
Moroccan Journal of Algebra 
and Geometry with Applications

Volume 3, Issue 1 (2024), pp 1-22

Supported by Sidi Mohamed Ben Abdellah University, Fez, Morocco 
Morocco

Title :Title :

An accessible calculation of the stalks of the structure sheaf of the affine scheme of an 
integral domain

David E. Dobbs

Author(s):Author(s):

ISSN:  2820-7114

https://ced.fst-usmba.ac.ma/p/mjaga/
https://ced.fst-usmba.ac.ma/p/mjaga/


Moroccan Journal of Algebra
and Geometry with Applications
Vol. 3(1) (2024), 1–22
—————————————————————————————————————————————
Supported by Sidi Mohamed Ben Abdellah University, Fez, Morocco ISSN: 2820-7114

An accessible calculation of the stalks of the structure sheaf of the affine
scheme of an integral domain

David E. Dobbs
Department of Mathematics, University of Tennessee, Knoxville, Tennessee 37996-1320

e-mail: ddobbs1@utk.edu

Communicated by Najib Mahdou
(Received 26 June 2023, Revised 16 September 2023, Accepted 19 Septembrer 2023)

Abstract. Assuming minimal background in algebra and topology, we give a proof that for a domain A, the stalk of the

structure sheaf of the affine scheme Spec(A) at a point P is AP . While being more accessible than the standard proof,

the proof that is given here leaves few or no ambiguities or questions concerning the foundations of mathematics. Such

ambiguities arise inevitably in the standard proof which considers, more generally, A to be an arbitrary commutative

ring with 1. An appendix surveys some of the history involving such ambiguities in the mathematical and philosophical

literature of the past 100 years.
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1 Introduction

All rings considered here are assumed to be associative and unital; except in Appendix II and in
comments about Appendix II in this Introduction, all rings are also considered to be commutative.
All inclusions of rings, ring extensions, subrings, algebras and ring/algebra homomorphisms will be
assumed unital. Proper inclusions will be denoted by ⊂. In connection with any commutative ring A,
we will use the following standard notation: U(A) denotes the set of units of A; Spec(A) denotes the
set of all prime ideals of A; and if c ∈ A, then Ac denotes the localization of A at the multiplicatively
closed set generated by c (that is, at {cn | n ≥ 0}, where c0 := 1). It will be convenient to refer to a
(commutative) integral domain as a domain.

Let A be a ring and let X = Spec(A) endowed with the Zariski topology. Recall that a basic open
set in that topology is of the form Xa (more often nowadays denoted by D(a)), which for any element
a ∈ A, is defined by

Xa := {P ∈ X | a < P }.

Now, let P be a point of the topological space X (that is, let P be a prime ideal of A). For more than 60
years, the fundamental fact that has allowed objects isomorphic to X (along with certain morphisms
in some category) to constitute the affine foundations of modern algebraic geometry is that X can be
given the structure of a local ringed space whose structure sheaf has its stalk at the point P given by
the direct limit

lim−−→
P ∈Xa

Aa = lim−−→
a∈A\P

Aa

which is canonically isomorphic to AP (as A-algebras).
The isomorphism that was just mentioned presents challenges in virtually every classroom where

it is taught. (The same can be said of the implicit assumption in the preceding paragraph that student
readers are familiar with terms such as “local ringed space", “structure sheaf", “stalk" and “direct
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limit".) The challenges to the students can be overwhelming. In Appendix I, I list 31 specific ques-
tions that can arise (and, in my experience, have often arisen) when an instructor presents a proof
of the above isomorphism verbatim as it had been given in a well-respected, time-honored textbook.
These questions are part of a blizzard of queries that many students (and their teachers) encounter
when trying to understand the standard proof of the above isomorphism for the general context
that was given above. The reality of the situation is that, except for the unusual class populated by
students whose undergraduate studies included much of what most universities consider graduate-
level material, the typical student in a beginning graduate-level course on modern algebraic geome-
try is simply not ready for a presentation emulating the austere sophistication of Grothendieck and
Dieudonné (as in [15]). Put simply, in my experience, many students in such a course simply do not
have the background to appreciate (that is, to understand) the above isomorphism in the generality
that I have stated it. For instance, those students may not yet have heard of the notions of a direct
limit or a sheaf (or the stalk of a sheaf or the “germ" of a function at a point). Most instructors
should probably not simply assume that their students have already taken some relevant courses
on subjects such as algebraic topology or differential geometry or high-dimensional real or complex
analysis. Bearing in mind that in any lecture or conversation, a teacher should expect their audience
to be able to carry away at most two or three of the most salient facts from that interaction, the fol-
lowing question naturally arises in the mind of someone planning to teach the above isomorphism.
(I am now addressing some of the challenges that instructors must decide how to face.) How should
a teacher (dare I say/insert, “best") first acquaint students with the just-mentioned isomorphism if
those students have (essentially only) the following mathematical background: apart from fields (and
possibly polynomial rings), the only rings that they have studied are domains; they are comfortable
with fractions in the context of a fixed quotient field of a domain; they are familiar with prime ideals
in the context of Z (perhaps also in the context of polynomial rings in one indeterminate over a field,
perhaps more generally in the context of Euclidean domains, perhaps more generally in the context
of principal ideal domains) and they have seen the definition of a prime ideal for some class of do-
mains broader than the singleton set {Z}? In short, while students in such a course have had some
exposure to point-set topology (also known as general topology), it is often the case they have not
studied algebraic topology or graduate-level analysis (so, to repeat, they typically have no knowledge
of topics such as sheaves, direct limits, inverse limits, germs of functions, etc.).

Section 2 contains my suggested answer to the above question of how an instructor should/could/may
best plan their first presentation of the isomorphism lim−−→P ∈Xa

Aa � AP . That answer has worked well

in classes populated with a majority of students having the kind of background described in the
preceding paragraph. The detailed approach in Section 2 is occasionally presented in an informal,
conversational style, somewhat as one may expect from time to time during a lecture, and readers
should feel free to alter that specific content in accordance with their teaching style (and the compo-
sition and the perceived needs of their audience). As mentioned above, Appendix I mentions some
of the ambiguities that can distract students who are trying to understand the standard proof for
the general context. In my opinion, the proof in Section 2 avoids essentially all of those ambiguities.
Of course, those ambiguities must be addressed at some time, but let us remember that “sufficient
unto the moment is the complexity thereof". That maxim which I just “recalled" (honestly, I really
just invented it) is part of the time-honored “cyclic method" approach to learning which we have
all experienced and which most good teachers instinctively use in teaching most classes. Among
teachers of calculus and analysis, there is general agreement that one should first learn about lim-
its, continuity and ε-δ arguments for real-valued functions of one real variable, then cycle back to a
deeper study (with teachers expecting deeper understanding from students) of these topics in subse-
quent courses (for instance, on advanced calculus) while studying real-valued functions of “several"
(finitely many real) variables, and only then cycle back to yet deeper studies of these topics in a va-
riety of courses (on subjects such as complex variables, metric spaces, differentiable manifolds, etc.).
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Similarly, among teachers of topology, there is general agreement that students should have some
of the just-mentioned experience before being placed into a course on point-set topology (or some
deeper topic). There was a time, essentially when Birkhoff and MacLane wrote their 1941 text in-
troducing the axiomatic “modern algebra" movement from Europe to an English-reading audience
in North America, that algebraists were similarly devoted to the cyclic method of teaching. Indeed,
even in the 1953 revised edition of their textbook, Birkhoff and Mac Lane scarcely speak of “rings",
while emphasizing instead the study of Z and integral domains. When and why, I must earnestly
ask, did teachers of algebra decide to emphasize almost-maximal generality in beginning courses?
You may protest and say that some textbooks on abstract algebra nowadays still adopt a “domains
first" approach – and you would be correct to assert that. But, now that we seem to have agreed on
the usefulness and appropriateness of such an approach, why should we not also agree that there
should be a time and place to implement it at the beginning of a course on modern algebraic geome-
try? How, a busy and harried teacher may well ask, can I do that –where should I look for advice on
how to do that? I humbly suggest that Section 2 gives what is at least a start to the answer to such
honorable questions.

Two other appendices should be mentioned here. In my experience while doing research on do-
mains, I have encountered a significant number of workers in the field whose work avoids using any
categorical or homological methods or references. In several cases, I have found these workers to
be very intelligent and inspiringly creative, especially in constructing elaborate examples, but often
without their being aware of some useful methods to generalize such constructions or their con-
texts. Sometimes, workers of this kind prefer ideal-theoretic, rather than module-theoretic, meth-
ods. Sometimes, they prefer their “domains" to be rngs (that is “domains which need not have a
multiplicative identity"). Because I believe that workers such as these could offer more to the math-
ematical mainstream by adopting module-theoretic methods and the appropriateness of assuming
that domains should have a multiplicative identity, I have written Appendix II. As I believe that “De
gustibus non est disputandum," I cannot hope to prove that the just-mentioned colleagues have mis-
placed priorities or values. I can only hope that Appendix II will give food for thought to many. If any
reader feels that my comments in this paragraph have insulted you or your mathematical heritage,
please accept my sincere apology. My intent is honorable, even if you may conclude that my actual
efforts have been clumsy or unseemly. The path to self-improvement can be strewn with reversals,
misunderstanding and suspicion. I mean well and I wish you well.

Finally, let me say a few words about Appendix III. This has to do with a theme that underlies
many of the above-mentioned 31 questions that often arise when students are shown the traditional
proof that lim−−→P ∈Xa

Aa � AP . For more than 100 years, serious scholars of (meta)mathematics have

striven to find an appropriate universe of discourse and to understand how to arrange and access the
objects of that universe. Many working algebraists are familiar with some of the history involving the
Axiom of Choice and the Well-Ordering Principle, but I would expect that few readers of this article
know much about Hilbert’s attempt in 1923 to sidestep such topics by introducing what he called the
operators ε and τ . I would also not expect that many readers would know that there is, to this day,
ongoing research extending Hilbert’s work and forming a school of “epsilontic calculus?. Appendix
III gives a brief account of some current work of that school of thought, along with contributions due
to Hilbert, Bourbaki and Grothendieck in regard to what I have described as “the above-mentioned
ambiguities".

As usual, |U | denotes the cardinal number of a set U . Any unexplained material is standard, as in
[4], [12], [16].
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2 A proof for integral domains

Good day, students. Today, you will begin to understand what is perhaps the most important isomor-
phism at the heart of the “local" aspects of modern algebraic geometry. As you have often heard me
say, this material, although it will be new to almost all of you, is being brought to you by the people
who arranged the curricula for your earlier studies. So, in order to anticipate at least a part of what
you should expect, let us begin with a special case, a very familiar context, where A is a (commu-
tative unital integral) domain with quotient field K . As you know, K = {c/d | c ∈ A and 0 , d ∈ A}.
Recall that K is really a ring of fractions AA\0. So, the elements of K are really equivalence classes.
But, since domains do not have any interesting zero divisors, the underlying equivalence relation is
especially simple, namely: if c1,d1, c2,d2 ∈ Awith both d1 and d2 being nonzero, then (c1,d1) is equiv-
alent to (c2,d2) if and only if c1d2 = c2d1 in A (in which case, we have the same equivalence classes,
c1/d1 = c2/d2). Now – and this is important if today’s special case is going to be easily understood
– I am going to ask you to forget about thinking of these fractions as equivalence classes. After all,
you have been working with fractions (albeit, of integers) since elementary school. And I believe that
you are very comfortable in working with them, without having to worry about where such fractions
may “live". Inside that “home" where they live – which is the quotient field K that we fixed above –
we will establish the kind of isomorphism that we want by building a special kind of union, called a
directed union, of certain rings of fractions that are each subsets of that “home", K . In a later class,
you will learn that when A is only a commutative ring, it is not so intuitively easy to understand
where the various relevant rings of fractions live and the directed unions that we will see today will
be generalized to “direct limit" processes by which these rings are somehow combined. Suffice it to
say here that understanding direct limits will require you to do some additional foundational work.
But, fortunately, none of that additional work will be necessary here today, where all of our rings of
interest will be domains.

So, we’re back to considering a domain A with quotient field K . Can you think of a way to build
K as a union of some interesting rings that contain A? No? Well, let me suggest trying the rings
of the form Aa. Recall that if 0 , a ∈ A, then Aa := {c/an ∈ K | c ∈ A, n ≥ 1}. Isn’t it clear that
A ⊆ Aa ⊆ K for all such a, and also that ∪0,a∈AAa = K? Yes? Yes! Good! What? Oh, you’d like to
see an example. Sure! Let’s consider A := Z, so K := Q, and let’s take a := 2. Then in this example,
Aa = Z2 = {c/2n ∈Q | c ∈ Z, n ≥ 1}. And in this example, 3/4 ∈ Aa but 4/3 < Aa. Is that all clear now?
Good! Let’s move on.

It would be nice if the “building blocks" Aa were all “comparable", in the sense that whenever a1
and a2 are nonzero elements of the domain A, then either Aa1

⊆ Aa2
or Aa2

⊆ Aa1
. If that happens,

then the set of the rings Aa is linearly ordered (some people call that sort of thing “totally ordered")
and the building blocks would “line up" neatly. What a terrific way that would be to visualize K! Un-
fortunately, most familiar domains do not have those building blocks line up linearly. For instance,
if A = Z, then A2 and A3 are not comparable, since 3/2 ∈ A2 \ A3 and 2/3 ∈ A3 \ A2. But, for any
domain A, the union of the building blocks is an example of what is called a “directed union", in the
following sense: if a1 and a2 are any nonzero elements of A, there there exists some nonzero element
a ∈ A such that Aa1

⊆ Aa and Aa2
⊆ Aa. Can anyone suggest how to find such an element a? What?

Yes, taking a := a1a2 does work. Thank you for that input. Do you all see why both Aa1
and Aa2

are
contained in Aa1a2

? Some of you are shaking your heads. Well, please consider this: if c ∈ A and n ≥ 1,
then c/an1 = can2/(a1a2)n. Right? Good – you’re all nodding your heads. Isn’t it great when we can use
some old familiar algebra, even arithmetic, to validate a conjecture? Well, I’m glad that you’re still
with me.

Let’s summarize what we’ve done so far. If A is a domain with quotient field K , then K is the
directed union of the domains of the form Aa as a runs through the set A \ {0}. More formally,
K = ∪a∈A\0Aa. Let’s spend some time explaining what it means for that index set to be “directed".



Accessible proof for stalks of Spec of a domain 5

Most folks agree that a set I , equipped with a binary relation ≤ on I , is called a directed set if the
following three conditions hold: ≤ is reflexive (you know that this means that i ≤ i for all i ∈ I); ≤
is transitive (you know that this means that if i, j,k ∈ I satisfy i ≤ j and j ≤ k, then i ≤ k); and ≤ is
directed (for most of you, this may be a new concept: this means that if i, j ∈ I , then there exists
k ∈ I such that i ≤ j and j ≤ k). Isn’t it clear that we have shown that K is a directed union of the
domains Aa where 0 , a ∈ A. What’s that? Oh, you want to know how to define the relation ≤ in this
case, right? Well, as in most cases involving sets with enriched structures (some people call these
“concrete categories"), the relevant relation is either inclusion or reverse inclusion. These two kinds
of relations are often directed because, if U and V are subsets of W , then U ∩V is a subset of both
U and V , while both U and V are subsets of U ∪V . Of course, the theory of an a enriched structure
is often richer than set theory, since U ∩ V and/or U ∪ V may not share the same kind of enriched
structure that U and V shared. In our example, if a1 and aa are nonzero elements of a domain A,
then Aa1

∩Aa2
is a domain, but it may not be of the form Aa for some a ∈ A. Moreover, Aa1

∪Aa2
may

not even be a domain. In fact, it may not be closed under addition – for homework, please construct
an example showing this fact. Fortunately, our example does not need to use intersections or unions
to establish the “directed" property. Do you recall that both Aa1

and Aa2
are subsets of Aa1a2

? Good!
That is why we were able to view K as being a directed union of the rings Aa. What’s that? Yes, I only
verified the third axiom for a directed set. You see, the other two axioms are about reflexivity and
transitivity, and those properties always hold because of basic set theory for any relation ≤which has
been induced by either inclusion or reverse inclusion. I apologize for not mentioning that earlier.
Please keep it in mind for the future, because I probably won’t remember to say it again!

You may be wondering if the above relation ≤ could have been described, perhaps using some
equations, in terms of the “arithmetic" of the domain A. Yes, that can – and should – be done. We
will do it below, in Proposition 2.1 (d).

Now, let’s begin to generalize the above result to the context that really matters here: A is still a
domain, but another piece of data is a prime ideal P of A. (Remember that can be summarized by
writing P ∈ Spec(A).) You will come to see that what we did above really treated the case P = 0 (which
is a prime ideal of A because A is a domain). The general fact that we are aiming for is the following:

∪a∈A\P Aa = AP

describes AP as a directed union of the domains Aa as a ranges over the directed index set A \ P . You
can easily modify the above reasoning to see that AP is the just-displayed union. And that union is
directed, once again because both Aa1

and Aa2
are contained in Aa1a2

. But this time, where P may not
be 0, it may be less obvious why a1a2 is admissible. Earlier (when P = 0), we just used the fact that A
was assumed to be a domain to conclude that a1a2, being the product of two nonzero elements of a
domain, must be nonzero. Why, in the present situation, is a1a2 admissible? In other words, if both
a1 and a2 are elements of A \ P , why is a1a2 also an element of A \ P ? Thank you for that answer. It
is absolutely right. The answer is: precisely because P is a prime ideal of A! And do you know what
that suggests? That last fact did not use the “domain" property of A. Maybe some of this analysis
could carry over more generally, to arbitrary commutative rings. Let’s spend some time looking into
that possibility. Don’t worry – we will return to the context of domains long before any blizzard of
ambiguities has been forecast by your local mathematical weatherperson.

Let’s ease into the general case with a short paragraph involving some review and some topology,
then get “radical" (sorry for the bad pun) in the following paragraph, and then get the result (Propo-
sition 2.1) which holds the key to a better understanding of the index set for the above directed
union(s).

Let A be a commutative (unital) ring. Consider the set X := Spec(A). For each c ∈ A, let Xc := {P ∈
X | c < P }. (So, for instance, X0 = ∅ and X1 = X.) Recall (cf. [4, Exercises 15 and 17, page 127]) that
X can be given the structure of a topological space via the Zariski topology, by taking the sets of the
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form Xc (as c runs though the elements of A) as a basis for the open sets. Indeed, given the above
information about X0 and X1, one gets this topological conclusion directly from the definition of a
prime ideal of a commutative ring, as that easily gives that Xa ∩Xb = Xab for all a,b ∈ A.

It is well known (cf. [4, Proposition 1.14], [12, Corollary 2.10], [16, Theorem 26]) that if I is an
ideal of a (commutative unital) ring A, then the radical of I (in A) is the following ideal of A:

√
I := {u ∈ A | there exists an integer n ≥ 1 such that un ∈ I} =

∩{P ∈ Spec(A) | I ⊆ P }.

Part (b) of the next result shows that the above open basis of the Zariski topology can be described in
terms of radicals of principal ideals. Part (d) of the next result shows that if the ambient commutative
(unital) ring A is a domain, then the above open basis of the Zariski topology can also be described
in terms of rings of fractions of the form Aa (with a ∈ A).

Proposition 2.1. (a) Let A be a (commutative unital) ring. Let a,b ∈ A. Then Xa ⊆ Xb if and only if√
Aa ⊆

√
Ab.

(b) Let A be a (commutative unital) ring. Let a,b ∈ A. Then Xa = Xb if and only if
√
Ab =

√
Aa.

(c) Let A be a (commutative unital) domain, with quotient field K . Let a,b ∈ A such that a , 0. Then√
Aa ⊆

√
Ab (that is, Xa ⊆ Xb) if and only if Ab ⊆ Aa (that is, if and only if Ab is a (unital) subring of Aa

inside K).
(d) Let A be a (commutative unital) domain, with quotient field K . Let a,b ∈ A. Then

√
Aa =

√
Ab (that

is, Xa = Xb) if and only if Aa = Ab (that is, if and only if Aa and Ab are (unital, but possibly zero) subrings
of each other).

Proof. (a) We have the following equivalences and implications: Xa ⊆ Xb ⇔ X \Xa ⊇ X \Xb ⇔ {P ∈
X | a ∈ P } ⊇ {P ∈ X | b ∈ P } ⇒ ∩{P ∈ X | a ∈ P } ⊆ ∩{P ∈ X | b ∈ P } ⇔

√
Aa ⊆

√
Ab ⇔ a ∈

√
Ab ⇔ there

exists an integer n ≥ 1 and an element α ∈ A such that an = αb. This (more than) proves the “only
if" assertion. To prove the converse, suppose that

√
Aa ⊆

√
Ab. Our task is to prove that Xa ⊆ Xb;

equivalently, that if P is a prime ideal of A such that a < P , then b < P . This, in turn, follows easily
from P being a prime ideal of A, since the above reasoning gives an equation an = αb with n ≥ 1 and
α ∈ A.

(b) It suffices to combine (a) with the assertion obtained by reversing the roles of a and b in (a).
(c) The first parenthetical comment follows from (a); the second parenthetical comment follows

from the fact that the operations of addition and multiplication in both Aa and Ab are induced by the
corresponding operations in K .

Let us first prove the “only if" assertion. Since a ∈
√
Ab, there is an equation an = αb for some n ≥ 1

and α ∈ A. As a , 0 by hypothesis, then neither α nor b is 0 (since A is a domain). Therefore, as
Ack = Ac (as subsets of K) for all nonzero elements c ∈ A and all integers k ≥ 1, we have, in view of
the assumption that a , 0, that 1/b = α/(αb) = α/an in K , whence 1/b ∈ Aan = Aa, and then it follows
easily that Ab ⊆ Aa (as subsets of K).

For the converse, suppose that Ab ⊆ Aa. Then, working in the quotient field K of A, we have 1/b =
α/an for some α ∈ A and some integer n ≥ 1. Thus an = αb, whence a ∈

√
Ab, whence

√
Aa ⊆

√
Ab, as

desired.
(d) In view of (b), it suffices, if neither a nor b is 0, to apply (c).
It remains to consider the cases(s) where either a = 0 or b = 0 (or both). This situation requires

separate treatment because of the existence of nilpotent elements. Indeed, notice that if A were only
assumed to be a commutative (unital) ring, then c ∈ A satisfies Xc = ∅ if and only if c is nilpotent;
and, still assuming only that A is a commutative ring, notice that c ∈ A satisfies c ∈

√
A · 0 if and only

if c is nilpotent. As the present A is assumed to be a (commutative unital) domain, the assumption
that

√
Aa =

√
Ab (equivalently, Xa = Xb), when coupled with the assumption (of the prevailing case)
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that either a = 0 or b = 0, ensures that both a and b equal 0 in the domain A. Similarly, while working
with the domain A, we have that the assumption that Aa = Ab, when coupled with the assumption
that either a = 0 or b = 0, ensures that both Aa and Ab are zero rings, whence both a and b equal 0 in
the domain A. Thus, under the assumption that either a = 0 or b = 0 (or both), we have:

√
Aa =

√
Ab ⇔ a = 0 = b ⇔ Aa = Ab.

It is perhaps worth pointing out that when a and b are each equal to the same element 0 ∈ A, the use
of that element 0 ∈ A in the construction of both of the relevant rings of fractions, Aa and Ab, gives
that Aa = A0 = Ab, whence Aa and Ab are equal as rings, although that ring is a zero ring and not a
(unital) subring of K .

The hypothesis that A is a domain allows the conclusion, via Proposition 2.1 (d), that
√
Aa =

√
Ab ⊆

A implies that Aa and Ab are equal rings, to be unambiguous. However, if A had been assumed only
to be a commutative (unital) ring, we could hope to (at best) conclude that Aa and Ab are isomorphic
rings. Consequently, if one attempts to apply a functor to an unspecified one of the pertinent rings
that is isomorphic to Aa, it becomes unclear (that is, ambiguous; that is, known only up to isomor-
phism) as to what is meant by the alleged result of such an application. Yet, that is exactly the sort
of thing that the literature does, many times over, in this general area when working with commu-
tative (unital) rings A. I believe that during your initial exposure to the ring-theoretic foundations
of modern algebraic geometry, there is no urgent reason for you to be bombarded with a blizzard
of ambiguities. The term “blizzard" is not mere hyperbole here, as you will see if you read my cri-
tique in Appendix I of two well-respected expositions of the general case. Also, you will see, if you
read Appendix III, that worries concerning the meaning and well-definedness of such applications
of functions or functors to unspecified isomorphic copies of a known object have been the topic of
ongoing studies for more than 100 years. To temporarily avoid (that is, to forestall) the ambiguities
which arise in the general case, we will usually assume for the rest of this section that the ambient
(commutative unital) ring A is a domain. Occasionally, we may pause to explain where/how that
restriction to domains has simplified matters and avoided ambiguity, but typically we will leave it to
you, the reader, to be alert to such instances. I believe that the following is a sound principle, both
for students and for researchers: while reading each step of a proof, ask yourself if the step follows as
indicated and also ask yourself if the conclusion of the step would have been possible under weaker
assumptions.

Remark 2.2. Consider the form of the statement that lim−−→P ∈Xa
Aa � AP . How could one come to

understand this statement if it were expressed in its most efficient form? If the ring A is “far" from
being a domain then, even if a and b are elements of A such that Xa = Xb, it is by no means clear that
Aa and Ab are the same mathematical object, because there is no obvious universe containing both Aa
and Ab within which one could compare Aa and Ab (in order to see if they are the same). As one can
quickly see by tweaking the proof of Proposition 2.1, if Xa = Xb, then Aa � Ab. But that is palpably
not the same as saying that Aa = Ab! Fortunately, we have seen in Proposition 2.1 (d) that if A is a
domain, then any quotient field of A is the desirable kind of universe, as we showed that if Xa = Xb
for nonzero elements a and b of a domain A (with quotient field K), then we do have Aa = Ab (as
subsets of K). This suggests that a more efficient (or economical or elegant) description of lim−−→P ∈Xa

Aa
should be possible, especially if A is a domain, if one were to impose an appropriate equivalence
relation of the index set. That is what we will do five paragraphs hence. This completes the remark.

For a fixed domain A (with given quotient field K) and a fixed prime ideal P of A, a reading of
Proposition 2.1 (b) suggests (correctly) that it would be useful to define the following equivalence
relation ∼ on A \ P . If a,b ∈ A \ P , we say that a ∼ b if and only if

√
Aa =

√
Ab; equivalently, if and
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only if Xa = Xb; equivalently (by Proposition 2.1 (c)), that Aa = Ab (as A-subalgebras of K). Note also
that by defining ∼ in this way, c ∈ A \ P ensures that c , 0 (for the more general context where A is
a commutative ring, c ∈ A \ P would ensure that c is not nilpotent), so that the fussiness involving
“such that a , 0" in the statement of Proposition 2.1 (c) will usually not be a concern as we work with
(A and) P .

With A, K and P fixed as above, it may occasionally be necessary to denote the above equivalence
relation ∼ by ∼A\P . If a ∈ A \ P , the ∼-equivalence class represented by a will be denoted by

[a] or [a]∼ or [a]∼A\P

with the appropriate notation to be chosen in any given situation as simply as possible, solely in
order to avoid ambiguity.

Let us examine more carefully our earlier description of AP as the directed union ∪a∈A\PAa. How,
more precisely, can this directed union be understood to have been expressed in the form ∪i∈IRi
for some directed union of rings Ri indexed by some directed set I? Obviously, one should take
I := A \ P , with the “dummy index" i being replaced by the dummy index a, and with the ring Ri ,
or rather Ra, then being taken to be Aa. But what is the precise order relation ≤ that is underlying
this directed union? In other words, if a and b are elements of A \ P , what does/should it mean to
say that a ≤ b? The answer to this question comes from Proposition 2.1 (d). Indeed, if we say that
for a,b ∈ A \ P , the definition of a ≤ b is that Aa ⊆ Ab (in the quotient field K), then everything falls
into place rigorously as desired, because this relation ≤ is, indeed, reflexive, transitive and directed
(with the last of these properties holding since both Aa and Ab are subsets of Aab). Notice also that
if a,b ∈ A \ P as above, then we have the following additional formulations of the above equivalence
relation, thanks to Proposition 2.1: a ≤ b ⇔ Xb ⊆ Xa ⇔

√
Ab ⊆

√
Aa.

The above understanding ofAP as the directed union∪a∈A\PAa can be made “crisper" ( some would
say, “sharper" or “more economical" or “more elegant") by using the above equivalence relation ∼=
∼A\P . In a moment, I will explain how to do that. When that has been accomplished, I hope that
you will agree that we will have a new description of AP as a new directed union which merits the
just-mentioned laudatory adjectives. But my main reason for getting to that new description has
to do with some ambiguities in the literature. You see, the literature is not entirely uniform as to
the definition of a directed index set. Of course, this fact affects the definition of a directed union
(and it also affects, more generally, the definition of a direct limit). While the literature does agree
that the binary relation ≤ on a directed set should be reflexive, transitive and directed (as in the
definition that we have been working with here), a noticeable minority of the literature also requires
≤ to be antisymmetric (in the usual sense, namely, that if i, j ∈ I satisfy i ≤ j and j ≤ i, then i = j).
Unfortunately, requiring the above relation ≤ onA\P to be antisymmetric would mean that whenever
elements a and b ofA\P satisfyAa = Ab, then one would need to have a = b. That sad situation, for the
prime ideal P = 0, would imply that a2 = a for each nonzero element of the domainA. And that would
imply that A � F2, which is not all what we wanted in this attempt to say something interesting and
useful about all domains A. So, to placate the above-mentioned minority, the promised “moment"
has passed/come, and it is now time to introduce an equivalence relation � which will allow us to
replace the index set A \ P with the set of ∼-equivalence classes from A \ P . That will be done in the
next paragraph.

Given a domain A and a prime ideal P of A, we can define a binary relation on the equivalence
classes of the equivalence relation ∼=∼A\P as follows. If [a] and [b] are such equivalence classes,
let us say that [a] � [b] if and only if a ≤ b. (To avoid ambiguity, you may occasionally prefer to
use the notation “�A\P " instead of “�".) Notice that the binary relation � has been well defined
(for if [a1] = [a2] and [b1] = [b2] with a1 ∼ b1, then we have Aa1

= Aa2
and Ab1

= Ab2
, along with

Aa1
⊆ Ab1

, whence Aa2
⊆ Ab2

.) Moreover, it is easy to see (please check this, but do not hand it in as
homework, as it really is very easy) that � inherits each of the properties of reflexivity, transitivity
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and directedness from ≤, and so � endows the set of ∼A\P -equivalence classes with the structure
of a directed set. Furthermore, this structure has the additional property that is cherished by the
“noticeable minority", namely, that � is antisymmetric. Indeed, if [a] := [a]∼A\P and [b] := [b]∼A\P
satisfy [a] � [b] and [b] � [a], then a ≤ b and b ≤ a, whence Aa ⊆ Ab and Ab ⊆ Aa, whence Aa = Ab,
whence a ∼A\P b, whence [a] = [b], as desired. Thus, we now have what everyone can agree is a
description of AP as a “directed union" (and, by taking P := 0, one would get a description of the
quotient field of A as “a directed union"), namely,

AP =
⋃

[a] is a ∼A\P −equivalence class

Aa.

Ignoring the mini-controversy concerning the definition of a directed set, let us consider a claim to
the effect that the last display is more “elegant" than our earlier result that (if P is a prime ideal
of a domain A, then) AP = ∪a∈A\PAa. By sending each a to its equivalence class [a], one obtains a
surjection from the second index set to the first index set. (One could, instead, have noted that the
Axiom of Choice gives an injection from the first index set to the second index set.) However, it
would be wrong to conclude that, in general, the first index set is “smaller than" the second index
set. While the cardinal number of the first index set is less than or equal to the cardinal number of
the second index set, those cardinal numbers could be, depending on A and P , equal infinite cardinal
numbers. Consider, for instance, A := Z and P := 2A. Since the set of odd integers is denumerable,
this example satisfies |A \ P | = ℵ0. In other words, the second index set in this example has cardinal
number ℵ0. So, in view of the above-mentioned injection, the first index set in this example is either
finite or denumerable. In fact, that first index set is denumerable, since it has a fairly prominent
denumerable subset. Let’s pause a moment. Did you find or guess what that denumerable subset
is? No? Well, thanks for trying. The subset that I noticed is the set of �A\P -equivalence classes
represented by odd prime numbers. The underlying fact is a gem from elementary number theory:
if q and r are distinct odd prime numbers, then Zq , Zr . (You can check that this follows from the
Fundamental Theorem of Arithmetic.) Since any subset of a finite set is finite, we have proved that
the first index set in this example is denumerable; that is, it has cardinal number ℵ0. I will leave this
example by asking you to ponder the following question: should you call the first index set (in this
example) “more elegant" than the second index set (in this example) even though these sets have the
same cardinal number?

In looking at various books for the main result that we proved today, you may have come across
statements such as

lim−−→
P ∈Xa

F (Xa) � AP or lim−−→
a∈A\P

F (Xa) � AP .

So, you know that “lim−−→" is a standard notation for direct limit, and that is a generalization of directed
union. You may have realized that F is what is usually called the structure sheaf of the affine scheme
X := Spec(A). (Most algebraic geometers denote F by OX .) Given that we have focused on the result
that ∪a∈A\PAa = AP (when P is a prime ideal of a domain A), you have probably also surmised that
F (Xa) = Aa (although it may not yet be clear to you whether that equation is a definition or a proven
fact). It would be natural for you to wonder what sort of binary relation is being imposed on the
index set A\P in the just-displayed statements from the literature. (Let’s skim over the technical but
important difference between a direct limit and a directed set, and agree that there is something like
an underlying ordering on A \ P going on in those statements from the literature.) Remember (cf.
Proposition 2.1) that when P is a prime ideal of a domain A, a ≤ b used to mean that Aa ⊆ Ab, and
for that context, that this condition was equivalent to Xb ⊆ Xa. If b is “later than" a in the relevant
directed union or direct limit process (that is, if a is “less than or equal to" b in some sense), it is
traditional to haveXb ⊆ Xa, so that “later" indexes give “smaller" neighborhoods, and the “functorial"
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behavior of the sheaf F gives a “restriction map" from F (Xa) to F (Xb), that is, from Aa to Ab. For
our familiar domain-theoretic context, this is just the inclusion map Aa ↪→ Ab. For more general
ring-theoretic contexts, you will eventually develop enough intuition, based on repeated exposure
and familiarity with examples, to appreciate whether/when/why restriction maps can or should be
regarded as inclusion maps. It will take a while, but I am confident that you can do it. In time, the
general setting will seem as natural to you as it was today when you worked with fractions inside a
fixed quotient field.

I would like to point out that it is possible to extend the above reasoning in today’s main result by
generalizing from the multiplicatively closed set A \ P (where P is a prime ideal of a domain A) to
the case where S is an arbitrary (nonempty) multiplicatively closed subset of a domain A such that
0 < S. As homework, please do the following. Show, under these conditions, that the ring of fractions
AS is a directed union of the domains Aa as the elements a run through the set S. It will be part of
the assignment for you to decide what the ordering is on the relevant directed set I (remember to
identify I and its ordering and to prove that I is directed!). You will also need to explain how, if a
and b are suitably related by that ordering, one has that Aa ⊆ Ab (inside the given quotient field K of
A). If you wish, for extra credit, you may also try to find conditions under which you can reduce the
size of the index set by setting up a suitable equivalence relation on S and letting the “new" indices
be the corresponding equivalence classes (instead of the “old" indices which were elements of S).

Next, as an additional step in preparing you for some of the “wrinkles" that may arise when A is
a commutative (unital) ring, but not necessarily a domain, let us notice some of what may be gained
by slightly tweaking the proof of Proposition 2.1. Suppose that a,b ∈ A. Then: Xb ⊆ Xa⇒ there exists
an integer n ≥ 1 and an element α ∈ A such that bn = αa. Now suppose that, in fact, Xb ⊆ Xa. It will
be desirable for the resulting A-algebra homomorphism f : Aa → Ab (which sends c/am to cαm/bnm,
for all c ∈ A and integers m ≥ 1) to be injective. (Notice that such f exists, thanks to the universal
mapping property of rings of fractions, since a/1 is a unit in Ab; indeed, it has multiplicative inverse
α/bn there.) To accomplish this injectivity, some fine-tuning will be necessary in regard to the ring
elements a and b that will come under consideration in the general case (when A is not necessarily a
domain). Rather than delving into that fine-tuning here, let us simply notice why there was no such
difficulty in case A is a domain (with quotient field K). In that context, with a and b each nonzero
elements of a domain A such that bn = αa for some integer n ≥ 1 and some (necessarily nonzero)
element α ∈ A, we were actually working with a (directed) union in the above argument. Indeed,
one gets that Aa ⊆ Ab there since, if c ∈ A and m is a positive integer, then c/am = cαm/bnm in K and,
hence, in Ab.

There will be more fine-tuning as you continue to study the affine scheme Spec(A) (for an arbitrary
commutative ringA) and its role in the “local" part of modern algebraic geometry. In addition to what
we have just seen here, you will learn new machinery, involving things called direct limits, sheaves
and stalks. You will also learn why F (U ) is called the “sections of the sheaf F over the open set U".
That should help you to understand better or more easily some material that you have seen or will
see in some courses on topology or analysis (especially, in regard to the “germs" of functions at a
point). You will certainly learn that if F is the structure sheaf of the affine scheme X = Spec(A), then
“the ring of global sections" F (X) is isomorphic to A. (Here’s one final exercise: give a quick proof
of this fact, using only information from today’s class.) That may lead you to study other historically
important representation theorems where a given ring is realized (up to isomorphism) as the ring of
global sections of some sheaf on some topological space.

Congratulations! You are about to dive into the really geometric part of algebraic geometry. But
that’s enough for today.



Accessible proof for stalks of Spec of a domain 11

3 Appendix I: Comparison with the traditional proof

For many years during the 1960s, graduate students in an algebraic geometry course learned the
modern approach to the basics of that subject by reading some notes [19] (with red front and back
covers) that were affectionately known as “the red Mumford". (The only alternative at that time was
to read the variety of French language material that was being produced by Grothendieck and his fol-
lowers.) In retrospect, Mumford did a good job at getting to the basics, while providing background
and examples that were sufficient for his intended audience. I would like to begin this appendix by
reviewing Mumford’s five-line proof in [19, page 40] that (to use the notation of our Section 2 but
now for an arbitrary commutative ring A), the stalk of the structure sheaf (I will denote that sheaf by
F ) at a point P of X := Spec(A) (that is, at a prime ideal P of A) is AP . Apart from some notational
changes, the following is only a slight rewording of Mumford’s proof:
“Since the sets of the form Xa give a basis of the Zariski topology of Spec(A), we have that the stalk
of the sheaf F [of course, Mumford denotes F by OX] at the point P [of course, Mumford denotes P
by x] is

lim−−→
P ∈U
F (U ) = lim−−→

P ∈Xa

F (Xa) = lim−−→
a(P ),0

Aa.

Since all restriction maps in our sheaf are injective, this is just ∪a(P ),0Aa, which is clearly AP ."
An objective reading of the above argument raises, in order, 31 questions. (The Introduction

promised a “blizzard of queries"!) These questions are collected, together with some comments, as
the following seven items:
(i) What does the first equal sign in the display really mean? If two objects (such as the partners
in that asserted equality) are each only defined up to isomorphism, what sense does it make to say
that those objects are equal? Would it not make more sense to say, instead, that those objects are
isomorphic? Or, given that those objects are each only defined up to isomorphism, would an assertion
of isomorphism here mean the same thing as your assertion of equality here? With respect, I must
ask: is your assertion of equality even meaningful? Was it intentional or was it a typo?
(ii) I suppose that the answer to last part of the above set of questions is that you intended to use
that equal sign and there was no typo, as I have now seen that you have continued to use equal signs
two more times. Let me ask next about a quantity on the right-hand side of the first equal sign in
the display. What does “F (Xa)" really mean? I understand that for each relevant element a, the set
Xa is well defined and so is F (Xa). But in reading about direct limits over directed sets, it was not
clear to me if a directed set must be asymmetric. (I know that it must be reflexive, transitive and
directed.) Looking online, I see that many people are confused, like I am, about how direct limits
are defined, asking whether the index set that we are discussing is what they call an “order" or what
they call a “preorder". Since P is given and a is somehow varying, should the subscript of “lim−−→" on
the right-hand side of the second equal sign in the display be, instead, a specific statement about the
behavior of a, or perhaps, about the behavior of an equivalence class (for some equivalence relation
that you have not mentioned) represented by a? If the answer to the last question is “Yes", what is
that equivalence relation and what sense does it then make to speak of “F (Xa)"? After all, if elements
a1, a2 ∈ A are such that Xa1

= Xa2
, I can probably believe that F (Xa1

) � F (Xa2
) – would you please

give or assign a proof of this fact? – but I would need to be convinced that F (Xa1
) = F (Xa2

). Was
that a hidden part of the message that you were trying to convey here? Is this question somehow
linked to the questions listed under (i)? Will some or all of these concerns in (ii) dissipate if we just
decide to not worry whether the index set is asymmetric? I wish that I had asked this part of my
question earlier when you covered direct limits, but it only occurred to me now when I saw how you
were using them. Maybe no one has ever asked you this before, so perhaps your lesson plans did not
anticipate such a question from the audience. If so, please excuse me and I’ll wait a bit longer for
you to think about this before you answer.
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(iii) I have a comment about the index set on the right-hand side of the second equal sign in the
display. This is the kind of “specific statement about the behavior of a" that I mentioned in (ii).
Would it have been better – or possible –to go directly from the first direct limit to the third direct
limit in the display? If so, that would eliminate some (maybe all) of my concerns in (ii) above. By the
way, thank you for explaining the notation “a(P )" earlier (on the preceding page of [19]), when you
said/wrote that “The elements of F (U ) can be viewed as functions on U ." I was certainly ready to
understand that part of the display!
(iv) I am going to have several questions about your phrase “This is just . . . ." First, what did you
intend the word “This" to refer to?
(v) Next, still about your phrase “This is just", I would like to ask: did you intend the word “is" to
refer to “is equal to" or “is isomorphic to"?
(vi) Here are my final questions about your phrase “This is just". What did you mean by the word
“just" there? Did you mean “equal to" or “isomorphic to"? I remember that when we covered direct
limits, you mentioned that every directed union is isomorphic to a direct limit over a directed set.
But is the converse true? In particular, are there some instances of “lim−−→P ∈Xa

F (Xa)" that should not

be viewed as being isomorphic to directed unions? Would your answer to this last question depend
on whether we had grouped the various elements a into equivalence classes as suggested above? If
so, what is the relevant equivalence relation?
(vii) Why is your union “∪a(P ),0Aa" well defined? I was always taught that a meaningful union of
the form ∪j∈JWj requires that the objects Wj be well understood sets and that there exists a universe
which contains each of these sets Wj as a subset. Is that really the case here? I do not know whether
you intended the elements a to range over a subset of A or over certain equivalences classes (again:
if so, what is the relevant equivalence relation?), but regardless of your answer to that question, I do
not see how there could exist some universe containing each of the relevant sets Aa because each of
these “sets" is only defined up to isomorphism. What sense doers it make to talk about a union of
things that are only defined up to isomorphism? And what sense would it make for such a union, if it
were well defined, to be equal to something like AP , which is itself only defined up to isomorphism?
Are these kinds of questions related to what I was asking about in (i) (and occasionally later)? Has
some group of mathematical leaders somehow agreed that mathematicians are working in an ideal
Platonic world where all isomorphic objects are equal? If so, I did not get that memo and, unlike
Leibnitz, I do not necessarily believe in a “pre-established harmony"! Who or what has somehow
ordered everything to work so well together? Is some kind of well ordering being supposed and
used? Excuse me, I am only trying to learn and understand, but I must add, with respect: your
saying “which is clearly" did not seem at all clear to me.

As I recall, the courses in modern algebraic geometry that I took (which were taught by Professors
George Rinehart and Stephen Lichtenbaum) presented the above proof (and prepared the class for
it) almost exactly as in [19].

Let us next review how, a few years later, Atiyah-Macdonald approached the above result. One
should note that although Mumford’s notes may have been written under time pressure and were
compiled into a “Preliminary version" of the first three chapters of a foreseen book, Atiyah and Mac-
donald had the advantage of the passage of time and their book was not explicitly a “preliminary
version". Also, because of the intentionally small size of [4], much of the substance of that book is
to be found in its exercises. Prior to the actual exercise stating, in effect, that lim−−→P ∈U

F (U ) � AP ,
Atiyah-Macdonald did a good job of covering the Zariski topology (having the sets of the form Xa as
an open basis), direct limits and rings of fractions. We next essentially reproduce the five parts of [4,
Exercise 23, page 47]. As before, in order to assure uniformity of notation for comparison purposes,
the following summary is the result of only a light editing of what Atiyah and Macdonald wrote in
that exercise. As before, we are considering a commutative ring A, X := Spec(A) has been equipped
with the Zariski topology, and the structure sheaf of this affine scheme is being denoted by F . Here,
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then, are the five parts of the pertinent exercise from [4]:
(i) If U = Xa for some a ∈ A, show that F (U ) := Aa depends only on U and not on a.
(ii) LetU

′
= Xb be another basic open set in X such thatU

′ ⊆U (= Xa). Show that there is an equation
of the form bn = ua for some integer n > 0 and some u ∈ A, and use this to define a homomorphism
ρ : F (U )→ F (U

′
) (that is, Aa → Ab) by c/am 7→ cum/bmn. Show that ρ depends only on U and U

′
.

This homomorphism is called the restriction homomorphism.
(iii) If U =U

′
, then ρ is the identity map.

(iv) If U ⊇ U ′ ⊇ U ′′
are basic open sets in X, show that the composite of the restriction homomor-

phisms F (U )→F (U
′
) and F (U

′
)→F (U

′′
) is the restriction homomorphism F (U )→F (U

′′
).

(v) If P is a prime ideal of A, show that lim−−→P ∈U
F (U ) � AP .

In commentary after (v), Atiyah-Macdonald went on to state (again, I will lightly edit their nota-
tion) the following: “The assignment sending each basic open set U to the ring F (U ), together with
the restriction homomorphisms ρ satisfying the conditions in (iii) and (iv), constitutes a presheaf of
rings on the basis of open sets {Xa | a ∈ A}" and that “(v) says that the stalk of this presheaf at P is the
(quasi-)local ring AP ."

For the most part, I would prefer to let the reader decide the following three things: which, if
any, of the earlier 31 questions about the presentation in [19] applies to the presentation in [4];
whether any new questions arise as a result of that presentation in [4]; and whether the presentations
in [19] and/or [4] would be preferable to the presentation that I gave (for domains A) in Section
2, when the reader is considering how to present the “stalk" result to his/her/their class. Before
leaving instructor/readers with such weighty matters (after all, you surely know your students, their
background and their needs better than I do!), I would like to close this appendix by making three
sets of points.

First, in teaching graduate courses on commutative ring theory several times at two state universi-
ties, I have often given a fuller treatment, than in either [19] or [4], of the identification (of AP as) the
stalk of the structure sheaf of Spec(A) at a prime ideal P of the commutative ring A. Occasionally,
because of time pressure in such a course, I have covered only the special case for domains A, as in
Section 2 above. But in all those courses, I took/found the time to explain what a sheaf is and why
the construction at hand actually produces a sheaf. I did so, in part, because I have found the cate-
gorical concepts of an equalizer and a coequalizer to be helpful and illuminating, both for research
and in teaching, on several occasions. Also, graduate students specializing in analysis, topology and
differential geometry have told me that my comments along those lines had been helpful to them in
their research. Speaking of teaching, I am uncomfortable in speaking of “the stalk of a presheaf at
a point" (as Atiyah-Macdonald did), but perhaps this sort of worry is a personal one that the reader
need not be concerned about.

Second, while exercises do not have the same purpose as lecture material, each should be clearly
stated, and so, if only for the sake of completeness and fairness, I would like to raise a few questions
and/or comments in regard to the presentation in [4, Exercise 23, page 47]. (Yes, that process did
begin in the preceding paragraph – thank you for noticing that.) It seems natural to me to ask what
Atiyah-Macdonald intended to mean by the phrase “depends on" in (i)? One could ask a similar ques-
tion about Atiyah-Macdonald’s (ii). In regard to their (ii), one could also ask if the name “restriction
homomorphism" should be appended by something like “from F (U ) to F (U

′
)". Given the previous

sentence, I must admit that I found it heartening to see the plural in “restriction homomorphisms"
in Atiyah-Macdonald’s commentary after (v).

Third, the following advice/principle will, I hope, meet with universal acceptance. Any graduate
course on modern algebraic geometry should cover in detail the “stalk" result for the general context
of an arbitrary commutative ring A. Whether or not that coverage should be preceded (either in
class or as homework) with the special case where A is a domain (as given in Section 2) is a decision
that should be up to the instructor (or instructors) who is (are) responsible for such a course. While
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someone in my position can offer advice, please let me repeat: you surely know your students, their
background and their needs better than I do!

4 Appendix II: Should a domain have a multiplicative identity element?

Let R be an rng. (Some authors write “a rng" instead of “an rng". Which option is appropriate
grammatically depends on how one pronounces “rng" – should it be like “urng" or like “rung"? –
and there is no universal agreement about that pronunciation.) Then with respect to addition, R is
an abelian group, that is, a Z-module. Consider the mathematical object R := Z ⊕ R, the external
direct sum of Z and R as an abelian group under addition, but also equipped with a multiplication,
given by

(n1, r1)(n2, r2) = (n1n2,n1r2 +n2r1 + r1r2) for alln1,n2 ∈Zandr1, r2 ∈ R.

It is straightforward to check thatR is a (unital) ring under the above operations, with multiplicative
identity element (1,0). Also, there is an injective rng homomorphism θ : R→R, given by r 7→ (0, r)
for all r ∈ R. It is customary to use θ to view R as a subrng of the (unital) ring R. Of course, there
would be no practical reason to use the above construction if the given rng R is known to be a ring
(that is, if it is known to have a multiplicative identity element, say 1R). Indeed, in that case, the
above rng homomorphism θ would not be unital, the point being that θ(1R) = (0,1R) ∈ R is distinct
from the multiplicative identity element (1,0) of R.

At one time, many writers of textbooks on “ring theory" appreciated that one should introduce
students early to constructions like the one given in the preceding paragraph. It seemed to take until
the late 1960s, or perhaps even the mid-1970s, until a sizable majority of the community coalesced
around the idea that a “ring" should have a multiplicative identity element, whereas an “rng" pos-
sesses all the properties of a ring except possibly that of having a multiplicative identity element.
So, when one is reading textbooks on ring theory that were written long ago, one must take care to
understand which definition of “ring" the author is using. Yet, there is often much to be gained from
reading old textbooks. One such book that comes to mind is [18]. After I finished the master’s degree
and just before I moved to the United States to study for the doctorate, a former professor suggested
that I should read [18] to learn something about rings. (He was aware that although I had extensive
knowledge of group theory and matrix theory, I had never heard the word “ring" uttered in a class-
room.) In reading [18], I developed a quick respect for ring theory. Even the second section of the
first chapter of [18] had a couple of challenging homework problems. That same section (to be pre-
cise, page 8 of that book) contained McCoy’s version of the construction in the preceding paragraph.
(To be accurate, I should point out the following ultimately insignificant difference: where the above
construction used the external direct sum Z⊕R, McCoy had used the external direct sum R⊕Z, with
the necessary concomitant changes in the definition of multiplication.) McCoy’s version of “embed-
ding a ring [I would say “an rng"] in a ring with unity" [I would omit “with unity"] was actually
better tailored to the ring R at hand. Indeed, it used essentially what we did in the above paragraph
if R has characteristic 0, but replaced Z with the ring of integers modulo n if the characteristic of R
is some positive integer n. (By definition, the characteristic of an rng is the smallest positive integer
n such that the sum of n copies of each element of R is 0, if such an n exists; and the characteristic
of an rng R is taken to be 0 if no such n exists. Notice that this definition of the characteristic of an
rng is, in the case of positive finite characteristic, really talking about the exponent of the additive
group of R. Notice also that the characteristic of a/the zero rng is 1, a situation that has led some
workers to argue that the notations Z/1Z or Z1 should be used for “the" zero ring, since one could
then say that the characteristic of Z/nZ is n for all positive integers n. It is worth recording that no
one has been foolish enough to suggest extending this practice by letting the notations Z/0Z or Z0
stand for the ring of integers, although Z does have characteristic 0.) It is interesting to note that the
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definition of “characteristic" had not been finalized as recently as 1953, as that is when the revised
edition of the classic textbook, “A survey of modern algebra," by Birkhoff and Mac Lane defined the
characteristic of Z to be ∞ (while acknowledging in a footnote that “most" authors had decided to
say that the usage “characteristic∞" should be replaced by “characteristic 0").

When I was a pre-doctoral student trying to learn about rings and linear transformations on my
own, an appealing aspect of the approach to modern algebra in the above-mentioned textbook by
Birkhoff and Mac Lane is that (as opposed to the “groups first" approach in the popular textbook,
“Topics in algebra," by Herstein) they defined “characteristic" only for domains. That “domains first"
approach suited me well, as I was quite comfortable with fields and I was becoming comfortable
with some domains (notably, Z and polynomials rings in one indeterminate over a field). I wonder if
the researcher in commutative algebra that I became (spending many years studying many classes of
domains) would agree with his younger self that the embedding of an rng in a ring is worth teaching
to today’s students.

Following [12], a “domain" is defined to be a nonzero commutative rng with no nonzero zero-
divisors. With that usage, a “domain" need not be unital, that is, it need not be a ring. For me (and, I
suspect, for most readers of this article), a “domain" is unital, that is, it is a ring. That has also been
my belief ever since I learned about domains. As my doctoral research had been on what is nowa-
days called arithmetic algebraic geometry, it was natural for me to see a “domain" as an example of
a (necessarily unital) commutative ring. I had not heard of multiplicative ideal theory (or [12] or
Robert Gilmer) until almost the end of my postdoctoral year at UCLA (and it was a noncommutative
ring theorist, Julius Zelmanowitz, who informed me of the area and who suggested that I familiar-
ize myself with [12]). The fact that a significant number of commutative ring theorists and other
mathematicians do not believe that a “domain" needs to be unital was brought to my attention in an
anecdote that I relate in the next paragraph. (That anecdote does not reflect me in the highest moral
light, but I do find it amusing and instructive – I hope that you will, too.)

One weekday around noon several decades ago, I left my office and went to the mathematics
department’s mail room to see if the daily mail had been delivered. Discovering that the current
issue of the MAA’s Monthly magazine had just arrived, I took my copy of that magazine back to my
office and quickly turned to the problem section. I found a problem that seemed to be in commutative
algebra (that was a rare occurrence in that section of the Monthly during that period of history) and I
set to work on it. The problem was about domains, and within moments, I had solved the problem by
using a standard tool, the ring-theoretic generalization of the classical result on extending valuations
(as in [12, Theorem 19.6] or [16, Theorem 56]). I quickly printed (by hand) my solution, handed it
to a secretary to be typed appropriately (professors did not have typewriters or computers at that
time, but we did have secretaries to type for us), received the typed copy for proofreading just a few
minutes later, found the typing to be perfect (that is, accurate), and managed to get my submitted
solution mailed to the MAA before the departmental mail was picked up that day. Surely, I thought,
with the MAA office just one or two days away by normal mail, my solution had a good chance
of being the first to be received. I eagerly awaited the eventual issue of the Monthly magazine,
expecting to see my name next to the published solution. (I promised you that this anecdote would
make me look all too human.) To my dismay, my name only appeared in the alphabetic list under
the heading “also solved by". The published solution did not look familiar to me. But when I saw
that the solution was due to Robert Gilmer, my dismay disappeared. At that point in time, Gilmer
was indisputably the world leader in multiplicative ideal theory (and perhaps, more generally, on
the topic of domains). My feelings were further assuaged when I read Gilmer’s solution and realized
that it differed significantly from my solution. In fact, Gilmer’s solution seemed slightly longer than
mine. (Yes, more human frailty is on exhibit here, but the story is nearly over.) More importantly,
Gilmer’s solution did not use the assumption that the ambient domain was unital. (Remember that
the definition of a “domain" in [12] does not require the unital property.) So, quite likely, I had
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achieved a Pyrrhic victory, in that my solution was probably the first to arrive at the office of the MAA
Monthly, but Gilmer’s solution was eventually deemed to be better by the powers that be, presumably
because his solution assumed less (and, therefore by the standards that most mathematics would use
for such matters, was the “better", more elegant solution). This experience taught me the following
valuable lesson: although some things are easier to do when an rng happens to be unital, one should
always be alert to the possibility that a result that has just been proved could be susceptible to a
different line of reasoning, perhaps coming from a different mathematical genre, leading to a more
elegant/economical proof.

The last few paragraphs may have caused some readers who are aficionados of domains to wonder
if “domains" really should be unital. At this point, I cannot claim that the above material has con-
vincingly presented the case for an affirmative answer. I do think, however, that the next paragraph
will help to make that case (especially in the minds of any of the just-mentioned aficionados who are
not yet convinced about this matter). I also think that the development of algebra during the past 60
years will also help to make that case. In that regard, following the next paragraph, please see the
subsequent seven paragraphs. There, you will find what I consider to be the most convincing reasons
why domains should be unital. Those seven paragraphs give what was, in my experience as a stu-
dent and a young professional, the beginning of a series of critical observations about modules. The
material in the initial five of those seven paragraphs comes from an exercise (that I recall working
nearly 60 years ago) from van der Waerden’s classic textbook “Modern Algebra."

First, recall that the comments at the beginning of this section embedded any rng R as a subrng
of some (unital) ring R. However, if R happened to be a domain, then that construction could not
be guaranteed to produce a ring R which is a domain. Indeed, if the characteristic of R is some
prime number p, then that ring R is definitely not a domain, the point being that if r is any nonzero
element of R, then (0, r) · (p,0) = (0,pr) = (0,0) = 0 in R. However, we show next that a more suitable
embedding is available. For clarity, let us change notation and begin with a domain D (in the sense
of [12]) which is definitely not unital. To avoid trivialities, one supposes that D , {0}, since the/a
zero ring cannot be a unital subring of any unital domain. According to [12], D has a quotient field,
say K . (More generally, I learned from a seminar talk by Kaplansky at UCLA in the spring quarter of
1970 that special cases of what we now call rings of fractions RS were anticipated (long ago, before I
was born) by workers such as Grell, with the role of 1 in RS being played by the fraction s/s for any
element s ∈ S. For more about this, see [12] and [18, pages 138-139].) I will next show that D can
be embedded as a subrng of some domain D such that D is a unital domain and D also has K as its
quotient field. (As [12] emphasizes the importance of such an “overring" extension in multiplicative
ideal theory, I find this result, whose proof will follow next, to be especially persuasive.) Observe
that K is a ring, with multiplicative identity element 1 = s/s for any nonzero element s of D. Take D
to be the subring of K that is generated by D and 1. (In other words, take D to be the intersection of
all the subrings of K which contain D and, necessarily, 1.) Then D is a (unital) subring of K (since
D is a subrng of K such that 1 ∈ D), so D is a “domain with 1". Of course, we also have that D is a
subrng of D and that K is a quotient field of D.

The benefits of changing from predominantly ideal-theoretic reasoning to module-theoretic rea-
soning in commutative ring theory were widely recognized and took hold during the late 1950s and
1960s, producing many useful generalizations and new methods. Prior to that, in part because of
the embedding result discussed in the first paragraph of this section, there was natural interest in
deciding whether a “module" over a (unital) ring should, by definition, be required to be unital.
Many mathematicians were convinced that this question should be answered in the affirmative (and
I concur with them) because of the following result from van der Waerden’s textbook. Let R be a not
necessarily commutative (but unital) ring and letM be a left module over R. ThenM can be uniquely
expressed as an internal direct sum of (not necessarily unital left) R-modules, M = M1 ⊕M2, where
M1 is a unital (left) R-module and the action of R on M2 is like the action of a zero ring on M2 (in the
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sense that r ·m = 0 for all r ∈ R and all m ∈M2).
Proof of uniqueness: Suppose that M =M1⊕M2 =N1⊕N2, where M1 and N1 are each unital (left)

R-modules and R acts as a zero ring on both M2 and N2. We will prove that M1 = N1 and M2 = N2.
Suppose first that u ∈M1. By hypothesis, u = v+w for some uniquely determined v ∈N1 and w ∈N2.
Then u − v = w satisfies

u − v = 1 ·u − 1 · v = 1 · (u − v) = 1 ·w = 0 ·w = 0,

whence u = v. Hence M1 ⊆N1. Similarly, N1 ⊆M1. Thus M1 =N1.
Suppose next that x ∈M2. Then x = y + z for some uniquely determined y ∈ N1 and z ∈ N2. Then

x − z = y satisfies

x − z = y = 1 · y = 1 · (x − z) = 1 · x − 1 · z = 0 · x − 0 · z = 0− 0 = 0,

whence x = z. Hence M2 ⊆ N2. Similarly, N2 ⊆M2. Thus M2 = N2. This completes the proof of the
uniqueness assertion.

Proof of existence: Let M1 := {x ∈M | 1 · x = x}. It is straightforward to check that M1 contains 0
and is closed under scalar multiplication from R, sums and differences, and soM1 is a not necessarily
unital R-submodule of M. But M1 is then also clearly a unital R-module. Next, let M2 := {y ∈ M |
1 · y = 0}. It is straightforward to check that M2 contains 0 and is closed under scalar multiplication
from R, sums and differences, and soM2 is a not necessarily unital R-submodule ofM. In fact, R acts
as a zero ring on M2 since, if r ∈ R and y ∈M2, then r ·y = (r ·1) ·y = r · (1 ·y) = r ·0 = 0. It remains only
to prove that M is the internal direct sum of M1 and M2, that is, that M1 +M2 =M and M1∩M2 = 0.

Let u ∈M. Put v := 1 · u and w := u − v. Observe that 1 · v = 1 · (1 · u) = (1 · 1) · u = 1 · u = v, whence
v ∈M1; and, since we have just noted that 1 ·u = v = 1 ·v, we have 1 ·w = 1 ·u−1 ·v = v−v = 0, whence
1 ·w = 0, whence w ∈M2. Hence u = v +w ∈M1 +M2, and so M ⊆M1 +M2. The reverse inclusion
is obvious, and so M1 +M2 = M. Finally, we need only show that if z ∈M1 ∩M2, then z = 0. This, in
turn, holds since 0 = 1 ·z (as z ∈M2) and 1 ·z = z (as z ∈M1). This completes the proof of the existence
assertion. This completes the proof.

I would suggest that the main point to be gleaned from the result in the past five paragraphs is this.
Because of the nature of the direct summands in the direct sum decomposition M = M1 ⊕M2, that
result has reduced the study of non necessarily unital modules to the following two studies: the study
of unital modules and the study of abelian groups (because a not necessarily unital module on which
the ambient ring acts as a zero ring is nothing more than an abelian group). Hence, from the point of
view of a ring-theorist, “modules" should be unital, as other considerations involving “not necessarily
unital modules" have been reduced to (abelian) group theory. If a reader believes that my conclusion
is outlandish, I can assure you that it is torn from the pages of history. Specifically (yes, here comes
another anecdote): each academic year during the late 1960s and early 1970s, UCLA’s mathematics
department hosted promising postdocs, some folks on sabbatical, some mid-career specialists and
senior leaders in a particular field of mathematics (the field varied annually). The field in 1969-70
was “Algebra", and I was lucky enough to be invited to participate as a Visiting Professor for the
entire year. Many of the visitors were present for only three weeks, during which such visitors were
obliged to give three lectures per week. One of the year-long visitors, S. A. Amitsur, gave three
lectures a week for the entire academic year. More than half of those lectures were devoted to a
theorem that he had only recently proved. The statement of the theorem could be given in many
formulations, some of which involved noncommutative ring theory (and were thus of interest to
many of those present for the “Algebra year") and one of which involved classical geometries (and
hence was of interest to me, largely because of my masters studies in 1964-65 in Canada). At the
end of his last lecture, Amitsur declared that, from the point of view of a ring theorist, he had
just completed the solution of the overall problem that his lectures had been devoted to. There
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was a stunned silence in the crowd, as none of us in attendance could “connect the dots". Amitsur
sensed our confusion (perhaps he had anticipated it) and then, with a twinkle in his eye, he added
a fuller explanation. His analysis had reduced the overall problem at hand to a problem in group
theory and so, he concluded, our interest in it, as ring-theorists, was now at an end. One by one, the
audience members grinned as the wisdom of Amitsur’s comment sank into their understanding, and
we rose in applause of Amitsur’s great accomplishment. While the preceding five paragraphs concern
much, much lower-level mathematics, I suggest that they have made a similar point, hopefully as
convincingly as Amitsur did in 1970.

The late 1950s and 1960s witnessed what has been called an “invasion" (I would prefer the term
“infusion") of homological algebra into many areas of algebra. This use of homological and categor-
ical predilections has continued and, in my opinion, has enriched much of algebra and its applica-
tions. A principal effect has been that there is now widespread agreement that ring homomorphisms
and algebra homomorphisms should be unital. Of course, one would argue, algebras should be unital
since rings should be unital and, after all, an extension involving commutative rings is an example
of an algebra, is it not? More generally, given a commutative ring R and an R-algebra S (for a com-
mutative ring R, this means that there is a ring homomorphsim f from R to the center of S), it has
long been traditional to view S as a (left) R-module via r · s := f (r)s for all r ∈ R and all s ∈ S. By
taking s := 1, we see that the only way for this module to be unital (and we have been arguing that
modules should be unital) is for f to be unital. Once one agrees that algebra homomorphisms should
be unital, one must agree that ring homomorphisms should be unital (the point being that every ring
is a Z-algebra).

I hope that this section has given the reader some food for thought. When it comes to a discussion
of values, one cannot hope to prove that one’s views are “correct" and that others’ views are “wrong."
I can only hope that this section will be of help to anyone who is hesitating as to whether their rings
(or their modules or their homomorphisms) should be unital. I will have accomplished my goal for
this section if such readers understand better what they may expect to gain or lose as a result of any
particular decision they may make about such matters.

5 Appendix III: Some professional preoccupationswith beginners’ angst

Some of the questions that were raised in Appendix I indicate that many beginning students of cat-
egory theory and/or algebraic geometry express concerns about the use of the definite article “the"
instead of the indefinite articles “a" or “an" in describing a mathematical object that is only well de-
fined up to isomorphism. (Such angst is often manifested in regard to constructions such as AS or
lim−−→i∈I

Ai , and it is only compounded by the use of notation such as lim−−→P ∈Xa
Aa, which contains at

least two such stimuli for concern.) As a beginning graduate student and later in doing my doctoral
research, such worries arose naturally in the course of my reading and my research. For instance,
the nth piece of Amitsur’s cochain complex (cf. [3]) is obtained by applying the units functor U (also
known as Gm) to the tensor product, over a given field K , of n + 1 copies of a field extension L of
K . It is natural to ask what it means to apply a functor to something that is only defined up to
isomorphism, and so I had some concern about the well-definedness of Amitsur’s cochains. That
concern compounded when I needed to address the (co)homology groups inferred from Amitsur’s
cochain complex, since the nth such group was defined as the quotient group of the group of nth

cocycles modulo the group of nth coboundaries. It is natural to ask what it means to be the factor
group G/N when a group G and its normal subgroup N are each only defined up to isomorphism.
Such concerns intensified during the first week of my doctoral research, as part of my assignment
for that week was to read [7] where, inter alia, Amitsur’s field extension K ⊂ L was generalized to any
(perhaps one should add “faithful") commutative algebra (over a commutative ring) and the units
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functor U was generalized to any abelian group-valued functor on a suitable category of algebras. Of
course, the relevant cohomology groups were generalized. For an R-algebra S and a functor F, the
associated nth cohomology group was denoted by Hn(S/R,F). That was quite a first week of work,
as my assignment also included reading a book about profinite groups. (That actually was not as
difficult, even though it mixed algebra with topology, because the relevant inverse limit defining a
profinte completion was truly the inverse limit of some unambiguous things indexed by an unam-
biguous directed set.) My unease was triply compounded, even that first week, because I knew that
my area of doctoral research was not going to be Amitsur cohomology – it was going to be Cech coho-
mology and “the" nth Cech cohomology group of a given object R and a given functor/presheaf F (in
something like a Grothendieck topology T – yes, I also had to quickly absorb M. Artin’s 1962 Har-
vard notes on Grothendieck topologies) is the direct limit of the corresponding Amitsur cohomology
groups Hn(S/R,F) as S ranges over some appropriate directed set of objects drawn from T . I quickly
realized that my advisor should not be bothered with my triply-provoked concerns, but I resolved to
identify the secret by which mathematicians had decided that some super version of the Axiom of
Choice could be used to turn all of those occurrences of what should perhaps have been “a" or an"
into occurrences of “the".

The semester before beginning my doctoral research, I took a very stimulating course on homo-
logical algebra. It was taught by Professor Len Silver and its official textbook was the classic work
by Cartan and Eilenberg. As that work was already 10 years old by then, I realized that it would
be advisable for me to try to understand many of the ideas in Professor Silver’s class in a more gen-
eral categorical setting. Fortunately, one of the sources that I chose to read in order to learn more
about category theory during my “spare time" (what graduate student ever has any spare time?) was
Grothendieck’s classic paper [14], which was then widely known as “Tohoku". Fortunately, in read-
ing (and re-reading) [14], I came across a passage that stuck in my memory. It is on page 133 of [14]
and it is quoted in the next paragraph. By remembering that passage, I was able (a few months later,
when I began my doctoral research) to unlock the “secret" that I had resolved to identify. It turns
out that the “super Axiom of Choice" that I supposed must lie at the crux of the secret has to do with
a well ordered set-theoretic universe. The availability of that universe is due (depending on one’s
point of view) to one or both of the following: Hilbert’s desire to have the benefits of a rather strong
Axiom of Choice, without explicitly committing himself to such an axiom, but instead introducing
(c. 1923) certain operators, dubbed τ and ε, which had certain desirable properties; and Gödel’s
construction (barely 10 years later) of the model V for ZFC set theory which featured a well -ordered
universe. In the next two paragraphs, I will say a little more about the first of these matters, having
to do with Grothendieck’s use of the Hilbert symbol τ . The final three paragraphs will discuss, inter
alia, well-ordered universes.

In [14, page 133], Grothendieck addressed and dismissed some concerns similar to the ones that
were mentioned in the first sentence of this appendix. He focused on the well-definedness of direct
limits in the following passage (the rather literal translation is mine, but the usage of italics is from
the original): “In particular, two direct limits of the same directed system are canonically isomorphic
(in an evident sense), also it is natural to choose, for each directed system that admits a direct limit,
one such direct limit (for example by means of Hilbert’s symbol τ), which we will then denote by
lim−−→A or lim−−→i∈I

Ai and which we will call the direct limit of the given directed system. If I and C are
such that lim−−→A exists for every directed system A indexed by I with values in C, it follows from the
above that lim−−→A is a covariant functor defined on the category of directed systems indexed by I in
C, with values in C." I can only suppose that in referring to “Hilbert’s symbol τ", Grothendieck was
assuming familiarity with an earlier (French language) edition of the appropriate chapter of [6].

My online searches in April 2023 indicated that this year (2023) marks the centennial of Hilbert’s
introduction of the operator τ . In this regard, I would like to mention some recent work of M. Abr-
usci and his collaborators having to do with some philosophical/mathematical questions concerning
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quantification and proof. First, one should acknowledge that there seems to be a widespread im-
pression online to the effect that “Hilbert’s symbol τ" had really originally been Hilbert’s symbol “ε"
and that various workers had decided to change the notation “ε" to “τ" some time before the orig-
inal French edition of the relevant chapter of [6], presumably in order to avoid confusion between
“ε" and the set-theoretic symbol “∈". However, this widespread belief seems to have been refuted
by Abrusci in [1], as can be seen from the following beginning of the author’s (that is, Abrusci’s)
summary of that work: “In section 1, I expose in an informal way the rules – and the logical rules –
on the proofs of the universal statements and existential statements, and the rules – and the logical
rules – on the deductions from these statements. In section 2, I show how Hilbert’s operators τ and
ε allow a representation of the universal statements and existential statements which is strictly re-
lated to the logical rules on the proofs of these statements and to the logical rules on the deductions
from these statements, so that we may say that Hilbert in the introduction of the operators τ and ε
aimed to propose a kind of proof-theoretical representation of the universal statements and existen-
tial statements." In joint work [2] with Pasquali and Retoré two years earlier, Abrusci makes clear
that the set-theoretic foundational concerns of the late 19th century which mathematicians typically
associate with people such as Cantor and Frege (concerns which were only heightened by Hilbert’s
formalist pronouncement in Königsberg in 1930 that “Wir müssen wiesen. Wir werden wissen" –
a belief that was shattered by Gödel’s incompleteness results shortly afterward) are shared and are
still being examined further to this day in some serious research (however remote such research may
seem to be from our daily activities as mathematicians). A sense of the flavor and scope of [2] can
be gotten from its Math. Review by B. H. Mayoh: “Quantifiers are ubiquitous in natural language.
This paper presents many approaches to capturing the complexity of natural language quantifica-
tion and suggests a new proof-theoretic approach. First, the authors discuss the classical universal
and existential quantifiers and why G. F. L. Frege rejected the appealing idea of domain restriction.
Next they present individual concepts, second-order logic and various Hilbert operators. Finally,
they present a section on generalized quantifiers. Many problems remain." If there are any readers
who wish to learn more about some serious, current, professional studies related to the τ and ε op-
erators, I would encourage them to look into the extensive literature on what is nowadays called the
“epsilontic calculus?.

In my experience, a working algebraist can occasionally benefit by attention to foundational mat-
ters. Consider, for example, the following result in category theory: a functor is a categorical equiv-
alence if (and only if) it is fully faithful and essentially surjective. As a doctoral student, I first
came across this result when I read its use by Bass in [5, Chapter II, 1.2] for some work on alge-
braic K-theory. Although Bass did not mention any foundational issues that may arise when using
that categorical result, the only proof that I know of that result requires that some well ordering
be applicable to the domain category of the given functor (certainly a well ordering of the class of
objects of that category, perhaps also something like – or more than – the well ordering of each set
of morphisms with a given domain and a given codomain in that category). Thanks to a famous
result of Gödel [13], there is a model satisfying the ZFC (Zermelo-Frankel and the Axiom of Choice)
foundations whose universe is well ordered.

Some mathematicians have occasionally used the above characterization of a categorical equiva-
lence to conclude that every category is equivalent to a skeletal category, that is, to a category in
which any two isomorphic objects are equal. While this would be acceptable (assuming ZFC) for a
small category (that is, a category whose class of objects is a set), the famous paradoxes of intuitive set
theory have led several mathematicians to conclude that many important categories are not small.
In reading authors such as Grothendieck or Mac Lane (see, especially, [17, pages 23-24 and 30]),
I have often had the impression that they preferred the meaning of “set" to be placed on a “slid-
ing scale", that is, to be adjusted in accordance with the data for the problem at hand. It has been
said that although most mathematicians profess to be formalists in their official pronouncements on
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foundational matters, we tend to think, create and act like Platonists, as though the objects of our
professional attention are “ideal" things, in the spirit of “The Republic of Plato." Is there a better way
to guarantee access to such ideal things than to have a well-ordered universe?

The fact that having a well ordered universe is consistent with ZFC allowed me to access and use
what I called “chosen fields" to construct a functor in [8, Definition 3.8, page 24] which had several
cohomologically useful applications (cf. [8, Chapter I, Theorems 3.10, 3.13 and 5.9]). The “chosen
fields" were also instrumental in my proof of a very useful result [9, Theorem 2.2] stating that for any
field k, in the étale toplogy for Spec(k), there is a left adjoint functor sending presheaves to what may
be called “additive presheaves" in a way that is analogous to the “sheafification" functor that sends
presheaves to sheaves (in a more general context, of course). My research has perhaps had only two
other noteworthy interactions with mathematical logic: in [11, Proposition 2.5 (a)], A. Hetzel and
I worked with countable models to prove the “lifting" result that a ring homomorphism is a chain
morphism if (and only if) it is an n-chain morphism for every positive integer n; and in [10], R. C.
Heitmann and I showed that the answer to a certain question depends on which model of ZFC is
being used. That question asked to determine those infinite cardinal numbers ℵα for which there
exists a field extension K ⊂ L such that ℵα is the supremum of the set of cardinalities that arise as
lengths of chains of intermediate fields contained between K and L. Regardless of whether the reader
has found my anecdotes to be interesting or merely self-indulgent, I should close by pointing out that
there have been several (I would add “other") interesting questions in algebra whose answers depend
on the model of ZFC that is being used. To be brief, let me mention just two of them (in chronological
order). In [20], B. L. Osofsky proved that the global dimension of a countable direct product of fields
is k + 1 if and only if 2ℵ0 = ℵk . In [21], S. Shelah proved that the Whitehead Problem is undecidable;
that is, he proved that there are two axioms, each of which is consistent with ZFC, that give different
answers to the question which asks whether an abelian group A such that Ext1

Z
(A,Z) = 0 must be a

free abelian group.
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