
Moroccan Journal of Algebra 
and Geometry with Applications

Volume 3, Issue 1 (2024), pp 187-196

Supported by Sidi Mohamed Ben Abdellah University, Fez, Morocco 
Morocco

Title :Title :

On Residually (Completely) Integrally Closed Rings

Ali Tamoussit

Author(s):Author(s):

ISSN:  2820-7114

https://ced.fst-usmba.ac.ma/p/mjaga/
https://ced.fst-usmba.ac.ma/p/mjaga/


Moroccan Journal of Algebra
and Geometry with Applications
Vol. 3(1) (2024), 187–196
—————————————————————————————————————————————
Supported by Sidi Mohamed Ben Abdellah University, Fez, Morocco ISSN: 2820-7114

On Residually (Completely) Integrally Closed Rings

Ali Tamoussit
Department of Mathematics, The Regional Center for Education and Training Professions Souss Massa,

Inezgane, Morocco.
e-mail: a.tamoussit@crmefsm.ac.ma

Communicated by El Hassan El Kinani
(Received 09 November 2023, Revised 06 January 2024, Accepted 11 January 2024)

Abstract. All rings considered in this paper are commutative rings with identity. A ring R is called a residually completely

integrally closed (for short, RCIC) ring if the integral domain R/P is completely integrally closed, for all prime ideals P of

R. The main goal of this paper is to study the behavior of the RCIC property in some distinguished constructions such as

homomorphic image, finite direct products, Nagata ring, amalgamated duplications of rings and trivial ring extensions.

Our study is then extended to the case of residually integrally closed rings.
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Introduction

An integral domain D with quotient field K is said to be completely integrally closed (for short, CIC)
if for any element x of K and for any nonzero element d of D such that dxn ∈ D for all n > 1, x
necessarily belongs to D; or equivalently, D contains all elements x of K such that D[x] is contained
in a finitely generated D-module. It is well known that completely integrally closed domains are
integrally closed, and valuation domains are completely integrally closed if and only if they have
rank at most one as proved in [9, Theorem 17.5]. Moreover, it is worth mentioning that the inter-
section of any family of completely integrally closed domains with the same quotient field, or more
generally, contained in some large given field, is still completely integrally closed. Consequently,
Krull domains form a (proper) subclass of completely integrally closed domains. Furthermore, we
note that a quotient ring of a completely integrally closed domain need not be completely integrally
closed. Indeed, the ring Z[X] is known to be completely integrally closed but the quotient ring
Z[X]/(X2 + 3) ' Z[

√
−3] is not (it is, a fortiori, not integrally closed). Motivated by this last fact, we

introduce the notion of residually completely integrally closed ring. We say that a ring R is residually
completely integrally closed (for short, RCIC) if the integral domain R/P is CIC for all prime ideals P
of R; or equivalently, R/P is a CIC domain for all non-maximal prime ideals P of R. Trivially, any ring
of (Krull) dimension 0 is an RCIC ring. Additionally, RCIC domains form a subclass of CIC domains,
and one-dimensional CIC domains must be RCIC. On the other hand, the above example leads also
to consider the notion of residually integrally closed rings. In a similar way, a ring R is said to be
residually integrally closed (for short, RIC) if R/P is an integrally closed domain for all prime ideals P
of R. From the fact that any completely integrally closed domain is integrally closed, it follows that
the class of RIC rings includes that of RCIC rings. But, an RIC ring need not be RCIC. As a matter
of fact, take any Prüfer domain that is not CIC (for example, Z+XQ[X]) because any Prüfer domain
is always integrally closed and the property of being Prüfer domain is stable under homomorphic
image.
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In this paper, we investigate the transfer of the residually (completely) integrally closed to various
contexts of constructions. Among other things, we show that any homomorphic image of an RCIC
ring is always an RCIC ring (Proposition 1.4), and that the finite direct product of RCIC rings is
again an RCIC ring (Proposition 1.6). Also, we characterize RCIC rings issued from Nagata ring,
amalgamated duplications of rings and trivial ring extensions (Theorems 1.7 and 1.11). Next we
establish some necessary and sufficient conditions for an amalgamation of rings to be an RCIC ring
(Proposition 1.12). Then, we generalize the results concerning RCIC rings to the case of RIC rings
(Proposition 1.15, Theorem 1.17 and Proposition 1.18). Moreover, we show that being RIC is pre-
served under flat overring extensions (Proposition 1.19).

Throughout this paper all rings are assumed to be commutative with identity, all modules are
unitary and also all homomorphisms are unital. The symbol ⊂ (resp., ⊆) denotes the proper (resp.,
large) containment.

1 Residually (completely) integrally closed rings

We begin by recalling some well known facts about CIC domains.
— [9, Theorem 13.1(2)] Any CIC domain is integrally closed.
— [9, Theorem 17.5] A valuation domain is CIC if and only if it has rank at most one.
— [9, Theorem 23.4(3)] One-dimensional Prüfer domains are CIC.
— [9, Exercise 11, page 145] For any subfield L of the quotient field of a CIC domain D, the intersec-
tion D ∩L is a CIC domain.
— [13, Corollary 7] For any CIC domain D, the Nagata ring D(X) is also CIC.
— [1, Theorem 2.7] For any extension of integral domains A ⊆ B, the integral domain A +XB[X] is
CIC if and only if so is A and A = B.

We next state the principal definition of this paper as stated in the introduction.

Definition 1.1. A ring R is said to be residually completely integrally closed (for short, RCIC) if the
integral domain R/P is CIC for all prime ideals P of R.

Remark 1.2. (1) It is worth noting that RCIC rings can be characterized by replacing prime ideals
with non-maximal prime ideals in the previous definition, since the integral domain R/M is a field
for any maximal ideal M of R.

(2) Any RCIC domain is always a CIC domain, and the converse holds for one-dimensional do-
mains. Therefore, every one-dimensional Prüfer domain is an RCIC domain. Consequently, the class
of RCIC rings contains Dedekind domains, and, moreover, the integral domain D +XK[X] is never
RCIC when D is an integral domain different from its quotient field K .

(3) It is clear that finite rings and 0-dimensional rings are RCIC rings but not conversely. Indeed,
the ring of integers Z is an example of an RCIC ring that is neither finite nor 0-dimensional.

(4) As mentioned in the introduction, the ring Z[X] is a CIC domain that is not RCIC. Moreover,
an RCIC ring is not necessarily a CIC domain. For instance, consider any 0-dimensional ring R that
is not a field, such as R :=

∏∞
n=0F2 (the infinite product of copies of F2). In this case, R is an RCIC

ring that is not CIC since any 0-dimensional domain must be a field.
(5) A two-dimensional Prüfer domain is RCIC if and only if it is CIC. To see this, it suffices to

prove the reverse implication. Let D be a CIC Prüfer domain of (Krull) dimension 2, and let P be a
non-maximal prime ideal of D. Since the height of P is at most one, we have either D/P ' D or D/P
is a one-dimensional Prüfer domain. In both cases, the integral domain D/P is CIC, and thus, D is
an RCIC domain.

The previous remarks yield the following examples:
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Example 1.3. (1) For any field K , the rings K[X] and K[[X]] are both RCIC and CIC.
(2) Consider the ring D := Int(Z), which is the ring of integer-valued polynomials. It is well known

that D is a two-dimensional Prüfer domain that is also CIC. Hence, from Remark 1.2(5), we conclude
that D is an RCIC ring.

In what follows, we show that the class of RCIC rings is closed under homomorphic images.

Proposition 1.4. Let R be a ring. Then R is an RCIC ring if and only if so is R/I for each ideal I of R.

Proof. Assume that R is an RCIC ring, and let Q be a prime ideal of R/I . We have Q is of the form
P /I , where P is a prime ideal of R containing I . Since R is an RCIC ring, R/P is a CIC domain, and
hence (R/I)/Q = (R/I)/(P /I) ' R/P is also a CIC domain. Thus, R/I is an RCIC ring. The converse is
trivial.

Let us provide some additional remarks regarding Proposition 1.4.

Remark 1.5. (1) It is important to note that in Proposition 1.4, the statement “each ideal I of R”
cannot be replaced by “each nonzero ideal I of R”. To illustrate this, consider a two-dimensional
valuation domain (V ,M) and a nonzero ideal I of V . According to [9, Theorem 17.5], V is not a CIC
domain, and therefore it is not an RCIC ring (since RCIC domains are CIC). However, the prime
ideals over I can be M or P , where P is the only height-one prime ideal of V . Thus, V /M is a field
and V /P is a one-dimensional valuation domain, and therefore V /I is RCIC for all nonzero ideals I
of V .

(2) It is worth mentioning that ifR[X] is an RCIC ring, Proposition 1.4 ensures thatR ' R[X]/XR[X]
is also an RCIC ring. However, the converse is not true in general. For instance, Z is an RCIC ring,
but Z[X] is not (as noticed before).

Next, we study the transfer of the RCIC property to finite direct product of rings.

Proposition 1.6. Let {Rk}16k6n be a finite set of rings. Then
∏n
k=1Rk is an RCIC ring if and only if so is

each Rk .

Proof. By induction on n it suffices to prove the result for the case of two rings, say R and S.
Assume that R× S is an RCIC ring, and let P be a prime ideal of R. Since P × S is a prime ideal of

R× S, we have that (R× S)/(P × S) is a CIC domain. Then R/P ' (R× S)/(P × S) is also a CIC domain,
which implies that R is an RCIC ring. By a symmetry argument, we can prove that S is an RCIC ring.

Conversely, assume that R and S are both RCIC rings, and let I be a prime ideal of R × S. We
have I is of the form P × S or R×Q, where P is a prime ideal of R and Q is a prime ideal of S. Since
R and S are RCIC rings, R/P and S/Q are CIC domains, and then so are (R × S)/(P × S) ' R/P and
(R × S)/(R ×Q) ' S/Q. Therefore, (R × S)/I is a CIC domain, which implies that R × S is an RCIC
ring.

The following theorem shows that the RCIC property is conserved between a ring and its Nagata
ring. Recall that the Nagata ring of a ring R, denoted by R(X), is defined as follow

R(X) :=
{
f

g
; f ,g ∈ R[X] and c(g) = R

}
,

where X is an indeterminate over R and c(g) is the ideal of R generated by the coefficients of g.

Theorem 1.7. For a ring R, the Nagata ring R(X) is RCIC if and only if so is R.

To prove this result, we require the following two lemmas.
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Lemma 1.8. Let D be an integral domain. Then D(X) is a CIC domain if and only if so is D.

Proof. The direct implication follows from the equality D = D(X)∩K , where K is the quotient field
of D. The converse is proved in [13, Corollary 7].

Lemma 1.9 ([10, Theorem 14.1]). Let R be a ring. Then there is a one-to-one correspondance between the
prime ideals of R and the prime ideals of R(X) given by P ←→ P R(X). Moreover, for each prime ideal P of
R, R(X)/P R(X) ' (R/P )(X).

Proof of Theorem 1.7. Assume that R(X) is an RCIC ring, and let P be a prime ideal of R. By Lemma
1.9, we have P R(X) is a prime ideal of R(X), and then R(X)/P R(X) is a CIC domain because R(X) is an
RCIC ring. Again by Lemma 1.9, we have R(X)/P R(X) ' (R/P )(X). Thus, (R/P )(X) is a CIC domain,
forces that R/P is also a CIC domain. Therefore, R is an RCIC ring.

Conversely, assume that R is an RCIC ring, and let Q be a prime ideal of R(X). By Lemma 1.9,
there exists a prime ideal P of R such that Q = P R(X) with R(X)/Q ' (R/P )(X). Since R is an RCIC
ring, R/P is a CIC domain and then it follows from Lemma 1.8 that (R/P )(X) is also a CIC domain.
Hence, R(X)/Q is a CIC domain, and therefore, R(X) is an RCIC ring.

Now, we will investigate the transfer of the RCIC property to trivial ring extensions and amalga-
mated duplications of rings. For a ring R, we recall the following two notions:

— The trivial ring extension of R by an R-module E is the ring denoted by R ∝ E, whose underlying
group is R×E with multiplication given by (r, e)(s, f ) = (rs, rf + se).
— The amalgamated duplication of R along an ideal I of R is a subring of R ×R, defined as R ./ I :=
{(r, r + i); r ∈ R and i ∈ I}.

To prove our next theorem, we need to describe the prime ideals of these two constructions. First,
we state the following lemma:

Lemma 1.10. Let R be a ring, E an R-module, and I an ideal of R. We have the following:

1. Each prime ideal P of R ∝ E is of the form P = P ∝ E for some prime ideal P of R. Moreover,
(R ∝ E)/P ' (R/P ).

2. Each prime ideal P of R ./ I is of the form {(i, i + r); i ∈ I and r ∈ P } or {(i + r, i); i ∈ I and r ∈ P },
where P = P ∩R. Moreover, in both cases, (R ./ I)/P ' (R/P ).

Proof. See [2, Theorem 3.2(2)] and [7, Proposition 2.2].

Theorem 1.11. For any ring R, the following statements are equivalent:

1. R is RCIC;

2. The trivial ring extension R ∝ E is an RCIC ring, for every R-module E;

3. The amalgamated duplication R ./ I is an RCIC ring, for every ideal I of R.

Proof. The implications (2)⇒ (1), and (3)⇒ (1) follow directly from Proposition 1.4 and the fact that
(R ∝ E)/({0} ∝ E) ' R and (R ./ I)/({0} × I) ' R.

(1)⇒ (2) Assume that R is an RCIC ring and let Q be a prime ideal of R ∝ E. By Lemma 1.10(1),
there is a prime ideal P of R such that Q = P ∝ E. Since R is an RCIC ring, R/P is a CIC domain and
then so is (R ∝ E)/Q = (R ∝ E)/(P ∝ E) ' (R/P ). Thus R ∝ E is an RCIC ring.

(1)⇒ (3) Assume that R is an RCIC ring and letQ be a prime ideal of R ./ I . Set P :=Q∩R. Then it
follows from Lemma 1.10(2) thatQ is of the form {(i, i+r); i ∈ I and r ∈ P } or {(i+r, i); i ∈ I and r ∈ P },
and so, in both cases, we have: (R ./ I)/Q ' (R/P ). Since R is an RCIC ring, R/P is a CIC domain and
then so is (R ./ I)/Q. Therefore R ./ I is an RCIC ring.
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To treat the transfer of the RCIC property to amalgamation construction, we need first to recall
the definition of amalgamated algebras along an ideal as presented in [5].

Let R and S be two rings, f : R → S a ring homomorphism and J an ideal of S. The following
subring of R× S:

R ./f J = {(r, f (r) + j); r ∈ R and j ∈ J},

is called the amalgamation of R with S along J with respect to f . Notably, if R = S, f = ι (the identity
of R) and J = I , then R ./f J corresponds precisely to the amalgamated duplication of R along I ,
denoted as R ./ I . For more details on amalgamated algebra, the reader may consult the survey paper
[8].

We now present the following proposition, which provides necessary and sufficient conditions for
an amalgamation to be an RCIC ring. Here, Nil(R) and Jac(R) denote the nilradical and the Jacobson
radical of a ring R, respectively.

Proposition 1.12. Let R and S be two rings, f : R→ S a ring homomorphism, and J an ideal of S. The
following statements hold:

1. If R ./f J is an RCIC ring then R and f (R) + J are RCIC rings.

2. If f −1(J) = {0}, then R ./f J is an RCIC ring if and only if so is f (R) + J .

3. If either J ⊆Nil(S) or J ⊆ Jac(S), then R ./f J is an RCIC ring if and only if so is R.

Proof. (1) Assume that R ./f J is an RCIC ring. By Proposition 1.4, we deduce that (R ./f J)/(0× J) ' R
and (R ./f J)/(f −1(J)× 0) ' f (R) + J are RCIC rings.

(2) If f −1(J) = 0, then it follows from [5, Proposition 5.1(3)] that R ./f J ' f (R) + J .
(3) Assume that J ⊆ Nil(S) or J ⊆ Jac(S). From [6, Proposition 2.6], we infer that every prime

ideal of R ./f J is of the form P ./f J for some prime ideal P of R. Since (R ./f J)/(P ./f J) ' R/P ,
(R ./f J)/(P ./f J) is a CIC domain if and only if so is R/P . Thus, we conclude that R ./f J is an RCIC
ring if and only if so is R, as desired.

We next investigate the transfer of the residually integrally closed property to some remarkable
ring extensions. First, we introduce the notion of residually integrally closed rings.

Definition 1.13. A ring R is said to be residually integrally closed (for short, RIC) if, for each prime
ideal P of R, the integral domain R/P is integrally closed.

Remark 1.14. (1) Note that the class of RIC rings includes RCIC rings and Prüfer domains.
(2) It is clear that RIC domains are integrally closed. Conversely, one-dimensional integrally closed

domains are RIC.
(3) Any RCIC ring is RIC, but the converse is not true in general. For instance, let D = Z+XQ[X]

which is a Prüfer domain and then it is RIC. However, D is not RCIC since it is not CIC, as asserted
in [1, Theorem 2.7].

In the following, we consider transferring the RIC property to localization and finite direct prod-
uct.

Proposition 1.15. For any two rings R and S, we have:

1. If R is an RIC ring, then T −1R is an RIC ring for any multiplicative subset T of R.

2. The direct product R× S is an RIC ring if and only if so are R and S.
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Proof. (1) Assume that R is an RIC ring, and let T be multiplicative subset T of R andQ a prime ideal
of T −1R. Then Q is of the form T −1P for some prime ideal P of R with P ∩ T = ∅. Since R is an RIC
ring, R/P is an integrally closed domain. As the property of being integrally closed is stable under
localization, T

−1
(R/P ) is integrally closed, where T denotes the natural image of T in R/P , and hence

T −1R/Q is also integrally closed because T −1R/T −1P ' T −1
(R/P ). Thus, T −1R is an RIC ring.

(2) The proof of this statement is similar to that of Proposition 1.6.

As a quick consequence of Proposition 1.15(2), we have the following:

Corollary 1.16. Let {Rk}16k6n be a finite set of rings. Then
∏n
k=1Rk is an RIC ring if and only if so is each

Rk .

In the remainder of this section, we examine the transfer of the RIC property in various ring
extensions.

Theorem 1.17. For any ring R, the following statements are equivalent:

1. R is an RIC ring;

2. R is an locally RIC ring (that is, RP is an RIC ring, for every prime ideal P of R);

3. RM is an RIC ring, for every maximal ideal M of R;

4. R/I is an RIC ring, for every ideal I of R;

5. The Nagata ring R(X) is RIC;

6. The trivial ring extension R ∝ E is an RIC ring, for every R-module E;

7. The amalgamated duplication R ./ I is an RIC ring, for every ideal I of R.

Proof. The proof of the equivalences (1) ⇔ (4) ⇔ (5) ⇔ (6) ⇔ (7) are similar to the case of RCIC
rings.

The implication (1)⇒ (2) follows from Proposition 1.15(1), and (2)⇒ (3) is trivial.
To prove (3)⇒ (1), assume that RM is an RIC ring for every maximal ideal M of R, and let P be a

non-maximal prime ideal of R. Using the fact that the integrally closed property is a local property,
we need to check that (R/P )M is integrally closed for all maximal ideals M of R/P . Let M be a
maximal ideal of R/P . Then M =m/P for some maximal ideal m of R containing P . Since Rm is RIC,
we have (R/P )M ' Rm/Pm is an integrally closed domain, which implies that R/P is also integrally
closed. Thus, R/I is an RIC ring, and this completes the proof.

Proposition 1.18. Let R and S be two rings, f : R→ S a ring homomorphism, and J an ideal of S. The
following statements hold:

1. If R ./f J is an RIC ring then so are the rings R and f (R) + J .

2. If f −1(J) = {0}, then R ./f J is an RIC ring if and only if so is f (R) + J .

3. If either J ⊆Nil(S) or J ⊆ Jac(S), then R ./f J is an RIC ring if and only if so is R.

4. If J is a maximal ideal and R ./f J is an RIC ring, then R and S are RIC rings.

Proof. The statements (1), (2) and (3) are similar to the case of RCIC rings.
(4) Assume that J is a maximal ideal and R ./f J is an RIC ring. From statement (1), we conclude

that R is RIC. Furthermore, since J is maximal, we haveQ
f

:= {(r, f (r)+j); r ∈ R, j ∈ J and f (r)+j ∈Q}
is a prime ideal of R ./f J for each prime ideal Q of S. Using Proposition 1.15(1), we deduce that
(R ./f J)

Q
f ' SQ is an RIC ring, and therefore by Theorem 1.17, S is an RIC ring.
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Inspired by [12], we can establish that the RIC property is preserved under flat overrings. To prove
this, we need to recall the notion of generalized transform of a ring with respect to a generalized
multiplicative system.

Let R be a ring with the total quotient ring K , I an ideal of R, and S a generalized multiplicative
system of R, i.e., S is a multiplicative set of ideals of R. The S-transform of R (or the generalized
transform of R with respect to S) is an overring RS := {x ∈ K ; xA ⊆ R for some A ∈ S}. Moreover,
IS := {x ∈ K ; xA ⊆ I for some A ∈ S} is an ideal of RS containing I . Here, an overring of a ring R refers
to a subring of K that contains R.

Proposition 1.19. Let R be a ring. Then R is an RIC ring if and only if any flat overring T of R is RIC.

Proof. We will only prove the direct implication. Assume that R is an RIC ring, and let T be a flat
overring of R andM a maximal ideal of T . Set P :=M∩R. By [3, Theorems 1.1 and 1.3], there exists a
generalized multiplicative system S of R such that T = RS andM = PS . Furthermore, we can suppose
that any generalized multiplicative system of R is saturated, as stated in [4, Proposition 4.6]. Then
it follows from [4, Theorem 4.12] that TM = (RS )PS ' RP . Since R is an RIC ring, RP is also an RIC
ring, and hence TM is an RIC ring. Thus by Theorem 1.17, we conclude that T is an RIC ring, as
desired.

Remark 1.20. It is worth noting that the previous proposition cannot be extended to the general case
of a flat ring extension. Indeed, consider the ring Z, which is an RIC domain. As mentioned in the
introduction, Z[X] is not an RIC. However, the ring extension Z ↪→Z[X] is flat.

2 Further generalization

In this section, we aim to show that the previously established results hold in a more general context
by considering a specific property X of integral domains instead of the notion of a (completely)
integrally closed domain. To do this, we need to introduce the following definitions:
— A ring R is said to be residually X if the integral domain R/P has the property X , for all prime
ideals P of R.
— A ring R is said to be totally X if RP is a residually X ring, for all prime ideals P of R.
— We say that X has a good behavior under integral extensions if, for any integral extension of domains
R ⊆ S, we have R is an X domain if and only if so is S.
— We say that X has a good behavior under Nagata ring, if the integral domains D and D(X) simulta-
neously have the same property X .

Theorem 2.1. Let X denote a property of integral domains, and let R and S be two rings. We have:

1. If R is a residually X ring then so is R/I , for each ideal I of R.

2. The direct product R× S is a residually X ring if and only if so are R and S.

3. The following statements are equivalent:

(a) R is a residually X ring;

(b) The trivial ring extension R ∝ E is a residually X ring, for every R-module E;

(c) The amalgamated duplication R ./ I is a residually X ring, for every ideal I of R.

4. Assume that X is stable under localization. If R is a residually X ring then so is T −1R for each
multiplicative subset T of R.
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5. Assume that X has a good behavior under integral extensions. If R ⊆ S is an integral extension
of rings, then R is a residually X ring if and only if so is S.

6. Let f : R→ S be a ring homomorphism and J an ideal of S.

(a) If R ./f J is a residually X ring then so are the rings R and f (R) + J .

(b) If either J ⊆Nil(S) or J ⊆ Jac(S), then R ./f J is a residually X ring if and only if so is R.

(c) If X has a good behavior under integral extensions, then R ./f J is a residually X ring if
and only if so are the rings R and f (R) + J .

7. Assume that X has a good behavior under Nagata ring. Then R is a residually X ring if and
only if so is R(X).

Proof. The proofs of (1), (2), and (3) are similar to those of Propositions 1.4 and 1.6, and Theorem
1.11.

The proof of (4) is similar to the case of RIC rings.
(5) Assume that R is a residually X ring and let Q be a prime ideal of S. Since R/(Q∩R) ⊆ S/Q is

an integral extension and R/(Q∩R) is an X domain, it follows that S/Q is also an X domain. Thus, S
is a residually X ring.

Conversely, assume that S is a residually X ring and let P be a prime ideal of R. By Lying-Over,
there is a prime ideal Q of S such that P = Q ∩ R, and so S/Q is an X domain. Moreover, since
R/P ⊆ S/Q is an integral extension, R/P is an X domain, and therefore R is a residually X ring.

(6) The statements (a) and (b) are similar to those of Proposition 1.12.
(c) It is well known that the ring A × (f (A) + J) is integral over A ./f J , as asserted in [6, Lemma

3.3]. Then by statement (5), A ./f J is a residually X ring if and only if so is A × (f (A) + J), and thus
the conclusion follows from statement (2).

(7) The proof of this statement is similar to that of Theorem 1.7.

Theorem 2.2. Let X denote a property of integral domains which is stable under localization. For
any ring R, the following statements are equivalent:

1. R is a totally X ring;

2. RP is a totally X ring, for every prime ideal P of R;

3. RM is a totally X ring, for every maximal ideal M of R;

4. Any flat overring T of R is totally X (in particular, every localization of a totally X ring is totally
X );

5. R/I is a totally X ring, for every ideal I of R;

6. The trivial ring extension R ∝ E is a totally X ring, for every R-module E;

7. The amalgamated duplication R ./ I is a totally X ring, for every ideal I of R.

Proof. The proof of (1)⇒ (2) is similar to that of Proposition 1.15(1).
The implications (2)⇒ (3), (4)⇒ (1), and (5)⇒ (1) are straightforward.
(3) ⇒ (1) Assume that RM is a totally X ring for every maximal ideal M of R and let P be a

nonmaximal prime ideal of R. Then there exists a maximal ideal M of R such that P ⊂M. So, from
the fact that the localization of a residually X ring is still residually X (see Theorem 2.1(4)), it follows
that (RM )P RM = RP is a residually X ring, and hence R is a totally X ring.
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(1) ⇒ (4) Assume that R is a totally X ring, and let T be a flat overring of R and M a maximal
ideal of T and set P := M ∩ R. Then by [3, Theorem 1.3], there exists a generalized multiplicative
system S of R such that T = RS and AT = T for all A ∈ S . Also by [3, Theorem 1.1] we have M = PS .
It follows from [4, Proposition 4.6] that we may assume that any generalized multiplicative system
of R is saturated in this situation. Thus by [4, Theorem 4.12] there is an isomorphism (RS )PS ' RP .
Since R is totally X , RP is a residually X ring and then so is TM . Therefore T = RS is totally X by the
implication (3)⇒ (1).

(1) ⇒ (5) Assume that R is a totally X ring and let M be a maximal ideal of R/I . Then M = m/I
for some maximal ideal m of R containing I . Since R is totally X and m is a maximal ideal of R, Rm
is residually X , and then it follows from Theorem 2.1(1) that (R/I)M ' Rm/Im is also a residually X
ring. Therefore by the implication (3)⇒ (1), R/I is a totally X ring.

The implications (6)⇒ (1) and (7)⇒ (1) follow from Theorem 2.1(1) and the fact that (R ∝ E)/({0} ∝
E) ' R and (R ./ I)/({0} × I) ' R.

(1)⇒ (6) Assume that R is a totally X ring and let M be a maximal ideal of R ∝ E. By [2, Theorem
3.2], there is a maximal ideal m of R such that M = m ∝ E. Since R is a totally X ring, Rm is a
residually X ring and then so is (R ∝ E)M = (R ∝ E)(m∝E) ' Rm ∝ Em by Theorem 2.1(4). Thus, R ∝ E
is a totally X ring.

(1) ⇒ (7) Assume that R is a totally X ring and let M be a maximal ideal of R ./ I . Then by [7,
Proposition 2.2],M is of the form {(i, i+r); i ∈ I and r ∈m} or {(i+r, i); i ∈ I and r ∈m}withm =M∩R.
So, we discuss the following two cases:

Case 1: I ⊆m. Since R is totally X , Rm is residually X and then it follows from Theorem 2.1(3) and
[7, Proposition 2.2] that (R ./ I)M ' Rm ./ Im is residually X .

Case 2: I * m. Then by Theorem 2.1(3) and [7, Proposition 2.2], (R ./ I)M ' Rm is residually X
because Rm is residually X .

Therefore, R ./ I is a totally X ring.
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