

Moroccan Journal of Algebra and Geometry with Applications Supported by Sidi Mohamed Ben Abdellah University, Fez, Morocco

Volume 3, Issue 1 (2024), pp 170-177

Title :

Absorbing ideals of the form \$I[[X]]\$

Author(s):

Sana Hizem

Supported by Sidi Mohamed Ben Abdellah University, Fez, Morocco

Absorbing ideals of the form *I*[[*X*]]

Sana Hizem

Department of Mathematics, Faculty of Sciences, University of Monastir, Tunisia e-mail: *hizems@yahoo.fr*

Communicated by Aymane Badawi (Received 24 August 2023, Revised 30 October 2023, Accepted 03 November 2023)

Abstract. Let *R* be a commutative ring with identity and *n* a positive integer. In [1], Anderson and Badawi define a proper ideal *I* of a commutative ring *R* to be *n*-absorbing if whenever $x_1...x_{n+1} \in I$ for $x_1,...,x_{n+1} \in R$, then there are *n* of the $x_i's$ whose product is in *I*. In this paper we investigate the transfer of the property *n*-absorbing from the ideal *I* of *R* to the ideal *I*[[X]] of the formal power series ring *R*[[X]].

Key Words: absorbing ideals, strongly absorbing ideals, formal power series rings. **2010 MSC**: Primary 13A15; 13F25; 13F05; Secondary 13A99.

1 Introduction

All rings considered in this paper are commutative with an identity different from zero. Let R be a commutative ring and n be a positive integer. In [1], Anderson and Badawi define a proper ideal *I* of a commutative ring *R* to be *n*-absorbing if whenever $x_1...x_{n+1} \in I$ for $x_1,...,x_{n+1} \in R$, then there are *n* of the x_i 's whose product is in *I*. They also define $\omega_R(I) = \min\{n \mid I \text{ is an } n\text{-absorbing ideal of } define the formula <math>u$ and u are u and u and u and u are u and u and u and u and u are u are u and u are u and u are u are u and u are u and u are u and u are u are u and u are u and u are u and u are u are u are u and u are u are u are u and u are u*R*}. The ideal *I* is called strongly *n*-absorbing if whenever $I_1...I_{n+1} \in I$ for ideals $I_1,...,I_{n+1}$ of *R*, then there are *n* of the I_i 's whose product is in *I*. They define $\omega_R^*(I) = \min\{n \mid I \text{ is a strongly } n\text{-absorbing}\}$ ideal of R}. It is clear that if I is strongly *n*-absorbing, then it is *n*-absorbing, so $\omega_R(I) \leq \omega_R^*(I)$. They conjecture that the converse is true (Conjecture 1). It is clear that for n = 1, an ideal I is (strongly) 1-absorbing if and only if I is a prime ideal so Conjecture 1 is true for n = 1. Note that for n = 2, an ideal I of R is strongly 2-absorbing if and only if I is 2-absorbing [[4], Theorem 2.13]. Note also that in Prüfer domains the two concepts of *n*-absorbing and strongly *n*-absorbing ideals are equivalent. On the other hand, they conjecture that $\omega_{R[X]}(I[X]) = \omega_R(I)$ for any ideal I of R (Conjecture 3). A 1-absorbing ideal is just a prime ideal and it is well known that I is a prime ideal if and only if I[X]is a prime ideal so Conjecture 3 is true for n = 1. In [1], the authors proved that Conjecture 3 is true for n = 2. Many authors investigated this conjecture. For example in [14], the author showed that Conjecture 3 is true if one of the following conditions hold:

(1) The ring *R* is a Prüfer domain.

(2) The ring R is a Gaussian ring such that its additive group is torsion free.

(3) The additive group of the ring *R* is torsion-free and *I* is a radical ideal of *R*.

In [13], the author proved that if *I* is a strongly *n*-absorbing ideal of *R* and *R*/*I* is Armendariz, then I[X] is *n*-absorbing (*R* is said to be Armendariz, if c(f)c(g) = 0 for all $f, g \in R[X]$ such that fg = 0). Moreover, he proved that if *I* is *n*-absorbing, then I[X] is *n*-absorbing in each of the following cases:

(1) The ring R/I is Armendariz and $|R/M| \ge n$ for each maximal ideal M of R containing I.

(2) The ring R/I is Armendariz and is (n-1)!-torsion-free as an additive group.

(3) The ring R/I is torsion-free as an additive group.

(4) The ring *R*/*I* is locally Bézout.

He showed also that Conjecture 3 is true in an arithmetical ring.

In this paper, we consider *n*-absorbing ideals of the form I[[X]] of the power series ring R[[X]]. More precisely we explore the transfer of the property (strongly) *n*-absorbing from an ideal *I* of *R* to the ideal I[[X]] of R[[X]]. The case n = 1 is clear since it is well known that an ideal *I* of *R* is prime if and only if the ideal I[[X]] is prime. In [10], the authors proved that for an ideal *I* of a commutative ring *R*, *I* is 2-absorbing if and only if I[[X]] is a 2-absorbing ideal of R[[X]] (see also [13]). It was also shown in [10] that if *R* is a Prüfer domain, then *I* is *n*-absorbing if and only if I[[X]] is *n*-absorbing. The proof was based on the characterization of absorbing ideals in Prüfer domains. In addition, they showed that if *R* is a Noetherian Gaussian u-ring, then *I* is *n*-absorbing if and only if I[[X]] is *n*-absorbing (a commutative ring *R* is called u-ring provided *R* has the property that an ideal contained in a finite union of ideals must be contained in one of those ideals). Moreover, they proved that if *R* is a pseudo-valuation domain and *I* is an ideal of *R* with a non maximal radical, then $\omega_{R[[X]]}(I[[X]]) = \omega_R(I)$. On the other hand, in [14], the author proved that for a Dedekind domain *R*, $\omega_{R[[X]]}(I[[X]]) = \omega_R(I)$ for every ideal *I* of *R*. Moreover, if *R* is a Noetherian ring whose additive group is torsion-free, then $\omega_{R[[X]]}(I[[X]]) = \omega_R(I)$ for every radical ideal *I* of *R*.

In this paper we prove first that if the ideal I[[X]] is *n*-absorbing, then the ideal *I* is strongly *n*-absorbing. Conversely, we prove that if the ideal *I* is strongly *n*-absorbing, then the ideal I[[X]] is *n*-absorbing if one of the following conditions hold:

(1) The ring *R* is P-gaussian.

(2)The ring *R* is a Krull domain and *I* is a divisorial ideal.

(3) The ring *R* is a formally integrally closed domain and *I* is a t-ideal.

Most of the results proved here are based on content formulas for power series.

On the other hand, we prove that if the ideal I is n-absorbing, then I[[X]] is n-absorbing if one of the following conditions hold:

(1) The ideal I is radical.

(2) The ring *R* is a Krull domain and *I* is of the form $(P_1...P_n)_v$ where the P_i are height one prime ideals of *R*.

(3) The ideal *I* has exactly *n* minimal prime ideals which are comaximal.

(4) The ideal *I* is a *P*-primary ideal where *P* is a prime ideal of *R*.

2 Absorbing ideals of the form *I*[*X*]

Let *R* be a commutative ring, *n* a positive integer and *I* a proper ideal of *R*. In [13], Laradji showed that if I[X] is an *n*-absorbing ideal of R[X], then *I* is a strongly *n*-absorbing ideal of *R*. We present here another proof which is completely different and which may be of independent interest, so we include it below.

Proposition 2.1. Let R be a commutative ring, n a positive integer and I a proper ideal of R such that I[X] is an n-absorbing ideal of R[X] then I is a strongly n-absorbing ideal of R.

Proof. By [[6], Lemma 2.1], let $I_1, ..., I_{n+1}$ (n + 1) finitely generated ideals of R such that $I_1...I_{n+1} \subset I$. *I*. We shall prove that there are n of the I'_i s whose product is in I. For $j \in \{1, ..., n + 1\}$, put $I_j = \langle a_{1,j}; ...; a_{k_{j},j} \rangle$ and let $f_1 = a_{1,1}X + ... + a_{k_{1,1}}X^{k_1} \in I_1[X]$, $f_2 = a_{1,2}X^{k_1} + a_{2,2}X^{2k_1} + ... + a_{k_{2,2}}X^{k_1k_2} \in I_2[X]$, ..., $f_{n+1} = a_{1,n+1}X^{k_1(k_2+1)...(k_n+1)} + ... + a_{k_{n+1},n+1}X^{k_1k_{n+1}(k_2+1)...(k_n+1)} \in I_{n+1}[X]$, then $f_1...f_{n+1} \in I_1[X]$... $I_{n+1}[X] \subset (I_1...I_{n+1})[X] \subset I[X]$. Hence there are n of the f'_i s whose product is in I[X]. Suppose for example that $f_1...f_n \in I[X]$, thus $a_{l_1,1}...a_{l_n,n} \in I$, for every $1 \leq l_i \leq k_i$ and $i \in \{1,...,n\}$. Hence, $I_1...I_n \subset I$. In the sequel, we will prove that for some class of rings, we have the equivalence: I is a strongly n-absorbing ideal of R if and only if I[X] is an n-absorbing ideal of R[X] and so $\omega_{R[X]}(I[X]) = \omega_R^*(I)$. Recall that a commutative ring R is called Gaussian if c(fg) = c(f)c(g) for all $f, g \in R[X]$, where c(f) denotes the content of the polynomial $f \in R[X]$.

Proposition 2.2. Let R be Gaussian ring, n a positive integer and I a proper ideal of R. The ideal I is a strongly n-absorbing ideal of R if and only if I[X] is an n-absorbing ideal of R[X]. Hence $\omega_{R[X]}(I[X]) = \omega_R^*(I)$.

Proof. It is sufficient to prove that if *I* is strongly *n*-absorbing, then I[X] is *n*-absorbing. Let $f_1, ..., f_{n+1} \in R[X]$ such that $f_1...f_{n+1} \in I[X]$ then $c(f_1...f_{n+1}) \subset I$. As *R* is a Gaussian ring then $c(f_1)...c(f_{n+1}) \subset I$. Since *I* is strongly *n*-absorbing, there are *n* of the $c(f_i)$'s whose product is contained in *I*. But $f_1...f_n \in c(f_1...f_n)[X] \subset c(f_1)...c(f_n)[X] \subset I[X]$.

In [14], the author proved that if *I* is a radical *n*-absorbing ideal and the additive group of the ring *R* is torsion-free, then I[X] is *n*-absorbing. In[11], the authors proved that if the ring *R* satisfies (**) (that is each proper ideal *I* of *R* with $\omega_R(I) < \infty$, $\omega_R(I) = |Min_R(I)|$, where $Min_R(I)$ denotes the set of prime ideals of *R* minimal over *I*), then if *I* is a radical *n*-absorbing ideal, then I[X] is *n*-absorbing. Note that for a radical strongly *n*-absorbing ideal *I*, the ideal I[X] is *n*-absorbing (without any additional assumption on the ring *R*) by the Dedekind-Mertens lemma. In the following proposition, we generalize the results of [14] and [11] by releasing the additional assumption on the ring *R*.

Proposition 2.3. Let I be a proper radical ideal of a commutative ring R and n a positive integer. The following are equivalent:

- 1. I is a strongly n-absorbing ideal of R.
- 2. I is an n-absorbing ideal of R.
- 3. I[X] is an n-absorbing ideal of R[X].
- 4. I[X] is a strongly *n*-absorbing ideal of R[X].
- 5. $\forall k \in \mathbb{N}, I[X_1, ..., X_k]$ is an *n*-absorbing ideal of $R[X_1, ..., X_k]$.
- 6. $\forall k \in \mathbb{N}, I[X_1, ..., X_k]$ is a strongly *n*-absorbing ideal of $R[X_1, ..., X_k]$.

Proof. $1 \Longrightarrow 2$ is clear.

2 ⇒ 3 Since *I* is an *n*-absorbing ideal of *R* then $|Min_R(I)| \le n$ by [[1], Theorem 2.5]. Let $P_1, ..., P_k$ the minimal prime ideals over *I*. Hence $I = \sqrt{I} = P_1 \cap ... \cap P_k$. Therefore $I[X] = P_1[X] \cap ... \cap P_k[X]$. By [[1], Theorem 2.1], I[X] is *k*-absorbing so it is also *n*-absorbing.

$$3 \Longrightarrow 1$$
 is clear.

The other equivalences result from the equality $\sqrt{I[X]} = \sqrt{I}[X]$, so since *I* is radical then I[X] is also radical and then use an induction on $k \ge 1$.

Since every ideal of a von Neumann regular ring is radical, we get the following corollary:

Corollary 2.4. Let *R* be a von Neumann regular ring, *n* a positive integer and *I* a proper ideal of *R*. The following are equivalent:

1. I is an n-absorbing ideal of R.

- 2. I is a strongly n-absorbing ideal of R.
- 3. I[X] is an n-absorbing ideal of R[X].
- 4. I[X] is a strongly n-absorbing ideal of R[X].
- 5. $\forall k \in \mathbb{N}, I[X_1, ..., X_k]$ is an *n*-absorbing ideal of $R[X_1, ..., X_k]$.
- 6. $\forall k \in \mathbb{N}, I[X_1, ..., X_k]$ is a strongly *n*-absorbing ideal of $R[X_1, ..., X_k]$.

Recall that an ideal *I* of an integral domain *R* with quotient field *K* is called divisorial (or *v*-ideal) if $I = I_v$, where $I_v = (I^{-1})^{-1}$ and $I^{-1} = R : I = \{x \in K \mid xI \subset R\}$. In the sequel we prove that if *I* is a divisorial strongly *n*-absorbing ideal of an integrally closed domain *R*, then I[X] is *n*-absorbing.

Lemma 2.5. Let R be an integrally closed domain. For every $m \in \mathbb{N}^*$ and $f_1, ..., f_m \in R[X]$, $(c(f_1...f_m))_v = (c(f_1)...c(f_m))_v$.

Proof. By [[15], Lemme 1], if *R* is an integrally closed domain, then for every $f, g \in R[X]$, $(c(fg))_v = (c(f)c(g))_v$, hence the result is obtained by a simple induction on *m*.

Proposition 2.6. Let R be an integrally closed domain, I a divisorial ideal of R and n a positive integer. Then I is strongly n-absorbing if and only if I[X] is n-absorbing. Hence $\omega_{R[X]}(I[X]) = \omega_R^*(I)$.

Proof. Let $f_1, ..., f_{n+1} \in R[X]$ such that $f_1 ... f_{n+1} \in I[X]$ then $c(f_1 ... f_{n+1}) \subset I$. Hence $(c(f_1 ... f_{n+1}))_v \subset I_v = I$. As R is integrally closed then $(c(f_1 ... f_{n+1}))_v = c(f_1)_v ... c(f_{n+1})_v$. Therefore $c(f_1) ... c(f_{n+1}) \subset I$. Since I is strongly n-absorbing then there are n of the $c(f_i)'s$ whose product is in I. Suppose for example that $c(f_1) ... c(f_n) \subset I$. Consequently, $f_1 ... f_n \in c(f_1 ... f_n)[X] \subset c(f_1) ... c(f_n)[X] \subset I[X]$.

3 Absorbing ideals of the form *I*[[*X*]]

Let *R* be a commutative ring, *I* a proper ideal of *R* and *n* a positive integer. It is clear that if I[[X]] is an *n*-absorbing ideal of R[[X]], then I[X] is an *n*-absorbing ideal of R[X] and so *I* is a strongly *n*-absorbing ideal of *R*. In fact, let $f_1, ..., f_{n+1} \in R[X]$ such that $f_1...f_{n+1} \in I[X]$ then $f_1...f_{n+1} \in I[[X]]$ so there are *n* of the f_i 's whose product is in $I[[X]] \cap R[X] = I[X]$.

Note that for a Noetherian ring R, if I is a strongly n-absorbing radical ideal, then I[[X]] is an n-absorbing ideal. In fact, recall first that in [7], the authors established the following Dedekind-Mertens lemma for power series rings:

Proposition 3.1. [7] Let R be a Noetherian ring and let $0 \neq g \in R[[X]]$. There exists a positive number k such that $c(f)^k c(g) = c(f)^{k-1} c(fg)$ for any $f \in R[[X]]$, where c(f) is the ideal of R generated by the coefficients of f.

Using this result, we prove that if *I* is a strongly *n*-absorbing radical ideal of a Noetherian ring *R*, then I[[X]] is an *n*-absorbing ideal. Indeed, let $f_1, ..., f_{n+1} \in R[[X]]$ such that $f_1...f_{n+1} \in I[[X]]$ then $c(f_1...f_{n+1}) \subset I$. By the Dedekind-Mertens lemma there exist positive integers $\alpha_1, ..., \alpha_n$ such that $c(f_1)^{\alpha_1+1}c(f_2...f_{n+1}) = c(f_1)^{\alpha_1}c(f_1...f_{n+1}) \subset I$, $c(f_2)^{\alpha_2+1}c(f_3...f_{n+1}) = c(f_2)^{\alpha_2}c(f_2...f_{n+1}), ..., c(f_n)^{\alpha_n+1}c(f_{n+1}) = c(f_n)^{\alpha_n}c(f_nf_{n+1})$. Now, we multiply the first equality by $c(f_2)^{\alpha_2}$, we get $c(f_1)^{\alpha_1+1}c(f_2)^{\alpha_2+1}c(f_3...f_{n+1}) \subset I$. Continuing this process, we get $c(f_1)^{\alpha_1+1}...c(f_n)^{\alpha_n+1}c(f_{n+1}) \subset I$. As *I* strongly *n*-absorbing then there exists $(k_1,...,k_{n+1}) \in \mathbb{N}^{n+1}$ such that $k_1 + ... + k_{n+1} = n$ and $c(f_1)^{k_1}...c(f_n)^{k_n}c(f_{n+1})^{k_{n+1}} \subset I$. Suppose for example that $k_{n+1} = 0$, so $c(f_1)^{k_1}...c(f_n)^{k_n} \subset I$. Since *I* is radical then $c(f_1)...c(f_n) \subset I$. But $f_1...f_n \in c(f_1...f_n)[[X]] \subset c(f_1)...c(f_n)[[X]] \subset I[[X]]$.

In the sequel we prove that the hypothesis R is Noetherian can be released. More precisely we show that if I is a radical n-absorbing ideal of a commutative ring R, then I[[X]] is n-absorbing.

More generally, in the first part of this section, we prove that if *I* is an *n*-absorbing ideal of *R*, then I[[X]] is an *n*-absorbing ideal of R[[X]] if one of the following conditions hold:

- 1. The ideal *I* is radical.
- 2. The ring *R* is a Krull domain and *I* is of the form $(P_1...P_n)_v$ where the P_i are height one prime ideals of *R*.
- 3. The ideal *I* has exactly *n* minimal prime ideals which are comaximal.
- 4. The ideal *I* is a *P*-primary ideal where *P* is a prime ideal of *R*.

In the next proposition we generalize Corollary 16 of [14] for any commutative ring R.

Proposition 3.2. Let I be a proper radical ideal of a commutative ring R and n a positive integer. The following are equivalent:

- 1. I is a strongly n-absorbing ideal of R.
- 2. I is an n-absorbing ideal of R.
- 3. I[[X]] is an n-absorbing ideal of R[[X]].
- 4. *I*[[X]] is a strongly *n*-absorbing ideal of *R*[[X]].
- 5. $\forall k \in \mathbb{N}, I[[X_1, ..., X_k]]$ is an *n*-absorbing ideal of $R[[X_1, ..., X_k]]$.
- 6. $\forall k \in \mathbb{N}, I[[X_1, ..., X_k]]$ is a strongly *n*-absorbing ideal of $R[[X_1, ..., X_k]]$.

Proof. The proof is similar to the case of polynomial rings. For the sake of completeness, we include it here.

 $1 \Longrightarrow 2$ is clear.

2 ⇒ 3 Since *I* is an *n*-absorbing ideal of *R* then $|Min_R(I)| \le n$ by [[1], Theorem 2.5]. Let $P_1, ..., P_k$ the minimal prime ideals over *I*. Hence $I = \sqrt{I} = P_1 \cap ... \cap P_k$. Therefore $I[[X]] = P_1[[X]] \cap ... \cap P_k[[X]]$. By [[1], Theorem 2.1], I[[X]] is *k*-absorbing so it is also *n*-absorbing. 3 ⇒ 1 is clear.

The other equivalences result from the equality $\sqrt{I[[X]]} = \sqrt{I}[[X]]$. In fact, $\sqrt{I[[X]]} \subset \sqrt{I}[[X]]$ for any ideal *I* of *R*, since if *P* is a prime ideal of *R* containing *I*, then *P*[[X]] is a prime ideal of *R*[[X]] containing *I*[[X]], so $\sqrt{I[[X]]} \subset P[[X]]$ for any prime ideal *P* containing *I* which implies that $\sqrt{I[[X]]} \subset \sqrt{I}[[X]]$. Conversely, if *I* is an *n*-absorbing ideal of *R*, then by [5], $(\sqrt{I})^n \subset I$ so $(\sqrt{I}[[X]])^n \subset (\sqrt{I})^n[[X]] \subset I[[X]]$, which implies that $\sqrt{I}[[X]] \subset \sqrt{I}[[X]]$ and then the equality $\sqrt{I}[[X]] = \sqrt{I}[[X]]$. Now since *I* is radical then *I*[[X]] is also radical and then use an induction on $k \ge 1$.

Corollary 3.3. Let *R* be a von Neumann regular ring, *n* a positive integer and *I* a proper ideal of *R*. The following are equivalent:

- 1. I is a strongly n-absorbing ideal of R.
- 2. I is an n-absorbing ideal of R.
- 3. I[[X]] is an n-absorbing ideal of R[[X]].
- 4. I[[X]] is a strongly n-absorbing ideal of R[[X]].
- 5. $\forall k \in \mathbb{N}, I[[X_1, ..., X_k]]$ is an n-absorbing ideal of $R[[X_1, ..., X_k]]$.

6. $\forall k \in \mathbb{N}, I[[X_1, ..., X_k]]$ is a strongly *n*-absorbing ideal of $R[[X_1, ..., X_k]]$.

Proposition 3.4. Let R be a Krull domain, n a positive integer and $P_1, ..., P_n$ be heigt one prime ideals of R and $I = (P_1...P_n)_v$ then I[[X]] is an n-absorbing ideal of R[[X]]. Hence $\omega_{R[[X]]}(I[[X]]) = \omega_R(I)$.

Proof. Note that, by [[1], Corollary 4.5], the ideal *I* is *n*-absorbing. We have $I[[X]] = ((P_1...P_n)[[X]])_v = ((P_1...P_n).A[[X]])_v = ((P_1.A[[X]])_{v...}(P_n.A[[X]])_{v...}(P_n.A[[X]])_{v...}(P_n[[X]))_{v...}(P_n[[X])_{v...}(P_n[[X])$

By [9], R[[X]] is also a Krull domain and for each $k \in \{1, ..., n\}$, $P_k[[X]]$ is a height one prime ideal of R[[X]]. Hence by [[1], Corollary 4.5], the ideal I is n-absorbing.

In the following, we give two cases where the property *n*-absorbing is stable when passing from I to the ideal I[[X]].

Proposition 3.5. Let I be an n-absorbing ideal of a ring R such that I has exactly n minimal prime ideals which are comaximal then I[[X]] is n-absorbing. Hence $\omega_{R[[X]]}(I[[X]]) = \omega_R(I)$.

Proof. Let $\{P_1, ..., P_n\}$ be the minimal prime ideals over *I*. By [[1], Corollary 2.15], $I = P_1 ... P_n = P_1 \cap ... \cap P_n$, so $P[[X]] = P_1[[X]] \cap ... \cap P_n[[X]]$. Again by Theorem 2.1 of [1], the ideal I[[X]] is *n*-absorbing. \Box

Proposition 3.6. Let P be a prime ideal of a ring R and I be a primary ideal of R such that $P^n \subset I$ then I[[X]] is n-absorbing. Hence $\omega_{R[[X]]}(I[[X]]) = \omega_R(I)$.

In particular if P^n is a P-primary ideal of R, then $P^n[[X]]$ is n-absorbing. Moreover, if M is a maximal ideal of R, then $M^n[[X]]$ is n-absorbing.

Proof. By [[1], Theorem 3.1], the ideal *I* is *n*-absorbing. By [[8], Corollary 4], *I*[[X]] is a *P*[[X]]-primary ideal of *R*[[X]] and $(P[[X]])^n \subset P^n[[X]] \subset I[[X]]$. So again by [[1], Theorem 3.1], the ideal *I*[[X]] is *n*-absorbing.

In the sequel, we prove that if *I* is a strongly *n*-absorbing ideal of *R*, then I[[X]] is an *n*-absorbing ideal of R[[X]] if one of the following conditions hold:

- 1. The ring *R* is P-Gaussian.
- 2. The ring *R* is a Krull domain and *I* is a divisorial ideal.
- 3. The ring *R* is a formally integrally closed domain and *I* is a t-ideal.

Recall from [16], that a commutative ring *R* is called P-Gaussian if for every $f, g \in R[[X]]$, c(fg) = c(f)c(g). For example a Noetherian Gaussian ring is P-Gaussian.

Proposition 3.7. Let R be a P-Gaussian ring, n a positive integer and I an ideal of R. Then I[[X]] is n-absorbing if and only if I is strongly n-absorbing. Hence $\omega_{R[[X]]}(I[[X]]) = \omega_R^*(I)$.

Proof. Let $f_1, ..., f_{n+1} \in R[[X]]$ such that $f_1 ... f_{n+1} \in I[[X]]$ then $c(f_1 ... f_{n+1}) \subset I$. As R is a P-Gaussian ring then $c(f_1) ... c(f_{n+1}) \subset I$. Since I is strongly n-absorbing then $c(f_1) ... c(f_n) \subset I$ for example. But $f_1 ... f_n \in c(f_1 ... f_n)[[X]] \subset c(f_1) ... c(f_n)[[X]] \subset I[[X]]$.

Proposition 3.8. Let R be an integral domain such that $R = \bigcap_{\alpha} V_{\alpha}$ where $(V_{\alpha})_{\alpha}$ is a collection of rank one valuation overrings of R and I a strongly n-absorbing ideal such that $I = \bigcap_{\alpha} IV_{\alpha}$ then I[[X]] is n-absorbing. In particular, if R is a Krull domain and I is a strongly n-absorbing divisorial ideal, then I[[X]] is n-absorbing. Hence $\omega_{R[[X]]}(I[[X]]) = \omega_{R}^{*}(I)$.

Proof. Consider the star operation * defined by $E^* = \bigcap IV_{\alpha}$, for every nonzero fractional ideal of R. By [[2], Theorem 2.5] for nonzero $f, g \in R[[X]]$, $(c(fg))^* = (c(f)c(g))^*$. Let $f_1, ..., f_{n+1} \in R[[X]]$ such that $f_1...f_{n+1} \in I[[X]]$ then $c(f_1...f_{n+1}) \subset I$. Hence $c(f_1)...c(f_n) \subset (c(f_1)...c(f_n))^* = (c(f_1...f_n))^* \subset I^* = I$. Now the result follows from the fact that I is strongly n-absorbing.

Now we can recover Corollary 11 of [14] since a Dedekind domain is a Krull domain in which every ideal is divisorial. Moreover a Dedekind domain is a Prüfer domain so by [[1], Corollary 6.9], every *n*-absorbing ideal is strongly *n*-absorbing.

Corollary 3.9. Let R be a Dedekind domain, then $\omega_{R[[X]]}(I[[X]]) = \omega_R(I)$.

More generally if *R* is a completely integrally closed domain and *I* is a strongly *n*-absorbing divisorial ideal, then I[[X]] is *n*-absorbing by [[12], Theorem 2.11].

Recall from [3], that an integral domain *R* is called formally integrally closed if for nonzero $f, g \in R[[X]]$, $(c(fg))_t = (c(f)c(g))_t$, where $I_t = \bigcup \{J_v \mid J \text{ is a finitely generated non zero fractional ideal of$ *R* $such that <math>J \subset I$ }, for every non zero fractional ideal *I* of *R*. A nonzero fractional ideal *I* of *R* is called a *t*-ideal if $I_t = I$. Integral domains *R* such that R_M is a one dimensional valuation domain for every *t*-maximal ideal of *R* are examples of formally integrally closed domains. We get then the following proposition:

Proposition 3.10. Let R be a formally integrally closed domain, n a positive integer and I a strongly n-absorbing t-ideal then I[[X]] is n-absorbing. Hence $\omega_{R[[X]]}(I[[X]]) = \omega_R^*(I)$.

References

- Anderson, D.F., Badawi, A., On n-absorbing ideals of commutative rings, Comm. Algebra, 39, 1646 – 1672 (2011)
- [2] Anderson, D.D., Kang, B.G., Content formulas for polynomials and power series and complete integral closure, J. Algebra, 181, 82 94 (1996)
- [3] Anderson, D.D., Kang, B.G., Formally integrally closed domains and the rings R((X)) and $R\{\{X\}\}$, J. Algebra, 200, 347 362 (1998)
- Badawi, A., On 2-absorbing ideals of commutative rings, Bull. Austral. Math. Soc., 75, 417–429 (2007)
- [5] Choi, H.S., Walker, A., The radiacl of an *n*-absorbing ideal, J. Commut. Algebra, 12 (2), 171–177 (2020)
- [6] Donadze, G., The Anderson-Badawi conjecture for commutative algebras over infinite fields. Indian J. Pure Appli. Math., 47 (4), 691 – 696 (2016)
- [7] Epstein, N., Shapiro, J., A Dedekind-Mertens theorem for power series rings, Proc. Am. Math. Soc., 144 (3), 917 – 924 (2016)
- [8] Fields, D.E., Zero divisors and nilpotent elements in power series rings, Proc. Am. Math. Soc., 3 (27), 427 433 (1971)
- [9] Gilmer, R. Power series rings over a Krull domain. Pac. J. Math., 29, 543 549 (1969)
- [10] Hizem, S, Smach, S., On Anderson-Badawi conjectures, Beitr. Algebra Geom., 58 (4), 775 785 (2017)

- [11] Issoual, M., Mahdou, N., Moutui, M.A.S., On n-absorbing prime ideals of commutative rings, Hacet. J. Math. Stat., 51 (2), 455 – 465 (2022)
- [12] Kang, B.G., Park, M.H., Toan, P.T., Dedekind-Mertens lemma and content formulas in power series rings, J. Pure Appl. Algebra, 222, 2299 – 2309 (2018)
- [13] Laradji, A., On n-absorbing rings and ideals. Colloq. Math., 147 (2), 265 273 (2017)
- [14] Nasehpour, P., On the Anderson-Badawi $\omega_{R[X]}(I[X]) = \omega_R(I)$ conjecture, Arch. Math., Brno, 52 (2), 71 78 (2016)
- [15] Querré, J., idéaux divisoriels d'un anneau de polynômes, J. Algebra, 64, 270 284 (1980)
- [16] Tsang, H., Gauss lemma, Ph. D thesis, University of Chicago, (1965)