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Abstract. Let R be a commutative ring with identity and n a positive integer. In [1], Anderson and Badawi define a proper

ideal I of a commutative ring R to be n-absorbing if whenever x1...xn+1 ∈ I for x1, ...,xn+1 ∈ R, then there are n of the x′is

whose product is in I. In this paper we investigate the transfer of the property n-absorbing from the ideal I of R to the

ideal I[[X]] of the formal power series ring R[[X]].
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1 Introduction

All rings considered in this paper are commutative with an identity different from zero. Let R be
a commutative ring and n be a positive integer. In [1], Anderson and Badawi define a proper ideal
I of a commutative ring R to be n-absorbing if whenever x1...xn+1 ∈ I for x1, ...,xn+1 ∈ R, then there
are n of the x′is whose product is in I. They also define ωR(I) = min{n | I is an n-absorbing ideal of
R}. The ideal I is called strongly n-absorbing if whenever I1...In+1 ∈ I for ideals I1, ..., In+1 of R, then
there are n of the I ′i s whose product is in I. They define ω∗R(I) = min{n | I is a strongly n-absorbing
ideal of R}. It is clear that if I is strongly n-absorbing, then it is n-absorbing, so ωR(I) ≤ ω∗R(I). They
conjecture that the converse is true (Conjecture 1). It is clear that for n = 1, an ideal I is (strongly)
1-absorbing if and only if I is a prime ideal so Conjecture 1 is true for n = 1. Note that for n = 2, an
ideal I of R is strongly 2-absorbing if and only if I is 2-absorbing [ [4], Theorem 2.13]. Note also that
in Prüfer domains the two concepts of n-absorbing and strongly n-absorbing ideals are equivalent.
On the other hand, they conjecture that ωR[X](I[X]) = ωR(I) for any ideal I of R (Conjecture 3). A
1-absorbing ideal is just a prime ideal and it is well known that I is a prime ideal if and only if I[X]
is a prime ideal so Conjecture 3 is true for n = 1. In [1], the authors proved that Conjecture 3 is true
for n = 2. Many authors investigated this conjecture. For example in [14], the author showed that
Conjecture 3 is true if one of the following conditions hold:

(1) The ring R is a Prüfer domain.
(2) The ring R is a Gaussian ring such that its additive group is torsion free.
(3) The additive group of the ring R is torsion-free and I is a radical ideal of R.
In [13], the author proved that if I is a strongly n-absorbing ideal of R and R/I is Armendariz, then

I[X] is n-absorbing (R is said to be Armendariz, if c(f )c(g) = 0 for all f ,g ∈ R[X] such that f g = 0).
Moreover, he proved that if I is n-absorbing, then I[X] is n-absorbing in each of the following cases:

(1) The ring R/I is Armendariz and |R/M | ≥ n for each maximal ideal M of R containing I.
(2) The ring R/I is Armendariz and is (n− 1)!-torsion-free as an additive group.
(3) The ring R/I is torsion-free as an additive group.
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(4) The ring R/I is locally Bézout.
He showed also that Conjecture 3 is true in an arithmetical ring.

In this paper, we consider n-absorbing ideals of the form I[[X]] of the power series ring R[[X]].
More precisely we explore the transfer of the property (strongly) n-absorbing from an ideal I of R
to the ideal I[[X]] of R[[X]]. The case n = 1 is clear since it is well known that an ideal I of R is
prime if and only if the ideal I[[X]] is prime. In [10], the authors proved that for an ideal I of a
commutative ring R, I is 2-absorbing if and only if I[[X]] is a 2-absorbing ideal of R[[X]] (see also
[13]). It was also shown in [10] that if R is a Prüfer domain, then I is n-absorbing if and only if I[[X]]
is n-absorbing. The proof was based on the characterization of absorbing ideals in Prüfer domains.
In addition, they showed that if R is a Noetherian Gaussian u-ring, then I is n-absorbing if and only
if I[[X]] is n-absorbing (a commutative ring R is called u-ring provided R has the property that an
ideal contained in a finite union of ideals must be contained in one of those ideals). Moreover, they
proved that if R is a pseudo-valuation domain and I is an ideal of Rwith a non maximal radical, then
ωR[[X]](I[[X]]) = ωR(I). On the other hand, in [14], the author proved that for a Dedekind domain R,
ωR[[X]](I[[X]]) = ωR(I) for every ideal I of R.Moreover, if R is a Noetherian ring whose additive group
is torsion-free, then ωR[[X]](I[[X]]) = ωR(I) for every radical ideal I of R.

In this paper we prove first that if the ideal I[[X]] is n-absorbing, then the ideal I is strongly n-
absorbing. Conversely, we prove that if the ideal I is strongly n-absorbing, then the ideal I[[X]] is
n-absorbing if one of the following conditions hold:

(1) The ring R is P-gaussian.
(2)The ring R is a Krull domain and I is a divisorial ideal.
(3) The ring R is a formally integrally closed domain and I is a t-ideal.
Most of the results proved here are based on content formulas for power series.
On the other hand, we prove that if the ideal I is n-absorbing, then I[[X]] is n-absorbing if one of

the following conditions hold:
(1) The ideal I is radical.
(2) The ring R is a Krull domain and I is of the form (P1...Pn)v where the Pi are height one prime

ideals of R.
(3) The ideal I has exactly n minimal prime ideals which are comaximal.
(4) The ideal I is a P -primary ideal where P is a prime ideal of R.

2 Absorbing ideals of the form I[X]

Let R be a commutative ring, n a positive integer and I a proper ideal of R. In [13], Laradji showed
that if I[X] is an n-absorbing ideal of R[X], then I is a strongly n−absorbing ideal of R. We present
here another proof which is completely different and which may be of independent interest, so we
include it below.

Proposition 2.1. Let R be a commutative ring, n a positive integer and I a proper ideal of R such that I[X]
is an n-absorbing ideal of R[X] then I is a strongly n−absorbing ideal of R.

Proof. By [[6], Lemma 2.1], let I1, ..., In+1 (n + 1) finitely generated ideals of R such that I1...In+1 ⊂
I. We shall prove that there are n of the I ′i s whose product is in I. For j ∈ {1, ...,n + 1}, put Ij =<
a1,j ; ...;akj ,j > and let f1 = a1,1X + ...+ ak1,1X

k1 ∈ I1[X], f2 = a1,2X
k1 + a2,2X

2k1 + ...+ ak2,2X
k1k2 ∈ I2[X], ...,

fn+1 = a1,n+1X
k1(k2+1)...(kn+1) + ... + akn+1,n+1X

k1kn+1(k2+1)...(kn+1) ∈ In+1[X], then f1...fn+1 ∈ I1[X]...In+1[X] ⊂
(I1...In+1)[X] ⊂ I[X]. Hence there are n of the f ′i s whose product is in I[X]. Suppose for example that
f1...fn ∈ I[X], thus al1,1...aln,n ∈ I, for every 1 ≤ li ≤ ki and i ∈ {1, ...,n}. Hence, I1...In ⊂ I.
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In the sequel, we will prove that for some class of rings, we have the equivalence: I is a strongly
n-absorbing ideal of R if and only if I[X] is an n-absorbing ideal of R[X] and so ωR[X](I[X]) = ω∗R(I).
Recall that a commutative ring R is called Gaussian if c(f g) = c(f )c(g) for all f ,g ∈ R[X], where c(f )
denotes the content of the polynomial f ∈ R[X].

Proposition 2.2. Let R be Gaussian ring, n a positive integer and I a proper ideal of R. The ideal I is a
strongly n-absorbing ideal of R if and only if I[X] is an n-absorbing ideal of R[X]. Hence ωR[X](I[X]) =
ω∗R(I).

Proof. It is sufficient to prove that if I is strongly n-absorbing, then I[X] is n-absorbing. Let f1, ..., fn+1 ∈
R[X] such that f1...fn+1 ∈ I[X] then c(f1...fn+1) ⊂ I. As R is a Gaussian ring then c(f1)...c(fn+1) ⊂ I. Since
I is strongly n-absorbing, there are n of the c(fi)’s whose product is contained in I. But f1...fn ∈
c(f1...fn)[X] ⊂ c(f1)...c(fn)[X] ⊂ I[X].

In [14], the author proved that if I is a radical n-absorbing ideal and the additive group of the ring
R is torsion-free, then I[X] is n-absorbing. In[11], the authors proved that if the ring R satisfies (∗∗)
(that is each proper ideal I of R with ωR(I) <∞, ωR(I) = |MinR(I)| , where MinR(I) denotes the set of
prime ideals of R minimal over I), then if I is a radical n-absorbing ideal, then I[X] is n-absorbing.
Note that for a radical strongly n-absorbing ideal I, the ideal I[X] is n-absorbing (without any addi-
tional assumption on the ring R) by the Dedekind-Mertens lemma. In the following proposition, we
generalize the results of [14] and [11] by releasing the additional assumption on the ring R.

Proposition 2.3. Let I be a proper radical ideal of a commutative ring R and n a positive integer. The
following are equivalent:

1. I is a strongly n-absorbing ideal of R.

2. I is an n-absorbing ideal of R.

3. I[X] is an n-absorbing ideal of R[X].

4. I[X] is a strongly n-absorbing ideal of R[X].

5. ∀k ∈N, I[X1, ...,Xk] is an n-absorbing ideal of R[X1, ...,Xk].

6. ∀k ∈N, I[X1, ...,Xk] is a strongly n-absorbing ideal of R[X1, ...,Xk].

Proof. 1 =⇒ 2 is clear.
2 =⇒ 3 Since I is an n-absorbing ideal of R then |MinR(I)| ≤ n by [[1], Theorem 2.5]. Let P1, ..., Pk the
minimal prime ideals over I. Hence I =

√
I = P1 ∩ ...∩ Pk . Therefore I[X] = P1[X]∩ ...∩ Pk[X]. By [[1],

Theorem 2.1], I[X] is k-absorbing so it is also n-absorbing.
3 =⇒ 1 is clear.
The other equivalences result from the equality

√
I[X] =

√
I[X], so since I is radical then I[X] is also

radical and then use an induction on k ≥ 1.

Since every ideal of a von Neumann regular ring is radical, we get the following corollary:

Corollary 2.4. Let R be a von Neumann regular ring, n a positive integer and I a proper ideal of R. The
following are equivalent:

1. I is an n-absorbing ideal of R.
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2. I is a strongly n-absorbing ideal of R.

3. I[X] is an n-absorbing ideal of R[X].

4. I[X] is a strongly n-absorbing ideal of R[X].

5. ∀k ∈N, I[X1, ...,Xk] is an n-absorbing ideal of R[X1, ...,Xk].

6. ∀k ∈N, I[X1, ...,Xk] is a strongly n-absorbing ideal of R[X1, ...,Xk].

Recall that an ideal I of an integral domain R with quotient field K is called divisorial (or v-ideal)
if I = Iv , where Iv = (I−1)−1 and I−1 = R : I = {x ∈ K | xI ⊂ R}. In the sequel we prove that if I is a
divisorial strongly n-absorbing ideal of an integrally closed domain R, then I[X] is n-absorbing.

Lemma 2.5. Let R be an integrally closed domain. For every m ∈N∗ and f1, ..., fm ∈ R[X], (c(f1...fm))v =
(c(f1)...c(fm))v .

Proof. By [[15], Lemme 1], if R is an integrally closed domain, then for every f ,g ∈ R[X], (c(f g))v =
(c(f )c(g))v , hence the result is obtained by a simple induction on m.

Proposition 2.6. Let R be an integrally closed domain, I a divisorial ideal of R and n a positive integer.
Then I is strongly n-absorbing if and only if I[X] is n-absorbing. Hence ωR[X](I[X]) = ω∗R(I).

Proof. Let f1, ..., fn+1 ∈ R[X] such that f1...fn+1 ∈ I[X] then c(f1...fn+1) ⊂ I. Hence (c(f1...fn+1))v ⊂ Iv = I.
As R is integrally closed then (c(f1...fn+1))v = c(f1)v ...c(fn+1)v . Therefore c(f1)...c(fn+1) ⊂ I. Since I is
strongly n-absorbing then there are n of the c(fi)′s whose product is in I. Suppose for example that
c(f1)...c(fn) ⊂ I. Consequently, f1...fn ∈ c(f1...fn)[X] ⊂ c(f1)...c(fn)[X] ⊂ I[X].

3 Absorbing ideals of the form I[[X]]

Let R be a commutative ring, I a proper ideal of R and n a positive integer. It is clear that if I[[X]]
is an n-absorbing ideal of R[[X]], then I[X] is an n-absorbing ideal of R[X] and so I is a strongly
n-absorbing ideal of R. In fact, let f1, ..., fn+1 ∈ R[X] such that f1...fn+1 ∈ I[X] then f1...fn+1 ∈ I[[X]] so
there are n of the f ′i s whose product is in I[[X]]∩R[X] = I[X].

Note that for a Noetherian ring R, if I is a strongly n-absorbing radical ideal, then I[[X]] is an
n-absorbing ideal. In fact, recall first that in [7], the authors established the following Dedekind-
Mertens lemma for power series rings:

Proposition 3.1. [7] Let R be a Noetherian ring and let 0 , g ∈ R[[X]]. There exists a positive number
k such that c(f )kc(g) = c(f )k−1c(f g) for any f ∈ R[[X]], where c(f ) is the ideal of R generated by the
coefficients of f .

Using this result, we prove that if I is a strongly n-absorbing radical ideal of a Noetherian ring
R, then I[[X]] is an n-absorbing ideal. Indeed, let f1, ..., fn+1 ∈ R[[X]] such that f1...fn+1 ∈ I[[X]]
then c(f1...fn+1) ⊂ I. By the Dedekind-Mertens lemma there exist positive integers α1, ..,αn such that
c(f1)α1+1c(f2...fn+1) = c(f1)α1c(f1...fn+1) ⊂ I, c(f2)α2+1c(f3...fn+1) = c(f2)α2c(f2...fn+1), ..., c(fn)αn+1c(fn+1) =
c(fn)αnc(fnfn+1). Now, we multiply the first equality by c(f2)α2 , we get c(f1)α1+1c(f2)α2+1c(f3...fn+1) ⊂ I.
Continuing this process, we get c(f1)α1+1...c(fn)αn+1c(fn+1) ⊂ I. As I strongly n-absorbing then there
exists (k1, ..., kn+1) ∈ N

n+1 such that k1 + ... + kn+1 = n and c(f1)k1 ...c(fn)knc(fn+1)kn+1 ⊂ I. Suppose for
example that kn+1 = 0, so c(f1)k1 ...c(fn)kn ⊂ I. Since I is radical then c(f1)...c(fn) ⊂ I. But f1...fn ∈
c(f1...fn)[[X]] ⊂ c(f1)...c(fn)[[X]] ⊂ I[[X]].

In the sequel we prove that the hypothesis R is Noetherian can be released. More precisely we
show that if I is a radical n-absorbing ideal of a commutative ring R, then I[[X]] is n-absorbing.
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More generally, in the first part of this section, we prove that if I is ann-absorbing ideal of R, then
I[[X]] is an n-absorbing ideal of R[[X]] if one of the following conditions hold:

1. The ideal I is radical.

2. The ring R is a Krull domain and I is of the form (P1...Pn)v where the Pi are height one prime
ideals of R.

3. The ideal I has exactly n minimal prime ideals which are comaximal.

4. The ideal I is a P -primary ideal where P is a prime ideal of R.

In the next proposition we generalize Corollary 16 of [14] for any commutative ring R.

Proposition 3.2. Let I be a proper radical ideal of a commutative ring R and n a positive integer. The
following are equivalent:

1. I is a strongly n-absorbing ideal of R.

2. I is an n-absorbing ideal of R.

3. I[[X]] is an n-absorbing ideal of R[[X]].

4. I[[X]] is a strongly n-absorbing ideal of R[[X]].

5. ∀k ∈N, I[[X1, ...,Xk]] is an n-absorbing ideal of R[[X1, ...,Xk]].

6. ∀k ∈N, I[[X1, ...,Xk]] is a strongly n-absorbing ideal of R[[X1, ...,Xk]].

Proof. The proof is similar to the case of polynomial rings. For the sake of completeness, we include
it here.
1 =⇒ 2 is clear.
2 =⇒ 3 Since I is an n-absorbing ideal of R then |MinR(I)| ≤ n by [[1], Theorem 2.5]. Let P1, ..., Pk the
minimal prime ideals over I. Hence I =

√
I = P1 ∩ ...∩ Pk . Therefore I[[X]] = P1[[X]]∩ ...∩ Pk[[X]]. By

[[1], Theorem 2.1], I[[X]] is k-absorbing so it is also n-absorbing.
3 =⇒ 1 is clear.
The other equivalences result from the equality

√
I[[X]] =

√
I[[X]]. In fact,

√
I[[X]] ⊂

√
I[[X]] for

any ideal I of R, since if P is a prime ideal of R containing I, then P [[X]] is a prime ideal of R[[X]]
containing I[[X]], so

√
I[[X]] ⊂ P [[X]] for any prime ideal P containing I which implies that

√
I[[X]] ⊂√

I[[X]].Conversely, if I is an n-absorbing ideal of R, then by [5], (
√
I)n ⊂ I so (

√
I[[X]])n ⊂ (

√
I)n[[X]] ⊂

I[[X]], which implies that
√
I[[X]] ⊂

√
I[[X]] and then the equality

√
I[[X]] =

√
I[[X]].

Now since I is radical then I[[X]] is also radical and then use an induction on k ≥ 1.

Corollary 3.3. Let R be a von Neumann regular ring, n a positive integer and I a proper ideal of R. The
following are equivalent:

1. I is a strongly n-absorbing ideal of R.

2. I is an n-absorbing ideal of R.

3. I[[X]] is an n-absorbing ideal of R[[X]].

4. I[[X]] is a strongly n-absorbing ideal of R[[X]].

5. ∀k ∈N, I[[X1, ...,Xk]] is an n-absorbing ideal of R[[X1, ...,Xk]].
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6. ∀k ∈N, I[[X1, ...,Xk]] is a strongly n-absorbing ideal of R[[X1, ...,Xk]].

Proposition 3.4. Let R be a Krull domain, n a positive integer and P1, .., Pn be heigt one prime ideals of R
and I = (P1...Pn)v then I[[X]] is an n-absorbing ideal of R[[X]]. Hence ωR[[X]](I[[X]]) = ωR(I).

Proof. Note that, by [[1], Corollary 4.5], the ideal I is n-absorbing. We have I[[X]] = ((P1...Pn)[[X]])v =
((P1...Pn).A[[X]])v = ((P1.A[[X]])...(Pn.A[[X]]))v . So I[[X]] = ((P1.A[[X]])v ...(Pn.A[[X]])v)v = ((P1[[X]])v ...(Pn[[X]])v)v =
(P1[[X]]...Pn[[X]])v .
By [9], R[[X]] is also a Krull domain and for each k ∈ {1, ...,n}, Pk[[X]] is a height one prime ideal of
R[[X]]. Hence by [[1], Corollary 4.5], the ideal I is n-absorbing.

In the following, we give two cases where the property n-absorbing is stable when passing from I
to the ideal I[[X]].

Proposition 3.5. Let I be an n-absorbing ideal of a ring R such that I has exactly n minimal prime ideals
which are comaximal then I[[X]] is n-absorbing. Hence ωR[[X]](I[[X]]) = ωR(I).

Proof. Let {P1, ..., Pn} be the minimal prime ideals over I. By [[1], Corollary 2.15], I = P1...Pn = P1∩ ...∩
Pn, so P [[X]] = P1[[X]]∩ ...∩ Pn[[X]]. Again by Theorem 2.1 of [1], the ideal I[[X]] is n-absorbing.

Proposition 3.6. Let P be a prime ideal of a ring R and I be a primary ideal of R such that P n ⊂ I then
I[[X]] is n-absorbing. Hence ωR[[X]](I[[X]]) = ωR(I).
In particular if P n is a P -primary ideal of R, then P n[[X]] is n-absorbing. Moreover, if M is a maximal
ideal of R, thenMn[[X]] is n-absorbing.

Proof. By [[1], Theorem 3.1], the ideal I is n-absorbing. By [[8], Corollary 4], I[[X]] is a P [[X]]-primary
ideal of R[[X]] and (P [[X]])n ⊂ P n[[X]] ⊂ I[[X]]. So again by [[1], Theorem 3.1], the ideal I[[X]] is n-
absorbing.

In the sequel, we prove that if I is a stronglyn-absorbing ideal of R, then I[[X]] is an n-absorbing
ideal of R[[X]] if one of the following conditions hold:

1. The ring R is P-Gaussian.

2. The ring R is a Krull domain and I is a divisorial ideal.

3. The ring R is a formally integrally closed domain and I is a t-ideal.

Recall from [16], that a commutative ring R is called P-Gaussian if for every f ,g ∈ R[[X]], c(f g) =
c(f )c(g). For example a Noetherian Gaussian ring is P-Gaussian.

Proposition 3.7. Let R be a P-Gaussian ring, n a positive integer and I an ideal of R. Then I[[X]] is
n-absorbing if and only if I is strongly n-absorbing. Hence ωR[[X]](I[[X]]) = ω∗R(I).

Proof. Let f1, ..., fn+1 ∈ R[[X]] such that f1...fn+1 ∈ I[[X]] then c(f1...fn+1) ⊂ I. As R is a P-Gaussian
ring then c(f1)...c(fn+1) ⊂ I. Since I is strongly n-absorbing then c(f1)...c(fn) ⊂ I for example. But
f1...fn ∈ c(f1...fn)[[X]] ⊂ c(f1)...c(fn)[[X]] ⊂ I[[X]].

Proposition 3.8. Let R be an integral domain such that R =
⋂
α
Vα where (Vα)α is a collection of rank one

valuation overrings of R and I a strongly n-absorbing ideal such that I =
⋂
α
IVα then I[[X]] is n-absorbing.

In particular, if R is a Krull domain and I is a strongly n-absorbing divisorial ideal, then I[[X]] is n-
absorbing. Hence ωR[[X]](I[[X]]) = ω∗R(I).
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Proof. Consider the star operation ∗ defined by E∗ =
⋂
α
IVα , for every nonzero fractional ideal of R.

By [[2], Theorem 2.5] for nonzero f ,g ∈ R[[X]], (c(f g))∗ = (c(f )c(g))∗. Let f1, ..., fn+1 ∈ R[[X]] such that
f1...fn+1 ∈ I[[X]] then c(f1...fn+1) ⊂ I. Hence c(f1)...c(fn) ⊂ (c(f1)...c(fn))∗ = (c(f1...fn))∗ ⊂ I ∗ = I. Now the
result follows from the fact that I is strongly n-absorbing.

Now we can recover Corollary 11 of [14] since a Dedekind domain is a Krull domain in which
every ideal is divisorial. Moreover a Dedekind domain is a Prüfer domain so by [[1], Corollary 6.9],
every n-absorbing ideal is strongly n-absorbing.

Corollary 3.9. Let R be a Dedekind domain, then ωR[[X]](I[[X]]) = ωR(I).

More generally if R is a completely integrally closed domain and I is a strongly n-absorbing divi-
sorial ideal, then I[[X]] is n-absorbing by [[12], Theorem 2.11].

Recall from [3], that an integral domain R is called formally integrally closed if for nonzero f ,g ∈
R[[X]], (c(f g))t = (c(f )c(g))t , where It = ∪{Jv | J is a finitely generated non zero fractional ideal of R
such that J ⊂ I}, for every non zero fractional ideal I of R. A nonzero fractional ideal I of R is called
a t-ideal if It = I. Integral domains R such that RM is a one dimensional valuation domain for every
t-maximal ideal of R are examples of formally integrally closed domains. We get then the following
proposition:

Proposition 3.10. Let R be a formally integrally closed domain, n a positive integer and I a strongly
n-absorbing t-ideal then I[[X]] is n-absorbing. Hence ωR[[X]](I[[X]]) = ω∗R(I).

References

[1] Anderson, D.F., Badawi, A., On n-absorbing ideals of commutative rings, Comm. Algebra, 39,
1646− 1672 (2011)

[2] Anderson, D.D., Kang, B.G., Content formulas for polynomials and power series and complete
integral closure, J. Algebra, 181, 82− 94 (1996)

[3] Anderson, D.D., Kang, B.G., Formally integrally closed domains and the ringsR((X)) andR{{X}},
J. Algebra, 200, 347− 362 (1998)

[4] Badawi, A., On 2-absorbing ideals of commutative rings, Bull. Austral. Math. Soc., 75, 417−429
(2007)

[5] Choi, H.S., Walker, A., The radiacl of an n-absorbing ideal, J. Commut. Algebra, 12 (2), 171−177
(2020)

[6] Donadze, G., The Anderson-Badawi conjecture for commutative algebras over infinite fields.
Indian J. Pure Appli. Math., 47 (4), 691− 696 (2016)

[7] Epstein, N., Shapiro, J., A Dedekind-Mertens theorem for power series rings, Proc. Am. Math.
Soc., 144 (3), 917− 924 (2016)

[8] Fields, D.E., Zero divisors and nilpotent elements in power series rings, Proc. Am. Math. Soc., 3
(27), 427− 433 (1971)

[9] Gilmer, R. Power series rings over a Krull domain. Pac. J. Math., 29, 543− 549 (1969)

[10] Hizem, S, Smach, S., On Anderson-Badawi conjectures, Beitr. Algebra Geom., 58 (4), 775− 785
(2017)



Absorbing ideals of the form I[[X]] 177

[11] Issoual, M., Mahdou, N., Moutui, M.A.S., On n-absorbing prime ideals of commutative rings,
Hacet. J. Math. Stat., 51 (2), 455− 465 (2022)

[12] Kang, B.G., Park, M.H., Toan, P.T., Dedekind-Mertens lemma and content formulas in power
series rings, J. Pure Appl. Algebra, 222, 2299− 2309 (2018)

[13] Laradji, A., On n-absorbing rings and ideals. Colloq. Math., 147 (2), 265− 273 (2017)

[14] Nasehpour, P., On the Anderson-Badawi ωR[X](I[X]) = ωR(I) conjecture, Arch. Math., Brno, 52
(2), 71− 78 (2016)

[15] Querré, J., idéaux divisoriels d’un anneau de polynômes, J. Algebra, 64, 270− 284 (1980)

[16] Tsang, H., Gauss lemma, Ph. D thesis, University of Chicago, (1965)


	Introduction
	Absorbing ideals of the form I[X]
	Absorbing ideals of the form I[[X]]

