverse limit defining a
profinte completion was truly the inverse limit of some unambiguous things indexed by an unam-
biguous directed set.) My unease was triply compounded, even that first week, because I knew that
my area of doctoral research was not going to be Amitsur cohomology — it was going to be Cech coho-
mology and “the" n'" Cech cohomology group of a given object R and a given functor/presheaf F (in
something like a Grothendieck topology 7 - yes, I also had to quickly absorb M. Artin’s 1962 Har-
vard notes on Grothendieck topologies) is the direct limit of the corresponding Amitsur cohomology
groups H"(S/R,F) as S ranges over some appropriate directed set of objects drawn from 7. I quickly
realized that my advisor should not be bothered with my triply-provoked concerns, but I resolved to
identify the secret by which mathematicians had decided that some super version of the Axiom of
Choice could be used to turn all of those occurrences of what should perhaps have been “a" or an"
into occurrences of “the".

The semester before beginning my doctoral research, I took a very stimulating course on homo-
logical algebra. It was taught by Professor Len Silver and its official textbook was the classic work
by Cartan and Eilenberg. As that work was already 10 years old by then, I realized that it would
be advisable for me to try to understand many of the ideas in Professor Silver’s class in a more gen-
eral categorical setting. Fortunately, one of the sources that I chose to read in order to learn more
about category theory during my “spare time" (what graduate student ever has any spare time?) was
Grothendieck’s classic paper [14], which was then widely known as “Tohoku". Fortunately, in read-
ing (and re-reading) [14], I came across a passage that stuck in my memory. It is on page 133 of [14]
and it is quoted in the next paragraph. By remembering that passage, I was able (a few months later,
when I began my doctoral research) to unlock the “secret" that I had resolved to identify. It turns
out that the “super Axiom of Choice" that I supposed must lie at the crux of the secret has to do with
a well ordered set-theoretic universe. The availability of that universe is due (depending on one’s
point of view) to one or both of the following: Hilbert’s desire to have the benefits of a rather strong
Axiom of Choice, without explicitly committing himself to such an axiom, but instead introducing
(c. 1923) certain operators, dubbed 7 and €, which had certain desirable properties; and Godel’s
construction (barely 10 years later) of the model V for ZFC set theory which featured a well -ordered
universe. In the next two paragraphs, I will say a little more about the first of these matters, having
to do with Grothendieck’s use of the Hilbert symbol 7. The final three paragraphs will discuss, inter
alia, well-ordered universes.

In [14} page 133], Grothendieck addressed and dismissed some concerns similar to the ones that
were mentioned in the first sentence of this appendix. He focused on the well-definedness of direct
limits in the following passage (the rather literal translation is mine, but the usage of italics is from
the original): “In particular, two direct limits of the same directed system are canonically isomorphic
(in an evident sense), also it is natural to choose, for each directed system that admits a direct limit,
one such direct limit (for example by means of Hilbert’s symbol 7), which we will then denote by
hrnA or h_r)n oA and which we will call the direct limit of the given directed system. If I and C are
such that lim A exists for every directed system A indexed by I with values in C, it follows from the
above that limA is a covariant functor defined on the category of directed systems indexed by I in
C, with values in C." I can only suppose that in referring to “Hilbert’s symbol 7", Grothendieck was
assuming familiarity with an earlier (French language) edition of the appropriate chapter of [6].

My online searches in April 2023 indicated that this year (2023) marks the centennial of Hilbert’s
introduction of the operator 7. In this regard, I would like to mention some recent work of M. Abr-
usci and his collaborators having to do with some philosophical/mathematical questions concerning
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quantification and proof. First, one should acknowledge that there seems to be a widespread im-
pression online to the effect that “Hilbert’s symbol 7" had really originally been Hilbert’s symbol “e"
and that various workers had decided to change the notation “€" to “t" some time before the orig-
inal French edition of the relevant chapter of [6], presumably in order to avoid confusion between
“e" and the set-theoretic symbol “€". However, this widespread belief seems to have been refuted
by Abrusci in [1If], as can be seen from the following beginning of the author’s (that is, Abrusci’s)
summary of that work: “In section 1, I expose in an informal way the rules — and the logical rules —
on the proofs of the universal statements and existential statements, and the rules — and the logical
rules — on the deductions from these statements. In section 2, I show how Hilbert’s operators 7 and
€ allow a representation of the universal statements and existential statements which is strictly re-
lated to the logical rules on the proofs of these statements and to the logical rules on the deductions
from these statements, so that we may say that Hilbert in the introduction of the operators 7 and e
aimed to propose a kind of proof-theoretical representation of the universal statements and existen-
tial statements." In joint work [2] with Pasquali and Retoré two years earlier, Abrusci makes clear
that the set-theoretic foundational concerns of the late 19" century which mathematicians typically
associate with people such as Cantor and Frege (concerns which were only heightened by Hilbert’s
formalist pronouncement in Konigsberg in 1930 that “Wir miissen wiesen. Wir werden wissen" —
a belief that was shattered by Godel’s incompleteness results shortly afterward) are shared and are
still being examined further to this day in some serious research (however remote such research may
seem to be from our daily activities as mathematicians). A sense of the flavor and scope of [2] can
be gotten from its Math. Review by B. H. Mayoh: “Quantifiers are ubiquitous in natural language.
This paper presents many approaches to capturing the complexity of natural language quantifica-
tion and suggests a new proof-theoretic approach. First, the authors discuss the classical universal
and existential quantifiers and why G. F. L. Frege rejected the appealing idea of domain restriction.
Next they present individual concepts, second-order logic and various Hilbert operators. Finally,
they present a section on generalized quantifiers. Many problems remain." If there are any readers
who wish to learn more about some serious, current, professional studies related to the 7 and € op-
erators, I would encourage them to look into the extensive literature on what is nowadays called the
“epsilontic calculus?.

In my experience, a working algebraist can occasionally benefit by attention to foundational mat-
ters. Consider, for example, the following result in category theory: a functor is a categorical equiv-
alence if (and only if) it is fully faithful and essentially surjective. As a doctoral student, I first
came across this result when I read its use by Bass in [5, Chapter II, 1.2] for some work on alge-
braic K-theory. Although Bass did not mention any foundational issues that may arise when using
that categorical result, the only proof that I know of that result requires that some well ordering
be applicable to the domain category of the given functor (certainly a well ordering of the class of
objects of that category, perhaps also something like — or more than — the well ordering of each set
of morphisms with a given domain and a given codomain in that category). Thanks to a famous
result of Godel [13], there is a model satisfying the ZFC (Zermelo-Frankel and the Axiom of Choice)
foundations whose universe is well ordered.

Some mathematicians have occasionally used the above characterization of a categorical equiva-
lence to conclude that every category is equivalent to a skeletal category, that is, to a category in
which any two isomorphic objects are equal. While this would be acceptable (assuming ZFC) for a
small category (that is, a category whose class of objects is a set), the famous paradoxes of intuitive set
theory have led several mathematicians to conclude that many important categories are not small.
In reading authors such as Grothendieck or Mac Lane (see, especially, [17, pages 23-24 and 30]),
I have often had the impression that they preferred the meaning of “set" to be placed on a “slid-
ing scale", that is, to be adjusted in accordance with the data for the problem at hand. It has been
said that although most mathematicians profess to be formalists in their official pronouncements on
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foundational matters, we tend to think, create and act like Platonists, as though the objects of our
professional attention are “ideal” things, in the spirit of “The Republic of Plato." Is there a better way
to guarantee access to such ideal things than to have a well-ordered universe?

The fact that having a well ordered universe is consistent with ZFC allowed me to access and use
what I called “chosen fields" to construct a functor in [8, Definition 3.8, page 24| which had several
cohomologically useful applications (cf. [8, Chapter I, Theorems 3.10, 3.13 and 5.9]). The “chosen
fields" were also instrumental in my proof of a very useful result [9, Theorem 2.2] stating that for any
field k, in the étale toplogy for Spec(k), there is a left adjoint functor sending presheaves to what may
be called “additive presheaves" in a way that is analogous to the “sheafification" functor that sends
presheaves to sheaves (in a more general context, of course). My research has perhaps had only two
other noteworthy interactions with mathematical logic: in [11, Proposition 2.5 (a)], A. Hetzel and
I worked with countable models to prove the “lifting" result that a ring homomorphism is a chain
morphism if (and only if) it is an n-chain morphism for every positive integer n; and in [L0], R. C.
Heitmann and I showed that the answer to a certain question depends on which model of ZFC is
being used. That question asked to determine those infinite cardinal numbers &, for which there
exists a field extension K C L such that N, is the supremum of the set of cardinalities that arise as
lengths of chains of intermediate fields contained between K and L. Regardless of whether the reader
has found my anecdotes to be interesting or merely self-indulgent, I should close by pointing out that
there have been several (I would add “other") interesting questions in algebra whose answers depend
on the model of ZFC that is being used. To be brief, let me mention just two of them (in chronological
order). In [20], B. L. Osofsky proved that the global dimension of a countable direct product of fields
is k + 1 if and only if 2™ = N. In [21], S. Shelah proved that the Whitehead Problem is undecidable;
that is, he proved that there are two axioms, each of which is consistent with ZFC, that give different
answers to the question which asks whether an abelian group A such that ExtIZ(A,Z) = 0 must be a
free abelian group.
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noncommutative rings as a special case.

Key Words: Special radical, semi n-ideal, semi p-ideal, semi p-submodule.

2010 MSC: 16N20, 16N40, 16N80, 16L30.

1 Introduction

Throughout this paper, all rings are assumed to be noncommutative with nonzero identity. We recall
that a proper ideal I of a ring R is called semiprime if whenever a € R is such that aRa C I, then
a€l. In 2017, Tekir, Koc and Oral in [10] introduced the concept of n-ideals of commutative rings.
A proper ideal I of a commutative ring R is called an n-ideal if whenever a,b € R are such that ab e |
and a ¢ P(R), then b € I where P(R) is the prime radical of the ring R. Recently, Khashan and Bani-
Ata in [8]] generalized n-ideals by defining and studying the class of J-ideals. A proper ideal I of
R is called a J-ideal if ab € I and a ¢ J(R) imply b € I for a,b € R, where J(R) denotes the Jacobson
radical of R. In [5] Groenewald introduce the notion of p-ideals for a noncommutative ring and a
special radical p. An ideal I of a noncommutative ring R is a p-ideal if for a,b € R such that aRb C 1
and a ¢ p(R), then b € I. In [1]] the notion of a semi n-ideal is introduced as a new generalization of
the concept of n-ideals by defining a proper ideal I of a commutative ring R to be a semi n-ideal if
whenever a € R is such that a® € I, then a € P(R) or a € I. Some examples of semi n-ideals are given
and semi n-ideals are investicated under various contexts. In this paper we introduce the notion
of semi p-ideals for a special radical p and a noncommutative ring R as new generalization of the
concept of p-ideals. If I is an ideal of the noncommutative ring R and p is a special radical, then
I is a semi p-ideal if aRa C I and a & p(R), then a € I. The class of semi p-ideals is a generalization
of semiprime and n-ideals. We start Section 2 by giving some examples (see Example to show
that this generalization is proper. Next, we determine several characterizations of semi p-ideals for
a special radical p. In the rest of the paper p will always be a special radical. We investigate semi
p-ideals under various contexts of constructions such as homomorphic images and idealizations, see
Propositions and Moreover, for a direct product of rings R = Ry x R, x... x Ri, we determine
all semi p-ideals of R, see Theorems and

In 1978, the concept of semiprime submodules is presented. A proper submodule is said to be
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semiprime if whenever r € R,m € M and rRrm C N, then rm € N. See [3] for properties of semiprime
submodules. Afterwards, the notions of p-submodules are introduced and studied in [5]. A proper
submodule N is called an p-submodule of M if whenever rRm C N and r ¢ (p(R)M : M), then m € N.
As a new generalization of the above structures, in Section 4, we define a proper submodule N of M
to be a semi p-submodule if whenever rRrm C N and r € (o(R)M : M), then rm € N. We illustrate (see
Example that this generalization of p-submodules is proper.

In what follows, R is a ring (associative, not necessarily commutative and not necessarily with
identity) and M is an R — R-bimodule. The idealization of M is the ring R®B M with (RBM,+) =
(R,+)®(M, +) and the multiplication is given by (r,m)(s, n) = (rs,rn+ms). REBM itself is, in a canonical
way, an R—R-bimodule and M ~ 0@ M is a nilpotent ideal of REBM of index 2. We also have R ~ R&#0
and the latter is a subring of REB M. If I is an ideal of R and N is an R — R-bi-submodule of M, then
I'@N is an ideal of REBM if and only if IM +MI C N. If p is a special radical, it follows from [11]] that
if R is any ring, then p(R® M) = p(R) 8 M for all R — R-bimodules M. In Proposition we clarify
the relation between semi p-ideals of the idealization ring R@E M and those of R. For the following
definitions of special radicals and related results we refer the reader to [12].

A class p of rings forms a radical class in the sense of Amitsur-Kurosh if p has the following three
properties

1. The class p is closed under homomorphism, that is, if R € p, then R/I € p for every I < R.
2. Let R be any ring. If we define p(R) =) {I <R :I € p}, then p(R) € p.

3. For any ring R the factor ring R/p(R) has no nonzero ideal in p i.e. p(R/p(R)) = 0.

A class M of rings is a special class if it is hereditary, consists of prime rings and satisfies the
following condition () if 0 # ] <R, I € M and R a prime ring, then R € M.

Let M be any special class of rings. The class ¢/(M) = {R : R has no nonzero homomorphic image in
M} of rings forms a radical class of rings and the upper radical class U/ (M) is called a special radical
class.

Let p be a special radical with special class M i.e. p = U(M). Now let S, = {R:p(R)=0}. If P
denotes the class of prime rings, then for the special radical p it follows from [12] that p =U(P N S,).
For a ring R we have p(R) =N{I <R: R/I € PN S} ie. p has the intersection property relative to the
class PNS,,.

Let I <R, then p(R/I) = p*(I)/I for some uniquely determined ideal p*(I) of R with p(I) €I C p*(I)
and p*(I) is called the radical of the ideal I while p(I) is the radical of the ring I.

We also have p*(I) = p(R) if and only if I C p(R). Also I = p*(I) if and only if R/I € S,

In what follows let p be a special radical with special class M. Hence p =U(P N S,).

The following are some of the well known special radicals which are defined in [12], prime radical
B, Levitski radical £, K6the’s nil radical NV, Jacobson radical 7 and the Brown McCoy radical G.

Definition 1.1. Let p be a special radical. A proper ideal I of the ring R is called a p-ideal if whenever
a,beRand aRbC1I and a & p(R), then b eI

In [10] and [8]] the notions of n-ideals and J-ideals were introduced for commutative rings.

Definition 1.2. [10} Definition 2.1] and [8} Definition 2.1] If p is the prime radical or the Jacobson
radical of a commutative ring, then a proper ideal I of R is a p-ideal if whenever a,b € R with ab e |
and a ¢ p(R), then b e I.

Remark 1.3. Let R be a commutative ring and I a proper ideal of R. ] is a p-ideal if and only if a,b € R
withabel and a ¢ p(R), then b e l.
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2 Semi-p-ideals

Definition 2.1. Let p be a special radical. A proper ideal I of the ring R is called a semi p-ideal if
whenever a € Rand aRa C I, thenael ora€ p(R).

Proposition 2.2. If p is a special radical, then I is a semi p-ideal if I = p*(I) or p(R) = p*(I).

Proof. Since I = p*(I) if and only if R/I € S, it is clear that I is a semiprime ideal and hence a semi
p-ideal. Now, if p(R) = p*(I) we have that I C p(R) and if aRa C I, then aRa C p(R) and since p(R) is a
semiprime ideal, we have a € p(R) and hence I is a semi p-ideal. O

It is known that if R is a commutative ring and p is the prime radical then if I is a semi p-ideal
then I = p*(I) or p(R) = p*(I) (see [I, Proposition 2.2] ). It is not clear if this is also the case for
noncommutative rings.

Since for any special radical p and a ring R, p(R) is a semiprime ideal, the following properties of
semi p-ideals can be easily observed.

Proposition 2.3. For a special radical p and a ring R, the following statements hold.

1. Every p-ideal is a semi p-ideal.

2. Every (weakly) semiprime ideal I is a semi p-ideal. The converse also holds if p(R) C I.

3. For every proper ideal I of R, p*(I) is a (semiprime) semi p-ideal. In particular, p(R) is a semi p-ideal
of R.

4. If I is an ideal such that I C p(R), then I is a semi p-ideal.

5. If p is a special radical and R € S, then an ideal I of R is a semi p-ideal if and only if it is a semi-prime
ideal.

However, the converses of 1. and 2. in Proposition [2.3|are not true in general.

Example 2.4. 1. Let p be a special radical and R € §,. If I is a nonzero ideal of R then [ is a semi
p-ideal which is not a p-ideal. This follows from [5, Proposition 1.5] since I = p(R) = {0}.

2. Letp=Pand R=M,(Z3;). I = M2(<E>) is a semi p-ideal which is not a semi prime ideal.

Remark 2.5. If R is an Artinian ring, then since B(R) = L(R) = N(R) = J(R)= G(R) the notions of
B, L,N,J and semi G-ideals are the same. For a commutative ring R, we have (R) = L(R) = NV (R).
Hence for commutative rings the notions semi g, semi £ and semi N -ideals are the same.

Next, we give some equivalent conditions that characterize semi p-ideals for a special radical p.

Theorem 2.6. Let p be a special radical and let I be a proper ideal of a ring R. The following state-
ments are equivalent.

1. Iis a semi p-ideal of R.

2. Whenever a € Rwith 0 #aRaC1I,thenacp(R)oracl.

3. Whenever a € R with (a)?> C I, then (a) C p(R)or (a)C 1.

4. If Ais an ideal of R such that A2 C I, then A C p(R) or AC .

5. If Ais an ideal of R such that A" C I for some positive integer n, then A C p(R) or ACI.

6. If A is a left ideal (right ideal) of R such that A2 C I, then A C p(R) or AC .
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Proof. (1) = (2) This is clear.

(2) = (1) Let a € R such that aRa C I. If aRa = {0}, then aRa C p(R) and since p(R) is a semiprime
ideal, we have a € p(R). If 0 # aRa C I the result follows from (2).

(1) = (3) Let a € R with (a)? C I. Now aRa C (a)*> CI and we haveacl orae p(R) and hence (a) C I
or (a) C p(R).

(3) = (4) Let A be an ideal of R such that A2 C I. Suppose A Z p(R), then A? Z p(R) since p(R)
is a semiprime ideal of R. We show that A C I. Suppose a € A% and a € p(R). Let b be any element
of A. Now (b)> C A2 C I. If b & p(R), then b € I from (3). Suppose b € p(R). We have ((a+Db))* C
((a)+ (b))* C (a){a)+(a) (b)+ (b){a)+ (b)(b) C A2 CI.Hence (a+b)CIor(a+b)C p(R). (a+b) Z p(R)
for if (a+b) C p(R), then a € p(R) a contradiction. Hence (a+b) C I. Since a € I, we have b € I and
hence ACI.

(4) = (5) Let A" C I for some positive integer n. To prove the argument, we use mathematical
induction. If n < 2 the result follows from (4). Assume that the claim of (4) holds for all 2 < k < n.
We show that it is also true for n. Suppose n is even, say, n = 2t for some positive integer t. Now,
A" = (A")? C I. From (4) we have A’ C I or A’ C p(R). If A’ C p(R), then A C p(R) since p(R) is a semi
prime ideal of R. If A’ C I, then by the induction hypothesis, we conclude that A C I. Now, suppose n
is odd. Then n+ 1 = 2s for some s < n . Similarly, since (A%)? C I, (A®) C I or A® C p(R). If AS C p(R),
then A C p(R) since p(R) is a semi prime ideal of R. If A’ C I, then by the induction hypothesis, we
conclude that A C I, so we are done.

(5) = (4) is clear.

(4) = (6) Let T be a left ideal of R such that T?> C I. Now TRTR C T?R C I. From (4) TR C I or
TR C p(R). Since R has an identity, we have T C I or T C p(R) and we are done.

(6) = (4) is clear.

(4) = (1) Let a € R such that aRa C I. Now RaRRaR C I and from (4) we have that a € RaR C I or
a € RaR C p(R) and we are done. O

Lemma 2.7. Let p be a special radical and I and ] be ideals of R with I,] € p(R). Then
1. If I and ] are semi p-ideals with I12=7J2 then I =].
2. If 1% is a semi p-ideal, then I? = I.

Proof. 1. Since I? C ] and I Z p(R), then by Theorem we have I C J. Similarly, since J?> C I and
J € p(R), we have ] CI. Thus, we have the equality.
2.Since [?CI%I¢ p(R) and I? is a semi p-ideal, we have I C I?and so I? =1. O

Proposition 2.8. Let p; and p, be two special radicals such that py < p,, then every semi py-ideal is a semi
po-ideal.

Proof. Let I be a semi p;-ideal of the ring R and suppose aRa C I and a & p,(R). Since p; < p,, we have
p1(R) C p2(R) and therefore a  p;(R). Since I is a semi p;-ideal, we have a € I and we are done. O

Remark 2.9. The converse of Proposition[2.8]is not true in general as can be seen from the following
example. Consider the local ring R = Z5, = {§ :a,b € Z,2{ b} and let I =(4),y = {} : a € (4),2 1 b}.
Since R is a local ring, I is a J-ideal and hence also a semi [J-ideal. I is not a semi P-ideal of R. For

example, (%)2 €I but % ¢ P(R) = {0} and % ¢l

Proposition 2.10. Let {I;};cp be a family of semi p-ideals of R, then () 1; is a semi p-ideal of R.
ieA
Proof. Let aRa C () I; with a € p(R) for a € R. Then aRa C I; for every i € A. Since I; is a semi p-ideal
ieA
of Rand a € p(R), we get a € I; for every i € A. Hence a € (I;. O

ieA
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Theorem 2.11. Let R and S be rings and f : R — S be a surjective ring-homomorphism. If p is a
special radical, then the following statements hold:

1. If I is a semi p-ideal of R and ker(f) C I, then f(I) is a semi p-ideal of S.
2. If ] is a semi p-ideal of S and ker(f) C p(R), then f~!(J) is a semi p-ideal of R.

Proof. 1. Let c € S such that ¢Sc C f(I) and ¢ € p(S). Since f is surjective we can choose a € R such
that f(a) = c. Now, cSc = f(a)f(R)f(a) = f(aRa) C f(I) and since ker(f) C I, we have aRa C I. Because
c & p(S)we have a € p(R) for if a € p(R), then c = f(a) € f(p(R) C p(S) since p is a special radical. Thus
a € p(R) and since aRa C I and a semi p-ideal of R, we get a € I. Hence ¢ = f(a) € f(I) and therefore
f(I)is a semi p-ideal of S.

2. Let a € R such that aRa C f~!(J) and a ¢ p(R). Now, f(a)Sf(a) = f(aRa) C J. We show that
f(a) € p(S). Suppose f(a) € p(S) and M < R such that R/M € §, N P. Since f is a surjective homomor-
phism and ker(f) C p(R) € M, we have f(R)/f(M) =~ R/ker(f)/M/ker(f) =~ R/M. Hence f(R)/f(M) e
S, NP and therefore f(a) € f(M). Hence a € M since ker(f) C M and therefore a € N{I < R: R/ €
P NSyt =p(R) which is a contradiction. Since ] is a semi p-ideal, we have f(a) €/ and soa € ). 1t
follows that f~!(J) is a semi p-ideal of R. O

Corollary 2.12. Let p be a special radical and let R be a ring and let I,K be two ideals of R with K C I.
Then the following hold.

1. If I is a semi p-ideal of R, then I/K is a semi p-ideal of R/K.
2. If I/K is a semi p-ideal of R/K and K C p(R), then I is a semi p-ideal of R.
3. IfI/K is a semi p-ideal of R/K and K is a semi p-ideal of R, then I is a semi p-ideal of R.

Proof. 1. Assume that I is a semi p-ideal of Rwith K C I. Let 7t : R — R/K be the natural epimorphism
defined by 7(R) = r+K. Note that ker(rr) = K C I. Thus, by Theorem[2.11]1., it follows that t(I) = I/K
is a semi p-ideal of R/K.

2. Again consider the natural epimorphism 7 : R — R/K. Since K C p(R), by Theorem 2,
I =7Y(I/K) is a semi p-ideal of R.

3. This is clear by 2. and Theorem 2.11} O

Proposition 2.13. Let p be a special radical and let I and | be two semi p-ideals in a ring R. If I +] is
proper in R, then I + ] is a semi p-ideal of R.

Proof. By (1) of Corollary[2.12} I/IN] is a semi p-ideal of R/IN]. Thus, (I+])/] =1/IN] is also a semi
p-ideal of R/]. Therefore, by (2) of Corollary[2.12} we conclude that I +] is a semi p-ideal of R. [

However, if I and ] are two semi P-ideals in a ring R, then I] need not be a semi P-ideal. For
example, while M,((2)) is a semi P-ideal of M,(Z), (M,({2)))? = M,({4)) is not so.
Let I be a proper ideal of R, then Z;(R) denote the set {r € R: sr € I for some s € R\I}.

Proposition 2.14. Let p be a special radical and R a ring with S a non-empty subset of R where (S) N
Zor)(R) = 0. If I is a semi p-ideal of Rwith S Z I, then (I : (S)) is a semi p-ideal of R.

Proof. Let a € R such that aRa C (I : (S)) but a & p(R). Then asRas CaRa(S) C1 forallse(S). Aslisa
semi p-ideal of R, we have either as € p(R) or as € I for all s € (S). If as € p(R), then (S) N Z,(g)(R) = 0,
a contradiction. Thus, as € I for all s € (S) and so a € (I : (S)) as required. O

Theorem 2.15. Let p be a special radical and R a commutative ring. If an ideal I of R is a maximal
semi p-ideal satisfying Z,g)(R) €I, then I is semi prime in R. Additionally, if I C p(R), then I = p(R)
is a prime ideal.

Proof. The same as [1, Theorem 3.1] by replacing P(R) with p(R). O
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3 Product of rings

Suppose that R, R, are two noncommutative rings with nonzero identities and R = Ry xR,. Then R
becomes a noncommutative ring with coordinate-wise addition and multiplication. Also, every ideal
I of R has the form I = I} x I, where I; is an ideal of R; for i = 1,2. Now, we give the following result.

Proposition 3.1. Let Ry and R, be two noncommutative rings and let p be a special radical such that
p(R) = p(Ry) x p(R3). Then Ry x R; has no p-ideals.

Proof. Assume that I = I} x I, is a p-ideal of Ry x Ry, where I; is an ideal of R; for i = 1,2. Since
(0,1)Ry xRp(1,0) €11 x I, (0,1) & p(Ry x Ry) = p(R;1) x p(Rp) and (1,0) € p(R; X Rp) = p(Ry) X p(Ry), we
conclude that (0,1),(1,0) € I and so I = R; X R,, a contradiction.

By characterizing semi p-ideals of R, the next theorem allows us to build some examples for semi
p-ideals which are not p-ideals. O

Theorem 3.2. Let Ry and R, be two noncommutative rings and let p be a special radical such that
p(R) = p(Ry) x p(Ry). Then a proper ideal I = I; x I, is a semi p-ideal of R if and only if one of the
following statements holds.

1. I is a semiprime ideal of R.
2. I is a semi p-ideal of Ry and I, = p(R;).
3. I, is a semi p-ideal of R; and I = p(Ry).

Proof. =Suppose I = I; x I, is a semi p-ideal which is not a semiprime ideal. Hence there exists
(x,v) € Ry x R, such that (x,v)(Ry x Ry)(x,v) C I; xI; but (x,v) € I; x I. We show that I} = p(R;) or
I = p(R;). Assume not. If I} # p(R;) and I, # p(R;), then there exist a € I;\p(Ry) and b € I;\p(R;).
Now (x+a)Ry(x+a) = xRy x+xRja+aRyx+aRya C I and also (v + b)R,(y + b) C I,. From this it follows
that (x+4a,y+b)(Ry xRy)(x+a,y+b) CI; xI, =I1. We have (x,) ¢ I; x I, so without lost of generality
we may suppose x € I;. Hence (x+a) € I; and so (x+4a,y+b) € 1. Since I = I; x I, is a semi p-ideal, we
have (x+a,v+b) € p(R) = p(Ry) x p(Ry). Hence (x +a) € p(R;) and (v + b) € p(R,) which implies that
(x,v) € p(R) since a & p(Ry) and b € p(R;). This is impossible since I is a semi p-ideal.

Suppose without loss of generality that I} # p(R;) and I; = p(R;). Let aRya C I; and a & I;. Now,
(a,0)R(a,0) = (aRya,0) C I} x I, = I. Since (a,0) ¢ I and I a semi p-ideal, we have (a,0) € p(R) =
p(R1) x p(R,). Hence a € p(R;) and I is a semi p-ideal of R;. Similarly if I; = p(R;) and I, = p(R;) we
get I, is a semi p-ideal of R,

& If I is a semiprime ideal of R then I is a semi p-ideal of R by Proposition Suppose I =
I} x p(R;y) with I a semi p-ideal of R;. Let (a,b) € R = Ry xR, such that (a,b)(Ry X R,)(a,b) C 11 x p(R;)
and (a,b) € p(R) = p(R;) x p(Ry). Now, bR,b C p(R;) and since p(R;) is a semiprime ideal, we have
b € p(R;). Since (a,b) & p(Ry) x p(R3), it now follows that a  p(R;). Since aRya C I; and a € p(R;), it
follows that a € I; from the fact that I; is a semi p-ideal. Hence we have (a,b) € I = I; x p(R;) and
therefore I is a semi p-ideal of R. O

Generalizing Theorem we have the following for a special radical p such that p(R; xRy x -+ x
Ry) = p(R1) x p(Rz) X -+ X p(Ryy).

Theorem 3.3. Let Ry, R,,...,R,, be rings and R=R; xR, x---x R,,, where n > 2. Then a proper ideal I
of R is a semi p-ideal if and only if one of the following statements is satisfied.

1. I is a semiprime ideal of R.
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2. I =1y xIp---xI,, where I is a semi p-ideal of Ry for some k € {1,..,n} and I; = p(R;) for all
je{l,...,nj\{k}.

Proof. This follows simmilar to the proof of [I, Theorem 3.3]. O

4 Semi p-submodules

de la Rosa and Veldsman in [4] defined a weakly special class of modules. We follow the definition
in [4] of a weakly special class of modules to define a special class of modules.

Definition 4.1. For a ring R, let Ky be a (possibly empty) class of R-modules. Let K = U{Kz : R a
ring}. K is a special class of modules if it satisfies:

S1 MeKgrand I <RwithI C(0: M)y implies M € Kg/;.

S$2 If ] «Rand M € Kg/j, then M € Kj.

S$3 M € Krand I <« R with IM # 0 implies M € K.

S$4 M € Ky implies RM = 0 and R/(0: M)y is a prime ring.

S5 If I <« R and M € K, then there exists N € Ky such that (0: N); C(0: M);.

Following similar techniques of [4], we get the following theorems.

Theorem 4.2. [6, Theoerem 5.1] Let M = UMp, be a special class of modules. Then,
J = {R: there exists M € My with (0: M)g = 0} U {0} is a special class of rings. If p is the corre-
sponding special radical, then, p(R) := N{(0: M)r: M € M}.

Theorem 4.3. 6, Theoerem 5.2] Let J be a special class of rings and for every ring R, let Mg = {M : M
is an R-module, RM = 0 and R/(0: M)g € J}. If M = UMp, then M is a special class of modules. If p
is the corresponding special radical and M is any R-module, then

p(M):=nN{P <M : M/P € Mg}.

Definition 4.4. [5, Definition 2.4] Let p be a special radical and let M be an R-module. The proper
submodule N of M is a p-submodule if for all a € R and m € M, whenever aRm C N and a & (p(R)M :
M), then m € N.

Definition 4.5. Let p be a special radical and let M be an R—-module. The proper submodule N of
M is a semi p-submodule if for all 2 € R and m € M, whenever aRam C N and a € (p(R)M : M), then
ame N.

Definition 4.6. A submodule N of M is said to be semiprime if N # M and whenever r € R and
m € M are such that rRrm C N, then rm € N. The reader clearly observe that any semi p-submodule
of an R-module R is a semi p-ideal of R. The zero submodule is always a semi p-submodule of M.
Also, see the implications:

p-submodule

N
/

semi p-submodule

semiprime submodule
However, the next examples show that these arrows are irreversible.
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Example 4.7. 1. Consider the submodule N = 6Zx(0) of the Z-module M = ZxZ. Let the special
radical p be the prime radical. Now let r ¢ (P(Z)M : M) = (0) and m = (my,m,) € M such that
r?-(my,m,) € N. Then r’m; € 6Z, r’>m, = 0. Since 6Z and (0) are semi P-ideals of Z, then
r-(my,my) € N and so N is a semi P-submodule of M. On the other hand, we have 2:(3,0) e N
with 2 ¢ (P(Z)M : M) and (3,0) ¢ N and so N is not a p-submodule of M.

2. Consider the submodule N = <E> x {0} of the Z-module M = ZgxZ. Let r ¢ (P(Z)M : M) and

m = (my,m,) € M such that r%-(my,m,) € N. It is clear to observe that as <Z> is a semi P-ideal
of Zg and {0} is a semi P-ideal of Z that r(m,m;) € N. Hence N is a semi P-submodule of M
However, 22:(1,0) € N but 2-(1,0) ¢ N and so N is not a semiprime submodule of M.

Proposition 4.8. Let p be a special radical and let M be an R-module. For N a submodule of M and I an
ideal of R. If N is a semi p-submodule of M and (p(R)M : M) = p(R), then (N : M) ={r € R: rm € N for every m € M}
is a semi p-ideal of R.

Proof. Let aRa C (N : M) where a € R and a ¢ p(R). Then we have aRaM C N and so aRam C N for all
m € M. Since N is a semi p-submodule of M and a € p(R) = (p(R)M : M), am € N for all m € M. Thus,
aM C N and so a € (N : M). Therefore, (N : M) is a semi p-ideal of R. O

Remark 4.9. If (o(R)M : M) € p(R), then Proposition[4.8|need not be true. Let P be the prime radical.
For the Z module M = Z, we have P(Z) =(0) and (P(Z)Z,: Z4) = ((0) : Z4) = 4Z. Now, N = (0) is
clearly a semi P-submodule. (N : M) = ((0): Z4) = 4Z is not a semi P-ideal of Z. We have 272 C 47
with 2 ¢ 4Z.

In the following proposition, we give a characterization of p-submodules for a special radical p.

Proposition 4.10. Let p be a special radical and let M be an R-module where R is a ring with identity. Let
N be a proper submodule of M. Then N is a semi p-submodule of M if for any a € R and every submodule
K of M, we have that aRaK C N with a ¢ (p(R)M : M) implies aK C N.

Proof. Suppose aRaK C N and a ¢ (p(R)M : M). Let k € K. Since aRak € N and N is a semi p-
submodule of M, ak € N. It follows that aK C N as needed. O

Proposition 4.11. Let ¢ : M} — M, be an R homomorphism. Then

1. If @ is surjective and N is a semi p-submodule of Mywith ker(p) C N, then @(N) is a semi p-
submodule of M,.

2. If @ is one-to-one and K is a semi p-submodule of M, then ¢~ (K) is a semi p-submodule of M.

Proof. 1. Suppose @(N) = M, = @(M;) and my; € M. Then ¢(m;) = ¢(n) for some n € N and so
(m; —n) € ker(p) € N. So m; € N and we have N = M; a contradiction. Hence ¢(N) is a proper
submodule of M. Let r € R and m, € M, such that rRrm, C ¢(N) and r & (p(R)M, : M;,). Choose m; €
M; such that ¢(m;) = m,. Then rRrm, = rRrep(m;) = @(rRrmy) C @(N) which implies rRrm; C N
as ker(p) C N. If rM; C p(R)My, then rM, = rp(M;) = p(rM;) € p(p(R)M;) = p(R)p(M;) = p(R)M,.
Hence r € (p(R)M; : M;) a contradiction. Thus r & (p(R)M; : M;). Since N is a semi p-submodule,
rmy € N and hence rm, = ¢(rmy) € ¢(N) as required.

2. Let r € R and m; € M, such that rRrm; C ¢ }(K) and r & (p(R)M,; : M;). Since ker(¢p) = 0,
we have @(rRrmy) = rRrp(m;) C K. Moreover, we have r & (p(R)M; : M) for if rM, C p(R)M,, then
reo(Mp) C p(R)p(M;) and so @(rM;) € @(p(R)M;). Now, if x € rM;, then @(x) € p(p(R)M;). Hence
(x —v) € ker(¢) € p(R)M; for some y € p(R)M;. Hence x € p(R)M; and we have rM; C p(R)M; a
contradiction. Since K is a semi p-submodule of M,, r¢(m;) = @(rm;) € K and hence rm; € ¢~1(K)
and we are done. O
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Corollary 4.12. Let N and L be two submodules of an R-module M with L C N.
1. If N is a semi p-submodule of M, then N/L is a semi p-submodule of M/L.

2. IfLis a semi p-submodule of M and N/L is a semi p-submodule of M/L, then N is a semi p-submodule
of M.

3. If Lis a p-submodule of M and N/L is a semi p-submodule of M/L, then N is a p-submodule of M.

Proof. 1. Clear by Proposition
2. Suppose that rRrm C N and r € (p(R)M : M). If rRrm C L, then rm € L C N since L is a semi

p-submodule of M. So assume rRrm ¢ L. One can easily observe that r ¢ (o(R)M/N : M/N). N/L is a
semi p-submodule of M/L and rRr(m+ L) C N/L, then r(m+ L) € N/L. Therefore rm € N and N is a
semi p-submodule of M.

3. Similar to 2. O

Proposition 4.13. Let {N; : i € A} be a nonempty set of semi p-submodules of an R-module M. Then (| N;
i€eA
is a semi p-submodule.

Proof. Suppose rRrm € (| N; for some r € R—(p(R)M : M), m € M. Since N; is a semi p-submodule of
ieA
M, for every i € A, we have rm € I;. Thus rm e (| N;. O
i€eA

5 Idealization

We now show how to construct p-ideals using the Method of Idealization. In what follows, R is a
ring (associative, not necessarily commutative and not necessarily with identity) and M is an R — R-
bimodule. The idealization of M is the ring RB M with (RBM,+) = (R,+) ® (M, +) and the multi-
plication is given by (r,m)(s,n) = (rs,rn + ms). R@ M itself is, in a canonical way, an R — R-bimodule
and M ~ 08 M is a nilpotent ideal of R® M of index 2. We also have R ~ R®E 0 and the latter is a
via the mapping

subring of R@B M. Note also that RE M is a subring of the Morita ring [ ﬁ AI;I

r
0
of Rand N is an R— R-bi-submodule of M, then IEN is an ideal of REM if and only if IM +MI C N.

If p is a special radical, it follows from [11]] that if R is any ring, then p(R&® M) = p(R) 8 M for all
R —R-bimodules M.

(r,m) — . We will require some knowledge about the ideal structure of REM. If I is an ideal

Proposition 5.1. For the special radical p, let I be an ideal of the ring R. I is a semi p-ideal of R if and only
I8 M is a semi p-ideal of REB M.

Proof. Let (r;,m;) € RBM such that (ry,m;) REBM (r;,my) CIBM and (r,m;) € p(REM) = p(R)BM.
Hence r;Rr; C I and r; € p(R). Since I is a semi p-ideal of R, we conclude that r; € I and so (ry,m;) €
I'mM. Consequently I @M is a semi p-ideal of R@ M.

Conversely, suppose that I 8 M is a semi p-ideal of RBM and let aRa C I but a ¢ I. Then (a,0)R B
M(a,0) CIB@M and (a,0) ¢ I 8 M imply that (a,0) € p(RBM) = p(R)BM. Thus, a € p(R) and we are
done. O

If I is a semi p-ideal of a ring R and N is a R—R-bi-submodule of M with IM + MI C N, then 8N
need not be a semi p-ideal of RE M. For example if p is the prime radical, (2) is a semi p-ideal of the

ring Z and {6} is a submodule of the Z-module Z,. But (2) @ {6} is not a semi p-ideal of Z®Z, since
(2T)Z8Z4(2,T) C(2)m (0} but (2,1) e P(Z@Zy) = P(Z) 8 Z4 and (2,T) € (2) m{0}.
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Proposition 5.2. Let p is a special radical and let I be an ideal of R and N a proper R — R-bi-submodule of
the R — R-bi-module M.

1. IfI@N is a semi p-ideal of RB M, then I is a semi p-ideal of R and N is a semi p-submodule of M.

2. If (o(RIM : M) = p(R) and N is a p-submodule of M with IM + MI C N and I a semi p-ideal then
I'#N is a semi p-ideal of R@ M.

Proof. (1) Suppose that IEN is a semi p-ideal of RE M. First we show I is a semi p-ideal. Let aRa C I
and a ¢ p(R).Then we have (a,0)REM (a,0) = (aRa,0) CI®BN. Since IEN is a semi p-ideal of REM, and
(a,0) € p(R)BM = p(REBM) we have that (4,0) € IEBN. Hence a € I and it follows that I is a semi p-ideal
of R. Now, we show that N is a semi p-submodule of M. Let aRam C N with a & (p(R)M : M). Since
a & (p(R)M : M), we have a € p(R). Then we have (a,0y;)R 8 M(a, 0y7)(0,m) = (0,aRam) C I 8N with
(a,0p) € p(REBM). Since IBN is a semi p-ideal of RBM, we conclude that (a,0;)(0, m) = (0,am) € IEN
and so am € N, as needed.

(2) Let (ry,my),(ry,m;) € RE@M such that (r;,m;)REBM (r;,my) CIEN and (r;,m;) € p(REM) =
p(R)B M. We have r{Rr; C I and r; € p(R). Since I is a semi p-ideal of R and r; ¢ p(R), we have
r1 € I. Now, (rq,my)R@B M (r;,mq) = (r{Rry,71Rmy +m;Rry) C I B N. Since r{Rm; + m;Rr; C N and
miRr; € N, we have r;Rm; C N. Since r; € p(R) and N is a p-submodule of M, we have m; € N.
Hence (r{,my)eI®N and I BN is a semi p-ideal of REB M. O

The condition (p(R)M : M) = p(R) in Proposition2. can not be discarded. For example, consider
the Z-module Z,. Put I = (2) and N = {6} Then [ is a semi P-ideal of Z and N is a P-submodule of
Z,. Also note that (P(Z)Z, : Z,) = (2) # P(Z) = {0}. However, [ BN is not a semi P-ideal of Z&®Z,
because (2,1)Z®7Z,(2,1)CI1@N, (2,1)¢ P(Z)BZ, and (2,1) ¢ EN.

6 Semi P-ideals (semi n-ideals)

In this section the special radical will be the prime radical. In [1]] Khashan et al. introduced the notion
of semi n-ideals for commutative rings with identity element. They investigated many properties of
semi n-ideals.. We show that for the prime radical many of the results proved by Khashan et al. are
also true for noncommutative rings.
In what follows for the noncommutative ring R, P(R) will denote the prime radical of the ring R.
Throughout this section the rings are noncommutative but not necessarily assumed to have a unity
unless indicated.

Definition 6.1. A proper ideal I of a ring R is a semi P-ideal if whenever a € R such that aRa C I and
aeP(R), thenael.

If R is a commutative ring, then the notion of a semi P-ideal coincides with a semi n-ideal as been
defined by Khashan et al. in [1.

Proposition 6.2. (see [1}, Proposition 2.1]) For a ring R, the following statements hold.

(1) Every P-ideal is a semi P-ideal.

(2) Every (weakly) semiprime ideal I is a semi P-ideal. The converse also holds if P(R) C I.

(3) For every proper ideal I of R, P*(I) is a (semiprime) semi P-ideal. In particular, P(R) is a semi
P-ideal of R.

(4) Any ideal I such that I C P(R) is a semi P-ideal.

(5) If R is a semiprime ring then an ideal I of R is a semi P-ideal if and only if is a semiprime ideal.
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Example 6.3. In any semiprime ring R the a nonzero ideal I is a semi P-ideal which is not a P-ideal
since I Z P(R) = (0) see [5, Proposition 1.5].

Proposition 6.4. (See [[1, Proposition 3.2]) Let {I;};ca be a family of semi P-ideals of R, then () I; is a semi
ieA

P-ideal of R.

Proof. This follows from Proposition by taking p to be the prime radical. O

Proposition 6.5. Let P be the prime radical and R a ring with S a non-empty subset of R where (S) N

ZyRr)(R)=0. If I is a semi P-ideal of R with S € I, then (I : (S)) is a semi P-ideal of R.

Proof. This follows from Proposition by taking p to be the prime radical. O]

Proposition 6.6. [[13} Corollary 4]For any ring R the following are equivalent:

1. R has an unique prime ideal.
2. Risalocal ring and J(R) = P(R).

3. Every non invertible element is nilpotent.
Theorem 6.7. The following statements are equivalent for a ring R.

1. P(R) is the unique prime ideal of R.
2. Every proper ideal of R is an P-ideal.

3. Ris alocal ring and every proper ideal of R is a semi P-ideal.

Proof. (1) = (3) Let I be any ideal of R and a € R such that aRa C I. If a € P(R), then we done. If
a € P(R) then it follows from Propostion that a ¢ J(R) since P(R) = J(R). Now, since we also
have that R is a local ring, a is an invertible element with inverse b. Now, since a’ € aRa C I, we have
a = ba? € I and we are done.

(3) = (1) Let R be a local ring with every proper ideal of R a semi P-ideal. Let M be the unique
maximal ideal of R and P a prime ideal of R. Assume that P ¢ P(R). Since P? is a semi P-ideal, it

follows from Lemma [2.7|that P = P2, From [7|, Corollary 4] P = () P" = () M" = (0), a contradiction.
n=1 n=1

Hence P = P(R) and is the unique prime ideal of R.

(2) = (3) Let M be a maximal ideal right ideal of R and x € M. Since xR1 C M and M is a P-ideal,
then we must have x € P(R) and so M € P(R) € J(R) € M. It follows that M = J(R) and R is a local
ring. The other part of (3) follows directly by Proposition (1).

(2) = (1) Suppose every proper ideal of R is an P-ideal. Let P be any prime ideal. Now, since P
is a P-ideal and a prime ideal, it follows from [5} Proposition 1.13] that P = P(R). Hence P(R) is the
unique prime ideal of R. O

We note that the condition “R is local” in (3) of Theorem cannot be omitted. For example, in
the ring M,(Zg) every proper ideal is a semi P-ideal but M,(Z4) has no P-ideals. Also it is known
that in a local ring every proper ideal is a J-ideal see [5, Theoerem 5.6]. In the following example,
we see that we may find a non semi P-ideal in a local ring. Consider the local ring R = Z,, = {3 :
a,beZ2tbyandlet I =(4),y ={ :a€(4),21b}. Risalocal ring but I is not a semi P-ideal of R. For

example, (%)2 €I but % ¢ P(R) = {0} and % ¢l.
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Proposition 6.8. (See [[I, Proposition 3.1]) Let R and S be rings and f : R — S be a surjective ring-
homomorphism. Then the following statements hold:

1. If I is a semi P-ideal of R and ker(f) C 1, then f(I) is a semi P-ideal of S.
2. If ] is a semi P-ideal of S and ker(f) C p(R), then f~1(]) is a semi P-ideal of R.
Proof. This follows from Theorem [2.11]by taking p to be the prime radical. O

Corollary 6.9. (see [, Corollary 3.1]) Let R be a ring and let I,K be two ideals of R with K C 1. Then the
following hold.

1. If I is a semi P-ideal of R, then I/K is a semi P-ideal of R/K.
2. If I/K is a semi P-ideal of R/K and K C p(R), then I is a semi P-ideal of R.
3. If I/K is a semi P-ideal of R/K and K is a semi P-ideal of R, then I is a semi P-ideal of R.
Proof. Follows from Corollary [2.12by taking p to be the prime radical. O

Proposition 6.10. (see [[I, Proposition 3.3]Let p be a special radical and let I and ] be two semi p-ideals
in a ring R. If I +] is proper in R, then I + ] is a semi p-ideal of R.

Proof. Follows from Proposition by taking p to be the prime radical. ]

Theorem 6.11. (see [1, Theorem 3.2]) Let Ry and R, be two noncommutative rings. Then a proper
ideal I = I; x I, is a semi P-ideal of R if and only if one of the following statements holds.

1. Iis a semi prime-ideal of R..
2. I; is a semi P-ideal of Ry and I, = P(R,).
3. I, is a semi P-ideal of R, and I; = P(Ry).
Proof. Follows from Theorem [3.2]by taking p to be the prime radical. ]

Theorem 6.12. (see [1, Theorem 3.3]Let Ry, R,,...,R,, be rings and R = Ry xR, x--- X R,,, where n > 2.
Then a proper ideal I of R is a semi P-ideal if and only if one of the following statements is satisfied.

1. Iis a semiprime ideal of R.

2. I =11 xI--- x1I,, where I} is a semi P-ideal of Ry for some k € {1,...,n} and I; = P(R;) for all
je{l,...,nj\{k}.

Proposition 6.13. Let I be a semi P-ideal of R and N an R — R-bi-submodule of the R — R-bi-module M.
Then

1. I®N is a semi P-ideal of RE M.

2. If (P(R)YM : M) =P(R) and N is a semi P-submodule of M with IM + M1 C N, then [ 8N is a semi
P-ideal of R M.

Proof. Follows from Proposition [5.1]by taking p to be the prime radical. O

Proposition 6.14. Let I be an ideal of R and N a proper R — R-bi-submodule of the R — R-bi-module M. If
I'BN is a semi P-ideal of REB M, then I is a semi P-ideal of R and N is a semi p-submodule of M.

Proof. Follows from Proposition [5.2] by taking p to be the prime radical. O]



On semi radical ideals of noncommutative rings

References

[1] E. Yetkin Celikel, H. A. Khashan, Semi n-ideals of commutative rings, Czechoslovak Mathemat-
ical Journal, 72, 977-988(2022), Zbl: 7655775, https://doi.org/10.21136/CM].2022.0208-21.

[2] E. Yetkin Celikel, H. A. Khashan, Semi r-ideals of commutative rings, An. St. Univ. Ovidius
Constantia, 31(2), 101-126, 2023, DOI:10.2478/auom-2023-0022.

[3] J. Dauns, Prime modules, reine Angew. Math. 298 (1978), 156-181, Zbl:0365.16002,
https://doi.org/10.1515/crll.1978.298.156.

[4] B. de la Rosa and S. Veldsman, A relationship between ring radicals and mod-
ule radicals. Quaestiones Mathematicae. 17 (1994), 453-467, Zbl:0821.16023,
https://doi.org/10.1080/16073606.1994.9631777.

[5] N. Groenewald, On radical ideals of non-commutative rings, Journal of Algebra and its Appli-
cations, 2350196, https://doi.org/10.1142/50219498823501967.

[6] N.J. Groenewald and D. Ssevviiri, Completely prime submodules, International Electronic Jour-
nal of Algebra,13, 2013, 1-14, Zbl:1329.16005, https://doi.org/10.1155/2013/128064, Zbl:
:1329.16005.

[7] O.A.S. Karamzadeh, On the Krull intersection theorem, Acta Mathematica
Academiae Scientiarum Hungaricae 42(1):(1983) 139-141, Zbl:0526.16026 DOI-
https://doi.org/10.1007/BF01960558.

[8] Hani A. Khashan and Amal B. Bani-Ata, J-ideals of commutative rings, International Electronic
Journal of Algebra Volume 29 (2021) 148-164, Zbl:1467.13005, DOI: 10.24330/ieja.852139.

[9] T.Y. Lam, A First Course in Noncommutative Rings, second ed., Graduate Texts in Mathematics,
vol. 131, Springer-Verlag, New York, 2001.

[10] U. Tekir, S. Koc and K.H. Oral, n-Ideals of commutative rings, Filomat, 31(10) (2017), 2933-
2941, Zbl 1488.13016.

[11] S. Veldsman, A Note on the Radicals of Idealizations, Southeast Asian Bulletin of Mathematics 32,
(2008), 545-551, Zbl 1174.16006, https://doi.org/10.2217/thy.09.46.

[12] B.J. Gardner, R. Wiegandt. Radical Theory of Rings, Marcel Dekker Inc, New York, 2004.

[13] Zubayda M. Ibraheem, On local rings,Raf. J. of Comp. & Math’s. , Vol. 11, No. 1, 2014, 93-97,
DOI: 10.33899/CSM]J.2014.163734.



Moroccan Journal of Algebra
and Geometry with Applications

Supported by Sidi Mohamed Ben Abdellah University, Fez, Morocco

Volume 3, Issue 1 (2024), pp 36-44

<QNYv

ISSN: 2820-7114

Title :

Extension of star-operation

Author(s):

Elmakki Ahmed & Taha Eddhay


https://ced.fst-usmba.ac.ma/p/mjaga/
https://ced.fst-usmba.ac.ma/p/mjaga/

Moroccan Journal of Algebra
and Geometry with Applications
Vol. 3(1) (2024), 36-44

Supported by Sidi Mohamed Ben Abdellah University, Fez, Morocco ISSN: 2820-7114

Extension of star-operation

Elmakki Ahmed! and Taha Eddhay?

1 Department of Mathematics, Faculty of Sciences, Monastir, Tunisia.
e-mail: elmakkiahmed@gmail.com
2 Preparatory Institute for Engineering Studies, Gafsa, Tunisia.
e-mail: taha.eddhay@gmail.com

Communicated by Ahmed Hamed
(Received 19 June 2023, Revised 12 September 2023, Accepted 22 September 2023)

Abstract. Let D be an integral domain, * a star operation on D and S a multiplicative subset of D. In this paper, we
generalize the notion of *-ideals (resp, *-invertible) of D, by introducing the concept of S-+-ideals (resp, S-*-invertible) of
D. A fractional ideal of D is called S-*-ideals (resp, S-#-invertible) if there exists an s € S such that sI* C I C I* (resp, if there
exists an s € S and a fractional ideal J of D such that sD C (I])* C D). We investigate many proprieties and characterizations
of the notion S-+-ideals (resp, S-*-invertible).

Key Words: *-operation, S-+-ideals, S-*-invertible.

2010 MSC: 13G05, 13A15.

1 Introduction

Throughout this paper D will be an integral domain with quotient field K. We denote by F (D), the
set of nonzero fractional ideals of D. A *-operation on D is a mapping I +— I*, from F (D) to F (D)
which satisfies the following conditions for a € K\{0} and I,] € F(D):

1. (a)* = (a) and (al)* = al*,
2. ICI%if I CJ, then I* CJ* and
3. (I =1".

I € F(D) is called a #-ideal if I* = I. We use the notation *-Max(D) for the set of *-ideals which are
maximal among proper integral *-ideals of D. An element I of F(D) is called to be *-invertible if
(I])* = D for some J € F(D) or equivalently (II"!)* = D, where ™! = {x € K | xI C D}. We can construct
the x-operation x; defined by I's = [J{(I')* | I” € F(D), I’ is finitely generated and I’ C I}. We say #
that is the finite type *-operation induced by *. Also, * is said to be of finite type if * = %, i.e., [* ="
for each I € F(D). For the general theory of *-operations, the reader is referred to [4, Sects. 32 and
34]. An important *-operation is the v-operation given by I, = (I"!)~! for each I € (D). The finite
type #-operation induced by the v-operation is called the t-operation. For f =ag+---+a,X" € K[X],
Ay will denote the D-submodule of K generated by {ay,...,a,}. The set N, = {f € D[X][(Af)*=D}isa
multiplicatively closed subset of D[X] by [9} Proposition 2.1], and it is easy to see that, N, = N,..

In this paper, we generalize the notion of *-ideal (resp, *-invertible) by introducing the concept
of S-x-ideal (resp, S-*-invertible). Let I be a fractional ideal of an integral domain D and S a multi-
plicative subset of D. We say that I is S-*-ideal if there exists an s € S such that sI* C I C I*. We say
that I is S-#-invertible if there exists an s € S and a fractional ideal J of D such that sD C (IJ)* C D,
equivalently there exists an s € S such that sD C (II"!)* € D (Proposition .

In Section 2, we study basic results of S-+-ideal, we give an example of an S-*-ideal which is not
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+-ideal. We also, show that every S-invertible ideal (recall from [6], that a fractional ideal I of D is
said to be S-invertible if sD C I] C D for some s € S and some fractional ideal J of D) is S-*-ideal
(Proposition [2.4). An ideal M of D disjoint with S is called S-+-maximal if it is maximal in the set
of all integral proper S-+-ideals of D. We prove that every S-+-maximal ideal of D is a prime ideal of
D (Proposition [2.8). Let D be an integral domain and S a multiplicative subset of D. We say that S
is anti-Archimedean if N,515"D NS = O for every s € S. In [2], the authors generalized this notion by
introducing the concept of weakly anti-Archimedean multiplicative set. According [2]], a multiplica-
tive set S of an integral domain D is called weakly anti-Archimedean if for each family (s,),en Of
elements of S we have (Nyeps,D) NS # 0. Note that every weakly anti-Archimedean multiplicative
set is anti-Archimedean. The converse is not true as was observed in [3, Example 2.7]. Let D be an
integral domain, * a finite type *-operation on D and S a weakly anti-Archimedean multiplicative
subset of D. We show that every integral proper S-+-ideal of D is included in an S-*-maximal ideal
of D (Theorem[2.9). In the particular case when S consists of units of D, we get every integral proper
+-ideal of D is included in a *-maximal ideal of D (Corollary[2.10). Let D be an integral domain, * a
finite type #-operation on D and S a weakly anti-Archimedean multiplicative subset of D. We prove
that for each S-x-ideal I of D, I = (\p1es-4-Max(p) [Py (Theorem .

In section 3, we study basic propertis of S-+-invertible. It’s easy to show that if S consists of units
of D the notions *-invertible and S-#*-invertible coincide. Let D be an integral domain, * a finite type
+-operation on D and S a weakly anti-Archimedean multiplicative subset of D. Let I be a fractional
ideal of D. We show that I is an S-*-invertible ideal of D if and only if I is S-*finite and for each
M € S-+-Max(D), Dy is a principal ideal of Dy (Theorem [3.8). In the particular case when S con-
sists of units of D we recover the folloing known result, I is a *-invertible ideal of D if and only if I
is of =-finite type and it is t-locally principal (Corollary[3.9). Let D be an integral domain and S a
multiplicative subset of D. It is well-known that for each finitely generated fractional ideal I of D,
(Is)™! = (I"1)g. We extented this result to S-+-finite ideal of D. We show that if I is an S-+-finite ideal
of D, then (I5)~! = (I"!)s (Proposition where * a finite type *-operation on D and I a fractional
ideal of D.

2 Basic properties of S-+-ideals

Definition 2.1. Let D be an integral domain, S a multiplicative subset of D and * a star-operation on
D. A fractional ideal I of D is called S-+-ideal if there exists an s € S such that sI*CI CI*.

Example 2.2. 1. Every *-ideal is an S-*-ideal.

2. Let D =Z[X] and I = 2Z + XZ[X]. By [1, Lemma 2.1], it is easy to show that I"! = (3Z)nZ +
XZ[X]; so I, = Z[X] which implies that I is not a divisorial ideal of D. Now, let S = {2" | n €
INU{0}}. Then S is a multiplicative subset of D. Moreover,

21, =27Z[X]|CICZ[X]=1,.
Hence I is an S-v-ideal of D. This shows that the converse of (1) is not true in general.

3. Let D be an integral domain, S a multiplicative subset of D and * a star-operation on D. If S
consists of units of D, then the notions of S-*-ideals and =-ideals are coincide.

Let D be an integral domain and S a multiplicative subset of D. Recall from [8]] that an ideal I of D
is called S-principal, if sI C ] C I for some principal ideal ] of D and some s € S. The next proposition
collects some properties of S-*-ideals of an integral domain D.

Proposition 2.3. Let D be an integral domain, S a multiplicative subset of D and * a star-operation on D.

37
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1. Let S C T be multiplicative subsets of D. If I is an S-+-ideal of D, then I is a T-*-ideal of D.
2. Let S be the saturation of S. Then I is an S-*-ideal of D if and only if I is an S-+-ideal of D.
3. If I is S-principal, then I is an S-*-ideal of D.

Proof. (1). Obvious.
(2). The "only if“ part follows from (1). Now, assume that I is an S-#-ideal of D. Then there exists
an s € S such that sI* CT CT*. Since s € S, there exists a t € S such that ¢ = ss’ for some s’ € D. Thus

tI*csI*crcr,

and hence I is an S-+-ideal of D.
(3). Since I is S-principal, there exist an s € S and d € D such that sI CdD C I. This implies that

sI"=(sI)*C(dD)*=dDCICTI".
Hence I an S-x-ideal of D. O

Recall from [6]], that for a multiplicative set S in D, a fractional ideal I of D is said to be S-invertible
if sD CI] C D for some s € S and some fractional ideal | of D. It is shown that I is an S-invertible
ideal of D if and only if sD C II"! C D for some s € S. It well known that every invertible ideal is a
+-ideal. Our next Proposition generalize this result.

Proposition 2.4. Let D be an integral domain, * a star-operation on D and S a multiplicative subset of D.
Each S-invertible ideal of D is S-*-ideal.

Proof. Let I be an S-invertible ideal of D. By [6, Remark 2.4], sJ]=! €I C J~! for some s € S and some
fractional ideal J of D. This implies that

sITh=(s e ety =g
Thus sI* CsJ~! C I, and hence I is an S-*-ideal of D. O

Example 2.5. Let D be a Priifer domain, * a star-operation on D and S a multiplicative subset of D.
Then each nonzero S-finite ideal of D is S-*-ideal. Indeed, let I be an S-finite ideal of D. Then there
exist an s € S and a nonzero finitely generated ideal F of D such that sI C F C I. Thus sF~! C 17!,
Since D is a Priifer domain, FF~! = D; so

sD=sFF'cFItciir'cpo

which implies that I is an S-invertible ideal of D. Hence by the previous Proposition, I is an S-*-ideal
of D.

Let D be an integral domain and S a multiplicative subset of D. We say that S is anti-Archimedean
if N,515"D NS =0 for every s € S. In [2], the authors generalized this notion by introducing the con-
cept of weakly anti-Archimedean multiplicative set. According [2], a multiplicative set S of an inte-
gral domain D is called weakly anti-Archimedean if for each family (s,),ca of elements of S we have
(N@easaD)NS = 0. Note that every weakly anti-Archimedean multiplicative set is anti-Archimedean.
The converse is not true as was observed in [3, Example 2.7].

Proposition 2.6. Let D be an integral domain, * a finite type *-operation on D and S a weakly anti-
Archimedean multiplicative subset of D. Let (I,),ecp be a totally ordered family of fractional ideals of D. If
for each a € A, 1, is S-+-ideal, then U,cpl, is an S-+-ideal of D.
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Proof. For each a € A, there exists an s, € S such that s, I, CI,. Since S is weakly anti-Archimedean,
NaeaSaD NS #0. Let t € NyepsaD N S. Note that for each a € A, tI;, C I,. We show that t(Ugepl,)” €
Ugeals- Let x € (Ugepl,)™. Since + is of finite character, there exists a finitely generated subideal ] of
Uaeals such that x € J*. Since ] is a finitely generated ideal of D, there exists a € A such that ] C I;.
We have tx € t]* C tI; C Ig; so tx € Ig for some f € A which implies that #(Ugeals)® € Ugenls, and
hence U,epl, is an S-*-ideal of D. O

Notation 2.7. Let D be an integral domain, * a star-operation on D and S a multiplicative subset of
D. An ideal M of D disjoint with § is called S-*-maximal if it is maximal in the set of all integral
proper S-+-ideal of D. We denote by S-+-Max(D) the set of all S-+-maximal ideals of D.

Proposition 2.8. Every S-+-maximal ideal of D is a prime ideal of D.

Proof. Let P be an S-+-maximal ideal of D. Assume that P is not prime, there exist a,b € D\P such
that abe P. Let | = P+aD and | = P+ bD. Since P C I C I* C D, by maximality of P in the set of
all integral proper S-*-ideal of D, I* = D. In the same way we can prove J* = D. This implies that
(I]) = (I']*)* = D. But I] = P> + aP + bP + abP C P; so P* = D. Now, since P is an S-+-ideal of D, there
exists an s € S such that sP* C P which implies that sD C P, a contradiction because P NS = (. Hence
P is a prime ideal of D. O

Theorem 2.9. Let D be an integral domain, * a finite type *-operation on D and S a weakly anti-
Archimedean multiplicative subset of D. Then every integral proper S-*-ideal of D is included in an
S-+-maximal ideal of D.

Proof. Let F be the set of all integral proper S-+-ideals of D. Then F # (), since F contain all integral
proper S-principal ideals of D. Now, let (I,),ca be a totally ordered family of elements of F. By
Proposition Ugealy is an element of F; so we conclude by Zorn’s Lemma our result. O

In the particular case when S consists of units of D, we regain the following well-known result.

Corollary 2.10. Let D be an integral domain and * a finite type *-operation on D. Then every integral
proper +-ideal of D is included in a *-maximal ideal of D.

Lemma 2.11. Let D be an integral domain, = a star-operation on D and S a multiplicative subset of D. Let
(Ix)1<k<n be a finite family of fractional ideals of D such that Ny<x<,Ix # (0). If for each 1 < k < n, I} is
S-x-ideal, then Ny<x<, Iy is an S-*-ideal of D.

Proof. For each 1 < k < n, there exists an s; € S such that siI; C I;. Let t = 5155--+5,,. Then t € S
and for each 1 < k < n, tI; C I;. For each 1 < m < n, t(N1<k<uli)* C I C I,. This implies that
tH(N1<k<nlk)” € Ni<k<ulk, and hence Ny<x<,Ix is an S-+-ideal of D. O

Theorem 2.12. Let D be an integral domain, * a finite type *-operation on D and S a weakly anti-
Archimedean multiplicative subset of D. Then for each S-#-ideal I of D,

I= ﬂ IDy,.

MeS-+-Max(D)

Proof. Let x be a nonzero element of (y1cs-.-pmax(p) Dy Then for each S-+-maximal ideal M of D,
there exists an sy; € D\M such that syyxeI. Let ] =Dn (%I). Then sy € ] for each S-+-maximal ideal
M of D. Moreover, Since I is an S-*-ideal of D, %I is an S-*-ideal of D; so by Lemma ] is an
S-+-ideal of D. Assume that | # D. Then ] is an integral proper S-*-ideal of D; so by Theorem
there exists M € S-+-Max(D) such that ] € M which implies that s); € ] € M, a contradiction. Thus
J = D which implies that x € I. Hence I C (\jfes-+pMax(p) I Dum- This completed the proof, since other
inclusion is obvious. O
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Corollary 2.13. Let D be an integral domain, * a finite type *-operation on D and I a *-ideal of D. Then

I= ﬂ IDy.

Mes-Max(D)
Remark 2.14. Let I be an S-*-ideal of an integral domain D, where S is a multiplicative subset of

D and = a star-operation of finite character on D. Then there exits an s € S such that sI* C I. But
I" = (\mes-Max(p) I "D s0

s( ﬂ IDy) C s ﬂ I'Dy) =sI*CIC ﬂ IDy,.

Mes-Max(D) Mes-Max(D) Mes-Max(D)

Hence there exists an s € S such that

sC () Ibmcic () IDw

Mes-Max(D) Mex-Max(D)

3 S-x-invertible ideals

In this section we extended the notion of S-invertible using the *-operation and we generalize some
classical results concerning the notion of *-invertibility. We begin this section by the following defi-
nition.

Definition 3.1. Let D be an integral domain, * a star-operation on D and S a multiplicative subset of
D. A fractional ideal I of D is called S-#-invertible if there exists an s € S and a fractional ideal J of D
such that sD C (I])* € D.

Example 3.2. Let D = Z+ XZ[i][X], S ={2" |neN}and I = 2Z + (1 +i)XZ][i][X]. Since 2 € I, then
2D € 1.D € D. Which implies that I is S-invertible. On the other part, by [1, Lemma 2.1}, it is easy
to show that I™! = Z + X151 Z[i][X]. Thus if I[I™! = D, then 1 = P;(0)Q;(0) + -+- + P,(0)Q,(0) for some
Py,..,P,eland Qy,..,Q, € I". But for 1 < j < n, P;(0) € 2Z and Qj(0) € Z; s0 1 = 2my +---+ 2m,,
m; € Z. A contradiction. Hence I is not invertible.

Remark 3.3. Let D be an integral domain, * a star-operation on D and S a multiplicative subset of D.
1. Since I* C I, for each fractional ideal I of D, every S-*-invertible ideal of D is S-v-invertible.

2. Note that for a fractional ideal I of D, we have I is S-*-invertible if and only if I* is S-+-invertible.
Indeed, I is S-#-invertible if and only if sD C (I])* = (I*])* € D for some s € S and some fractional
ideal J of D if and only if I* is S-*-invertible.

3. Let I be a fractional S-*-invertible ideal of D, then there exist an s € S and a fractional ideal |
of D such that sD C (I]J)* C D. We have

st = (s (NI = (N A))) e

Moreover, since IJ* C (I])* €D, J* CI7'. Thus sI-! € J* C I"!. Note that in the same way we can
prove that sJtcrrcyl.

4. By [6, Proposition 2.7], every S-principal ideal of D is S-invertible. This implies that each
S-principal ideal of D is S-*-invertible.

Proposition 3.4. Let I be a fractional ideal of an integral domain D, S a multiplicative subset of D and * a
star-operation on D. Then I is S-+-invertible if and only of there exists an s € S such that sD C (II"1)* C D.
In particular, I is also an S-+-invertible ideal of D.
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Proof. If I is S-+-invertible, then there exist an s € S and a fractional ideal | of D such that sD C
(I])* € D. But by Remark 3), J*CcI7Ys0sD C(I]) = (I]J*) € (II"')* C D. The other implication is
obvious. O]

Definition 3.5. Let D be an integral domain, S a multiplicative subset of D and * a star-operation on
D. A fractional ideal I of D is called of S-*-finite type if there exist an s € S and a fractional finitely
generated ideal F of D such that sI C F* CT".

Let D be an integral domain and S a multiplicative subset of D. According to [5], D is called
an S-Mori domain if every increasing sequence of integral divisorial ideals of D is S-stationary (an
increasing sequence (Iy)xen of ideals of D is called S-stationary if there exist a positive integer n and
an s € S such that for each k > n, sI; C I,, [8]). It was shown in [5], that if D is an S-Mori domain,
then for each nonzero fractional ideal I of D, sI C ], C I,, for some s € S and some finitely generated
fractional ideal J of D such that ] C I. This implies that in an S-Mori domain every nonzero fractional
ideal I of D is of S-v-finite type.

Remark 3.6. Let D be an integral domain, * a star-operation on D and S a multiplicative subset of D.
Let I be a fractional ideal of D of S-*-finite type. Then there exist an s € S and a fractional finitely
generated ideal | of D such that sI C J* C I". If the star-operation = is of finite character, then we
can suppose that | C I. Indeed, let | = (ay,...,a,), where a; € I". Then for each 1 < i < n, there exist
a finitely generated subideal J; of I. Let J' =J; +---+],,. Then ]’ is a finitely generated subideal of I.
Moreover, ] CJi+---+ ], C(J))5sosI CJ*C(J')" CI".

Let D be an integral domain and * a star-operation on D. Let I and ] be tow fractional ideals of D.
It will known that if * is of finite character, then

]y =u{(I'))* | I’ C1,]’ €], two finitely generated fractional ideals of D}.

Our next Theorem prove a neccesary and sufficient condition for a fractional ideal to be S-+-invertible.
This extended a result proved by Kang in [9]]. To prove it we need the following Lemma.

Lemma 3.7. Let D be an integral domain, = a finite type »-operation on D and S a multiplicative subset of
D. Every S-x-invertible ideal of D is an S-+-finite ideal of D.

Proof. Let I be an S-*-invertible ideal of D. There exist an s € S and a fractional ideal ] of D such that
sD C (I])* C D. Since = is of finite character, there exist two finitely generated fractional ideals I” and
J of D such thatI’C1I, ]’ CJand s € (I'J’)". This implies that sD C (I’]’)* € D. Now by Remark 3),
sg)ytc@yc(y)ytandsjtcrrcjt. SinceJ’CcJ,J L c(J)}; s0

sIcsI*cs(J)) c(I')y cr.
Hence I is of S-#-finite type. O

Theorem 3.8. Let D be an integral domain, * a finite type *-operation on D and S a weakly anti-
Archimedean multiplicative subset of D. Let I be a fractional ideal of D. Then the following state-
ments are equivalent.

1. I is an S-*-invertible ideal of D.

2. Iis S-*-finite and for each M € S-+-Max (D), ID), is a principal ideal of D).
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Proof. (1) = (2) By Lemma I is of S-*-finite type. Let M be an S-*-maximal ideal of D. We have
1171 ¢ M, indeed, if II"' € M, then sD C (II"')* € M for some s € S; so s € M, a contradiction because
S NM = (. This implies that (IDy;)(I"'Dy;) = II"'Dy; = Dy, and thus IDy; is an invertible ideal of
D). Hence ID); is principal since Dy, is a local ring.

(2) = (1) By hypothesis, there exist an s € S and a fractional finitely generated subideal ] of I
such that sI C J* C I*. Assume that I is not S-*-invertible. Then (II"!)* ¢ D; so by Theorem
there exist an S-+-maximal ideal M of D such that (II-!)* € M. By hypothesis, ID) is principal, then
IDy; = aDy; for some a € I. This implies that %I C Dyy; so %] C Dy,. Since ] is finitely generated, there
exists a t € D\M such that £] C D. We have

Thus £ € I"! which implies that st € al ™! CII™! C M. Since t € M, s € M because M is a prime ideal
of D by Proposition[2.8] This contradict that M NS = 0. Hence I is an S-*-invertible ideal of D. O]

In the particular case when S consists of units of D we regain the following well-known result
proved by B.G. Kang ([9])).

Corollary 3.9. Let D be an integral domain, * a finite type +-operation on D and I a fractional ideal of D.
Then the following statements are equivalent.

1. I is a =-invertible ideal of D.
2. I is of »-finite type and it is t-locally principal.

Let D be an integral domain and S a multiplicative subset of D. It is well-known that for each
finitely generated fractional ideal I of D, (Ig)~! = (I"!)s. Our next Proposition improves this result.

Proposition 3.10. Let S a multiplicative subset of an integral domain D, * a finite type *-operation on D
and I a fractional ideal of D. If I is an S-*-finite ideal of D, then (Ig)™! = (I"!)s.

Proof. We have always that (I"1)g C (I5)~!, so we must prove the converse in order to conclude. Since
I is S-»-finite, there exist an s € S and a finitely generated ideal J C I such that sI C J* C I*. Thus
Jlc %I‘l, and consequently (J7')g C (I"1)s. Since ] is finitely generated, (J~!)s = (J5)~'. Moreover,
Js €Is. Thus (Is) ™ € (Js)™ ' =(J7")s € (I"!)s, and hence (I"!)s = (Is)~". O

Next, we give a relation between S-t-invertible ideals of D and t-invertible ideals of the localization
Dg, where t- is the t-operation.

Proposition 3.11. Let S a multiplicative subset of an integral domain D and I a fractional ideal of D.
1. If I is an S-t-invertible ideal of D, then Ig is a t-invertible ideal of Dg.

2. Assume that for each t-finite type ideal ] of D, (Js)¢N\D =] : s for some s € S. Then I is S-t-invertible
if and only if I is t-invertible and I is an S--finite ideal of D.

Proof. (1). Since I is S-t-invertible, sD C (II"!), € D for some s € S. This implies that Dg = ((II71),)s.
But (II71);)s € ((IT7Y)g);; so Dg = ((IT71)s); because ((II"1)g); C Dg. Thus Dg = (Is(I"!)g);, and hence
Ig is a t-invertible ideal of Dg.

(2). The "only if* part follows from (1) and Lemma since t is a finite type *-operation. For
the "if“ part, let s € S and | a finitely generated subideal of I such that sI C J; C I;. This implies that
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(I;)s = (J;)s. First we show that Js is t-invertible. Since I is t-invertible, Dg = (Ig(I"!)g),. Thus

Dg

NN 1NN 1l

This implies that ((Js(J™')s)); = (JJ™!)s); = D, hence Js is t-invertible. Now, since Js is t-invertible,
(Js)~! is of t-finite type; so there exists a finitely generated subideal F of J~! such that (J™!)s = (Js)™! =
(Fs);. Thus Dg = ((JJ7Y)s); = ((FJ)s)s; so D = ((FJ)s); N D. By hypothesis, D = (FJ]), : s’ for some s’ € S,
which implies that s’D C (FJ);. But F C J7! C %I‘l and J C I, thus ss’D C (sFJ), € (II"'), € D, and
hence [ is an S-t-invertible ideal of D. O

Proposition 3.12. Let I be a non zero ideal of an integral domain D. Let T be a multiplicatively closed
subset of D and S be a multiplicative subset of D.

1. If I is an S-t-ideal of D, then It (D is an S-t-ideal of D.
2. If Iy is an S-t-ideal of Dy, then It (D is an S-t-ideal of D.

Proof. 1. Let I be a S-t-ideal of D. Then sI; C I for some s € S. We show that s(I7 (D), C Iz D.
Let a € (I7(\D);, thus there exists a finitely generated fractional ideal F of D contained in
(IT D) such that a € F,,. Since F C Fy C It, then sa € s(IT); and there exists an r € T such that
rFCI. Thenra erF,=(rF), CI;, C %I. Hence sra C I, so sa C I, then sa C It (| D. Therefore

s(IrD); S IrD.

2. Let IT be an S-t-ideal of D7. Then s(I7); C It for some s € S. We show that s(It (D), C It (\D.
Let a € (I7(\D);, thus there exists a finitely generated fractional ideal ] of D contained in
(IT D) such that « € J,. Since | C J7 C It, then sa € s(I7);. Hence sa € s(It);(\D C It (\D.
Therefore s(It (\D); C It (\D.

O

Let D be an integral domain with quotient field K. Let = be a star operation on D. Let f =ap+---+
a,X" € K[X], Af will denote the D-submodule of K generated by {a, ..., a,}. The set N, = {f € D[X] |
(Af)" = D} is a multiplicatively closed subset of D[X]. We defined the ring D[X]y, by D[X]y, = {é |
f eD[X],geN,}.

Proposition 3.13. Let * be a »-operation on an integral domain D with quotient field K, S be a multiplica-
tive subset of D. Let I be an ideal of D. Then :

1. If I is S-+-ideal, then there exist s € S such that s(ID[X]y (N K) C I.
2. If1is an S-v-ideal (resp., S-t-ideal) of D, then I[X]N,, is an S-v-ideal (resp., S-t-ideal) ofD[X]NU.
Proof. 1. Let I be S-*-ideal. Then sI* C I, for some s € S. We show that s(ID[X]y (1K) C I. Let
a € (ID[X]n,MNK). Then ag = f for some g € N, and f € I[X]. Hence (a) = (aAy)* = (Aze)" =
(Ap)cI*C %I. So sa e I. Therefore s(ID[X]y (N K) C1.
2. Suppose that I is a S-v-ideal, then sI,, C I, for some s € S. Then s(I[X]y, ), = s[,[X]n, by [9)
Proposition 2.2]. Hence s(I[X]y, ), € I[X]y,. Therefore I[X]y, is a S-v-ideal of D[X]y, . In the

some way we can show that I[X]y, is an S-t-ideal of D[X]y, .
O
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1 Introduction

Readers who wish to avoid or defer the reading of pedagogic comments may proceed at once to Sec-
tion 2 (where the reflection property of a parabola is proven) and to Section 3 (where this reflection
property is used to characterize parabolas and arcs thereof).

Conic sections (that is, parabolas, ellipses and hyperbolas) have traditionally been studied for
several reasons at the high school level. Some of those reasons are algebraic, some are geometric,
and some are related to scientific applications. Indeed, those reasons include the following facts:
conics (along with their degenerate cases) are the only possible graphs (in Euclidean plane analytic
geometry) of equations of the form f(x,y) = 0, where f is a second-degree polynomial expression
in x and y; conics (along with their degenerate cases) are the only possible intersections (in three-
dimensional Euclidean geometry) of a plane with a double-napped right circular cone; relative to a
given point F that is not on a given line L, each of the three basic types of conics is characterized as the
set S of points P such that the associated “eccentricity” e (that is, the ratio of the distance between
P and F to the distance between P and L) has a specific constant value, with e = 1 (resp., e < 1;
resp., e > 1) corresponding to S being a parabola (resp., an ellipse; resp., a hyperbola) with F being
a “focus" of S and L being the corresponding “directrix" of S; and each of the three basic types of
conics has a reflection property with a number of physical applications. Despite all these reasons for
the study of conics to play central roles in the mathematics and science curricula in high school, the
topic of conic sections has received much less coverage in recent years. Indeed, many students now
leave high school with the mistaken impression that parabolas are defined as the graphs (in Euclidean
plane analytic geometry) of equations of the form y = a(x — h)? + k for suitable a,h,k € R with a = 0;
also with the mistaken impression that ellipses are defined as the graphs (in Euclidean plane analytic
geometry) of equations of the form (x — h)?/a® + (v — k)?/b? = 1 for suitable a,b,h,k € R with a # 0
and b = 0; also with similar mistaken impressions as to the variety of the possible equations whose
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graphs (in Euclidean plane analytic geometry) can be hyperbolas; and often not having learned the
reflection property of any of the three basic types of conics. In a short article, one could not hope
to suggest ways to address or to redress all of these (what I consider to be) poor pedagogic decisions
by the planners of some high school curricula. Accordingly, we will focus (pun intended) here on
parabolas, as they are arguably the simplest kind of conic. So, the purpose of this article is twofold:
using the “e = 1" definition of a parabola, to prove that any parabola does have a certain reflection
property; and to show that the just-mentioned reflection property actually characterizes parabolas
(among the family of graphs of sufficiently well-behaved functions in the Euclidean plane).

Neither of the two results mentioned in the above description of the purpose of this article is
new. However, our exposition here is intended to be more accessible and simpler than some other
presentations of these two results, while also indicating a way to reintroduce the currently under-
emphasized topics of rotation and translation of coordinate axes. The next two paragraphs will
provide some details supporting the claims that were made in the preceding sentence.

In Section 2, we state the appropriate reflection property and then prove that any parabola satisfies
that property. For each of the three basic types of conic, the appropriate refection property involves
the notion of a tangential half-line to a graph. That, in turn, involves the notion of a derivative; that,
in turn, requires familiarity with the notion of a limit and experience in calculating the limits of
some difference quotients. While that sort of familiarity and experience is traditionally gained early
in a first course on calculus, the topic of the average rate of change for a non-linear function over
an interval in its domain has recently been introduced in many high schools at or below the level of
a precalculus course. Moreover, several colleges now offer a course that combines precalculus and
calculus. (Such a course may run for three semesters.) Thus, the time seems ripe to offer a proof
that parabolas satisfy the appropriate refection property in a way that assumes only the ability to
differentiate the functions given by f(x) = x?> and g(x) = x!/? (which are always among the examples
of non-linear functions that one is first taught to differentiate by “using the definition of a deriva-
tive"). The proof in Theorem assumes only that much of a prerequisite from calculus-related
material. The figures supporting that proof show horizontal rays that either (i) arrive at a parabola
from “within" and then get directed toward the parabola’s focus or (ii) are the result of rays that are
emitted from that focus and then redirected (“inward") after meeting the parabola. The proof begins
with the geometric observation that rotation and translation of axes allows us to assume that the
directrix is a vertical line, the focus is on the x-axis, and the origin is on the parabola. (Some instruc-
tors may wish to spend extra time to provide the “change of variable" descriptions that pertain to
rotations of axes, as in [5, page 480], and possibly follow that up with guidelines, as in [5], page 482],
for graphing an equation f(x,y) = 0 where f is any second-degree polynomial expression in x and
v.) Thus, the proof reduces to considering the (parabolic) graph of the equation y? = 4ax for some
nonzero real number a. Most instructors would probably not expect students at or below the level of
first-year calculus to be comfortable with a situation where “x is a function of y." (On the other hand,
honors calculus students would understand that x = y2/(4a), so that Z—; = 2%, and such students could
be led to an intuitive version of the Inverse Function Theorem which leads to the slope of the tangent
line being

dy 1 2a
dx Z_; v

when v # 0, that is, except at the origin.) So, most instructors would probably prefer to consider the
top and bottom of the parabola separately. For instance if a > 0, the top (resp., the bottom) of the
parabola is the graph of the function given by f;(x) = 2+/ax!/? (resp., by fo(x) = - f;(x)) with domain
[0, 00). With the slope of the tangent line to the parabola at a given point in hand (except when x =0,
that is, except at the origin), the proof then turns to a formula to measure the angles (regardless
of whether acute, obtuse or right) that are formed at the intersection point of two distinct non-
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parallel lines in the Euclidean plane. This formula involves standard background material on bound
vectors in the Euclidean plane and their dot product; for the sake of completeness, that background
is recalled early in Section 2. (Instructors who would prefer to avoid the use of vectors in their classes
are invited to replace the just-mentioned approach by using instead a slope-heavy approach which
detects right angles via the usual “m;m, = —1" criterion and measures acute or obtuse angles at an
intersection point of two non-vertical non-perpendicular lines in the Euclidean plane by formulas in
(4, Theorem 2.2]. While our vectorial approach will require use of the inverse cosine function, note
that the alternative use of the just-mentioned formulas in [4] would instead require use of the inverse
tangent function. Although the alternative method that has just been sketched would perhaps seem
slightly more cumbersome (involving more case analyses) than the vectorial method which is used
in the proofs in Sections 2 and 3, the alternative method would, because of its appeal to the formulas
in [4, Theorem 2.2], reflect (another intended pun) my long-standing interest in using the tangent
function (and, as needed, the inverse tangent function) extensively in the curriculum.) Here are
two more pedagogic notes about Section 2. First, if an instructor is willing to ask his/her class to
differentiate the squaring function but does not want those students to differentiate the square root
function or to grapple with the situation where “x is a function of y", then he/she can tweak our
presentation as follows: by rotating and translating axes appropriately, reduce to the situation where
the directrix is a horizontal line, the focus is on the y-axis, and the origin is on the parabola; infer
that the parabola in question is the graph of the equation x> = 4ay for some nonzero real number a,
that is, the graph of the function given by y = h(x) = x2/(4a); in the spirit of Section 2, draw a graph of
the function h, showing rays that are vertical (instead of the horizontal rays in the figures in Section
2); without having to consider the top and the bottom of the parabola separately, show that the slope

of the tangent line to the parabola is Z—x = 5-; and, finally, adapt the proof in Theorem to finish
the proof. Second, for the details of a shorter, but somewhat less accessible, proof of Theorem
which treats all points of the parabola (except its vertex) at once, albeit at the cost of viewing x as a
differentiable function of y (except at the origin), see Remark (c).

Section 3 uses calculus and differential equations to prove that the above-mentioned reflection
property characterizes parabolas (among certain graphs of differentiable functions): see Theorem
and Remark (b)-(c). As noted in the Abstract, this is not a new result, although we do hope
that the reader will find our approach to it to be especially accessible. For more general (and higher-
dimensional) results, two papers of D. Drucker deserve to be mentioned. In [6], Drucker gives a
unified treatment of the reflection properties for all the types of conic sections (and analogues in
three dimensions). That treatment is probably too complicated for beginning students to appreciate,
as many of its proofs feature, inter alia, points at infinity, considerations of limiting positions, the
calculus of polar coordinates, .... In the spirit of a unified treatment, [[6] considers a parabola as
a kind of limit of a “two foci, two directrices" situation. For an ellipse or a hyperbola, that kind
of situation would be appropriate, even without having to mention a kind of limit. However, to
view a parabola from that standpoint, Drucker resorts to “allowing [one of the foci] to be a point
at infinity" [6, page 326]. Since [6] was not especially intended as a pedagogic paper, the above
comments are not intended as negative criticism. I can say only the following about [7]: although
I have not been able to get a copy of [7]], I can report that the Math Review of 7] (available on
MathSciNet of the American Mathematical Society) reported that [7] contains the same two main
theorems as in [6] with the same proofs. I will close this paragraph with two final comments about
Section 3. Firstly, as one can see from the references mentioned in [6], the literature has a number
of other proofs of the characterization result for parabolas, and the interested instructor is invited to
compare those with the presentation in Section 3 before choosing which (if any) approach should be
shown or assigned to his/her class. Lastly, Section 3 ends with a remark which recalls some glorious
characterization results from four basic areas of mathematics, including an instance where the proof
of a characterization result led to a change in the definition of a fundamental concept.
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No doubt, one could also fashion alternative proofs of the main result in Section 2 by using para-
metric methods. The interested reader is invited to do so. An overview of the subject would be
incomplete without mentioning applications of the reflection property of a parabola. This property
has been applied in building various useful items, such as certain headlights and cable television
dishes, in the shape of paraboloids of revolution. For some related worked examples and homework
exercises, see [5), pages 450-452; Exercises 51, 52, 53, 55, pages 453-454; and Exercise 53, page 489].
Readers are also encouraged to find proofs of the reflection properties of an ellipse or a hyperbola in
various calculus textbooks (either as worked examples or as homework exercises, occasionally with
hints).

To close the Introduction, we would like to warmly thank Dr. Michael Saum for providing, at our
request, the LaTeX keystroke instructions that converted our freehand drawings into the figures that
appear in this paper.

2 The reflection property of a parabola

As a student in a “without calculus" physics course during my first year at university in 1960, I
learned the fundamental principle of “geometric optics" (that is, optics simplified by supposing that
light moves in straight lines) which states that “the angle of incidence equals the angle of reflection”
(assuming also that the medium that light had been initially traveling in is essentially the same as
the medium into which the light has been reflected). That wording reflects usage that is reminiscent
of Euclid’s Elements. Nowadays, a more typical statement of that principle would be “the angle of
incidence is congruent to the angle of reflection" or “the radian measure of the angle of incidence
equals the radian measure of the angle of reflection." The following question arises naturally: how
does one define the angle of incidence and the angle of reflection? Anticipating this question, my
physics textbook produced a diagram, augmented only with the statement that these angles were to
be measured “from the normal." Since this course was given in a before-calculus environment, the
diagram showed rays impinging on a (straight) linear “surface" and the “normal" was labeled as the
line (in the plane of the page) that is perpendicular to that linear surface. Unfortunately, unless two
non-parallel lines in the same plane are perpendicular, they meet in a way that creates four non-
right angles, which are easily seen to break naturally into two pairs of congruent angles (by using
the principle that vertically opposite angles are congruent). So, perhaps a clearer formulation of
the physical principle would state that an acute (resp., obtuse) angle of incidence is congruent to an
acute (resp., obtuse) angle of reflection. In any case, mathematicians have decided to measure angles
of incidence or reflection “from the tangent line" instead of “from the normal." To avoid ambiguities
arising from the just-mentioned pairs of congruent angles when two non-perpendicular coplanar
lines intersect, we will broach such topics in terms of “tangential half-lines" and “tangential vectors".
Before introducing these concepts, we will review some elementary material about vectors that will
likely be familiar to most readers, possibly from high school courses on precalculus or physics. (For
a more comprehensive introduction to vectors at the precalculus level, see [5] pages 403-428].) This
material will be used to unambiguously define (and give the radian measure of) the angle between
two nonparallel nonzero vectors in the same plane, which in turn will lead to a precise statement of
a “Principle of reflection". That vectorial approach (and that principle) will be featured in the proofs
of all the main results in Sections 2 and 3. As mentioned in the Introduction, non-vectorial formulas
are also available to measure the angles formed when two nonparallel coplanar lines intersect (cf
[4]). If a reader/instructor wishes to avoid vectorial methods, he/she is invited to adapt the proofs
given below by using the angle-measuring formulas of his/her choice.

Let us work in a fixed Euclidean plane. If P and Q are (possibly equal) points (in that plane), the

—_—
bound vector PQ , with initial point P and terminal point Q, is the directed line segment going from P



Reflecting on parabolas

—
to Q. (Context clues can usually help the reader to determine whether the overworked symbol PQ
is referring to a bound vector or a ray.) Bound vectors are used in applications to represent physical
quantities that have “magnitude" and “direction". The magnitude (also known as the length) of a

bound vector v = 56 is denoted by |v| = |13_6| and is defined as the distance from P to Q (as calculated
using the standard distance formula from analytic geometry). While every bound vector has a length,

only a nonzero bound vector (that is, Iﬁ such that P # Q) has a direction. (At the precalculus level,
the notion of “direction” is treated as being intuitive. For various rigorous approaches to vectors
(both “bound" and “free") and some kindred concepts in contexts that are much more general than
Euclidean spaces, see [3] and the bibliography of that thesis.) The bound vector with initial point
(0,0) and terminal point (1,0) is denoted by i; the bound vector with initial point (0,0) and terminal
point (0,1) is denoted by j. We say that two (possibly equal) bound vectors are equivalent (some
would say “equal") if these bound vectors have the same length and the same direction. A zero vector
(that is, a bound vector of the form PP for some point P) is equivalent to itself and to any other
zero vector, but is not equivalent to any nonzero bound vector. The relation of equivalence on the
set of bound vectors is an equivalence relation. An equivalence class resulting from this equivalence
relation is classically known as a free vector. It is almost always the case that, in practice, one blurs
the distinction between a bound vector and a free vector, calling each simply a “vector".

It is commonly observed that physical quantities with magnitude and direction (such as winds, for
instance) that act at the same point can be added according to what scientists call “the parallelogram
law of vector addition". It is also commonly observed that it is useful to have a “multiplication"

whereby a real number r multiplies a bound vector v = @) to give the bound vector rv = PW such
that |rv| = |r| - [v| and the point W is chosen on the line determined by the points P and Q so that if

r> 0 (resp., if r <0), then W is on the ray 3(3 (resp., then W is on the ray 513))‘ As degenerate cases,

— _— =
we agree that 0- PQ = PP for all points P and Q, and that r- PP = PP for all r € R and all points
P. In short, rv is a zero vector if and only if either r = 0 or v is a zero vector (or both); and if rv is
not a zero vector, then its length is |r| times the length of v, and its direction is the same as (resp., the
opposite of) the direction of v if r > 0 (resp., if r <0).
It can be rigorously proven by geometric reasoning (see, for instance, [3]] and its bibliography) that

if Py(xx,vx) are points (for 1 <k <4) and r € R, then: the bound vectors Iﬁ) and Iﬁ are equivalent
(again, some would say and write “equal") if and only if x4 —x3 = x, —x; and 4 —y3 = v, —v;; and the
bound vectors rlﬁ) and @ are equivalent (again, some would say and write “equal") if and only
if x4 —x3 =r(x, —x1) and y4 —y3 = r(y, — ). Blurring the distinction between “free" and “bound", we
infer that one can describe equivalence/equality of vectors, magnitude of vectors, vector addition and
scalar multiplication in terms of “components” as follows (for P;, P, as above and for a,b,c,d,r € R):

_— . . —_—
PPy =(xy—x1)i+(y2-1)j, |[PP2| = \/(Xz—xl)2+(}’2—y1)2:

(ai+bj)+ (ci+dj)=(a+c)i+(b+d)j, and r(ai+ bj) = rai+rbj.

Note that |ai + bj| = Va? + b2, by applying the first and second displayed facts. Several other useful
properties of vector addition and scalar multiplication follow easily from the just-displayed proper-
ties. These include the expected behavior of the (free) vector 0 = 0i + 0j (which is equal to (or more
precisely, is represented by) any zero bound vector). One property of scalar multiplication that will
be used often below is that r(sv) = (rs)v for all r,s € R and all vectors v. If t is a nonzero real number
and v is a vector, it will be convenient to write v/t instead of (1/t)v, and it will be convenient to often
use the resulting fact that
v, 7
() =V
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for all ,t € R with t # 0 and for all vectors v. Also, as one may expect, vectors form an abelian group
under addition, with neutral element 0 and with additive inverses given by

—(ai+bj) = (-a)i+ (-D)j.

We come now to a very useful product of vectors. It is commonly called the dot product, but it is
occasionally called the scalar product (not to be confused with the above “scalar multiplication"!) or
the inner product. This is defined (for a,b,c,d € R) as follows:

(ai+bj)-(ci+dj):=ac+bd.

Notice that the dot product of two vectors is a scalar (that is, a real number). It follows from the
Law of Cosines (cf. [5, page 418]) that if 6 is the radian measure of “the angle between two nonzero
nonparallel vectors" v and w, then
cos(0) = W

vl wl
It is of some interest to note that the just-displayed fact can be used to prove the Law of Cosines.
Rather than discuss that further, let us address the “elephant in the room": what is meant by “the
angle between two nonzero nonparallel vectors"? That is an excellent question. Answering it will
dispel the ambiguity that I mentioned earlier is often present in the literature in typical statements
of a principle of reflection. That answer will be given in the next paragraph, after which we will give
a pair of short definitions, then give a precise statement of the principle of reflection, and then prove
the reflection property of parabolas.

Let v and w be two nonzero nonparallel (hence, distinct) vectors. There is no harm (and great

benefit) in viewing these as bound vectors with the same initial point, say with v = P_Q) and w = PR
for some points Q and R which are distinct from P (and from each other) such that the line L, passing
through P and Q is not parallel to (and hence is distinct from) the line L, passing through P and R. If
L, and L, are perpendicular, then each of the four angles that are formed by L, and L, and that have
vertex P is a right angle, necessarily with radian measure 7t/2, and this situation of perpendicularity
is characterized by the condition v-w = 0. So, for our needs here, we can assume henceforth that L;
and L, are not perpendicular. Then the four angles that were mentioned above can be organized as
a pair of (vertically opposite) congruent acute angles and a pair of (vertically opposite) congruent

obtuse angles. Since WQ) and PR are directed line segments, it is absolutely obvious that exactly one
of these four angles deserves to be called “the angle between v and w". Since we are dealing with
angles that are either acute or obtuse, it is also clear that the angle between v and w is the same as
the angle between w and v. Moreover, it follows from the last-displayed formula (in the preceding
paragraph) that that angle is acute (resp., obtuse) if and only v-w > 0 (resp., v-w < 0), the point being
that both |v| and |w]| are positive real numbers. Furthermore, if 6 is the radian measure of that angle,
then 0 < 6 <, and so the fact that cos|(g ) is a one-to-one function ensures that

\A
0 = cos™!(

).
vl - wl
The just-displayed fact leads to the following main tool that will be used in our proofs. Let u, v and
w be nonzero vectors, no two of which are parallel. (There is no harm in viewing these three vectors
as having the same initial point.) Let m(/) denote the radian measure of an angle /. Let /; be the
angle between u and w; and let /; be the angle between v and w. Then:

/1 is congruent to /, © m(/;) =m(/;) &

cos(m(/q)) = cos(m(sy)) & uw vw

[ul -lwl| ~ [v]-[wl’
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The above vectorial background can be used to define the following concept. It will play fun-
damental roles in our statement of the principle of reflection and, hence, in the proofs of the main
results in Sections 2 and 3. Let P be a point on the graph of a differentiable function f : I — R, for

—>
some I C IR. By a tangential vector to f at P, we mean a (bound) vector 7 = PQ, where Q is a point

on the tangent line to the graph of f at P such that Q # P. (The corresponding ray P_Q> is sometimes
called a tangential half-line of f at P.)
In this section and in Section 3, we will use the following precise form of a principle of reflection:
Principle of reflection: In a Euclidean plane, suppose C is a curve, F is a point that is not on C
but is understood to be “inside" C, L is a line that does not intersect C and does not pass through
F and is understood to be “outside” C, P is a point on C, and the tangent line T to C at P exists.

—>
Let 7 = PQ be a tangential vector to f at P. Suppose S is a point that is “outside” C and the ray
—
R := SP is perpendicular to L. Then the radian measure of the angle between the bound vectors
— —
7 and PS is equal to the radian measure of the angle between the bound vectors 7 and PF; that
is, the two just-mentioned angles are congruent. (If S had instead been “inside" C, a context which
is more suggestive of “reflection”, an equivalent conclusion is that the two angles in question are
supplementary. Accordingly, I was tempted to call the above principle a “Principle of refraction.")
Suppose one has a context where F is considered to be a “focus of C" and L is considered to be the
“corresponding directrix of C". Then (in view of the above parenthetical comment) the physical
—
interpretation of the above “Principle of reflection" is the following twofold assertion. If a ray k;

—>
comes from “inside" C on a line of action which is perpendicular to L such that R; meets C at P, then
the “reflected" ray which results from that intersection stays “inside" C and passes through F. If a ray
—>
R, is emitted from F and meets C at P, then the “reflected" ray which results from that intersection
stays “inside" C, going on a line of action which is perpendicular to L.
We next prove the main result of this section.

Theorem 2.1. Let P be a parabola with focus F and directrix L. Let P be a point on P. Then the
following two assertions are consequences of the above “Principle of reflection":

(a) Let R bea ray, coming from “inside" P on a line of action which is perpendicular to L, such
that R meets P at P. Then the “reflected" ray which results from that intersection stays “inside" P
(at least for a while) and passes through F.

H
(b) Let R be aray which is emitted from F and meets P at P. Then the “reflected" ray which results
from that intersection stays “inside" P, going on a line of action which is perpendicular to L.

Proof. Let T be the tangent line to P at P. Fix a tangential half-line corresponding to T (that is, fix a
ray emanating from P which points in one of the two directions of the line T), and then pick a point

Q on that tangential half-line such that Q # P. Consider the (bound) vector 7 := F(j) Let S be a point
on the horizontal line that passes through P and is perpendicular to L such that S # P. Consider the

—

bound vector PS. By the above discussion involving the “Principle of reflection", dot products and
—

the inverse cosine function, it will be enough to prove that the angle that is between PS and 7 is

congruent to the angle that is between PF and T (equivalently, that the radian measures of these
angles have equal cosines).

Our task is to show that a certain pair of angles are congruent. By fundamental principles of
Euclidean geometry, the congruence class of an angle does not change when the coordinate axes are
rotated and/or translated. Thus our task is not changed (but its execution will be computationally
eased) if we rotate the coordinate axes so that the perpendicular from F to L is horizontal (and then,
necessarily, L is vertical), then translate the x-axis vertically so that F is on the (newly-named) x-axis,
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and then translate the y-axis horizontally so that the (newly-named) y-axis intersects the x-axis at
a point that is exactly half-way between F and L. In other words, the origin (for the newly-created
coordinate system that we are about to use) is half-way between F and L. By (other) fundamental
principles of Euclidean geometry, the distance between two (possibly equal) points in a Euclidean
plane does not change when the coordinate axes are rotated and/or translated. It follows that (after
the completion of the above rotation and/or translations of axes), P is (still) the set of points P in the
given Euclidean plane such that the distance from P to F equals the (perpendicular) distance from
P to L. We have arranged that, for some uniquely determined nonzero real number 4, the focus has
coordinates (a,0) and the directrix has Cartesian equation x = —a. Consequently, the origin is on P
(since the distance from the origin to F and the distance from the origin to L are each equal to |a]). It
is well known that a Cartesian equation for P is then y? = 4ax, but for the sake of completeness, we
will establish that fact in the next paragraph.

We are now considering the parabola P with focus F(a, 0) and directrix L : x = —a (for some nonzero
a € R). Let P(x,y) be a point in the plane. (This minor abus de langage should not be alarming, as the
present P will, in effect, soon be shown to be the P in the statement of this result.) Using the distance
formula and bearing in mind that distance is nonnegative, we have that P is on P < the distance
from P to F equals the distance from P to L &

Y22+ (-0 =k~ (-a)l & (x-a)? +37 = (x+a)* &

2 & y? = 4ax, as asserted.

x2—2ax+a2+y2 =x>+2ax+a
The proofs of (a) and (b) can be carried out simultaneously by examining two cases. Case 1 ex-
amines the graph of y? = 4ax for some a > 0, while Case 2 examines the graph of y? = 4ax for some
a < 0. The graph pertinent to Case 1 (resp., Case 2) is given in Figure 1 (resp., Figure 2). Notice that
in Figure 1 (that is, for Case 1), the “top" of the parabola is the graph of y = f;(x) := 2+/ax'/? and the
“bottom" of the parabola is the graph of y = f,(x) := —f;(x) = —2+/ax'/2. Similarly, in Figure 2 (that
is, for Case 2), the “top" of the parabola is the graph of y = g1(x) := 2v/=a(-x)"? and the “bottom" of
the parabola is the graph of y = g (x) := —g1(x) = —24/=a(-x)"/2. We have just used the following two
familiar facts: if u > 0 and v > 0, then Vuv = \u\v; and if u < 0 and v < 0, then Vuv = V-u+/-v.
These facts will be used often in the proofs in Section 2 and 3 without further comment.

y v = filx) = 2vax!/?

I
I

| Py
| "

I

I

Ps

Lix=-a v = fo(x) = —2yax/2

Figure 1: y? = 4ax, with fixed a > 0
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v =g1(x) = 2y/=a(-x)1/2 Y
Py

|
|
|
Py :
P :

!
|

Py : X
X4 F(a,0) X2 :
|
|
Py :
Pg :
Py I
|
|

y=g(x) =-2v=a(-x)"/2 Lix=-a

Figure 2: y? = 4ax, with fixed a < 0

It is clear, for both Case 1 and Case 2 (that is, in both Figure 1 and Figure 2), that if P is a point on
the parabola P, then: the tangent line to P at P is vertical < the line segment connecting P and F is
horizontal & P is the origin. Next, observe that the “Principle of reflection” (or any sensible variant
of it) implies that the “angle of incidence" is a right angle if and only if the “angle of reflection" is
a right angle. Since any two right angles are congruent (and so have the same radian measure), it
follows that we have established the assertion for the point P(0,0) in both (a) and (b).

We will next give separate (but similar) proofs for Case 1 and Case 2 for the points P, (i =2,...,7).
In Case 1, these named points in Figure 1 have the following coordinates: P,(x,, f1(x;)) with 0 < x, < g;
Ps(a, fi(a)); Py(xy, f1(x4)) with x4 > a; P5(x2,—f1(x2)); Ps(a,—fi1(a)); and P;((xg,—f1(x4)). In Case 2, these
named points in Figure 2 have the following coordinates: P,(x;,g;(x;)) with a < x, < 0; P5(a,g1(a));
Py(x4, g1(x4)) with x4 < a; P5(xp,—g1(x2)); Ps(a,—g1(a)); and, finally, Pr((x4,—g1(x4)). It is clear that
(apart from the origin P;, which has already been treated) any point P on P is of the form P, for a
uniquely determined i € {2, ...,7}.

For both Case 1 and Case 2, the first paragraph of this proof suggests that we should (and we
will) use the following approach to study the situation at/“near" P; (for 2 <i < 7): since each of the
functions f;, —f;, g1 and —g; is differentiable at each of the three values of x that are relevant for it,
we will be able (for each i) to find the slope, and hence a Cartesian equation of, the tangent line T
to P at P;, hence choose a tangential half-line of T that emanates from P;, choose a point Q; on that
half-line which is distinct from P; (to ease calculations, we will always take the x-coordinate of Q; to
be 0), consider the bound vector 7 := lﬁ , pick a point S; that is “outside" P and on the horizontal
line passing through P; (hence S; # P;; to ease calculations, we will always take the x-coordinate of S;
to be 0), and consider the bound vector Ea; . As noted above: by the above discussion involving the
“Principle of reflection", dot products and the inverse cosine function, it will be enough to prove (for
2<i<7)that

—
PS;- T PF.-T

— = — ;
|P;S;|-1T| |PF|-|T]

equivalently, by multiplying through by 7| =|P;Q; |, that

— —
PS;-T PF-T
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equivalently, that

—_— =
1 53550 = bE B

(—)BSi)- PQi = ———
IB;S; | |PF|
—_—
Note that (1/| P;S; |) P;S; is the unit vector (that is, the vector of length 1) which has the same direction

as P;S;. To further ease the calculations, this unit vector will always be either i or —i. Finally, in the
proofs of Case 1 and Case 2, the proof for the subcase P = P, also works (by changing subscripts as
needed) for the subcases P = P; and P = P4; and the proof for the subcase P = P5 can be similarly
tweaked to handle the subcases P = P; and P = P;. In short, we need only prove (a) and (b) for the
cases P = P, and P = P5; and to do that, we need only establish the last-displayed equation (for the
appropriate value of i); and to do that, we will begin by choosing the above-mentioned tangential
half-line of T, the points Q; and §;, and the above-mentioned unit vector.
Let us analyze Case 1 for the subcase P = P,. The slope of the tangent line T to P at P is

m= £ (x2) = 2V ) 2 = vixiﬁ 0

and so a Cartesian equation for T is

y=m(x—x3)+ fi(x2) = (\/%)(X—Xz) +2Vay/x;.

Thus, the point Q,(0,va+/x;) is on the tangential half-line of T that emanates from P, and points
in a somewhat south-westerly direction. Note also that Q, # P, (since x, # 0). Also, the point
$5(0,2+/a+/x3) is “outside” P and to the left of P, on the horizontal line passing through P,, and

so the unit vector in the direction of P,S, is —i. Therefore, by the preceding paragraph, it will suffice
to check that
— P F-P Q
-i-PQ; = %
| RF|

We have P2Q2 = (0 —x,)i + (Vayx; — fi(x2))j, and so the left hand side of the preceding display is

(=1)(—x7) - (Vayx; — fi(x2)) = x,. Next, observe that P2F = (a—x3)i+ (0 - fi(xy))j. Hence, the
right—hand side of the preceding display is

((a=x2)i+ (0~ fi(x2))j)-((0—xp)i \/_\/__fl x3))
|(a—x2)1+ (0 - f1(x2))il

(a-x)(- sz-fw:wv—
\/<a—x2 (~2vay;)?

—ax; + X5 + 2ax; ax,+ x5 (a+x)x,

= = =x,,
2
\/a2—2ax2+x§+4ax2 Vl(a+xy) a+x

as desired.
To complete the analysis for Case 1, we now address its subcase P = Ps. Its proof will have essen-
tially the same tempo as the above proof for the subcase P = P,. The slope of the tangent line T to P

at P (= Ps(xp,—2va/xy)) is
me= i) = —f () =~ (< 0),

e
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and so a Cartesian equation for T is

Va
( \/_x_z)x \/E\/E

Thus, the point Q5(0,—v/a+/x;) is on the tangential half-line of T that emanates from P5 and points
in a somewhat north-westerly direction. As in the earlier subcase, we also see that Qs # P5. Also, the
point S5(0,-2+/a+/x;) is “outside" P and is to the left of P5 on the horizontal line passing through Ps,

Y =m(x—xp)+ (=fi(x2)) =

—
and so the unit vector in the direction of P;Ss is —i. Therefore, by the preceding paragraph, it will
suffice to check that

PE-PQ

. % *

—i-PsQs = %
| P5F |

We have

P5Q5_(0 X)i + (=Vavx; — (—2Vavx3))j = —x2i + Vavx,j,

and so the left-hand side of the next-to-last display is

(=1)(=x2) + 0 Vayx; = x,.

Next, observe that

—

PsF = (a—x;)i+(0—(=2Vavx;))j = (a—x2)i + 2Vayx,j.

So, the right-hand side of the next-to-next-to-next-to-last display is

((a —x2)i + 2vax3j) - (=x21 + Vayx3j) _
|(a — x7)i + 2+/ay/x3 ]

(a=x7)(=x2) + (2Vayx3) \/_\/_
\/(a x)? + (2+var/x3)?

which simplifies to x, (by tweaking the corresponding step in the above proof for the subcase of P,),
as desired. This completes the proof for Case 1.

An experienced geometer or analyst may wish to argue (“conformally" while invoking symmetry)
that the assertions for Case 2 follow from the corresponding assertions for Case 1, since the radian
measure of an angle is preserved (up to algebraic sign) by any Euclidean reflection. However, in
the interest of recording a self-contained proof for less experienced readers/students, we will next
outline a rather detailed proof for Case 2. (It would be appropriate for many instructors/classes
to assign some or all of the finer details of the proof that is heavily sketched below for Case 2 as
homework or as questions on examinations.) This will be done by adapting the method of proof that
was used above for Case 1. That overall approach will play a key role in the proof of Theorem
(which will give a partial converse for the assertions in Case 1 when P is of the form P;, P,, P; or P;)
and Remark (giving similar partial converses for the other subcases).

We next analyze Case 2 for the subcase P = P,. Recall that the relevant graph containing P, is
that of the function given by v = g (x) = 2v/~a(~x)"/? for x < 0. In particular, P, has coordinates

(x2,24/—a/=x;). For some students, the treatment of the functions g; and g, in Case 2 will seem
slightly harder than the corresponding treatment of f; and f, had been in Case 1 because of the
presence of “(—x)!/2" in the formula for g (x). Indeed, while those familiar with the standard rules
from differential calculus (including the chain rule) can easily check that the derivative (with respect
to x) of v/—x is —1/(2y/—x) whenever x < 0, instructors may wish to plan to spend extra time with
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beginning students who are expected to calculate this derivative as an explicit limit of difference
quotients. With that formula for the derivative of v/—x in hand, one sees easily that the slope of the
tangent line T to P at P, is

m ::gi(xz) =

it follows that a Cartesian equation for T is

x+\/_\/7

Y =m(x—xp)+(g1(x2)) = (=

7

(Note that the simplification that was used in the preceding calculation depended on the fact that
Xp/y/=X; = —\/—x,. Similar facts will be used later in this proof.) Thus, the point Q,(0, vV—a+y=x3)
is on the tangential half-line of T that emanates from P, and points in a somewhat south-easterly
direction. As above, we also see that Q, # P,. Also, the point S,(0,2v-a+/=x;) is “outside" P and to
the right of P, on the horizontal line passing through P,, and so the unit vector in the direction of

P,S, isi. Therefore, by tweaking the preceding reasoning, it will suffice to check that

—— DPF-P
i BQ, —ZTZQZ
| PF |

—_— —
Note P,Q, = —x,i—+v-ay—x;j and P,F = (a—x,)i—2vy-a+y/=x,j. The left-hand side of the last display
simplifies to —x,. The right-hand side of the last display simplifies to

(2= x2)(=x2) + (-2V=ay=T) (VAT _
\/<a—x2>2+<—2v7a\/——x2>2

—ax; +x3 + 2ax; B ax; +x3 (a+x)xy  (a+x)xp

= == ==
\/a2—2ax2+x§+4ax2 Vl(a+xy) la+ 23] (a+x)

—X,, as desired.

To complete the analysis for Case 2, we now address its subcase P = P;. Only minor changes
will be needed in adapting the proof for the preceding subcase. The relevant graph containing Ps
is that of the function given by v = g,(x) = —2v/—a(—x)'/? for x < 0. In particular, P5 has coordinates
(x2,—2+/—a+/=x3). The slope of the tangent line T to P at P; is

\/_

m::g;(xz) (> 0);

l\J

it follows that a Cartesian equation for T is

Y =m(x—x3)+(g2(x2)) = \/_\/7

Thus, the point Q5(0, —v—a+/—x;) is on the tangential half-line of T that emanates from P5 and points
in a somewhat north-easterly direction. Note that Qs # P5. Also, the point S5(0,-2v/—a+/—x3) is
“outside" P and to the right of P5 on the horizontal line that passes through Ps, and so the unit vector

_
in the direction of P5S5 is i. Therefore, by tweaking the above reasoning, it will suffice to check that
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— —
Note PsQs5 = —x,i++v-ay—x;j and PsF = (a—x;)i+2vy—a+y/=x;j. The left-hand side of the last display
simplifies to —x;. The right-hand side of the last display simplifies to

(a=x)(=x2) + (V=AY (V=ay=F)
Jla—x)2+ (2y=ay=5)?

With very minor changes, the reasoning from the last subcase can be used to show that the last display
simplifies to —x,, as desired. The proof is complete. O]

Remark 2.2. (a) Our contention that the strategy implemented in the proof of Theorem |2.1|actually
gives a proof of Theorem follows from some foundational facts about Euclidean plane geometry,
including the “Plane Separation Axiom" (in short, the PSA). To see this, let 7w be a Euclidean plane and
let T be a line in . According to the PSA, T separates 7w\ T into two half-planes, t; and 7. (In detail,
this can be done in a unique way, apart from permuting the labels “r;" and “rt,", by requiring that m;
and 7t, are nonempty, disjoint convex sets such that any closed line segment with one endpoint in 7ty
and its other endpoint in 7, must intersect T nontrivially. Colloquially, one views 7ty and 7, as the
subsets of 7w\ T that lie on “opposite sides of" T.) Let P and Q be distinct points on T. Let S be a point

in 71y (and so S # P). Let F be a point in 7, (and so F # P). Then (by appropriate facts/postulates

concerning angles in Euclidean plane geometry), there exists a unique ray R emanating from P and
—

pointing into 7, such that F lies on R and the angle between PQ and PS is congruent to the angle

— —
between PQ and PF.

(b) The statement of Theorem referred to planar points that are either “inside" or “outside" a
parabola P. As the Jordan Curve Theorem does not apply to P, some readers/students may wonder
if some unspecified geometric intuition is being assumed in order to explain what is meant by these
“sides" of a parabola. The answer is in the negative, as these sides can be defined in a geometrically
rigorous way as follows, in terms of the vertex V, the focus F and the directrix L of P. By defining
the set of points “outside" P in a given Euclidean plane IR? (containing P) as being the set-theoretic
complement in that plane of the union of P and the set of points (in that plane) that are “inside"
P, our task is reduced to defining the set of points of IR? that are “inside" P. That, in turn, can be
done as follows. The inside of P consists of the points (in the given plane) of the form I which can

be obtained as follows. Consider any point U on the ray VF (in the given plane) such that U = V;
let L* denote the line (in the given plane) that passes through U and is parallel to L; let V. and W
denote the two (necessarily distinct) points where L* intersects P; and then let I be any point on L*
that is strictly between V and W. This definition has the following analytic interpretation in case P
is the graph of y2 = 4ax for some a > 0 (resp., for some a < 0), as the vertex of P is then the origin: a
point (x,y) is inside P if and only if x > 0 and —-2+avx < y < 24/av/x (resp., if and only if x < 0 and
“2yEayE < y < 2V=aV).

(c): We could have proven Theorem [2.1] by studying parabolas P that arise as graphs of equations
of the form x? = 4ay (either for some a > 0 or for some a < 0), supported by the obvious analogues of
Figure 1 and Figure 2 (in which the horizontal rays in Figure 1 and Figure 2 would be replaced by
vertical rays). As that approach involves the graph of the differentiable function given by v = h(x) =
x%/(4a), it would seem to require fewer (sub)cases than were used in the above proof of Theorem
Instructors/readers preferring such an approach are invited to carry out the obvious analogues of
what we will do in the next two paragraphs (which will continue to address y? = 4ax, together with
Figure 1 and Figure 2).

This paragraph begins an alternative proof of Theorem that would be appropriate for an au-
dience that is comfortable with “x being a function of y" and an ensuing derivative of x with respect
to y. For any nonzero real number g, the graph of the equation y? = 4ax is, of course, the graph of
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the function given by x = A(y) := y?/(4a). As above, Figure 1 (resp., Figure 2) depicts the situation
where a > 0 (resp., a < 0). The reflection behavior involving the point P; (0, 0) can be handled as in the
earlier proof (essentially because, at P;, both the “angle of incidence" and the “angle of reflection" are
right angles). We next address whether all the other points P; (for 2 <i <7) can be handled at once
(rather than considering several similar (sub)cases).

Let P(xg,¢) be any P; (for 2 <i <7). As neither of the coordinates of P is 0, we have

d 2
ax_F_ ¥ at P, and so, by the Inverse Function Theorem,
dy 4a 2a
d 1 2
d—y = Ix = —u at P.
x (@) y

(Some care is needed in applying the Inverse Function Theorem. In first-year courses on calculus,
that result is often stated for a strictly monotonic function that is defined on a closed interval and has
a never-zero derivative over that entire interval (cf. [11, Theorem 6.2.3]). Although the given P could
be handled via this form of the Inverse Function Theorem by devising a suitable closed interval,
it would probably be less troublesome for students if an instructor would use a text on advanced
calculus, such as [12, Theorem II, page 70], where the ambient interval is not assumed to be closed.)
Thus, we find that the slope of the tangent line T to P at P is 2a/y,. Rather than giving a Cartesian
equation for T, let us, instead, identify one of the tangential half-lines of T emanating from P as

being the ray P—Q), where Q is the point (xg + v,y + 2a) on T. (These coordinates for Q were found
by starting at P and then “running" y, units and “rising" 2a units.) Note that Q # P, since yy # 0
(alternatively, since 2a = 0). Consider the point S(0,yy) which is “outside” P on the horizontal line
that passes through P. Note that S # P, since xy # 0. We have the (bound) vectors

— — —
7T := PQ =vygi+2aj, PS =—-xpi, and PF = (a—x()i—7ygj.

As explained above (see also parts (a) and (b) of this remark), an (alternative) proof of Theorem
requires only a proof that
— —
PS-T PF-T
e —
|PS | | PF |
—xoY0 +0(2a) _ (a—x0)yo + (=y0)(2a)

= ; equivalently, that
%ol 107 Nl (pof g

—xoyo\/az —2axg+ x5+ i = \/(—xo)z[—xoyo —ayy|; equivalently, that

; equivalently, that

2 2 4 2 2
(%)\/ﬂz - %0 + 1}6}(;2 +98 = (y—o)[—(y—o)yo —ayo); equivalently, that

=)
2
Q

The right-hand side of the last display simplifies to

2 2 2 2 2

Yo y_0+ a- y_o+a_ 2

datey ) datia _ NGat)
a |a a a
4 2.2 4 2
Yo 2y5a at \/Vo Yo 2
\/ TolaP VAP TP NTea2 T2 T

a a !

which clearly equals the corresponding left-hand side. This completes the alternative proof of Theo-

rem [2.1]
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3 The reflection property characterizes parabolas

We begin the section with a result which shows, by building on Theorem how certain reflection
properties serve to characterize what could be considered “half a parabola." The rest of the section
explains how to adapt our methods in order to characterize all of, or selected arcs of, a parabola. Be-
sides some expected uses of reflection properties, the novelty in Section 3 is the relevance of ordinary
differential equations and the concomitant need to solve certain initial value problems.

Theorem 3.1. Let 0 < a € R. Working in a fixed Euclidean plane R?, let F be the point with coordi-
nates (a,0), let L be the line with Cartesian equation x = —q, let f : [0,00) — IR be a function, and let
I' be the graph of f. Suppose that f is differentiable on (0, 0), f is continuous at x =0, f(0) =0, f is
strictly monotonic increasing and f (x) = 0 for all x > 0. Suppose also that I has a vertical tangent line
at the origin. For each point P on I, let T = Tp denote the tangent line to I' at P, let R = ﬁ)p denote
a fixed tangential half-line induced by T (and emanating from P), let Q = Qp be a chosen point on

R such that Q # P, and also let S = Sp be a point that is “outside" I and on the horizontal line that
passes through P and is perpendicular to L such that S # P. Then the following five conditions are
equivalent:

(1) f(x) = 2+y/ay/x for all real numbers x > 0;

(2) T is the “top half" of the parabola with focus F and directrix L;

(3) For each point P on I' (with T, f, Q, and S associated to P, I and L as above), the angle that is
between the bound vectors PS and Fé) is congruent to the angle that is between the bound vectors
P_F) and ﬁ;

(4) For each point Pon I' (with T, i), Q, and S associated to P, I' and L as above),

1 — P_F)P—>
(—)PS)- PO = TEPC,

1PS| |PF|

J

(5) Let P be a point on I'. Then the following two reflection properties hold:
(i) If Lisa ray coming from “inside" I on a line of action which is perpendicular to L such that

H
L meets I at P, then the “reflected" ray which results from that intersection stays “inside" I' (at least
for a while) and passes through F;

H
(ii) If £ is a ray which is emitted from F and meets I' at P, then the “reflected" ray which
results from that intersection stays “inside" I' (at least for a while), going on a line of action which is
perpendicular to L.

Proof. Since f is strictly monotonic increasing, it follows easily from the definition of a derivative as
a limit that there does not exist & > 0 such that f (&) < 0. Hence f x) > 0 for all x > 0. Note also that
f(x) > 0 for all x > 0. Consider the upper half-plane / := {(x,y) € R? | y > 0}. Clearly, I C . More-
over, if xy > 0, the horizontal line y = f(x) intersects I only at the point (xg, f(x()). As continuous
functions preserve connected topological spaces, the image of f is a generalized subinterval of [0, co).
Thus, it is evident in a geometrically intuitive way that every point in the set {(x,y) € U | there exists
xo € Rsuch that x > xy > 0 and y = f(x()} deserves to be viewed as being “inside I'". Apart from these
points and also apart from every point on T, it also seems compelling to agree to view all the other
points of R? as being “outside I'". These considerations explain/justify the uses of “outside I'" and
“inside I'" in the statement of this result.

Let P denote the parabola with focus F and directrix L. Recall from the third paragraph of the
proof of Theorem that P is the graph of the equation y? = 4ax. By defining the “top half" of P
(if a definition of this term is really needed, in which case, the following definition is admittedly
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belated) as the set of points (x,y) on P such that (necessarily x > 0 and) y > 0, one sees easily that (1)
< (2).

Let P be a point on I'. Although parts of the statements of conditions (3)-(5) are somewhat rem-
iniscent of some earlier material, one may wonder if the quantifications pertaining to that earlier
material align properly with the present context which is based, in part, on the fifth sentence in the
statement of this result. To begin to allay such concerns, we will first show that the (possible) validity
of the equation

1 - — P—F) P—Q>
((:)PS)‘PQ e
|PS| |PF|
(from (4)) is not affected if one replaces S and Q with other points that meet the requirements indi-
cated above. Indeed, this assertion concerning S is clear because changing S would not change the

— — —
unit vector in the direction of PS (namely, PS/|PS|). Moreover, changing Q would simply replace

the former P_Q) with rP_Q) for some r > 0, thus causing both the left- and right-hand sides of the last
displayed equation to be multiplied by r, and that change would clearly also not affect the validity
of the last displayed equation. Next, let us show that the validity of that equation is not affected if
one chooses a different tangential half-line for the tangent line T to I' at P. This new choice for R

(and Q) would simply replace the former @ with 51?2) for some s < 0, thus causing both the left-
and right-hand sides of the last displayed equation to be multiplied by s, and it is also clear that this
change would not affect the validity of the last displayed equation. Finally, note that changes of the
kind already discussed in this paragraph would not affect the validity of (3) (even though changing

the tangential half-line R would change both of the angles mentioned in (3) to their supplements).

By the first paragraph of the proof of Theorem|2.1](especially its sixth sentence invoking the earlier
“discussion involving the Principle of reflection, dot products and the inverse cosine function"), it is
now clear that (3) < (5); and also that (3) < (4). Moreover, Theorem (see also Remark (a))
gives that (2) = (5). Therefore, it remains only to prove that (4) = (1).

Assume (4). Let Py(xg,y0) be a point on I'. We will prove that f(x) = 2+/av/x for all x > 0. Since we
have assumed that f is continuous at x = 0 and f(0) = 0, we may assume henceforth that x > 0 and
xo > 0. As yg = f(xp), the tangent line T to I at P) has Cartesian equation

v = f (x0)(x = x0) + f (xp).

Thus, choosing the points Q(0, —xof'(x0)+f(x0)) and S(0, f(xg)) is compatible with the above require-
ments for Q and S. Hence, by (4),

1 —— PByF-BQ
(—=)P,S) RQ = 2—=2
|PS | | PyF |

We have
— —_— 4
PyS =—xoi, ByQ = —xpi—xof (x9)j, and

PyF =(a—xq)i— f(xg)j. As PyS/|PyS | is the unit vector in the direction of PyS, namely —i, we get

(a—x0)(—xg) + (—f(xo))(—xof/(xo))_
\/(ﬂ —x0)? + (—f(x0))?

By letting v denote the function f and doing some easy algebraic simplifications, we have thus re-
duced our task to showing that the only solution of the differential equation

~1(=x) + 0(=xof (x0)) =

—x)2 2 -
d_y: (@=x)+y°+a x, for all x>0,
dx Y
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which is continuous at x = 0 and is such that f(0) = 0 satisfies f(x) = 2+y/ay/x for all x > 0. As it is
easy to see that the function given by this formula is a solution of this initial value problem (it comes
down to noticing that |a + x| = a + x since a > 0 and x > 0), let us proceed to solve this differential
equation.
Our methods will use a couple of changes of variable. First, consider w := 2. By the chain rule,
dw

dy
T ZyE for all x> 0.

Then, by substituting the just-displayed fact into the above differential equation and doing some
minor algebraic rewriting, we get

dw =24/(a—x)?+w+2(a—x), forall x> 0.
dx
Since y? = w, it will suffice to prove that w(x) = 4ax for all x > 0.
Next, consider z := z(x) := w+(a—x)? for all x > 0. Note that z(0) = w(0)+a® = (y(0))>+a® = 0> +a® =
a?. Also, by the usual rules of differential calculus,
dz dw
T dx +2(a—x)(-1) for all x> 0.

Substituting the above expression for the derivative of w into the just-obtained expression for the

derivative of z, we get
dz

5_[2 (a—x)2+w+2(a-x)]+2(a—x)(-1)=

2+/(a—=x)? +w = 2z for all x > 0.

Note that x >0 =>w=9?>0=z=w+(a—x)*> > w+ 0> 0. Separating variables and then performing
indefinite integration(s), we get the following, for all x > 0:

%zulx and J% :j2dx.

Hence, there exists a constant of integration C such that 2v/z = 2x + C, for all x > 0. Therefore, by

applying the operator lim,_,(+ (and using that z is a continuous function of x and z(0) = a?), we have
2Va2 = 2.0+ C. Thus C = 2a. Tt follows that for all x > 0,
2Vz = 2x + 2a, whence Vz = x + a4, whence
w=z—(a—x)*>=z2)>-(a—x)* = (x+a)’ - (a—x)? = 4ax.
The proof is complete. O

Theorem [3.1Jhas shown that, once coordinate axes have been rotated and translated so that parabo-
las of interest can be assumed to be graphs of equations of the form y? = 4ax, one can use the “Princi-
ple of reflection” to obtain a function-theoretic characterization of the “top" half of any such parabola
if a > 0. In fact, one can use the “Principle of reflection" to obtain a function-theoretic characteriza-
tion of parabolas. Indeed, this can be done by combining Theorem [2.1|with three suitable analogues
of Theoremto get respective characterizations of the “bottom" half of the graph of y? = 4ax when
a > 0, the “top" half of the graph of y?> = 4ax when a < 0, and the “bottom" half of the graph of
v? = 4ax when a < 0. The precise statements of those analogues are given and proofs are sketched
in parts (b) and (c) of Remark [3.2] Those sketches suitably adapt the proof of Theorem [3.1] Remark
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(d) follows up a comment from the Introduction (and Remark (c)), by indicating how similar
characterizations of sufficiently small arcs of parabolas (viewed as graphs of equations of the form
x = %/(4a)) can be obtained for readers/classes that are comfortable dealing with “x as a function of
y", Z—;‘, and partial derivatives. Finally, in Remark3.2|(e), an analogous characterization of an arc of a

parabola is stated and a proof of it is sketched. One should note that the above-mentioned papers of
Drucker also featured a similar characterization of parabolic arcs.

Remark 3.2. (a) Although it may have been a distraction in Theorem [3.1]to point out the redundancy
of its assumption that the tangent line to I' at the origin exists and is vertical, we wish to do so
here. This will be done by appealing to the following somewhat standard definition (the literature
is surprisingly nonuniform about this matter!): if x is in the domain of a real-valued function f
of one variable, then the graph of f has a vertical tangent line at (x, f(x()) if f is continuous at x,
and lim,_, f'(x) = +co0. We show next that a function f satisfies this condition if it satisfies all the
other conditions stipulated in the second and third sentences of the statement of Theorem To
see this, note first that f is assumed to be continuous at x; := 0. Moreover, if we examine the secant
lines whose limiting position (if it exists) would be that of the tangent line to I' at the origin, the
corresponding limit of the slopes of those secant lines is

lim LS00 gy SO=FO) e fO=0 e

X=X X —Xq x—0 x-0 x—0% x x—0%

where the last step was obtained by using the general form of L’'Hopital’s Rule (as formulated in [15}
Theorem 1]). Next, by tweaking the proof that (4) = (1) in Theorem (by now allowing x, to be 0
wherever needed in that proof), we can use the formula for the derivative of y = f(x) in that proof to
reformulate our task as seeking a proof that

— x)2 2 _
lim Va-x)?2+y*+a x:OO.
x—0* y

To that end, recall that a > 0 and that f takes only positive values when x > 0. Hence, working in
the extended real number system (IRU{co, —co}) and using the appropriate limit theorem there (while
bearing in mind that f is continuous at the origin), we get

V@a-x?2+y?+a-x +(a-02+02+a-0 2a
v B 0*

lim —
x—0*

=gr =
as desired. This proof should dispel any lingering worries that the proof of Theorem may have
only characterized the “open top half" of the parabola y? = 4ax (when a > 0), as we have just shown
that the origin is indeed part of the “top half" which was characterized in that proof (even if one had
not assumed that the tangent line to I at the origin exists and is vertical). We will have further need
to consider the extended real number system in (e) below.

(b) In the spirit of Theorem (3.1, we can characterize the “bottom" half of the graph of y? = 4ax
when a > 0 by modifying the statement and proof of Theorem as follows. Assume that f is
strictly monotonic decreasing. One can show, by tweaking the above argument in (a), that there will
be no need to assume that I' has a vertical tangent line at the origin. (Indeed, this will follow, as we

will get that
dy 2a
im —— = — =—oo,
x—0* dx 0~
by exploiting the fact that f will now take only negative values for x > 0.) In the statement of con-
dition (1), change the formula for f(x) to f(x) = —2vav/x for all x > 0. In the statement of condition

(2), change “top half" to “bottom half". There is no need to change the statements of conditions (3),
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(4) or (5). In the proof, conclude that f'(x) < 0 for all x > 0, and replace U/ with the lower half-plane,
{(x,v) € R? | y < 0}. Also, for the proof that (4) = (1): we do get the same formula for the derivative
of y with respective to x as before; we do get that vz = x+a and w(x) = 4ax as before; and, since v is
now —\w, we get v = —24/av/x, to complete the proof.

(c) In the spirit of Theorem and (b), we can characterize both the “top half" and the “bottom
half" of the graph of y? = 4ax when a < 0 by modifying the statement and proof of Theorem In
explaining how to carry out those modifications, the next paragraph addresses both the “top half"
context and the “bottom half" context.

For the “top half" (resp., “bottom half") context, the “strictly monotonic behavior" of f is assumed
to be decreasing (resp., increasing), the formula for f(x) in condition (1) is f(x) = 2v/=ay—x (resp.,
f(x) = =24/—ay/—x) for all x < 0, and there is no need to change the statements of conditions (3), (4)
or (5) from what they had been in Theorem We next address the proofs for the two contexts. For
the “top half" (resp., “bottom half"), conclude that f'(x) < 0 (resp., f (x) > 0) for all x < 0 and notice
that I' is a subset of the upper (resp., lower) half-plane. Of course, since a < 0, a unit vector in the

—
direction of PS is now i. Consequently, one sign changes in the relevant differential equation; that
equation simplifies algebraically to

_ _4\2 2 _
d_y: (@-x)+y"+a X, for all x < 0.

dx Y

In solving that new differential equation (with the same changes of variable as in the proof of Theo-
rem , we find that the derivative of z with respect to x is —2+/z for all x < 0, whence 24z = -2x+C
for all x < 0, whence (by application of the operator lim, ,3-) we get C = 2Va? = —2a, whence
vz =-x—afor all x <0, whence

w:yz:z—(a—x)2:(—x—a)z—(a—x)2:4ax, for all x<O.

Therefore, in the proof that (4) = (1), we find that the “top half" (resp., “bottom half") is described
by v = Vw = 2y/—avy-x (resp., v = —\w = —2y/—a+/-x) for all x < 0, with continuity then ensuring the
corresponding equality at x = 0. It remains only to explain why there is no need to assume that I' has
a vertical tangent line at the origin. Indeed, this will follow for the “top half" since

the relevant matter being that for the “top half", f takes only positive values for x < 0. On the other
hand, for the “bottom half", f takes only negative values for x < 0, whence the “bottom half" of I' also
has a vertical tangent at the origin, since that part of that graph’s data satisfies

(d) In the spirit of Remark[2.2](c), we next present an alternate approach to (what is effectively the
main thrust of) Theorem that would be appropriate for an audience that is comfortable with “x
being a function of y" and partial derivatives.

Let 0 # a € R. Consider the planar point F(a,0) and the vertical line L with Cartesian equation
x = —a. Assume that a smooth function (that is, a differentiable function with a continuous derivative)
given by x = A(y) is such that the graph I’ of A satisfies a reflection-theoretic condition that is in the
spirit of conditions (3), (4) and (5) from Theorem [3.1] Assume also that A(y) = 0 if and only if y = 0,
and that A'(0) = 0 if and only if y = 0. Let Py(x¢,vo) be a point on I which is not the origin. Using the
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motivation (from the Inverse Function Theorem) that the “run"/“rise” of a tangential vector 7" of A
at Py should be A (yg), let us use
T := X (9o)i+j.
Suppose that a > 0. Expecting that x > 0 and also anticipating the location of the “outside" and
“inside" of I', points Qg and S, are chosen so that the bound vector I@) =T and the unit vector in

«w n

the direction of PyS, is —i. After dropping subscripts “y", the equation (from condition (4))

1 PE.-PQ
— = .

((=)PS)-PQ =

|PS | | PF |
leads to ’

—)\/(y) = (a-x)A )+ (-y)1 for all y # 0, whence
(a—x)?+(-y)?
dx _ Y for all y = 0.

dy Va-x)?+y2+a-x

Note that this equation also holds at y = 0 (where, necessarily, x = 0), since

/\'(O):O:E: 0 .
26 \J(a-0)2+02+a-0

It is easy to check that the above first-order ordinary differential equation (ODE) is satisfied by the
(smooth) function given by x = y2/(4a), and that this function and its derivative each take the value
0 only at y = 0. I believe that many experienced readers would now find it reasonable to consider an
associated initial value problem. We will discuss that two paragraphs hence, before going on to solve
the problem at hand.

First, we wish to point out that the above choices were not made independently. Indeed, we show

next that if the point Sy had, instead, been chosen so that unit vector in the direction of Im is1i, then
that vector would not have pointed “outside" I' when we restrict attention to 0 < y (< c0). By the above
methods, one consequence of this new choice for Sy would be that A'(y) would become the negative
of the earlier expression for A'(y), for all p > 0. Recall that the values of A" (resp., of 1) are nonzero
and have the same algebraic sign for all y > 0. We next derive a contradiction (in the next sentence)
from the assumption that x < 0 and y — co. Since a > 0, that assumption would imply that g—; >0,
whence x would be a strictly increasing function of y, whence i would point “inside" I, the desired
contradiction. We can conclude that x > 0 as y — oo (and hence that x > 0 for all y > 0). It follows
that A'(y) > 0 for all y > 0, and so A is a strictly increasing function of y on [0,c0). As promised, we
turn next to some matters related to initial value problems.
Consider the real-valued function G of two variables given by

y

(a—x)2+y>+a-x

G(x,y) =

The (natural) domain of G consists of all the points of IR? except F(a,0). Note that G is continuous (in
the usual sense, for a function of two real variables) on that domain. In view of the literature on (ex-
istence and) uniqueness theorems for ODEs (especially, the celebrated theorem of Picard-Lipshitz),
it is natural to examine the behavior of dG/dx. By using familiar formulas from differential calculus,
one checks easily that this partial derivative of G exists on the just-mentioned domain and is con-
tinuous on that domain. So, by the just-mentioned literature, the initial value problem consisting of
the ODE dx/dy = G(x,y) and the initial condition x(0) = 0 has a unique solution x = v(y) “locally”, in
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the sense that there exists a closed rectangle R := [b,c] x [d, g] C IR? such that the origin is an interior
point of R (thatis, b <0 <cand d <0< g), with v(0) = 0, and also such that both b < v(y) < c and
v'(v) = G(v(y),y) hold whenever d <y < g (and, necessarily ¢ < a), and also such that V|4,g) is the only
function of y with these properties. Hence, by the above material, A(y) = x = v(y) = y/(4a) whenever
d <y < g. (In essence, we have now managed to characterize a certain arc of the parabola y? = 4ax.
In (e), we will be more precise, studying — and characterizing — arbitrary arcs of y? = 4ax regardless
of whether a > 0 (as in the present situation) or 2 < 0.) Our goal here in (d) is to prove more than
“local" conclusions, namely, that A(y) = x = y?/(4a) for all y € R. Unfortunately, I do not know of a
“global" (existence-)uniqueness theorem for solutions of initial value problems involving ODEs that
would directly give this conclusion at this point. (Perhaps, someone who is more knowledgeable
than I about ODEs will be aware of such a theorem. Note that there does exist a “somewhat global"
existence-uniqueness theorem with the above flavor, but its assumptions impose natural restrictions
on the vertical extent of the associated closed rectangle K. To see this, consider the (expected and
unique) solution for v(p) as being y?/(4a). If one uses this expression for x and if one could put x := a
(that is, if the “horizontal base" [b,c] of R contains a), one would get y = +V4ax = +2a, so that the
“vertical base" [d, g] of R contains either 2a or —2a, whence the point (4,0) is in R but not in the do-
main of G (contrary to the assumptions of the known “somewhat global" theorem). One thus infers
the promised restriction, namely, either d > —2a or g < 2a.) Also, I have not been clever enough to find
change(s) of variable that would give a closed-form expression for the general solution of the ODE
dx/dy = G(x,y) (for —oco <y < o0) which could then be used in conjunction with the initial condition
x(0) = 0 to produce the (expected and unique) solution for v(y) as being y?/(4a) (over —co <y < o).
(Perhaps, someone will be more clever in that regard.) However, we will proceed to solve the problem
in a “global" way. The naive way to explain our upcoming approach is that v has an inverse function,
the derivative of that inverse function has a form that we examined in the proof of Theorem and
we solved the initial value problem associated with that ODE in that proof. It is fair for the reader
to ask the following: why would it be necessary to say much more than that before concluding? My
answer is that one must first determine the domain and range of that inverse function. That will be
done next. The upcoming details are somewhat predictable, admittedly tedious at some points, and
(in my opinion) necessary if one is to compete a proof of Theorem [3.1]having started from the “x as
a function of y" point of view.

Recall that Z—;‘ =v/(\/(a—x)?+y%+a—x) for all y > 0. Let us restrict y to the domain [0,c0) and, by
abus de langage, continue to use A to denote the restriction of A to that domain. Then it follows (via the
Mean Value Theorem) that A (with its domain restricted as just mentioned) is a strictly increasing
monotonic function and, hence, has an inverse function. Let y denote that inverse function. Of
course, the range of y is [0, c0) (because we restricted the domain of A to be [0, o0)). One would expect
the domain of y to be [0,00); equivalently, one would expect the range of A to be [0,00) (when the
domain of A has been restricted as above). To prove this, it will suffice to show that lim, ., A(y) = oo,
since continuous functions preserve connectedness.

Suppose, on the contrary, that lim,_,, A() is not co. Then, since A is strictly monotonic increasing,
limy .., A(y) = M, for some real number M > 0. We will show that this leads to a contradiction.

By the inverse function theorem,

, 1 @-x2?+y>+a-x
() y
So, by the proof of Theorem 3.1}

whenever 0 < x < M.

(v =) p(x) = 2v/avx whenever 0 < x < M.

Therefore, each value of p that is in the domain of A satisfies y < 24/aVM. Since the domain of A is
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[0, 00), we have found the desired contradiction. This completes the proof that lim,_,,, A(y) = o0, and
hence that the range of A is [0, ), and hence that the domain of p is [0, o) (if a > 0).

Then, by the proof that (4) = (1) in Theorem v = Vw = Vdax = 2+/av/x for all x > 0. By
continuity, this equation still holds at x = 0. Hence, the intersection of I' with the upper half-plane is

{(x,p) eR?|p>0,x>0 and y = 2vavx},

namely, the “top half" of the parabola given by y? = 4ax.
Next, while still assuming that a > 0, suppose now that y < 0. Arguing as above, one can show that

dx Y
dy V@a-x)?+y2+a-x

Tweaking the reasoning showing that (4) = (1) in the proof of Theorem we still get that vz = x+a
and w = 4ax. But now, as y < 0, these facts lead to y = —\/w = —=2+/av/x for all x > 0. By continuity, this
equation still holds at x = 0. Consequently, the intersection of I' with the lower half-plane is

{(x,v) € R? |p<0,x>0and y= —2\/5\/5}’

namely, the “bottom half" of the parabola given by y? = 4ax. As T is the union of its intersections
with the upper half-plane and lower half-plane, it follows from the next-to-next-to-last display and
the last display that