

Moroccan Journal of Algebra and Geometry with Applications Supported by Sidi Mohamed Ben Abdellah University, Fez, Morocco

Volume 3, Issue 1 (2024), pp 36-44

Title :

Extension of star-operation

Author(s):

Elmakki Ahmed & Taha Eddhay

Supported by Sidi Mohamed Ben Abdellah University, Fez, Morocco

Extension of star-operation

Elmakki Ahmed¹ and Taha Eddhay² ¹ Department of Mathematics, Faculty of Sciences, Monastir, Tunisia. e-mail: *elmakkiahmed@gmail.com* ² Preparatory Institute for Engineering Studies, Gafsa, Tunisia. e-mail: *taha.eddhay@gmail.com*

Communicated by Ahmed Hamed (Received 19 June 2023, Revised 12 September 2023, Accepted 22 September 2023)

Abstract. Let *D* be an integral domain, * a star operation on *D* and *S* a multiplicative subset of *D*. In this paper, we generalize the notion of *-ideals (resp, *-invertible) of *D*, by introducing the concept of *S*-*-ideals (resp, *S*-*-invertible) of *D*. A fractional ideal of *D* is called *S*-*-ideals (resp, *S*-*-invertible) if there exists an $s \in S$ such that $sI^* \subseteq I \subseteq I^*$ (resp, if there exists an $s \in S$ and a fractional ideal *J* of *D* such that $sD \subseteq (IJ)^* \subseteq D$). We investigate many proprieties and characterizations of the notion *S*-*-ideals (resp, *S*-*-invertible).

Key Words: *-operation, *S*-*-ideals, *S*-*-invertible. **2010 MSC**: 13G05, 13A15.

1 Introduction

Throughout this paper *D* will be an integral domain with quotient field *K*. We denote by $\mathcal{F}(D)$, the set of nonzero fractional ideals of *D*. A *-operation on *D* is a mapping $I \mapsto I^*$, from $\mathcal{F}(D)$ to $\mathcal{F}(D)$ which satisfies the following conditions for $a \in K \setminus \{0\}$ and $I, J \in \mathcal{F}(D)$:

- 1. $(a)^* = (a)$ and $(aI)^* = aI^*$,
- 2. $I \subseteq I^*$; if $I \subseteq J$, then $I^* \subseteq J^*$ and
- 3. $(I^*)^* = I^*$.

 $I \in \mathcal{F}(D)$ is called a *-ideal if $I^* = I$. We use the notation *-Max(D) for the set of *-ideals which are maximal among proper integral *-ideals of D. An element I of $\mathcal{F}(D)$ is called to be *-invertible if $(IJ)^* = D$ for some $J \in \mathcal{F}(D)$ or equivalently $(II^{-1})^* = D$, where $I^{-1} = \{x \in K \mid xI \subseteq D\}$. We can construct the *-operation *_s defined by $I^{*_s} = \bigcup \{(I')^* \mid I' \in \mathcal{F}(D), I' \text{ is finitely generated and } I' \subseteq I\}$. We say *_s that is the finite type *-operation induced by *. Also, * is said to be of finite type if $* = *_s$ i.e., $I^* = I^{*_s}$ for each $I \in \mathcal{F}(D)$. For the general theory of *-operations, the reader is referred to [4, Sects. 32 and 34]. An important *-operation is the v-operation given by $I_v = (I^{-1})^{-1}$ for each $I \in \mathcal{F}(D)$. The finite type *-operation induced by the v-operation is called the t-operation. For $f = a_0 + \cdots + a_n X^n \in K[X]$, A_f will denote the D-submodule of K generated by $\{a_0, \dots, a_n\}$. The set $N_* = \{f \in D[X] \mid (A_f)^* = D\}$ is a multiplicatively closed subset of D[X] by [9, Proposition 2.1], and it is easy to see that, $N_* = N_{*_s}$.

In this paper, we generalize the notion of *-ideal (resp, *-invertible) by introducing the concept of *S*-*-ideal (resp, *S*-*-invertible). Let *I* be a fractional ideal of an integral domain *D* and *S* a multiplicative subset of *D*. We say that *I* is *S*-*-ideal if there exists an $s \in S$ such that $sI^* \subseteq I \subseteq I^*$. We say that *I* is *S*-*-invertible if there exists an $s \in S$ and a fractional ideal *J* of *D* such that $sD \subseteq (IJ)^* \subseteq D$, equivalently there exists an $s \in S$ such that $sD \subseteq (II^{-1})^* \subseteq D$ (Proposition 3.4).

In Section 2, we study basic results of S-*-ideal, we give an example of an S-*-ideal which is not

*-ideal. We also, show that every *S*-invertible ideal (recall from [6], that a fractional ideal *I* of *D* is said to be *S*-invertible if $sD \subseteq IJ \subseteq D$ for some $s \in S$ and some fractional ideal *J* of *D*) is *S*-*-ideal (Proposition 2.4). An ideal *M* of *D* disjoint with *S* is called *S*-*-maximal if it is maximal in the set of all integral proper *S*-*-ideals of *D*. We prove that every *S*-*-maximal ideal of *D* is a prime ideal of *D* (Proposition 2.8). Let *D* be an integral domain and *S* a multiplicative subset of *D*. We say that *S* is anti-Archimedean if $\bigcap_{n\geq 1}s^nD\cap S \neq \emptyset$ for every $s \in S$. In [2], the authors generalized this notion by introducing the concept of weakly anti-Archimedean multiplicative set. According [2], a multiplicative set *S* of an integral domain *D* is called weakly anti-Archimedean if for each family $(s_{\alpha})_{\alpha\in\Lambda}$ of elements of *S* we have $(\bigcap_{\alpha\in\Lambda}s_{\alpha}D)\cap S \neq \emptyset$. Note that every weakly anti-Archimedean multiplicative set is anti-Archimedean. The converse is not true as was observed in [3, Example 2.7]. Let *D* be an integral domain, * a finite type *-operation on *D* and *S* a weakly anti-Archimedean multiplicative subset of *D*. We show that every integral proper *S*-*-ideal of *D* is included in an *S*-*-maximal ideal of *D* (Theorem 2.9). In the particular case when *S* consists of units of *D*, we get every integral proper *-ideal of *D* is included in a *-maximal ideal of *D* (Corollary 2.10). Let *D* be an integral domain, * a finite type *-operation on *D* and *S* a weakly anti-Irchimedean multiplicative subset of *D*. We show that every integral proper *S*-*-ideal of *D* is included in an s-termaximal ideal

that for each *S*-*-ideal *I* of *D*, $I = \bigcap_{M \in S^{-*-Max}(D)} ID_M$ (Theorem 2.12). In section 3, we study basic propertis of *S*-*-invertible. It's easy to show that if *S* consists of units of *D* the notions *-invertible and *S*-*-invertible coincide. Let *D* be an integral domain, * a finite type *-operation on *D* and *S* a weakly anti-Archimedean multiplicative subset of *D*. Let *I* be a fractional ideal of *D*. We show that *I* is an *S*-*-invertible ideal of *D* if and only if *I* is *S*-*-finite and for each $M \in S$ -*-Max(*D*), ID_M is a principal ideal of D_M (Theorem 3.8). In the particular case when *S* consists of units of *D* we recover the folloing known result, *I* is a *-invertible ideal of *D* if and only if *I* is of *-finite type and it is *t*-locally principal (Corollary 3.9). Let *D* be an integral domain and *S* a multiplicative subset of *D*. It is well-known that for each finitely generated fractional ideal *I* of *D*, $(I_S)^{-1} = (I^{-1})_S$. We extend this result to *S*-*-finite ideal of *D*. We show that if *I* is an *S*-*-finite ideal of *D*, then $(I_S)^{-1} = (I^{-1})_S$ (Proposition 3.10) where * a finite type *-operation on *D* and *I* a fractional ideal of *D*.

2 Basic properties of *S*-*-ideals

Definition 2.1. Let *D* be an integral domain, *S* a multiplicative subset of *D* and * a star-operation on *D*. A fractional ideal *I* of *D* is called *S*-*-ideal if there exists an $s \in S$ such that $sI^* \subseteq I \subseteq I^*$.

Example 2.2. 1. Every *-ideal is an *S*-*-ideal.

2. Let $D = \mathbb{Z}[X]$ and $I = 2\mathbb{Z} + X\mathbb{Z}[X]$. By [1, Lemma 2.1], it is easy to show that $I^{-1} = (\frac{1}{2}\mathbb{Z}) \cap \mathbb{Z} + X\mathbb{Z}[X]$; so $I_v = \mathbb{Z}[X]$ which implies that I is not a divisorial ideal of D. Now, let $S = \{2^n \mid n \in \mathbb{N} \cup \{0\}\}$. Then S is a multiplicative subset of D. Moreover,

$$2I_v = 2\mathbb{Z}[X] \subseteq I \subseteq \mathbb{Z}[X] = I_v.$$

Hence *I* is an *S*-*v*-ideal of *D*. This shows that the converse of (1) is not true in general.

3. Let *D* be an integral domain, *S* a multiplicative subset of *D* and * a star-operation on *D*. If *S* consists of units of *D*, then the notions of *S*-*-ideals and *-ideals are coincide.

Let *D* be an integral domain and *S* a multiplicative subset of *D*. Recall from [8] that an ideal *I* of *D* is called *S*-principal, if $sI \subseteq J \subseteq I$ for some principal ideal *J* of *D* and some $s \in S$. The next proposition collects some properties of *S*-*-ideals of an integral domain *D*.

Proposition 2.3. Let D be an integral domain, S a multiplicative subset of D and * a star-operation on D.

- 1. Let $S \subseteq T$ be multiplicative subsets of D. If I is an S-*-ideal of D, then I is a T-*-ideal of D.
- 2. Let \overline{S} be the saturation of S. Then I is an S-*-ideal of D if and only if I is an \overline{S} -*-ideal of D.
- 3. If I is S-principal, then I is an S-*-ideal of D.

Proof. (1). Obvious.

(2). The "only if" part follows from (1). Now, assume that *I* is an \bar{S} -*-ideal of *D*. Then there exists an $s \in \bar{S}$ such that $sI^* \subseteq I \subseteq I^*$. Since $s \in \bar{S}$, there exists a $t \in S$ such that t = ss' for some $s' \in D$. Thus

$$tI^* \subseteq sI^* \subseteq I \subseteq I^*,$$

and hence *I* is an *S*-*-ideal of *D*.

(3). Since *I* is *S*-principal, there exist an $s \in S$ and $d \in D$ such that $sI \subseteq dD \subseteq I$. This implies that

$$sI^* = (sI)^* \subseteq (dD)^* = dD \subseteq I \subseteq I^*.$$

Hence *I* an *S*-*-ideal of *D*.

Recall from [6], that for a multiplicative set *S* in *D*, a fractional ideal *I* of *D* is said to be *S*-invertible if $sD \subseteq IJ \subseteq D$ for some $s \in S$ and some fractional ideal *J* of *D*. It is shown that *I* is an *S*-invertible ideal of *D* if and only if $sD \subseteq II^{-1} \subseteq D$ for some $s \in S$. It well known that every invertible ideal is a *-ideal. Our next Proposition generalize this result.

Proposition 2.4. Let D be an integral domain, * a star-operation on D and S a multiplicative subset of D. Each S-invertible ideal of D is S-*-ideal.

Proof. Let *I* be an *S*-invertible ideal of *D*. By [6, Remark 2.4], $sJ^{-1} \subseteq I \subseteq J^{-1}$ for some $s \in S$ and some fractional ideal *J* of *D*. This implies that

$$sJ^{-1} = (sJ^{-1})^* \subseteq I^* \subseteq (J^{-1})^* = J^{-1}.$$

Thus $sI^* \subseteq sJ^{-1} \subseteq I$, and hence *I* is an *S*-*-ideal of *D*.

Example 2.5. Let *D* be a Pr \ddot{u} fer domain, * a star-operation on *D* and *S* a multiplicative subset of *D*. Then each nonzero *S*-finite ideal of *D* is *S*-*-ideal. Indeed, let *I* be an *S*-finite ideal of *D*. Then there exist an $s \in S$ and a nonzero finitely generated ideal *F* of *D* such that $sI \subseteq F \subseteq I$. Thus $sF^{-1} \subseteq I^{-1}$. Since *D* is a Pr \ddot{u} fer domain, $FF^{-1} = D$; so

$$sD = sFF^{-1} \subseteq FI^{-1} \subseteq II^{-1} \subseteq D$$

which implies that *I* is an *S*-invertible ideal of *D*. Hence by the previous Proposition, *I* is an *S*-*-ideal of *D*.

Let *D* be an integral domain and *S* a multiplicative subset of *D*. We say that *S* is *anti-Archimedean* if $\bigcap_{n\geq 1}s^n D \cap S \neq \emptyset$ for every $s \in S$. In [2], the authors generalized this notion by introducing the concept of weakly anti-Archimedean multiplicative set. According [2], a multiplicative set *S* of an integral domain *D* is called *weakly anti-Archimedean* if for each family $(s_{\alpha})_{\alpha\in\Lambda}$ of elements of *S* we have $(\bigcap_{\alpha\in\Lambda}s_{\alpha}D)\cap S\neq\emptyset$. Note that every weakly anti-Archimedean multiplicative set is anti-Archimedean. The converse is not true as was observed in [3, Example 2.7].

Proposition 2.6. Let D be an integral domain, * a finite type *-operation on D and S a weakly anti-Archimedean multiplicative subset of D. Let $(I_{\alpha})_{\alpha \in \Lambda}$ be a totally ordered family of fractional ideals of D. If for each $\alpha \in \Lambda$, I_{α} is S-*-ideal, then $\cup_{\alpha \in \Lambda} I_{\alpha}$ is an S-*-ideal of D.

Proof. For each $\alpha \in \Lambda$, there exists an $s_{\alpha} \in S$ such that $s_{\alpha}I_{\alpha}^* \subseteq I_{\alpha}$. Since *S* is weakly anti-Archimedean, $\cap_{\alpha \in \Lambda} s_{\alpha} D \cap S \neq \emptyset$. Let $t \in \cap_{\alpha \in \Lambda} s_{\alpha} D \cap S$. Note that for each $\alpha \in \Lambda$, $tI_{\alpha}^* \subseteq I_{\alpha}$. We show that $t(\cup_{\alpha \in \Lambda} I_{\alpha})^* \subseteq \cup_{\alpha \in \Lambda} I_{\alpha}$. Let $x \in (\cup_{\alpha \in \Lambda} I_{\alpha})^*$. Since * is of finite character, there exists a finitely generated subideal *J* of $\cup_{\alpha \in \Lambda} I_{\alpha}$ such that $x \in J^*$. Since *J* is a finitely generated ideal of *D*, there exists a $\beta \in \Lambda$ such that $J \subseteq I_{\beta}$. We have $tx \in tJ^* \subseteq tI_{\beta}^* \subseteq I_{\beta}$; so $tx \in I_{\beta}$ for some $\beta \in \Lambda$ which implies that $t(\cup_{\alpha \in \Lambda} I_{\alpha})^* \subseteq \cup_{\alpha \in \Lambda} I_{\alpha}$, and hence $\cup_{\alpha \in \Lambda} I_{\alpha}$ is an *S*-*-ideal of *D*.

Notation 2.7. Let *D* be an integral domain, * a star-operation on *D* and *S* a multiplicative subset of *D*. An ideal *M* of *D* disjoint with *S* is called *S*-*-maximal if it is maximal in the set of all integral proper *S*-*-ideal of *D*. We denote by *S*-*-Max(*D*) the set of all *S*-*-maximal ideals of *D*.

Proposition 2.8. Every S-*-maximal ideal of D is a prime ideal of D.

Proof. Let *P* be an *S*-*-maximal ideal of *D*. Assume that *P* is not prime, there exist $a, b \in D \setminus P$ such that $ab \in P$. Let I = P + aD and J = P + bD. Since $P \subsetneq I \subseteq I^* \subseteq D$, by maximality of *P* in the set of all integral proper *S*-*-ideal of *D*, $I^* = D$. In the same way we can prove $J^* = D$. This implies that $(IJ)^* = (I^*J^*)^* = D$. But $IJ = P^2 + aP + bP + abP \subseteq P$; so $P^* = D$. Now, since *P* is an *S*-*-ideal of *D*, there exists an $s \in S$ such that $sP^* \subseteq P$ which implies that $sD \subseteq P$, a contradiction because $P \cap S = \emptyset$. Hence *P* is a prime ideal of *D*.

Theorem 2.9. Let *D* be an integral domain, * a finite type *-operation on *D* and *S* a weakly anti-Archimedean multiplicative subset of *D*. Then every integral proper *S*-*-ideal of *D* is included in an *S*-*-maximal ideal of *D*.

Proof. Let \mathcal{F} be the set of all integral proper *S*-*-ideals of *D*. Then $\mathcal{F} \neq \emptyset$, since \mathcal{F} contain all integral proper *S*-principal ideals of *D*. Now, let $(I_{\alpha})_{\alpha \in \Lambda}$ be a totally ordered family of elements of \mathcal{F} . By Proposition 2.6, $\bigcup_{\alpha \in \Lambda} I_{\alpha}$ is an element of \mathcal{F} ; so we conclude by Zorn's Lemma our result.

In the particular case when *S* consists of units of *D*, we regain the following well-known result.

Corollary 2.10. Let D be an integral domain and * a finite type *-operation on D. Then every integral proper *-ideal of D is included in a *-maximal ideal of D.

Lemma 2.11. Let D be an integral domain, *a star-operation on D and S a multiplicative subset of D. Let $(I_k)_{1 \le k \le n}$ be a finite family of fractional ideals of D such that $\bigcap_{1 \le k \le n} I_k \ne (0)$. If for each $1 \le k \le n$, I_k is S-*-ideal, then $\bigcap_{1 \le k \le n} I_k$ is an S-*-ideal of D.

Proof. For each $1 \le k \le n$, there exists an $s_k \in S$ such that $s_k I_k^* \subseteq I_k$. Let $t = s_1 s_2 \cdots s_n$. Then $t \in S$ and for each $1 \le k \le n$, $tI_k^* \subseteq I_k$. For each $1 \le m \le n$, $t(\bigcap_{1 \le k \le n} I_k)^* \subseteq tI_m^* \subseteq I_m$. This implies that $t(\bigcap_{1 \le k \le n} I_k)^* \subseteq \bigcap_{1 \le k \le n} I_k$, and hence $\bigcap_{1 \le k \le n} I_k$ is an *S*-*-ideal of *D*.

Theorem 2.12. Let *D* be an integral domain, * a finite type *-operation on *D* and *S* a weakly anti-Archimedean multiplicative subset of *D*. Then for each *S*-*-ideal *I* of *D*,

$$I = \bigcap_{M \in S^{-*}-Max(D)} ID_M.$$

Proof. Let *x* be a nonzero element of $\bigcap_{M \in S^{*}-Max(D)} ID_M$. Then for each *S*-*-maximal ideal *M* of *D*, there exists an $s_M \in D \setminus M$ such that $s_M x \in I$. Let $J = D \cap (\frac{1}{x}I)$. Then $s_M \in J$ for each *S*-*-maximal ideal *M* of *D*. Moreover, Since *I* is an *S*-*-ideal of *D*, $\frac{1}{x}I$ is an *S*-*-ideal of *D*; so by Lemma 2.11, *J* is an *S*-*-ideal of *D*. Assume that $J \neq D$. Then *J* is an integral proper *S*-*-ideal of *D*; so by Theorem 2.9, there exists $M \in S^{-*}-Max(D)$ such that $J \subseteq M$ which implies that $s_M \in J \subseteq M$, a contradiction. Thus J = D which implies that $x \in I$. Hence $I \subseteq \bigcap_{M \in S^{-*}-Max(D)} ID_M$. This completed the proof, since other inclusion is obvious.

Corollary 2.13. Let D be an integral domain, * a finite type *-operation on D and I a *-ideal of D. Then

$$I = \bigcap_{M \in * \text{-}Max(D)} ID_M.$$

Remark 2.14. Let *I* be an *S*-*-ideal of an integral domain *D*, where *S* is a multiplicative subset of *D* and * a star-operation of finite character on *D*. Then there exits an $s \in S$ such that $sI^* \subseteq I$. But $I^* = \bigcap_{M \in *-Max(D)} I^*D_M$; so

$$s(\bigcap_{M\in *-Max(D)}ID_M)\subseteq s(\bigcap_{M\in *-Max(D)}I^*D_M)=sI^*\subseteq I\subseteq \bigcap_{M\in *-Max(D)}ID_M.$$

Hence there exists an $s \in S$ such that

$$s(\bigcap_{M\in *-Max(D)} ID_M) \subseteq I \subseteq \bigcap_{M\in *-Max(D)} ID_M.$$

3 S-*-invertible ideals

In this section we extended the notion of *S*-invertible using the *-operation and we generalize some classical results concerning the notion of *-invertibility. We begin this section by the following definition.

Definition 3.1. Let *D* be an integral domain, * a star-operation on *D* and *S* a multiplicative subset of *D*. A fractional ideal *I* of *D* is called *S*-*-invertible if there exists an $s \in S$ and a fractional ideal *J* of *D* such that $sD \subseteq (IJ)^* \subseteq D$.

Example 3.2. Let $D = \mathbb{Z} + X\mathbb{Z}[i][X]$, $S = \{2^n \mid n \in \mathbb{N}\}$ and $I = 2\mathbb{Z} + (1+i)X\mathbb{Z}[i][X]$. Since $2 \in I$, then $2D \subseteq I.D \subseteq D$. Which implies that *I* is *S*-invertible. On the other part, by [1, Lemma 2.1], it is easy to show that $I^{-1} = \mathbb{Z} + X\frac{1-i}{2}\mathbb{Z}[i][X]$. Thus if $II^{-1} = D$, then $1 = P_1(0)Q_1(0) + \cdots + P_n(0)Q_n(0)$ for some $P_1, \ldots, P_n \in I$ and $Q_1, \ldots, Q_n \in I^{-1}$. But for $1 \leq j \leq n$, $P_j(0) \in 2\mathbb{Z}$ and $Q_j(0) \in \mathbb{Z}$; so $1 = 2m_1 + \cdots + 2m_n$, $m_j \in \mathbb{Z}$. A contradiction. Hence *I* is not invertible.

Remark 3.3. Let *D* be an integral domain, * a star-operation on *D* and *S* a multiplicative subset of *D*.

- 1. Since $I^* \subseteq I_v$ for each fractional ideal *I* of *D*, every *S*-*-invertible ideal of *D* is *S*-*v*-invertible.
- 2. Note that for a fractional ideal *I* of *D*, we have *I* is *S*-*-invertible if and only if *I** is *S*-*-invertible. Indeed, *I* is *S*-*-invertible if and only if $sD \subseteq (IJ)^* = (I^*J)^* \subseteq D$ for some $s \in S$ and some fractional ideal *J* of *D* if and only if *I** is *S*-*-invertible.
- 3. Let *I* be a fractional *S*-*-invertible ideal of *D*, then there exist an $s \in S$ and a fractional ideal *J* of *D* such that $sD \subseteq (IJ)^* \subseteq D$. We have

$$sI^{-1} = (I^{-1}sD)^* \subseteq (I^{-1}(IJ)^*)^* = (I^{-1}(IJ))^* \subseteq J^*.$$

Moreover, since $IJ^* \subseteq (IJ)^* \subseteq D$, $J^* \subseteq I^{-1}$. Thus $sI^{-1} \subseteq J^* \subseteq I^{-1}$. Note that in the same way we can prove that $sJ^{-1} \subseteq I^* \subseteq J^{-1}$.

4. By [6, Proposition 2.7], every S-principal ideal of D is S-invertible. This implies that each S-principal ideal of D is S-*-invertible.

Proposition 3.4. Let I be a fractional ideal of an integral domain D, S a multiplicative subset of D and *a star-operation on D. Then I is S-*-invertible if and only of there exists an $s \in S$ such that $sD \subseteq (II^{-1})^* \subseteq D$. In particular, I^{-1} is also an S-*-invertible ideal of D.

Proof. If *I* is *S*-*-invertible, then there exist an $s \in S$ and a fractional ideal *J* of *D* such that $sD \subseteq (IJ)^* \subseteq D$. But by Remark 3.3(3), $J^* \subseteq I^{-1}$; so $sD \subseteq (IJ)^* = (IJ^*)^* \subseteq (II^{-1})^* \subseteq D$. The other implication is obvious.

Definition 3.5. Let *D* be an integral domain, *S* a multiplicative subset of *D* and * a star-operation on *D*. A fractional ideal *I* of *D* is called of *S*-*-finite type if there exist an $s \in S$ and a fractional finitely generated ideal *F* of *D* such that $sI \subseteq F^* \subseteq I^*$.

Let *D* be an integral domain and *S* a multiplicative subset of *D*. According to [5], *D* is called an *S*-Mori domain if every increasing sequence of integral divisorial ideals of *D* is *S*-stationary (an increasing sequence $(I_k)_{k \in \mathbb{N}}$ of ideals of *D* is called *S*-stationary if there exist a positive integer *n* and an $s \in S$ such that for each $k \ge n$, $sI_k \subseteq I_n$ [8]). It was shown in [5], that if *D* is an *S*-Mori domain, then for each nonzero fractional ideal *I* of *D*, $sI \subseteq J_v \subseteq I_v$ for some $s \in S$ and some finitely generated fractional ideal *J* of *D* such that $J \subseteq I$. This implies that in an *S*-Mori domain every nonzero fractional ideal *I* of *D* is of *S*-*v*-finite type.

Remark 3.6. Let *D* be an integral domain, * a star-operation on *D* and *S* a multiplicative subset of *D*. Let *I* be a fractional ideal of *D* of *S*-*-finite type. Then there exist an $s \in S$ and a fractional finitely generated ideal *J* of *D* such that $sI \subseteq J^* \subseteq I^*$. If the star-operation * is of finite character, then we can suppose that $J \subseteq I$. Indeed, let $J = (a_1, ..., a_n)$, where $a_i \in I^*$. Then for each $1 \le i \le n$, there exist a finitely generated subideal J_i of *I*. Let $J' = J_1 + \cdots + J_n$. Then *J'* is a finitely generated subideal of *I*. Moreover, $J \subseteq J_1^* + \cdots + J_n^* \subseteq (J')^*$; so $sI \subseteq J^* \subseteq (J')^* \subseteq I^*$.

Let *D* be an integral domain and * a star-operation on *D*. Let *I* and *J* be tow fractional ideals of *D*. It will known that if * is of finite character, then

 $(IJ)^* = \cup \{(I'J')^* \mid I' \subseteq I, J' \subseteq J, \text{ two finitely generated fractional ideals of } D\}.$

Our next Theorem prove a neccesary and sufficient condition for a fractional ideal to be *S*-*-invertible. This extended a result proved by Kang in [9]. To prove it we need the following Lemma.

Lemma 3.7. Let D be an integral domain, * a finite type *-operation on D and S a multiplicative subset of D. Every S-*-invertible ideal of D is an S-*-finite ideal of D.

Proof. Let *I* be an *S*-*-invertible ideal of *D*. There exist an $s \in S$ and a fractional ideal *J* of *D* such that $sD \subseteq (IJ)^* \subseteq D$. Since * is of finite character, there exist two finitely generated fractional ideals *I'* and *J'* of *D* such that $I' \subseteq I$, $J' \subseteq J$ and $s \in (I'J')^*$. This implies that $sD \subseteq (I'J')^* \subseteq D$. Now by Remark 3.3(3), $s(J')^{-1} \subseteq (I')^* \subseteq (J')^{-1}$ and $sJ^{-1} \subseteq I^* \subseteq J^{-1}$. Since $J' \subseteq J$, $J^{-1} \subseteq (J')^{-1}$; so

$$sI \subseteq sI^* \subseteq s(J')^{-1} \subseteq (I')^* \subseteq I^*.$$

Hence *I* is of *S*-*-finite type.

Theorem 3.8. Let D be an integral domain, * a finite type *-operation on D and S a weakly anti-Archimedean multiplicative subset of D. Let I be a fractional ideal of D. Then the following statements are equivalent.

- 1. *I* is an *S*-*-invertible ideal of *D*.
- 2. *I* is *S*-*-finite and for each $M \in S$ -*-Max(*D*), *ID*_{*M*} is a principal ideal of *D*_{*M*}.

Proof. (1) \Rightarrow (2) By Lemma 3.7, *I* is of *S*-*-finite type. Let *M* be an *S*-*-maximal ideal of *D*. We have $II^{-1} \not\subseteq M$, indeed, if $II^{-1} \subseteq M$, then $sD \subseteq (II^{-1})^* \subseteq M$ for some $s \in S$; so $s \in M$, a contradiction because $S \cap M = \emptyset$. This implies that $(ID_M)(I^{-1}D_M) = II^{-1}D_M = D_M$, and thus ID_M is an invertible ideal of D_M . Hence ID_M is principal since D_M is a local ring.

 $(2) \Rightarrow (1)$ By hypothesis, there exist an $s \in S$ and a fractional finitely generated subideal J of I such that $sI \subseteq J^* \subseteq I^*$. Assume that I is not S-*-invertible. Then $(II^{-1})^* \subsetneq D$; so by Theorem 2.9, there exist an S-*-maximal ideal M of D such that $(II^{-1})^* \subseteq M$. By hypothesis, ID_M is principal, then $ID_M = aD_M$ for some $a \in I$. This implies that $\frac{1}{a}I \subseteq D_M$; so $\frac{1}{a}J \subseteq D_M$. Since J is finitely generated, there exists a $t \in D \setminus M$ such that $\frac{t}{a}J \subseteq D$. We have

$$\frac{st}{a}I \subseteq \frac{st}{a}I^* \subseteq \frac{t}{a}J^* \subseteq D.$$

Thus $\frac{st}{a} \in I^{-1}$ which implies that $st \in aI^{-1} \subseteq II^{-1} \subseteq M$. Since $t \notin M$, $s \in M$ because M is a prime ideal of D by Proposition 2.8. This contradict that $M \cap S = \emptyset$. Hence I is an S-*-invertible ideal of D.

In the particular case when S consists of units of D we regain the following well-known result proved by B.G. Kang ([9]).

Corollary 3.9. Let D be an integral domain, * a finite type *-operation on D and I a fractional ideal of D. Then the following statements are equivalent.

- 1. I is a *-invertible ideal of D.
- 2. *I* is of *-finite type and it is t-locally principal.

Let *D* be an integral domain and *S* a multiplicative subset of *D*. It is well-known that for each finitely generated fractional ideal *I* of *D*, $(I_S)^{-1} = (I^{-1})_S$. Our next Proposition improves this result.

Proposition 3.10. Let S a multiplicative subset of an integral domain D, * a finite type *-operation on D and I a fractional ideal of D. If I is an S-*-finite ideal of D, then $(I_S)^{-1} = (I^{-1})_S$.

Proof. We have always that $(I^{-1})_S \subseteq (I_S)^{-1}$, so we must prove the converse in order to conclude. Since I is S-*-finite, there exist an $s \in S$ and a finitely generated ideal $J \subseteq I$ such that $sI \subseteq J^* \subseteq I^*$. Thus $J^{-1} \subseteq \frac{1}{s}I^{-1}$, and consequently $(J^{-1})_S \subseteq (I^{-1})_S$. Since J is finitely generated, $(J^{-1})_S = (J_S)^{-1}$. Moreover, $J_S \subseteq I_S$. Thus $(I_S)^{-1} \subseteq (J_S)^{-1} = (J^{-1})_S \subseteq (I^{-1})_S$, and hence $(I^{-1})_S = (I_S)^{-1}$.

Next, we give a relation between *S*-*t*-invertible ideals of *D* and *t*-invertible ideals of the localization D_S , where *t*- is the *t*-operation.

Proposition 3.11. Let S a multiplicative subset of an integral domain D and I a fractional ideal of D.

- 1. If I is an S-t-invertible ideal of D, then I_S is a t-invertible ideal of D_S .
- 2. Assume that for each t-finite type ideal J of D, $(J_S)_t \cap D = J_t$: s for some $s \in S$. Then I is S-t-invertible if and only if I_S is t-invertible and I is an S-*-finite ideal of D.

Proof. (1). Since *I* is *S*-*t*-invertible, $sD \subseteq (II^{-1})_t \subseteq D$ for some $s \in S$. This implies that $D_S = ((II^{-1})_t)_S$. But $((II^{-1})_t)_S \subseteq ((II^{-1})_S)_t$; so $D_S = ((II^{-1})_S)_t$ because $((II^{-1})_S)_t \subseteq D_S$. Thus $D_S = (I_S(I^{-1})_S)_t$, and hence I_S is a *t*-invertible ideal of D_S .

(2). The "only if" part follows from (1) and Lemma 3.7, since *t* is a finite type *-operation. For the "if" part, let $s \in S$ and *J* a finitely generated subideal of *I* such that $sI \subseteq J_t \subseteq I_t$. This implies that

 $(I_t)_S = (J_t)_S$. First we show that J_S is *t*-invertible. Since I_S is *t*-invertible, $D_S = (I_S(I^{-1})_S)_t$. Thus

$$D_{S} = (I_{S}(I^{-1})_{S})_{t}$$

$$\subseteq ((I_{t})_{S}(I^{-1})_{S})_{t}$$

$$\subseteq ((J_{t})_{S}(J^{-1})_{S})_{t}$$

$$= ((I_{t}J^{-1})_{S})_{t}$$

$$\subseteq ((JJ^{-1})_{S})_{t}$$

$$\subseteq D_{S}.$$

This implies that $((J_S(J^{-1})_S))_t = ((JJ^{-1})_S)_t = D_S$, hence J_S is *t*-invertible. Now, since J_S is *t*-invertible, $(J_S)^{-1}$ is of *t*-finite type; so there exists a finitely generated subideal *F* of J^{-1} such that $(J^{-1})_S = (J_S)^{-1} = (F_S)_t$. Thus $D_S = ((JJ^{-1})_S)_t = ((FJ)_S)_t$; so $D = ((FJ)_S)_t \cap D$. By hypothesis, $D = (FJ)_t : s'$ for some $s' \in S$, which implies that $s'D \subseteq (FJ)_t$. But $F \subseteq J^{-1} \subseteq \frac{1}{s}I^{-1}$ and $J \subseteq I$, thus $ss'D \subseteq (sFJ)_t \subseteq (II^{-1})_t \subseteq D$, and hence *I* is an *S*-*t*-invertible ideal of *D*.

Proposition 3.12. Let I be a non zero ideal of an integral domain D. Let T be a multiplicatively closed subset of D and S be a multiplicative subset of D.

- 1. If I is an S-t-ideal of D, then $I_T \cap D$ is an S-t-ideal of D.
- 2. If I_T is an S-t-ideal of D_T , then $I_T \cap D$ is an S-t-ideal of D.
- *Proof.* 1. Let *I* be a *S*-*t*-ideal of *D*. Then $sI_t \subseteq I$ for some $s \in S$. We show that $s(I_T \cap D)_t \subseteq I_T \cap D$. Let $\alpha \in (I_T \cap D)_t$, thus there exists a finitely generated fractional ideal *F* of *D* contained in $(I_T \cap D)$ such that $\alpha \in F_v$. Since $F \subseteq F_T \subseteq I_T$, then $s\alpha \in s(I_T)_t$ and there exists an $r \in T$ such that $rF \subseteq I$. Then $r\alpha \in rF_v = (rF)_v \subseteq I_t \subseteq \frac{1}{s}I$. Hence $sr\alpha \subseteq I$, so $s\alpha \subseteq I_T$, then $s\alpha \subseteq I_T \cap D$. Therefore $s(I_T \cap D)_t \subseteq I_T \cap D$.
 - 2. Let I_T be an *S*-*t*-ideal of D_T . Then $s(I_T)_t \subseteq I_T$ for some $s \in S$. We show that $s(I_T \cap D)_t \subseteq I_T \cap D$. Let $\alpha \in (I_T \cap D)_t$, thus there exists a finitely generated fractional ideal *J* of *D* contained in $(I_T \cap D)$ such that $\alpha \in J_v$. Since $J \subseteq J_T \subseteq I_T$, then $s\alpha \in s(I_T)_t$. Hence $s\alpha \in s(I_T)_t \cap D \subseteq I_T \cap D$. Therefore $s(I_T \cap D)_t \subseteq I_T \cap D$.

Let *D* be an integral domain with quotient field *K*. Let * be a star operation on *D*. Let $f = a_0 + \dots + a_n X^n \in K[X]$, A_f will denote the *D*-submodule of *K* generated by $\{a_0, \dots, a_n\}$. The set $N_* = \{f \in D[X] \mid (A_f)^* = D\}$ is a multiplicatively closed subset of D[X]. We defined the ring $D[X]_{N_*}$ by $D[X]_{N_*} = \{\frac{f}{g} \mid f \in D[X], g \in N_*\}$.

Proposition 3.13. Let * be a *-operation on an integral domain D with quotient field K, S be a multiplicative subset of D. Let I be an ideal of D. Then :

- 1. If I is S-*-ideal, then there exist $s \in S$ such that $s(ID[X]_{N_*} \cap K) \subseteq I$.
- 2. If I is an S-v-ideal (resp., S-t-ideal) of D, then $I[X]_{N_v}$ is an S-v-ideal (resp., S-t-ideal) of $D[X]_{N_v}$.
- *Proof.* 1. Let *I* be *S*-*-ideal. Then $sI^* \subseteq I$, for some $s \in S$. We show that $s(ID[X]_{N_*} \cap K) \subseteq I$. Let $a \in (ID[X]_{N_*} \cap K)$. Then ag = f for some $g \in N_*$ and $f \in I[X]$. Hence $(a) = (aA_g)^* = (A_{ag})^* = (A_f)^* \subseteq I^* \subseteq \frac{1}{s}I$. So $sa \in I$. Therefore $s(ID[X]_{N_*} \cap K) \subseteq I$.
 - 2. Suppose that *I* is a *S*-*v*-ideal, then $sI_v \subseteq I$, for some $s \in S$. Then $s(I[X]_{N_v})_v = sI_v[X]_{N_v}$ by [9, Proposition 2.2]. Hence $s(I[X]_{N_v})_v \subseteq I[X]_{N_v}$. Therefore $I[X]_{N_v}$ is a *S*-*v*-ideal of $D[X]_{N_v}$. In the some way we can show that $I[X]_{N_v}$ is an *S*-*t*-ideal of $D[X]_{N_v}$.

43

Acknowledgments. The authors would like to thank the reviewer for many helpful comments and suggestions which improved the paper in a significant way.

References

- [1] D.F. Anderson, S. E. Baghdadi and S. E. Kabbaj, On the class group of A + XB[X] domains, Advances in Commutaive Ring Theory, Lecture Notes in Pure and Appl. Math. Marcel Dekker 205 (1999) 73 – 85.
- [2] M. Achraf and A. Hamed, *S*-prime ideals of a commutative ring, Beiträge zur Algebra und Geometrie, 61 (2020), 533 542.
- [3] D.E. Dobbs, Ahmes Expansions of Formal Laurent Series and a Class of Nonarchimedean Integral Domains, J. Algebra, **103** (1986), 193-201.
- [4] R. Gilmer, Multiplicative Ideal theory, Maecel Dekker, New York, (1972).
- [5] A. Hamed, On S-Mori domains, J. Algebra Appl., 17 (09), (2018)1850171.
- [6] A. Hamed, The local S-class group of an integral domain, Rocky Mountain J. Math., 48(5) (2018), 1585 – 1605.
- [7] A. Hamed, A new characterization of GCD domains of formal power series, St. Petersbg. Math. J., 33 (2022), 879 – 889.
- [8] A. Hamed and S. Hizem, Modules satisfying the S-Noetherian property and S-ACCR, Comm. Algebra, 44 (2016), 1941–1951.
- [9] B.G. Kang, Prüfer *v*-multiplication domains and the ring $R[X]_{N_v}$, J. Algebra 123 (1989), 151–170.