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Abstract. Let D be an integral domain, ∗ a star operation on D and S a multiplicative subset of D. In this paper, we

generalize the notion of ∗-ideals (resp, ∗-invertible) of D, by introducing the concept of S-∗-ideals (resp, S-∗-invertible) of

D. A fractional ideal of D is called S-∗-ideals (resp, S-∗-invertible) if there exists an s ∈ S such that sI∗ ⊆ I ⊆ I∗ (resp, if there

exists an s ∈ S and a fractional ideal J ofD such that sD ⊆ (IJ)∗ ⊆D). We investigate many proprieties and characterizations

of the notion S-∗-ideals (resp, S-∗-invertible).
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1 Introduction

Throughout this paper D will be an integral domain with quotient field K. We denote by F (D), the
set of nonzero fractional ideals of D. A ∗-operation on D is a mapping I 7−→ I ∗, from F (D) to F (D)
which satisfies the following conditions for a ∈ K\{0} and I, J ∈ F (D) :

1. (a)∗ = (a) and (aI)∗ = aI ∗,

2. I ⊆ I ∗; if I ⊆ J, then I ∗ ⊆ J∗ and

3. (I ∗)∗ = I ∗.

I ∈ F (D) is called a ∗-ideal if I ∗ = I. We use the notation ∗-Max(D) for the set of ∗-ideals which are
maximal among proper integral ∗-ideals of D. An element I of F (D) is called to be ∗-invertible if
(IJ)∗ =D for some J ∈ F (D) or equivalently (II−1)∗ =D,where I−1 = {x ∈ K | xI ⊆D}.We can construct
the ∗-operation ∗s defined by I ∗s =

⋃
{(I ′)∗ | I ′ ∈ F (D), I ′ is finitely generated and I ′ ⊆ I}. We say ∗s

that is the finite type ∗-operation induced by ∗. Also, ∗ is said to be of finite type if ∗ = ∗s i.e., I ∗ = I ∗s
for each I ∈ F (D). For the general theory of ∗-operations, the reader is referred to [4, Sects. 32 and
34]. An important ∗-operation is the υ-operation given by Iυ = (I−1)−1 for each I ∈ F (D). The finite
type ∗-operation induced by the υ-operation is called the t-operation. For f = a0 + · · ·+ anXn ∈ K[X],
Af will denote the D-submodule of K generated by {a0, ..., an}. The set N∗ = {f ∈D[X] | (Af )∗ =D} is a
multiplicatively closed subset of D[X] by [9, Proposition 2.1], and it is easy to see that, N∗ =N∗s .

In this paper, we generalize the notion of ∗-ideal (resp, ∗-invertible) by introducing the concept
of S-∗-ideal (resp, S-∗-invertible). Let I be a fractional ideal of an integral domain D and S a multi-
plicative subset of D. We say that I is S-∗-ideal if there exists an s ∈ S such that sI ∗ ⊆ I ⊆ I ∗. We say
that I is S-∗-invertible if there exists an s ∈ S and a fractional ideal J of D such that sD ⊆ (IJ)∗ ⊆ D,
equivalently there exists an s ∈ S such that sD ⊆ (II−1)∗ ⊆D (Proposition 3.4).

In Section 2, we study basic results of S-∗-ideal, we give an example of an S-∗-ideal which is not
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∗-ideal. We also, show that every S-invertible ideal (recall from [6], that a fractional ideal I of D is
said to be S-invertible if sD ⊆ IJ ⊆ D for some s ∈ S and some fractional ideal J of D) is S-∗-ideal
(Proposition 2.4). An ideal M of D disjoint with S is called S-∗-maximal if it is maximal in the set
of all integral proper S-∗-ideals of D. We prove that every S-∗-maximal ideal of D is a prime ideal of
D (Proposition 2.8). Let D be an integral domain and S a multiplicative subset of D. We say that S
is anti-Archimedean if ∩n≥1s

nD ∩ S , ∅ for every s ∈ S. In [2], the authors generalized this notion by
introducing the concept of weakly anti-Archimedean multiplicative set. According [2], a multiplica-
tive set S of an integral domain D is called weakly anti-Archimedean if for each family (sα)α∈Λ of
elements of S we have (∩α∈ΛsαD)∩ S , ∅. Note that every weakly anti-Archimedean multiplicative
set is anti-Archimedean. The converse is not true as was observed in [3, Example 2.7]. Let D be an
integral domain, ∗ a finite type ∗-operation on D and S a weakly anti-Archimedean multiplicative
subset of D. We show that every integral proper S-∗-ideal of D is included in an S-∗-maximal ideal
of D (Theorem 2.9). In the particular case when S consists of units of D, we get every integral proper
∗-ideal of D is included in a ∗-maximal ideal of D (Corollary 2.10). Let D be an integral domain, ∗ a
finite type ∗-operation on D and S a weakly anti-Archimedean multiplicative subset of D. We prove
that for each S-∗-ideal I of D, I =

⋂
M∈S-∗-Max(D) IDM (Theorem 2.12).

In section 3, we study basic propertis of S-∗-invertible. It’s easy to show that if S consists of units
of D the notions ∗-invertible and S-∗-invertible coincide. Let D be an integral domain, ∗ a finite type
∗-operation on D and S a weakly anti-Archimedean multiplicative subset of D. Let I be a fractional
ideal of D. We show that I is an S-∗-invertible ideal of D if and only if I is S-∗-finite and for each
M ∈ S-∗-Max(D), IDM is a principal ideal of DM (Theorem 3.8). In the particular case when S con-
sists of units of D we recover the folloing known result, I is a ∗-invertible ideal of D if and only if I
is of ∗-finite type and it is t-locally principal (Corollary 3.9). Let D be an integral domain and S a
multiplicative subset of D. It is well-known that for each finitely generated fractional ideal I of D,
(IS )−1 = (I−1)S . We extented this result to S-∗-finite ideal of D. We show that if I is an S-∗-finite ideal
of D, then (IS )−1 = (I−1)S (Proposition 3.10) where ∗ a finite type ∗-operation on D and I a fractional
ideal of D.

2 Basic properties of S-∗-ideals

Definition 2.1. Let D be an integral domain, S a multiplicative subset of D and ∗ a star-operation on
D. A fractional ideal I of D is called S-∗-ideal if there exists an s ∈ S such that sI ∗ ⊆ I ⊆ I ∗.

Example 2.2. 1. Every ∗-ideal is an S-∗-ideal.

2. Let D = Z[X] and I = 2Z+XZ[X]. By [1, Lemma 2.1], it is easy to show that I−1 = (1
2Z)∩Z+

XZ[X]; so Iv = Z[X] which implies that I is not a divisorial ideal of D. Now, let S = {2n | n ∈
N∪ {0}}. Then S is a multiplicative subset of D. Moreover,

2Iv = 2Z[X] ⊆ I ⊆Z[X] = Iv .

Hence I is an S-v-ideal of D. This shows that the converse of (1) is not true in general.

3. Let D be an integral domain, S a multiplicative subset of D and ∗ a star-operation on D. If S
consists of units of D, then the notions of S-∗-ideals and ∗-ideals are coincide.

Let D be an integral domain and S a multiplicative subset of D. Recall from [8] that an ideal I of D
is called S-principal, if sI ⊆ J ⊆ I for some principal ideal J of D and some s ∈ S. The next proposition
collects some properties of S-∗-ideals of an integral domain D.

Proposition 2.3. Let D be an integral domain, S a multiplicative subset of D and ∗ a star-operation on D.
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1. Let S ⊆ T be multiplicative subsets of D. If I is an S-∗-ideal of D, then I is a T -∗-ideal of D.

2. Let S̄ be the saturation of S. Then I is an S-∗-ideal of D if and only if I is an S̄-∗-ideal of D.

3. If I is S-principal, then I is an S-∗-ideal of D.

Proof. (1). Obvious.
(2). The "only if“ part follows from (1). Now, assume that I is an S̄-∗-ideal of D. Then there exists

an s ∈ S̄ such that sI ∗ ⊆ I ⊆ I ∗. Since s ∈ S̄, there exists a t ∈ S such that t = ss′ for some s′ ∈D. Thus

tI ∗ ⊆ sI ∗ ⊆ I ⊆ I ∗,

and hence I is an S-∗-ideal of D.
(3). Since I is S-principal, there exist an s ∈ S and d ∈D such that sI ⊆ dD ⊆ I. This implies that

sI ∗ = (sI)∗ ⊆ (dD)∗ = dD ⊆ I ⊆ I ∗.

Hence I an S-∗-ideal of D.

Recall from [6], that for a multiplicative set S inD, a fractional ideal I ofD is said to be S-invertible
if sD ⊆ IJ ⊆ D for some s ∈ S and some fractional ideal J of D. It is shown that I is an S-invertible
ideal of D if and only if sD ⊆ II−1 ⊆ D for some s ∈ S. It well known that every invertible ideal is a
∗-ideal. Our next Proposition generalize this result.

Proposition 2.4. Let D be an integral domain, ∗ a star-operation on D and S a multiplicative subset of D.
Each S-invertible ideal of D is S-∗-ideal.

Proof. Let I be an S-invertible ideal of D. By [6, Remark 2.4], sJ−1 ⊆ I ⊆ J−1 for some s ∈ S and some
fractional ideal J of D. This implies that

sJ−1 = (sJ−1)∗ ⊆ I ∗ ⊆ (J−1)∗ = J−1.

Thus sI ∗ ⊆ sJ−1 ⊆ I, and hence I is an S-∗-ideal of D.

Example 2.5. Let D be a Prüfer domain, ∗ a star-operation on D and S a multiplicative subset of D.
Then each nonzero S-finite ideal of D is S-∗-ideal. Indeed, let I be an S-finite ideal of D. Then there
exist an s ∈ S and a nonzero finitely generated ideal F of D such that sI ⊆ F ⊆ I. Thus sF−1 ⊆ I−1.
Since D is a Prüfer domain, FF−1 =D; so

sD = sFF−1 ⊆ FI−1 ⊆ II−1 ⊆D

which implies that I is an S-invertible ideal of D.Hence by the previous Proposition, I is an S-∗-ideal
of D.

Let D be an integral domain and S a multiplicative subset of D. We say that S is anti-Archimedean
if ∩n≥1s

nD ∩ S , ∅ for every s ∈ S. In [2], the authors generalized this notion by introducing the con-
cept of weakly anti-Archimedean multiplicative set. According [2], a multiplicative set S of an inte-
gral domain D is called weakly anti-Archimedean if for each family (sα)α∈Λ of elements of S we have
(∩α∈ΛsαD)∩S , ∅. Note that every weakly anti-Archimedean multiplicative set is anti-Archimedean.
The converse is not true as was observed in [3, Example 2.7].

Proposition 2.6. Let D be an integral domain, ∗ a finite type ∗-operation on D and S a weakly anti-
Archimedean multiplicative subset of D. Let (Iα)α∈Λ be a totally ordered family of fractional ideals of D. If
for each α ∈Λ, Iα is S-∗-ideal, then ∪α∈ΛIα is an S-∗-ideal of D.
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Proof. For each α ∈Λ, there exists an sα ∈ S such that sαI ∗α ⊆ Iα . Since S is weakly anti-Archimedean,
∩α∈ΛsαD ∩ S , ∅. Let t ∈ ∩α∈ΛsαD ∩ S. Note that for each α ∈ Λ, tI ∗α ⊆ Iα . We show that t(∪α∈ΛIα)∗ ⊆
∪α∈ΛIα . Let x ∈ (∪α∈ΛIα)∗. Since ∗ is of finite character, there exists a finitely generated subideal J of
∪α∈ΛIα such that x ∈ J∗. Since J is a finitely generated ideal of D, there exists a β ∈Λ such that J ⊆ Iβ .
We have tx ∈ tJ∗ ⊆ tI ∗β ⊆ Iβ ; so tx ∈ Iβ for some β ∈ Λ which implies that t(∪α∈ΛIα)∗ ⊆ ∪α∈ΛIα , and
hence ∪α∈ΛIα is an S-∗-ideal of D.

Notation 2.7. Let D be an integral domain, ∗ a star-operation on D and S a multiplicative subset of
D. An ideal M of D disjoint with S is called S-∗-maximal if it is maximal in the set of all integral
proper S-∗-ideal of D. We denote by S-∗-Max(D) the set of all S-∗-maximal ideals of D.

Proposition 2.8. Every S-∗-maximal ideal of D is a prime ideal of D.

Proof. Let P be an S-∗-maximal ideal of D. Assume that P is not prime, there exist a,b ∈ D\P such
that ab ∈ P . Let I = P + aD and J = P + bD. Since P ( I ⊆ I ∗ ⊆ D, by maximality of P in the set of
all integral proper S-∗-ideal of D, I ∗ = D. In the same way we can prove J∗ = D. This implies that
(IJ)∗ = (I ∗J∗)∗ = D. But IJ = P 2 + aP + bP + abP ⊆ P ; so P ∗ = D. Now, since P is an S-∗-ideal of D, there
exists an s ∈ S such that sP ∗ ⊆ P which implies that sD ⊆ P , a contradiction because P ∩ S = ∅. Hence
P is a prime ideal of D.

Theorem 2.9. Let D be an integral domain, ∗ a finite type ∗-operation on D and S a weakly anti-
Archimedean multiplicative subset of D. Then every integral proper S-∗-ideal of D is included in an
S-∗-maximal ideal of D.

Proof. Let F be the set of all integral proper S-∗-ideals of D. Then F , ∅, since F contain all integral
proper S-principal ideals of D. Now, let (Iα)α∈Λ be a totally ordered family of elements of F . By
Proposition 2.6, ∪α∈ΛIα is an element of F ; so we conclude by Zorn’s Lemma our result.

In the particular case when S consists of units of D, we regain the following well-known result.

Corollary 2.10. Let D be an integral domain and ∗ a finite type ∗-operation on D. Then every integral
proper ∗-ideal of D is included in a ∗-maximal ideal of D.

Lemma 2.11. Let D be an integral domain, ∗ a star-operation on D and S a multiplicative subset of D. Let
(Ik)1≤k≤n be a finite family of fractional ideals of D such that ∩1≤k≤nIk , (0). If for each 1 ≤ k ≤ n, Ik is
S-∗-ideal, then ∩1≤k≤nIk is an S-∗-ideal of D.

Proof. For each 1 ≤ k ≤ n, there exists an sk ∈ S such that skI ∗k ⊆ Ik . Let t = s1s2 · · ·sn. Then t ∈ S
and for each 1 ≤ k ≤ n, tI ∗k ⊆ Ik . For each 1 ≤ m ≤ n, t(∩1≤k≤nIk)∗ ⊆ tI ∗m ⊆ Im. This implies that
t(∩1≤k≤nIk)∗ ⊆ ∩1≤k≤nIk , and hence ∩1≤k≤nIk is an S-∗-ideal of D.

Theorem 2.12. Let D be an integral domain, ∗ a finite type ∗-operation on D and S a weakly anti-
Archimedean multiplicative subset of D. Then for each S-∗-ideal I of D,

I =
⋂

M∈S-∗-Max(D)

IDM .

Proof. Let x be a nonzero element of
⋂
M∈S-∗-Max(D) IDM . Then for each S-∗-maximal ideal M of D,

there exists an sM ∈ D\M such that sMx ∈ I. Let J = D ∩ (1
x I). Then sM ∈ J for each S-∗-maximal ideal

M of D. Moreover, Since I is an S-∗-ideal of D, 1
x I is an S-∗-ideal of D; so by Lemma 2.11, J is an

S-∗-ideal of D. Assume that J , D. Then J is an integral proper S-∗-ideal of D; so by Theorem 2.9,
there exists M ∈ S- ∗ -Max(D) such that J ⊆M which implies that sM ∈ J ⊆M, a contradiction. Thus
J = D which implies that x ∈ I. Hence I ⊆

⋂
M∈S-∗-Max(D) IDM . This completed the proof, since other

inclusion is obvious.
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Corollary 2.13. Let D be an integral domain, ∗ a finite type ∗-operation on D and I a ∗-ideal of D. Then

I =
⋂

M∈∗-Max(D)

IDM .

Remark 2.14. Let I be an S-∗-ideal of an integral domain D, where S is a multiplicative subset of
D and ∗ a star-operation of finite character on D. Then there exits an s ∈ S such that sI ∗ ⊆ I. But
I ∗ =

⋂
M∈∗-Max(D) I

∗DM ; so

s(
⋂

M∈∗-Max(D)

IDM ) ⊆ s(
⋂

M∈∗-Max(D)

I ∗DM ) = sI ∗ ⊆ I ⊆
⋂

M∈∗-Max(D)

IDM .

Hence there exists an s ∈ S such that

s(
⋂

M∈∗-Max(D)

IDM ) ⊆ I ⊆
⋂

M∈∗-Max(D)

IDM .

3 S-∗-invertible ideals

In this section we extended the notion of S-invertible using the ∗-operation and we generalize some
classical results concerning the notion of ∗-invertibility. We begin this section by the following defi-
nition.

Definition 3.1. Let D be an integral domain, ∗ a star-operation on D and S a multiplicative subset of
D. A fractional ideal I of D is called S-∗-invertible if there exists an s ∈ S and a fractional ideal J of D
such that sD ⊆ (IJ)∗ ⊆D.

Example 3.2. Let D = Z +XZ[i][X], S = {2n | n ∈N} and I = 2Z + (1 + i)XZ[i][X]. Since 2 ∈ I, then
2D ⊆ I.D ⊆ D. Which implies that I is S-invertible. On the other part, by [1, Lemma 2.1], it is easy
to show that I−1 = Z+X 1−i

2 Z[i][X]. Thus if II−1 = D, then 1 = P1(0)Q1(0) + · · ·+ Pn(0)Qn(0) for some
P1, ..., Pn ∈ I and Q1, ...,Qn ∈ I−1. But for 1 ≤ j ≤ n, Pj(0) ∈ 2Z and Qj(0) ∈ Z; so 1 = 2m1 + · · · + 2mn,
mj ∈Z. A contradiction. Hence I is not invertible.

Remark 3.3. Let D be an integral domain, ∗ a star-operation on D and S a multiplicative subset of D.

1. Since I ∗ ⊆ Iv for each fractional ideal I of D, every S-∗-invertible ideal of D is S-v-invertible.

2. Note that for a fractional ideal I ofD,we have I is S-∗-invertible if and only if I ∗ is S-∗-invertible.
Indeed, I is S-∗-invertible if and only if sD ⊆ (IJ)∗ = (I ∗J)∗ ⊆D for some s ∈ S and some fractional
ideal J of D if and only if I ∗ is S-∗-invertible.

3. Let I be a fractional S-∗-invertible ideal of D, then there exist an s ∈ S and a fractional ideal J
of D such that sD ⊆ (IJ)∗ ⊆D. We have

sI−1 = (I−1sD)∗ ⊆ (I−1(IJ)∗)∗ = (I−1(IJ))∗ ⊆ J∗.

Moreover, since IJ∗ ⊆ (IJ)∗ ⊆ D, J∗ ⊆ I−1. Thus sI−1 ⊆ J∗ ⊆ I−1. Note that in the same way we can
prove that sJ−1 ⊆ I ∗ ⊆ J−1.

4. By [6, Proposition 2.7], every S-principal ideal of D is S-invertible. This implies that each
S-principal ideal of D is S-∗-invertible.

Proposition 3.4. Let I be a fractional ideal of an integral domain D, S a multiplicative subset of D and ∗ a
star-operation on D. Then I is S-∗-invertible if and only of there exists an s ∈ S such that sD ⊆ (II−1)∗ ⊆D.
In particular, I−1 is also an S-∗-invertible ideal of D.
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Proof. If I is S-∗-invertible, then there exist an s ∈ S and a fractional ideal J of D such that sD ⊆
(IJ)∗ ⊆ D. But by Remark 3.3(3), J∗ ⊆ I−1; so sD ⊆ (IJ)∗ = (IJ∗)∗ ⊆ (II−1)∗ ⊆ D. The other implication is
obvious.

Definition 3.5. Let D be an integral domain, S a multiplicative subset of D and ∗ a star-operation on
D. A fractional ideal I of D is called of S-∗-finite type if there exist an s ∈ S and a fractional finitely
generated ideal F of D such that sI ⊆ F∗ ⊆ I ∗.

Let D be an integral domain and S a multiplicative subset of D. According to [5], D is called
an S-Mori domain if every increasing sequence of integral divisorial ideals of D is S-stationary (an
increasing sequence (Ik)k∈N of ideals of D is called S-stationary if there exist a positive integer n and
an s ∈ S such that for each k ≥ n, sIk ⊆ In [8]). It was shown in [5], that if D is an S-Mori domain,
then for each nonzero fractional ideal I of D, sI ⊆ Jυ ⊆ Iυ for some s ∈ S and some finitely generated
fractional ideal J ofD such that J ⊆ I. This implies that in an S-Mori domain every nonzero fractional
ideal I of D is of S-v-finite type.

Remark 3.6. Let D be an integral domain, ∗ a star-operation on D and S a multiplicative subset of D.
Let I be a fractional ideal of D of S-∗-finite type. Then there exist an s ∈ S and a fractional finitely
generated ideal J of D such that sI ⊆ J∗ ⊆ I ∗. If the star-operation ∗ is of finite character, then we
can suppose that J ⊆ I. Indeed, let J = (a1, ..., an), where ai ∈ I ∗. Then for each 1 ≤ i ≤ n, there exist
a finitely generated subideal Ji of I. Let J ′ = J1 + · · ·+ Jn. Then J ′ is a finitely generated subideal of I.
Moreover, J ⊆ J∗1 + · · ·+ J∗n ⊆ (J ′)∗; so sI ⊆ J∗ ⊆ (J ′)∗ ⊆ I ∗.

Let D be an integral domain and ∗ a star-operation on D. Let I and J be tow fractional ideals of D.
It will known that if ∗ is of finite character, then

(IJ)∗ = ∪{(I ′J ′)∗ | I ′ ⊆ I, J ′ ⊆ J, two finitely generated fractional ideals of D}.

Our next Theorem prove a neccesary and sufficient condition for a fractional ideal to be S-∗-invertible.
This extended a result proved by Kang in [9]. To prove it we need the following Lemma.

Lemma 3.7. Let D be an integral domain, ∗ a finite type ∗-operation on D and S a multiplicative subset of
D. Every S-∗-invertible ideal of D is an S-∗-finite ideal of D.

Proof. Let I be an S-∗-invertible ideal of D. There exist an s ∈ S and a fractional ideal J of D such that
sD ⊆ (IJ)∗ ⊆ D. Since ∗ is of finite character, there exist two finitely generated fractional ideals I ′ and
J ′ of D such that I ′ ⊆ I, J ′ ⊆ J and s ∈ (I ′J ′)∗. This implies that sD ⊆ (I ′J ′)∗ ⊆D. Now by Remark 3.3(3),
s(J ′)−1 ⊆ (I ′)∗ ⊆ (J ′)−1 and sJ−1 ⊆ I ∗ ⊆ J−1. Since J ′ ⊆ J, J−1 ⊆ (J ′)−1; so

sI ⊆ sI ∗ ⊆ s(J ′)−1 ⊆ (I ′)∗ ⊆ I ∗.

Hence I is of S-∗-finite type.

Theorem 3.8. Let D be an integral domain, ∗ a finite type ∗-operation on D and S a weakly anti-
Archimedean multiplicative subset of D. Let I be a fractional ideal of D. Then the following state-
ments are equivalent.

1. I is an S-∗-invertible ideal of D.

2. I is S-∗-finite and for each M ∈ S-∗-Max(D), IDM is a principal ideal of DM .
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Proof. (1)⇒ (2) By Lemma 3.7, I is of S-∗-finite type. Let M be an S-∗-maximal ideal of D. We have
II−1

*M, indeed, if II−1 ⊆M, then sD ⊆ (II−1)∗ ⊆M for some s ∈ S; so s ∈M, a contradiction because
S ∩M = ∅. This implies that (IDM )(I−1DM ) = II−1DM = DM , and thus IDM is an invertible ideal of
DM . Hence IDM is principal since DM is a local ring.

(2) ⇒ (1) By hypothesis, there exist an s ∈ S and a fractional finitely generated subideal J of I
such that sI ⊆ J∗ ⊆ I ∗. Assume that I is not S-∗-invertible. Then (II−1)∗  D; so by Theorem 2.9,
there exist an S-∗-maximal ideal M of D such that (II−1)∗ ⊆M. By hypothesis, IDM is principal, then
IDM = aDM for some a ∈ I. This implies that 1

a I ⊆DM ; so 1
a J ⊆DM . Since J is finitely generated, there

exists a t ∈D\M such that t
a J ⊆D. We have

st
a
I ⊆ st

a
I ∗ ⊆ t

a
J∗ ⊆D.

Thus st
a ∈ I

−1 which implies that st ∈ aI−1 ⊆ II−1 ⊆M. Since t <M, s ∈M because M is a prime ideal
of D by Proposition 2.8. This contradict that M ∩ S = ∅. Hence I is an S-∗-invertible ideal of D.

In the particular case when S consists of units of D we regain the following well-known result
proved by B.G. Kang ([9]).

Corollary 3.9. Let D be an integral domain, ∗ a finite type ∗-operation on D and I a fractional ideal of D.
Then the following statements are equivalent.

1. I is a ∗-invertible ideal of D.

2. I is of ∗-finite type and it is t-locally principal.

Let D be an integral domain and S a multiplicative subset of D. It is well-known that for each
finitely generated fractional ideal I of D, (IS )−1 = (I−1)S . Our next Proposition improves this result.

Proposition 3.10. Let S a multiplicative subset of an integral domain D, ∗ a finite type ∗-operation on D
and I a fractional ideal of D. If I is an S-∗-finite ideal of D, then (IS )−1 = (I−1)S .

Proof. We have always that (I−1)S ⊆ (IS )−1, so we must prove the converse in order to conclude. Since
I is S-∗-finite, there exist an s ∈ S and a finitely generated ideal J ⊆ I such that sI ⊆ J∗ ⊆ I ∗. Thus
J−1 ⊆ 1

s I
−1, and consequently (J−1)S ⊆ (I−1)S . Since J is finitely generated, (J−1)S = (JS )−1. Moreover,

JS ⊆ IS . Thus (IS )−1 ⊆ (JS )−1 = (J−1)S ⊆ (I−1)S , and hence (I−1)S = (IS )−1.

Next, we give a relation between S-t-invertible ideals ofD and t-invertible ideals of the localization
DS , where t- is the t-operation.

Proposition 3.11. Let S a multiplicative subset of an integral domain D and I a fractional ideal of D.

1. If I is an S-t-invertible ideal of D, then IS is a t-invertible ideal of DS .

2. Assume that for each t-finite type ideal J of D, (JS )t∩D = Jt : s for some s ∈ S. Then I is S-t-invertible
if and only if IS is t-invertible and I is an S-∗-finite ideal of D.

Proof. (1). Since I is S-t-invertible, sD ⊆ (II−1)t ⊆ D for some s ∈ S. This implies that DS = ((II−1)t)S .
But ((II−1)t)S ⊆ ((II−1)S )t; so DS = ((II−1)S )t because ((II−1)S )t ⊆DS . Thus DS = (IS(I−1)S )t , and hence
IS is a t-invertible ideal of DS .

(2). The "only if“ part follows from (1) and Lemma 3.7, since t is a finite type ∗-operation. For
the "if“ part, let s ∈ S and J a finitely generated subideal of I such that sI ⊆ Jt ⊆ It . This implies that
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(It)S = (Jt)S . First we show that JS is t-invertible. Since IS is t-invertible, DS = (IS(I−1)S )t . Thus

DS = (IS(I−1)S )t
⊆ ((It)S(I−1)S )t
⊆ ((Jt)S(J−1)S )t
= ((JtJ−1)S )t
⊆ ((JJ−1)S )t
⊆ DS .

This implies that ((JS(J−1)S ))t = ((JJ−1)S )t = DS , hence JS is t-invertible. Now, since JS is t-invertible,
(JS )−1 is of t-finite type; so there exists a finitely generated subideal F of J−1 such that (J−1)S = (JS )−1 =
(FS )t . Thus DS = ((JJ−1)S )t = ((FJ)S )t; so D = ((FJ)S )t ∩D. By hypothesis, D = (FJ)t : s′ for some s′ ∈ S,
which implies that s′D ⊆ (FJ)t . But F ⊆ J−1 ⊆ 1

s I
−1 and J ⊆ I, thus ss′D ⊆ (sFJ)t ⊆ (II−1)t ⊆ D, and

hence I is an S-t-invertible ideal of D.

Proposition 3.12. Let I be a non zero ideal of an integral domain D. Let T be a multiplicatively closed
subset of D and S be a multiplicative subset of D.

1. If I is an S-t-ideal of D, then IT
⋂
D is an S-t-ideal of D.

2. If IT is an S-t-ideal of DT , then IT
⋂
D is an S-t-ideal of D.

Proof. 1. Let I be a S-t-ideal of D. Then sIt ⊆ I for some s ∈ S. We show that s(IT
⋂
D)t ⊆ IT

⋂
D.

Let α ∈ (IT
⋂
D)t , thus there exists a finitely generated fractional ideal F of D contained in

(IT
⋂
D) such that α ∈ Fυ. Since F ⊆ FT ⊆ IT , then sα ∈ s(IT )t and there exists an r ∈ T such that

rF ⊆ I. Then rα ∈ rFυ = (rF)υ ⊆ It ⊆ 1
s I. Hence srα ⊆ I, so sα ⊆ IT , then sα ⊆ IT

⋂
D. Therefore

s(IT
⋂
D)t ⊆ IT

⋂
D.

2. Let IT be an S-t-ideal of DT . Then s(IT )t ⊆ IT for some s ∈ S. We show that s(IT
⋂
D)t ⊆ IT

⋂
D.

Let α ∈ (IT
⋂
D)t , thus there exists a finitely generated fractional ideal J of D contained in

(IT
⋂
D) such that α ∈ Jυ. Since J ⊆ JT ⊆ IT , then sα ∈ s(IT )t . Hence sα ∈ s(IT )t

⋂
D ⊆ IT

⋂
D.

Therefore s(IT
⋂
D)t ⊆ IT

⋂
D.

Let D be an integral domain with quotient field K . Let ∗ be a star operation on D. Let f = a0 + · · ·+
anX

n ∈ K[X], Af will denote the D-submodule of K generated by {a0, ..., an}. The set N∗ = {f ∈ D[X] |
(Af )∗ = D} is a multiplicatively closed subset of D[X]. We defined the ring D[X]N∗ by D[X]N∗ = { fg |
f ∈D[X], g ∈N∗}.

Proposition 3.13. Let ∗ be a ∗-operation on an integral domain D with quotient field K , S be a multiplica-
tive subset of D. Let I be an ideal of D. Then :

1. If I is S-∗-ideal, then there exist s ∈ S such that s(ID[X]N∗
⋂
K) ⊆ I.

2. If I is an S-υ-ideal (resp., S-t-ideal) of D, then I[X]Nυ is an S-υ-ideal (resp., S-t-ideal) of D[X]Nυ .

Proof. 1. Let I be S-∗-ideal. Then sI ∗ ⊆ I, for some s ∈ S. We show that s(ID[X]N∗
⋂
K) ⊆ I. Let

a ∈ (ID[X]N∗
⋂
K). Then ag = f for some g ∈ N∗ and f ∈ I[X]. Hence (a) = (aAg )∗ = (Aag )∗ =

(Af )∗ ⊆ I ∗ ⊆ 1
s I. So sa ∈ I. Therefore s(ID[X]N∗

⋂
K) ⊆ I.

2. Suppose that I is a S-υ-ideal, then sIυ ⊆ I , for some s ∈ S. Then s(I[X]Nυ )υ = sIυ[X]Nυ by [9,
Proposition 2.2]. Hence s(I[X]Nυ )υ ⊆ I[X]Nυ . Therefore I[X]Nυ is a S-υ-ideal of D[X]Nυ . In the
some way we can show that I[X]Nυ is an S-t-ideal of D[X]Nυ .
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