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Abstract. Since the introduction of n-ideals and J-ideals in commutative rings many different aspects of these ideals have

been investigated. As a generalization the notion of weakly n-ideals and weakly J-ideals was introduced and studied.

Recently it was proved that many of the results are also true for noncommutative rings as a special case of a more general

situation. In a recent paper Khashan et. al introduced the notion of semi n-ideals as a generalization of n-ideals where

n is the prime radical and studied this generalization. In this note we show that these results are special cases of a more

general situation. If ρ is a special radical and R a noncommutative ring then the ideal I of R is a semi ρ-ideal if aRa ⊆ I,
then a ∈ ρ(R) or a ∈ I. This covers a wide spectrum of semi ideals and if ρ is the prime radical we have the notion of semi

n-ideals for noncommutative rings. In this note we prove that most of the results for the semi n-ideals are satisfied for

noncommutative rings as a special case.
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1 Introduction

Throughout this paper, all rings are assumed to be noncommutative with nonzero identity. We recall
that a proper ideal I of a ring R is called semiprime if whenever a ∈ R is such that aRa ⊆ I , then
a ∈ I . In 2017, Tekir, Koc and Oral in [10] introduced the concept of n-ideals of commutative rings.
A proper ideal I of a commutative ring R is called an n-ideal if whenever a,b ∈ R are such that ab ∈ I
and a < P (R), then b ∈ I where P (R) is the prime radical of the ring R. Recently, Khashan and Bani-
Ata in [8] generalized n-ideals by defining and studying the class of J-ideals. A proper ideal I of
R is called a J-ideal if ab ∈ I and a < J(R) imply b ∈ I for a,b ∈ R, where J(R) denotes the Jacobson
radical of R. In [5] Groenewald introduce the notion of ρ-ideals for a noncommutative ring and a
special radical ρ. An ideal I of a noncommutative ring R is a ρ-ideal if for a,b ∈ R such that aRb ⊆ I
and a < ρ(R), then b ∈ I . In [1] the notion of a semi n-ideal is introduced as a new generalization of
the concept of n-ideals by defining a proper ideal I of a commutative ring R to be a semi n-ideal if
whenever a ∈ R is such that a2 ∈ I , then a ∈ P (R) or a ∈ I . Some examples of semi n-ideals are given
and semi n-ideals are investicated under various contexts. In this paper we introduce the notion
of semi ρ-ideals for a special radical ρ and a noncommutative ring R as new generalization of the
concept of ρ-ideals. If I is an ideal of the noncommutative ring R and ρ is a special radical, then
I is a semi ρ-ideal if aRa ⊆ I and a < ρ(R), then a ∈ I. The class of semi ρ-ideals is a generalization
of semiprime and n-ideals. We start Section 2 by giving some examples (see Example 2.4) to show
that this generalization is proper. Next, we determine several characterizations of semi ρ-ideals for
a special radical ρ. In the rest of the paper ρ will always be a special radical. We investigate semi
ρ-ideals under various contexts of constructions such as homomorphic images and idealizations, see
Propositions 5.1 and 5.2. Moreover, for a direct product of rings R = R1 ×R2 × ...×Rk , we determine
all semi ρ-ideals of R, see Theorems 3.2 and 3.3.

In 1978, the concept of semiprime submodules is presented. A proper submodule is said to be
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semiprime if whenever r ∈ R,m ∈M and rRrm ⊆N , then rm ∈N . See [3] for properties of semiprime
submodules. Afterwards, the notions of ρ-submodules are introduced and studied in [5]. A proper
submodule N is called an ρ-submodule of M if whenever rRm ⊆N and r < (ρ(R)M :M), then m ∈N .
As a new generalization of the above structures, in Section 4, we define a proper submodule N of M
to be a semi ρ-submodule if whenever rRrm ⊆N and r < (ρ(R)M :M), then rm ∈N . We illustrate (see
Example 4.7) that this generalization of ρ-submodules is proper.

In what follows, R is a ring (associative, not necessarily commutative and not necessarily with
identity) and M is an R − R-bimodule. The idealization of M is the ring R �M with (R �M,+) =
(R,+)⊕(M,+) and the multiplication is given by (r,m)(s,n) = (rs, rn+ms). R�M itself is, in a canonical
way, an R−R-bimodule andM ' 0�M is a nilpotent ideal of R�M of index 2. We also have R ' R�0
and the latter is a subring of R�M. If I is an ideal of R and N is an R−R-bi-submodule of M, then
I �N is an ideal of R�M if and only if IM +MI ⊆N . If ρ is a special radical, it follows from [11] that
if R is any ring, then ρ(R�M) = ρ(R)�M for all R −R-bimodules M. In Proposition 5.1, we clarify
the relation between semi ρ-ideals of the idealization ring R�M and those of R. For the following
definitions of special radicals and related results we refer the reader to [12].

A class ρ of rings forms a radical class in the sense of Amitsur-Kurosh if ρ has the following three
properties

1. The class ρ is closed under homomorphism, that is, if R ∈ ρ, then R/I ∈ ρ for every I C R.

2. Let R be any ring. If we define ρ(R) =
∑
{I C R : I ∈ ρ}, then ρ(R) ∈ ρ.

3. For any ring R the factor ring R/ρ(R) has no nonzero ideal in ρ i.e. ρ(R/ρ(R)) = 0.

A class M of rings is a special class if it is hereditary, consists of prime rings and satisfies the
following condition (∗) if 0 , I C R, I ∈M and R a prime ring, then R ∈M.

LetM be any special class of rings. The class U (M) = {R : R has no nonzero homomorphic image in
M} of rings forms a radical class of rings and the upper radical class U (M) is called a special radical
class.

Let ρ be a special radical with special class M i.e. ρ = U (M). Now let Sρ =
{
R : ρ(R) = 0

}
. If P

denotes the class of prime rings, then for the special radical ρ it follows from [12] that ρ = U (P ∩Sρ).
For a ring R we have ρ(R) = ∩{I C R : R/I ∈ P ∩Sρ} i.e. ρ has the intersection property relative to the
class P ∩Sρ.

Let I C R, then ρ(R/I) = ρ∗(I)/I for some uniquely determined ideal ρ∗(I) of R with ρ(I) ⊆ I ⊆ ρ∗(I)
and ρ∗(I) is called the radical of the ideal I while ρ(I) is the radical of the ring I.

We also have ρ∗(I) = ρ(R) if and only if I ⊆ ρ(R). Also I = ρ∗(I) if and only if R/I ∈ Sρ.
In what follows let ρ be a special radical with special classM. Hence ρ = U (P ∩Sρ).
The following are some of the well known special radicals which are defined in [12], prime radical

β, Levitski radical L, Kőthe’s nil radicalN , Jacobson radical J and the Brown McCoy radical G.

Definition 1.1. Let ρ be a special radical. A proper ideal I of the ring R is called a ρ-ideal if whenever
a,b ∈ R and aRb ⊆ I and a < ρ(R), then b ∈ I.

In [10] and [8] the notions of n-ideals and J-ideals were introduced for commutative rings.

Definition 1.2. [10, Definition 2.1] and [8, Definition 2.1] If ρ is the prime radical or the Jacobson
radical of a commutative ring, then a proper ideal I of R is a ρ-ideal if whenever a,b ∈ R with ab ∈ I
and a < ρ(R), then b ∈ I.

Remark 1.3. Let R be a commutative ring and I a proper ideal of R. I is a ρ-ideal if and only if a,b ∈ R
with ab ∈ I and a < ρ(R), then b ∈ I.
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2 Semi-ρ-ideals

Definition 2.1. Let ρ be a special radical. A proper ideal I of the ring R is called a semi ρ-ideal if
whenever a ∈ R and aRa ⊆ I, then a ∈ I or a ∈ ρ(R).

Proposition 2.2. If ρ is a special radical, then I is a semi ρ-ideal if I = ρ∗(I) or ρ(R) = ρ∗(I).

Proof. Since I = ρ∗(I) if and only if R/I ∈ Sρ, it is clear that I is a semiprime ideal and hence a semi
ρ-ideal. Now, if ρ(R) = ρ∗(I) we have that I ⊆ ρ(R) and if aRa ⊆ I, then aRa ⊆ ρ(R) and since ρ(R) is a
semiprime ideal, we have a ∈ ρ(R) and hence I is a semi ρ-ideal.

It is known that if R is a commutative ring and ρ is the prime radical then if I is a semi ρ-ideal
then I = ρ∗(I) or ρ(R) = ρ∗(I) (see [1, Proposition 2.2] ). It is not clear if this is also the case for
noncommutative rings.

Since for any special radical ρ and a ring R, ρ(R) is a semiprime ideal, the following properties of
semi ρ-ideals can be easily observed.

Proposition 2.3. For a special radical ρ and a ring R, the following statements hold.
1. Every ρ-ideal is a semi ρ-ideal.
2. Every (weakly) semiprime ideal I is a semi ρ-ideal. The converse also holds if ρ(R) ⊆ I .
3. For every proper ideal I of R, ρ∗(I) is a (semiprime) semi ρ-ideal. In particular, ρ(R) is a semi ρ-ideal

of R.
4. If I is an ideal such that I ⊆ ρ(R), then I is a semi ρ-ideal.
5. If ρ is a special radical and R ∈ Sρ, then an ideal I of R is a semi ρ-ideal if and only if it is a semi-prime

ideal.

However, the converses of 1. and 2. in Proposition 2.3 are not true in general.

Example 2.4. 1. Let ρ be a special radical and R ∈ Sρ. If I is a nonzero ideal of R then I is a semi
ρ-ideal which is not a ρ-ideal. This follows from [5, Proposition 1.5] since I , ρ(R) = {0} .

2. Let ρ = P and R =M2(Z32). I =M2(
〈
16

〉
) is a semi ρ-ideal which is not a semi prime ideal.

Remark 2.5. If R is an Artinian ring, then since β(R) = L(R) = N (R) = J (R)= G(R) the notions of
β,L,N ,J and semi G-ideals are the same. For a commutative ring R, we have β(R) = L(R) = N (R).
Hence for commutative rings the notions semi β, semi L and semiN -ideals are the same.

Next, we give some equivalent conditions that characterize semi ρ-ideals for a special radical ρ.

Theorem 2.6. Let ρ be a special radical and let I be a proper ideal of a ring R. The following state-
ments are equivalent.

1. I is a semi ρ-ideal of R.

2. Whenever a ∈ R with 0 , aRa ⊆ I , then a ∈ ρ(R) or a ∈ I.

3. Whenever a ∈ R with 〈a〉2 ⊆ I , then 〈a〉 ⊆ ρ(R) or 〈a〉 ⊆ I.

4. If A is an ideal of R such that A2 ⊆ I, then A ⊆ ρ(R) or A ⊆ I.

5. If A is an ideal of R such that An ⊆ I for some positive integer n, then A ⊆ ρ(R) or A ⊆ I.

6. If A is a left ideal (right ideal) of R such that A2 ⊆ I, then A ⊆ ρ(R) or A ⊆ I.
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Proof. (1)⇒ (2) This is clear.
(2)⇒ (1) Let a ∈ R such that aRa ⊆ I. If aRa = {0} , then aRa ⊆ ρ(R) and since ρ(R) is a semiprime

ideal, we have a ∈ ρ(R). If 0 , aRa ⊆ I the result follows from (2).
(1)⇒ (3) Let a ∈ R with 〈a〉2 ⊆ I. Now aRa ⊆ 〈a〉2 ⊆ I and we have a ∈ I or a ∈ ρ(R) and hence 〈a〉 ⊆ I

or 〈a〉 ⊆ ρ(R).
(3) ⇒ (4) Let A be an ideal of R such that A2 ⊆ I . Suppose A * ρ(R), then A2

* ρ(R) since ρ(R)
is a semiprime ideal of R. We show that A ⊆ I. Suppose a ∈ A2 and a < ρ(R). Let b be any element
of A. Now 〈b〉2 ⊆ A2 ⊆ I . If b < ρ(R), then b ∈ I from (3). Suppose b ∈ ρ(R). We have (〈a+ b〉)2 ⊆
(〈a〉+ 〈b〉)2 ⊆ 〈a〉〈a〉+ 〈a〉〈b〉+ 〈b〉〈a〉+ 〈b〉〈b〉 ⊆ A2 ⊆ I. Hence 〈a+ b〉 ⊆ I or 〈a+ b〉 ⊆ ρ(R). 〈a+ b〉 * ρ(R)
for if 〈a+ b〉 ⊆ ρ(R), then a ∈ ρ(R) a contradiction. Hence 〈a+ b〉 ⊆ I. Since a ∈ I, we have b ∈ I and
hence A ⊆ I.

(4) ⇒ (5) Let An ⊆ I for some positive integer n. To prove the argument, we use mathematical
induction. If n 6 2 the result follows from (4). Assume that the claim of (4) holds for all 2 < k < n.
We show that it is also true for n. Suppose n is even, say, n = 2t for some positive integer t. Now,
An = (At)2 ⊆ I. From (4) we have At ⊆ I or At ⊆ ρ(R). If At ⊆ ρ(R), then A ⊆ ρ(R) since ρ(R) is a semi
prime ideal of R. If At ⊆ I , then by the induction hypothesis, we conclude that A ⊆ I. Now, suppose n
is odd. Then n+ 1 = 2s for some s < n . Similarly, since (As)2 ⊆ I, (As) ⊆ I or As ⊆ ρ(R). If As ⊆ ρ(R),
then A ⊆ ρ(R) since ρ(R) is a semi prime ideal of R. If At ⊆ I , then by the induction hypothesis, we
conclude that A ⊆ I , so we are done.

(5)⇒ (4) is clear.
(4)⇒ (6) Let T be a left ideal of R such that T 2 ⊆ I . Now TRTR ⊆ T 2R ⊆ I. From (4) TR ⊆ I or

TR ⊆ ρ(R). Since R has an identity, we have T ⊆ I or T ⊆ ρ(R) and we are done.
(6)⇒ (4) is clear.
(4)⇒ (1) Let a ∈ R such that aRa ⊆ I. Now RaRRaR ⊆ I and from (4) we have that a ∈ RaR ⊆ I or

a ∈ RaR ⊆ ρ(R) and we are done.

Lemma 2.7. Let ρ be a special radical and I and J be ideals of R with I, J * ρ(R). Then

1. If I and J are semi ρ-ideals with I2 = J2, then I = J .

2. If I2 is a semi ρ-ideal, then I2 = I .

Proof. 1. Since I2 ⊆ J and I * ρ(R), then by Theorem 2.3, we have I ⊆ J . Similarly, since J2 ⊆ I and
J * ρ(R), we have J ⊆ I . Thus, we have the equality.

2. Since I2 ⊆ I2, I * ρ(R) and I2 is a semi ρ-ideal, we have I ⊆ I2 and so I2 = I .

Proposition 2.8. Let ρ1 and ρ2 be two special radicals such that ρ1 ≤ ρ2, then every semi ρ1-ideal is a semi
ρ2-ideal.

Proof. Let I be a semi ρ1-ideal of the ring R and suppose aRa ⊆ I and a < ρ2(R). Since ρ1 ≤ ρ2,we have
ρ1(R) ⊆ ρ2(R) and therefore a < ρ1(R). Since I is a semi ρ1-ideal, we have a ∈ I and we are done.

Remark 2.9. The converse of Proposition 2.8 is not true in general as can be seen from the following
example. Consider the local ring R = Z〈2〉 = { ab : a,b ∈ Z,2 - b} and let I = 〈4〉〈2〉 = { ab : a ∈ 〈4〉 ,2 - b}.
Since R is a local ring, I is a J -ideal and hence also a semi J -ideal. I is not a semi P -ideal of R. For

example,
(

2
3

)2
∈ I but 2

3 < P (R) = {0} and 2
3 < I.

Proposition 2.10. Let {Ii}i∈∆ be a family of semi ρ-ideals of R, then
⋂
i∈∆
Ii is a semi ρ-ideal of R.

Proof. Let aRa ⊆
⋂
i∈∆
Ii with a < ρ(R) for a ∈ R. Then aRa ⊆ Ii for every i ∈ ∆. Since Ii is a semi ρ-ideal

of R and a < ρ(R), we get a ∈ Ii for every i ∈ ∆. Hence a ∈
⋂
i∈∆

Ii .
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Theorem 2.11. Let R and S be rings and f : R → S be a surjective ring-homomorphism. If ρ is a
special radical, then the following statements hold:

1. If I is a semi ρ-ideal of R and ker(f ) ⊆ I , then f (I) is a semi ρ-ideal of S.

2. If J is a semi ρ-ideal of S and ker(f ) ⊆ ρ(R), then f −1(J) is a semi ρ-ideal of R.

Proof. 1. Let c ∈ S such that cSc ⊆ f (I) and c < ρ(S). Since f is surjective we can choose a ∈ R such
that f (a) = c. Now, cSc = f (a)f (R)f (a) = f (aRa) ⊆ f (I) and since ker(f ) ⊆ I, we have aRa ⊆ I. Because
c < ρ(S) we have a < ρ(R) for if a ∈ ρ(R), then c = f (a) ∈ f (ρ(R) ⊆ ρ(S) since ρ is a special radical. Thus
a < ρ(R) and since aRa ⊆ I and a semi ρ-ideal of R, we get a ∈ I. Hence c = f (a) ∈ f (I) and therefore
f (I) is a semi ρ-ideal of S.

2. Let a ∈ R such that aRa ⊆ f −1(J) and a < ρ(R). Now, f (a)Sf (a) = f (aRa) ⊆ J. We show that
f (a) < ρ(S). Suppose f (a) ∈ ρ(S) and M C R such that R/M ∈ Sρ ∩P . Since f is a surjective homomor-
phism and ker(f ) ⊆ ρ(R) ⊆M, we have f (R)/f (M) ' R/ ker(f )/M/ ker(f ) ' R/M. Hence f (R)/f (M) ∈
Sρ ∩ P and therefore f (a) ∈ f (M). Hence a ∈ M since ker(f ) ⊆ M and therefore a ∈ ∩{I C R : R/I ∈
P ∩Sρ} =ρ(R) which is a contradiction. Since J is a semi ρ-ideal, we have f (a) ∈ J and so a ∈ f −1(J). It
follows that f −1(J) is a semi ρ-ideal of R.

Corollary 2.12. Let ρ be a special radical and let R be a ring and let I,K be two ideals of R with K ⊆ I .
Then the following hold.

1. If I is a semi ρ-ideal of R, then I/K is a semi ρ-ideal of R/K .

2. If I/K is a semi ρ-ideal of R/K and K ⊆ ρ(R), then I is a semi ρ-ideal of R.

3. If I/K is a semi ρ-ideal of R/K and K is a semi ρ-ideal of R, then I is a semi ρ-ideal of R.

Proof. 1. Assume that I is a semi ρ-ideal of RwithK ⊆ I . Let π : R→ R/K be the natural epimorphism
defined by π(R) = r+K . Note that ker(π) = K ⊆ I . Thus, by Theorem 2.11 1., it follows that π(I) = I/K
is a semi ρ-ideal of R/K .

2. Again consider the natural epimorphism π : R → R/K . Since K ⊆ ρ(R), by Theorem 2.11 2.,
I = π−1(I/K) is a semi ρ-ideal of R.

3. This is clear by 2. and Theorem 2.11.

Proposition 2.13. Let ρ be a special radical and let I and J be two semi ρ-ideals in a ring R. If I + J is
proper in R, then I + J is a semi ρ-ideal of R.

Proof. By (1) of Corollary 2.12, I/I∩J is a semi ρ-ideal of R/I∩J . Thus, (I +J)/J � I/I∩J is also a semi
ρ-ideal of R/J . Therefore, by (2) of Corollary 2.12, we conclude that I + J is a semi ρ-ideal of R.

However, if I and J are two semi P -ideals in a ring R, then IJ need not be a semi P -ideal. For
example, while M2(〈2〉) is a semi P -ideal of M2(Z), (M2(〈2〉))2 =M2(〈4〉) is not so.

Let I be a proper ideal of R, then ZI (R) denote the set {r ∈ R : sr ∈ I for some s ∈ R\I}.
Proposition 2.14. Let ρ be a special radical and R a ring with S a non-empty subset of R where 〈S〉 ∩
Zρ(R)(R) = ∅. If I is a semi ρ-ideal of R with S * I , then (I : 〈S〉) is a semi ρ-ideal of R.

Proof. Let a ∈ R such that aRa ⊆ (I : 〈S〉) but a < ρ(R). Then asRas ⊆ aRa〈S〉 ⊆ I for all s ∈ 〈S〉. As I is a
semi ρ-ideal of R, we have either as ∈ ρ(R) or as ∈ I for all s ∈ 〈S〉. If as ∈ ρ(R), then 〈S〉 ∩Zρ(R)(R) , ∅,
a contradiction. Thus, as ∈ I for all s ∈ 〈S〉 and so a ∈ (I : 〈S〉) as required.

Theorem 2.15. Let ρ be a special radical and R a commutative ring. If an ideal I of R is a maximal
semi ρ-ideal satisfying Zρ(R)(R) ⊆ I, then I is semi prime in R. Additionally, if I ⊆ ρ(R), then I = ρ(R)
is a prime ideal.

Proof. The same as [1, Theorem 3.1] by replacing P (R) with ρ(R).
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3 Product of rings

Suppose that R1, R2 are two noncommutative rings with nonzero identities and R = R1 ×R2. Then R
becomes a noncommutative ring with coordinate-wise addition and multiplication. Also, every ideal
I of R has the form I = I1 × I2, where Ii is an ideal of Ri for i = 1,2. Now, we give the following result.

Proposition 3.1. Let R1 and R2 be two noncommutative rings and let ρ be a special radical such that
ρ(R) = ρ(R1)× ρ(R2). Then R1 ×R2 has no ρ-ideals.

Proof. Assume that I = I1 × I2 is a ρ-ideal of R1 × R2, where Ii is an ideal of Ri for i = 1,2. Since
(0,1)R1 ×R2(1,0) ⊆ I1 × I2, (0,1) < ρ(R1 ×R2) = ρ(R1)×ρ(R2) and (1,0) < ρ(R1 ×R2) = ρ(R1)×ρ(R2), we
conclude that (0,1), (1,0) ∈ I and so I = R1 ×R2, a contradiction.

By characterizing semi ρ-ideals of R, the next theorem allows us to build some examples for semi
ρ-ideals which are not ρ-ideals.

Theorem 3.2. Let R1 and R2 be two noncommutative rings and let ρ be a special radical such that
ρ(R) = ρ(R1) × ρ(R2). Then a proper ideal I = I1 × I2 is a semi ρ-ideal of R if and only if one of the
following statements holds.

1. I is a semiprime ideal of R.

2. I1 is a semi ρ-ideal of R1 and I2 = ρ(R2).

3. I2 is a semi ρ-ideal of R2 and I1 = ρ(R1).

Proof. ⇒Suppose I = I1 × I2 is a semi ρ-ideal which is not a semiprime ideal. Hence there exists
(x,y) ∈ R1 × R2 such that (x,y)(R1 × R2)(x,y) ⊆ I1 × I2 but (x,y) < I1 × I2. We show that I1 = ρ(R1) or
I2 = ρ(R2). Assume not. If I1 , ρ(R1) and I2 , ρ(R2), then there exist a ∈ I1\ρ(R1) and b ∈ I2\ρ(R2).
Now (x+a)R1(x+a) = xR1x+xR1a+aR1x+aR1a ⊆ I1 and also (y+b)R2(y+b) ⊆ I2. From this it follows
that (x+ a,y + b)(R1 ×R2)(x+ a,y + b) ⊆ I1 × I2 = I. We have (x,y) < I1 × I2, so without lost of generality
we may suppose x < I1. Hence (x+ a) < I1 and so (x+ a,y + b) < I. Since I = I1 × I2 is a semi ρ-ideal, we
have (x + a,y + b) ∈ ρ(R) = ρ(R1) × ρ(R2). Hence (x + a) ∈ ρ(R1) and (y + b) ∈ ρ(R2) which implies that
(x,y) < ρ(R) since a < ρ(R1) and b < ρ(R2). This is impossible since I is a semi ρ-ideal.

Suppose without loss of generality that I1 , ρ(R1) and I2 = ρ(R2). Let aR1a ⊆ I1 and a < I1. Now,
(a,0)R(a,0) = (aR1a,0) ⊆ I1 × I2 = I. Since (a,0) < I and I a semi ρ-ideal, we have (a,0) ∈ ρ(R) =
ρ(R1)× ρ(R2). Hence a ∈ ρ(R1) and I1 is a semi ρ-ideal of R1. Similarly if I1 = ρ(R1) and I2 , ρ(R2) we
get I2 is a semi ρ-ideal of R2
⇐ If I is a semiprime ideal of R then I is a semi ρ-ideal of R by Proposition 2.6. Suppose I =

I1 ×ρ(R2) with I1 a semi ρ-ideal of R1. Let (a,b) ∈ R = R1 ×R2 such that (a,b)(R1 ×R2)(a,b) ⊆ I1 ×ρ(R2)
and (a,b) < ρ(R) = ρ(R1) × ρ(R2). Now, bR2b ⊆ ρ(R2) and since ρ(R2) is a semiprime ideal, we have
b ∈ ρ(R2). Since (a,b) < ρ(R1) × ρ(R2), it now follows that a < ρ(R1). Since aR1a ⊆ I1 and a < ρ(R1), it
follows that a ∈ I1 from the fact that I1 is a semi ρ-ideal. Hence we have (a,b) ∈ I = I1 × ρ(R2) and
therefore I is a semi ρ-ideal of R.

Generalizing Theorem 3.2 we have the following for a special radical ρ such that ρ(R1 ×R2 × · · · ×
Rn) = ρ(R1)× ρ(R2)× · · · × ρ(Rn).

Theorem 3.3. Let R1,R2, ...,Rn be rings and R = R1 ×R2 × · · · ×Rn, where n > 2. Then a proper ideal I
of R is a semi ρ-ideal if and only if one of the following statements is satisfied.

1. I is a semiprime ideal of R.



On semi radical ideals of noncommutative rings 29

2. I = I1 × I2 · · · × In, where Ik is a semi ρ-ideal of Rk for some k ∈ {1, ...,n} and Ij = ρ(Rj ) for all
j ∈ {1, ...,n}\{k}.

Proof. This follows simmilar to the proof of [1, Theorem 3.3].

4 Semi ρ-submodules

de la Rosa and Veldsman in [4] defined a weakly special class of modules. We follow the definition
in [4] of a weakly special class of modules to define a special class of modules.

Definition 4.1. For a ring R, let KR be a (possibly empty) class of R-modules. Let K = ∪{KR : R a
ring}. K is a special class of modules if it satisfies:

S1 M ∈ KR and I C R with I ⊆ (0 :M)R implies M ∈ KR/I .

S2 If I C R and M ∈ KR/I , then M ∈ KR.

S3 M ∈ KRand I C R with IM , 0 implies M ∈ KI .

S4 M ∈ KR implies RM , 0 and R/(0 :M)R is a prime ring.

S5 If I C R and M ∈ KI , then there exists N ∈ KR such that (0 :N )I ⊆ (0 :M)I .

Following similar techniques of [4], we get the following theorems.

Theorem 4.2. [6, Theoerem 5.1] LetM = ∪MR be a special class of modules. Then,
J = {R: there exists M ∈ MR with (0 : M)R = 0} ∪ {0} is a special class of rings. If ρ is the corre-

sponding special radical, then, ρ(R) := ∩{(0 :M)R :M ∈M}.

Theorem 4.3. [6, Theoerem 5.2] LetJ be a special class of rings and for every ring R, letMR = {M :M
is an R-module, RM , 0 and R/(0 :M)R ∈ J }. IfM = ∪MR, thenM is a special class of modules. If ρ
is the corresponding special radical and M is any R-module, then
ρ(M) := ∩{P ≤M :M/P ∈MR}.

Definition 4.4. [5, Definition 2.4] Let ρ be a special radical and let M be an R-module. The proper
submodule N of M is a ρ-submodule if for all a ∈ R and m ∈M, whenever aRm ⊆N and a < (ρ(R)M :
M), then m ∈N.

Definition 4.5. Let ρ be a special radical and let M be an R−module. The proper submodule N of
M is a semi ρ-submodule if for all a ∈ R and m ∈M, whenever aRam ⊆ N and a < (ρ(R)M : M), then
am ∈N.

Definition 4.6. A submodule N of M is said to be semiprime if N , M and whenever r ∈ R and
m ∈M are such that rRrm ⊆ N , then rm ∈ N. The reader clearly observe that any semi ρ-submodule
of an R-module R is a semi ρ-ideal of R. The zero submodule is always a semi ρ-submodule of M.
Also, see the implications:

ρ-submodule
↘

semi ρ-submodule
↗

semiprime submodule
However, the next examples show that these arrows are irreversible.
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Example 4.7. 1. Consider the submoduleN = 6Z×(0) of the Z-moduleM = Z×Z. Let the special
radical ρ be the prime radical. Now let r < (P (Z)M : M) = (0) and m = (m1,m2) ∈M such that
r2·(m1,m2) ∈ N . Then r2m1 ∈ 6Z, r2m2 = 0. Since 6Z and (0) are semi P -ideals of Z, then
r·(m1,m2) ∈ N and so N is a semi P -submodule of M. On the other hand, we have 2·(3,0) ∈ N
with 2 < (P (Z)M :M) and (3,0) <N and so N is not a ρ-submodule of M.

2. Consider the submodule N =
〈
4
〉
× {0} of the Z-module M = Z8 ×Z. Let r < (P (Z)M : M) and

m = (m1,m2) ∈M such that r2·(m1,m2) ∈ N . It is clear to observe that as
〈
4
〉

is a semi P -ideal
of Z8 and {0} is a semi P -ideal of Z that r(m1,m2) ∈ N. Hence N is a semi P -submodule of M
However, 22·(1,0) ∈N but 2·(1,0) <N and so N is not a semiprime submodule of M.

Proposition 4.8. Let ρ be a special radical and letM be an R-module. For N a submodule ofM and I an
ideal ofR. IfN is a semi ρ-submodule ofM and (ρ(R)M :M) = ρ(R), then (N :M) = {r ∈ R : rm ∈N for every m ∈M}
is a semi ρ-ideal of R.

Proof. Let aRa ⊆ (N :M) where a ∈ R and a < ρ(R). Then we have aRaM ⊆N and so aRam ⊆N for all
m ∈M. Since N is a semi ρ-submodule of M and a < ρ(R) = (ρ(R)M :M), am ∈N for all m ∈M. Thus,
aM ⊆N and so a ∈ (N :M). Therefore, (N :M) is a semi ρ-ideal of R.

Remark 4.9. If (ρ(R)M :M) * ρ(R), then Proposition 4.8 need not be true. Let P be the prime radical.
For the Z module M = Z4 we have P (Z) =(0) and (P (Z)Z4 : Z4) = ((0) : Z4) = 4Z. Now, N = (0) is
clearly a semi P -submodule. (N : M) = ((0) : Z4) = 4Z is not a semi P -ideal of Z. We have 2Z2 ⊆ 4Z
with 2 < 4Z.

In the following proposition, we give a characterization of ρ-submodules for a special radical ρ.

Proposition 4.10. Let ρ be a special radical and letM be an R-module where R is a ring with identity. Let
N be a proper submodule ofM. Then N is a semi ρ-submodule ofM if for any a ∈ R and every submodule
K ofM, we have that aRaK ⊆N with a < (ρ(R)M :M) implies aK ⊆N.

Proof. Suppose aRaK ⊆ N and a < (ρ(R)M : M). Let k ∈ K. Since aRak ⊆ N and N is a semi ρ-
submodule of M, ak ∈N . It follows that aK ⊆N as needed.

Proposition 4.11. Let ϕ :M1→M2 be an R homomorphism. Then

1. If ϕ is surjective and N is a semi ρ-submodule of M1with ker(ϕ) ⊆ N, then ϕ(N ) is a semi ρ-
submodule ofM2.

2. If ϕ is one-to-one and K is a semi ρ-submodule ofM2, then ϕ−1(K) is a semi ρ-submodule ofM1.

Proof. 1. Suppose ϕ(N ) = M2 = ϕ(M1) and m1 ∈ M1. Then ϕ(m1) = ϕ(n) for some n ∈ N and so
(m1 − n) ∈ ker(ϕ) ⊆ N. So m1 ∈ N and we have N = M1 a contradiction. Hence ϕ(N ) is a proper
submodule ofM2. Let r ∈ R andm2 ∈M2 such that rRrm2 ⊆ ϕ(N ) and r < (ρ(R)M2 :M2). Choosem1 ∈
M1 such that ϕ(m1) = m2. Then rRrm2 = rRrϕ(m1) = ϕ(rRrm1) ⊆ ϕ(N ) which implies rRrm1 ⊆ N
as ker(ϕ) ⊆ N. If rM1 ⊆ ρ(R)M1, then rM2 = rϕ(M1) = ϕ(rM1) ⊆ ϕ(ρ(R)M1) = ρ(R)ϕ(M1) = ρ(R)M2.
Hence r ∈ (ρ(R)M2 : M2) a contradiction. Thus r < (ρ(R)M1 : M1). Since N is a semi ρ-submodule,
rm1 ∈N and hence rm2 = ϕ(rm1) ∈ ϕ(N ) as required.

2. Let r ∈ R and m1 ∈ M1 such that rRrm1 ⊆ ϕ−1(K) and r < (ρ(R)M1 : M1). Since ker(ϕ) = 0,
we have ϕ(rRrm1) = rRrϕ(m1) ⊆ K. Moreover, we have r < (ρ(R)M2 : M2) for if rM2 ⊆ ρ(R)M2, then
rϕ(M1) ⊆ ρ(R)ϕ(M1) and so ϕ(rM1) ⊆ ϕ(ρ(R)M1). Now, if x ∈ rM1, then ϕ(x) ∈ ϕ(ρ(R)M1). Hence
(x − y) ∈ ker(ϕ) ⊆ ρ(R)M1 for some y ∈ ρ(R)M1. Hence x ∈ ρ(R)M1 and we have rM1 ⊆ ρ(R)M1 a
contradiction. Since K is a semi ρ-submodule of M2, rϕ(m1) = ϕ(rm1) ∈ K and hence rm1 ∈ ϕ−1(K)
and we are done.
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Corollary 4.12. Let N and L be two submodules of an R-moduleM with L ⊆N .

1. If N is a semi ρ-submodule ofM, then N/L is a semi ρ-submodule ofM/L.

2. If L is a semi ρ-submodule ofM andN/L is a semi ρ-submodule ofM/L, thenN is a semi ρ-submodule
ofM.

3. If L is a ρ-submodule ofM and N/L is a semi ρ-submodule ofM/L, then N is a ρ-submodule ofM.

Proof. 1. Clear by Proposition 4.11.
2. Suppose that rRrm ⊆ N and r < (ρ(R)M : M). If rRrm ⊆ L, then rm ∈ L ⊆ N since L is a semi

ρ-submodule of M. So assume rRrm * L. One can easily observe that r < (ρ(R)M/N : M/N ). N /L is a
semi ρ-submodule of M/L and rRr(m + L) ⊆ N/L, then r(m + L) ∈ N/L. Therefore rm ∈ N and N is a
semi ρ-submodule of M.

3. Similar to 2.

Proposition 4.13. Let {Ni : i ∈ ∆} be a nonempty set of semi ρ-submodules of an R-moduleM. Then
⋂
i∈∆
Ni

is a semi ρ-submodule.

Proof. Suppose rRrm ∈
⋂
i∈∆
Ni for some r ∈ R− (ρ(R)M :M), m ∈M. Since Ni is a semi ρ-submodule of

M, for every i ∈ ∆, we have rm ∈ Ii . Thus rm ∈
⋂
i∈∆
Ni .

5 Idealization

We now show how to construct ρ-ideals using the Method of Idealization. In what follows, R is a
ring (associative, not necessarily commutative and not necessarily with identity) and M is an R−R-
bimodule. The idealization of M is the ring R �M with (R �M,+) = (R,+) ⊕ (M,+) and the multi-
plication is given by (r,m)(s,n) = (rs, rn+ms). R�M itself is, in a canonical way, an R −R-bimodule
and M ' 0 �M is a nilpotent ideal of R �M of index 2. We also have R ' R � 0 and the latter is a

subring of R �M. Note also that R �M is a subring of the Morita ring
[
R M
0 R

]
via the mapping

(r,m) 7→
[
r m
0 r

]
. We will require some knowledge about the ideal structure of R�M. If I is an ideal

of R and N is an R−R-bi-submodule of M, then I �N is an ideal of R�M if and only if IM+MI ⊆N .
If ρ is a special radical, it follows from [11] that if R is any ring, then ρ(R�M) = ρ(R)�M for all

R−R-bimodules M.

Proposition 5.1. For the special radical ρ, let I be an ideal of the ring R. I is a semi ρ-ideal of R if and only
I �M is a semi ρ-ideal of R�M.

Proof. Let (r1,m1) ∈ R�M such that (r1,m1)R�M (r1,m1) ⊆ I �M and (r1,m1) < ρ(R�M) = ρ(R)�M.
Hence r1Rr1 ⊆ I and r1 < ρ(R). Since I is a semi ρ-ideal of R, we conclude that r1 ∈ I and so (r1,m1) ∈
I �M. Consequently I �M is a semi ρ-ideal of R�M.

Conversely, suppose that I �M is a semi ρ-ideal of R�M and let aRa ⊆ I but a < I. Then (a,0)R�
M(a,0) ⊆ I �M and (a,0) < I �M imply that (a,0) ∈ ρ(R�M) = ρ(R)�M. Thus, a ∈ ρ(R) and we are
done.

If I is a semi ρ-ideal of a ring R and N is a R−R-bi-submodule of M with IM +MI ⊆N, then I �N
need not be a semi ρ-ideal of R�M. For example if ρ is the prime radical, 〈2〉 is a semi ρ-ideal of the
ring Z and

{
0
}

is a submodule of the Z-module Z4. But 〈2〉�
{
0
}

is not a semi ρ-ideal of Z�Z4 since

(2,1)Z�Z4(2,1) ⊆ 〈2〉�
{
0
}

but (2,1) < P (Z�Z4) = P (Z)�Z4 and (2,1) < 〈2〉�
{
0
}
.
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Proposition 5.2. Let ρ is a special radical and let I be an ideal of R and N a proper R−R-bi-submodule of
the R−R-bi-moduleM.

1. If I �N is a semi ρ-ideal of R�M, then I is a semi ρ-ideal of R and N is a semi ρ-submodule ofM.

2. If (ρ(R)M : M) = ρ(R) and N is a ρ-submodule of M with IM +MI ⊆ N and I a semi ρ-ideal then
I �N is a semi ρ-ideal of R�M.

Proof. (1) Suppose that I �N is a semi ρ-ideal of R�M. First we show I is a semi ρ-ideal. Let aRa ⊆ I
and a < ρ(R).Then we have (a,0)R�M(a,0) = (aRa,0) ⊆ I�N. Since I�N is a semi ρ-ideal of R�M, and
(a,0) < ρ(R)�M = ρ(R�M) we have that (a,0) ∈ I�N.Hence a ∈ I and it follows that I is a semi ρ-ideal
of R. Now, we show that N is a semi ρ-submodule of M. Let aRam ⊆ N with a < (ρ(R)M : M). Since
a < (ρ(R)M : M), we have a < ρ(R). Then we have (a,0M )R�M(a,0M )(0,m) = (0, aRam) ⊆ I �N with
(a,0M ) < ρ(R�M). Since I�N is a semi ρ-ideal of R�M, we conclude that (a,0M )(0,m) = (0, am) ∈ I�N
and so am ∈N , as needed.

(2) Let (r1,m1) , (r1,m1) ∈ R �M such that (r1,m1)R �M (r1,m1) ⊆ I �N and (r1,m1) < ρ(R �M) =
ρ(R) �M. We have r1Rr1 ⊆ I and r1 < ρ(R). Since I is a semi ρ-ideal of R and r1 < ρ(R), we have
r1 ∈ I. Now, (r1,m1)R �M (r1,m1) = (r1Rr1, r1Rm1 +m1Rr1) ⊆ I �N. Since r1Rm1 +m1Rr1 ⊆ N and
m1Rr1 ⊆ N, we have r1Rm1 ⊆ N . Since r1 < ρ(R) and N is a ρ-submodule of M, we have m1 ∈ N.
Hence (r1,m1) ∈ I �N and I �N is a semi ρ-ideal of R�M.

The condition (ρ(R)M :M) = ρ(R) in Proposition 5.2 2. can not be discarded. For example, consider
the Z-module Z2. Put I = 〈2〉 and N =

{
0
}
. Then I is a semi P -ideal of Z and N is a P -submodule of

Z2. Also note that (P (Z)Z2 : Z2) = 〈2〉 , P (Z) = {0}. However, I �N is not a semi P -ideal of Z�Z2
because (2,1)Z�Z2(2,1) ⊆ I �N , (2,1) < P (Z)�Z2 and (2,1) < I �N .

6 Semi P -ideals (semi n-ideals)

In this section the special radical will be the prime radical. In [1] Khashan et al. introduced the notion
of semi n-ideals for commutative rings with identity element. They investigated many properties of
semi n-ideals.. We show that for the prime radical many of the results proved by Khashan et al. are
also true for noncommutative rings.

In what follows for the noncommutative ring R, P (R) will denote the prime radical of the ring R.
Throughout this section the rings are noncommutative but not necessarily assumed to have a unity

unless indicated.

Definition 6.1. A proper ideal I of a ring R is a semi P -ideal if whenever a ∈ R such that aRa ⊆ I and
a < P (R), then a ∈ I.

If R is a commutative ring, then the notion of a semi P -ideal coincides with a semi n-ideal as been
defined by Khashan et al. in [1].

Proposition 6.2. (see [1, Proposition 2.1]) For a ring R, the following statements hold.
(1) Every P -ideal is a semi P -ideal.
(2) Every (weakly) semiprime ideal I is a semi P -ideal. The converse also holds if P (R) ⊆ I .
(3) For every proper ideal I of R, P ∗(I) is a (semiprime) semi P -ideal. In particular, P (R) is a semi

P -ideal of R.
(4) Any ideal I such that I ⊆ P (R) is a semi P -ideal.
(5) If R is a semiprime ring then an ideal I of R is a semi P -ideal if and only if is a semiprime ideal.
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Example 6.3. In any semiprime ring R the a nonzero ideal I is a semi P -ideal which is not a P -ideal
since I * P (R) = (0) see [5, Proposition 1.5].

Proposition 6.4. (See [1, Proposition 3.2]) Let {Ii}i∈∆ be a family of semi P -ideals of R, then
⋂
i∈∆
Ii is a semi

P -ideal of R.

Proof. This follows from Proposition 2.10 by taking ρ to be the prime radical.

Proposition 6.5. Let P be the prime radical and R a ring with S a non-empty subset of R where 〈S〉 ∩
Zρ(R)(R) = ∅. If I is a semi P -ideal of R with S * I , then (I : 〈S〉) is a semi P -ideal of R.

Proof. This follows from Proposition 2.14 by taking ρ to be the prime radical.

Proposition 6.6. [13, Corollary 4]For any ring R the following are equivalent:

1. R has an unique prime ideal.

2. R is a local ring and J (R) = P (R).

3. Every non invertible element is nilpotent.

Theorem 6.7. The following statements are equivalent for a ring R.

1. P (R) is the unique prime ideal of R.

2. Every proper ideal of R is an P -ideal.

3. R is a local ring and every proper ideal of R is a semi P -ideal.

Proof. (1) ⇒ (3) Let I be any ideal of R and a ∈ R such that aRa ⊆ I. If a ∈ P (R), then we done. If
a < P (R) then it follows from Propostion 6.7 that a < J (R) since P (R) = J (R). Now, since we also
have that R is a local ring, a is an invertible element with inverse b. Now, since a2 ∈ aRa ⊆ I, we have
a = ba2 ∈ I and we are done.

(3)⇒ (1) Let R be a local ring with every proper ideal of R a semi P -ideal. Let M be the unique
maximal ideal of R and P a prime ideal of R. Assume that P * P (R). Since P 2 is a semi P -ideal, it

follows from Lemma 2.7 that P = P 2. From [7, Corollary 4] P =
∞⋂
n=1
P n =

∞⋂
n=1
Mn = (0) , a contradiction.

Hence P = P (R) and is the unique prime ideal of R.
(2)⇒ (3) Let M be a maximal ideal right ideal of R and x ∈M. Since xR1 ⊆M and M is a P -ideal,

then we must have x ∈ P (R) and so M ⊆ P (R) ⊆ J (R) ⊆M. It follows that M = J (R) and R is a local
ring. The other part of (3) follows directly by Proposition 2.3 (1).

(2)⇒ (1) Suppose every proper ideal of R is an P -ideal. Let P be any prime ideal. Now, since P
is a P -ideal and a prime ideal, it follows from [5, Proposition 1.13] that P = P (R). Hence P (R) is the
unique prime ideal of R.

We note that the condition “R is local” in (3) of Theorem 6.7 cannot be omitted. For example, in
the ring M2(Z6) every proper ideal is a semi P -ideal but M2(Z6) has no P -ideals. Also it is known
that in a local ring every proper ideal is a J -ideal see [5, Theoerem 5.6]. In the following example,
we see that we may find a non semi P -ideal in a local ring. Consider the local ring R = Z〈2〉 = { ab :
a,b ∈Z,2 - b} and let I = 〈4〉〈2〉 = { ab : a ∈ 〈4〉 ,2 - b}. R is a local ring but I is not a semi P -ideal of R. For

example,
(

2
3

)2
∈ I but 2

3 < P (R) = {0} and 2
3 < I.
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Proposition 6.8. (See [1, Proposition 3.1]) Let R and S be rings and f : R → S be a surjective ring-
homomorphism. Then the following statements hold:

1. If I is a semi P -ideal of R and ker(f ) ⊆ I , then f (I) is a semi P -ideal of S.

2. If J is a semi P -ideal of S and ker(f ) ⊆ ρ(R), then f −1(J) is a semi P -ideal of R.

Proof. This follows from Theorem 2.11 by taking ρ to be the prime radical.

Corollary 6.9. (see [1, Corollary 3.1]) Let R be a ring and let I,K be two ideals of R with K ⊆ I . Then the
following hold.

1. If I is a semi P -ideal of R, then I/K is a semi P -ideal of R/K .

2. If I/K is a semi P -ideal of R/K and K ⊆ ρ(R), then I is a semi P -ideal of R.

3. If I/K is a semi P -ideal of R/K and K is a semi P -ideal of R, then I is a semi P -ideal of R.

Proof. Follows from Corollary 2.12by taking ρ to be the prime radical.

Proposition 6.10. (see [1, Proposition 3.3]Let ρ be a special radical and let I and J be two semi ρ-ideals
in a ring R. If I + J is proper in R, then I + J is a semi ρ-ideal of R.

Proof. Follows from Proposition 2.13 by taking ρ to be the prime radical.

Theorem 6.11. (see [1, Theorem 3.2]) Let R1 and R2 be two noncommutative rings. Then a proper
ideal I = I1 × I2 is a semi P -ideal of R if and only if one of the following statements holds.

1. I is a semi prime-ideal of R..

2. I1 is a semi P -ideal of R1 and I2 = P (R2).

3. I2 is a semi P -ideal of R2 and I1 = P (R1).

Proof. Follows from Theorem 3.2 by taking ρ to be the prime radical.

Theorem 6.12. (see [1, Theorem 3.3]Let R1,R2, ...,Rn be rings and R = R1 ×R2 × · · · ×Rn, where n > 2.
Then a proper ideal I of R is a semi P -ideal if and only if one of the following statements is satisfied.

1. I is a semiprime ideal of R.

2. I = I1 × I2 · · · × In, where Ik is a semi P -ideal of Rk for some k ∈ {1, ...,n} and Ij = P (Rj ) for all
j ∈ {1, ...,n}\{k}.

Proposition 6.13. Let I be a semi P -ideal of R and N an R−R-bi-submodule of the R−R-bi-module M.
Then

1. I �N is a semi P -ideal of R�M.

2. If (P (R)M :M) = P (R) and N is a semi P -submodule ofM with IM +MI ⊆N, then I �N is a semi
P -ideal of R�M.

Proof. Follows from Proposition 5.1 by taking ρ to be the prime radical.

Proposition 6.14. Let I be an ideal of R and N a proper R−R-bi-submodule of the R−R-bi-moduleM. If
I �N is a semi P -ideal of R�M, then I is a semi P -ideal of R and N is a semi ρ-submodule ofM.

Proof. Follows from Proposition 5.2 by taking ρ to be the prime radical.
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