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Abstract. In this article, we determine all the integers c having at least two representations as difference between two

linear recurrent sequences. This is a variant of the Pillai’s equation. This equation is an exponential Diophantine equation.

The proof of our main theorem uses lower bounds for linear forms of logarithms, properties of continued fractions, and a

version of the Baker-Davenport reduction method in Diophantine approximation.
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1 Introduction

It is well known that the sequence {Pk}k≥1 of Padovan numbers is defined by

P0 = P1 = P2 = 1, Pk+3 = Pk+1 +Pk , k ≥ 0.

The first Padovan numbers are

1,1,1,2,2,3,4,5,7,9,12,16,21,28,37,49,65,86,114,151,200,265 . . .

The sequence {Lk}k≥1 of Lucas numbers is defined by

L0 = 2, L1 = 1, Lk+2 = Lk+1 +Lk , k ≥ 0.

The first Lucas numbers are
2,1,3,4,7,11,18,29,47,76,123, . . .

In this article, we are interested in the determination of solutions of the Diophantine equation

Pm −Ln = c (1)

for fixed c and m, n the unknowns. In particular, we are interested in integers c admitting at least
two representations as the difference between a Padovan number and a Lucas number. It is a variant
of the equation

ax − by = c, (2)

in positive integers (x,y) where a,b,c are fixed positive integers. The history of the equation (2) is
very rich and goes back to 1935. Subbayya Sivasankaranarayana Pillai (1901 − 1950) is an Indian
mathematician specializing in number theory. He has written several articles on perfect powers. A
perfect power is a positive integer of the form ax where a ≥ 1 and x ≥ 1 are natural integers. In 1931,
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S.S. Pillai proved in [16] that for all positive integers a and b fixed, both, the number of solutions
(x,y) of the Diophantine inequalities 0 < ax − by ≤ c is asymptotically equal to

(logc)2

2(loga)(logb)
. (3)

when c tends to infinity. It is very interesting to read this article to see how this result was obtained.
This result follows from the attempt to prove that the equation

mx −ny = a.

has only a finite number of integral solutions. In this equation, m, n and a are fixed. The unknowns
are x and y. After several years, he repeated this same equation, but this time with m, n, x and y
as unknowns, fixing only a. Research on this equation began with S.S. Pillai in 1931. In 1936, A.
Herschfeld ([15] and [14]) continued the research and showed that if |c| is a large enough integer,
then the equation

2x − 3y = c (4)

has at most one solution (x,y) with x and y being positive integers.
This result is no longer true for |c| small enough. By classical methods, Herschfeld demonstrated

that only triples of integers (x,y,c) with positive x and y such that 2x − 3y = c is given for |c| ≤ 10 by:

(2,1,1), (1,1,−1), (3,2,−1), (3,1,5), (5,3,5), (2,2,5), (4,2,7), (1,2,−7).

So if x > 5 or y > 3, then |2x − 3y | > 10. Proceeding in the same way, he proved that if x > 8 or y > 5,
then |2x − 3y | > 100.

S.S. Pillai ([15] and [14]) extended Herschfeld’s results to the more general case of exponential
Diophantine equations

ax − by = c, (5)

where a , b and c are nonzero integers fixed with gcd(a,b) = 1 and a > b ≥ 2. He showed that there
exists a positive integer c0(a,b) such that, for |c| > c0(a,b), this equation has at most one solution.
This proof does not give the explicit value of c0(a,b). In the special case of the Herschfeld equation
with (a,b) = (2,3), S.S. Pillai conjectured that c0(a,b) = 13 and said that the integer c which has two
representations of the form 3n−2m are the elements of the set {−13,−5,1}. This conjecture was solved
by R. J. Stroeker and R. Tijdeman in 1982 by measuring the linear independence of the forms of
logarithms of algebraic numbers.

Conjecture 1.1 ( Pillai’s conjecture).
For any integer k ≥ 1, the Diophantine equation

xn − ym = k (6)

admits a finite number of positive integer solutions (n,m,x,y), with n ≥ 2 and m ≥ 2.

Since then, several variants of the equation (5) have been intensively studied. Recent results re-
lated to the equation Hn −Gn = c where (Hn)n≥0 and (Gn)n≥0 represent linear recurrent sequences
are obtained by M Ddamulira et al in which they solved this type of Pillai equations with Fibonacci
numbers and powers of 2 (see [10]), M. Ddamulira et al solved the case with generalized Fibonacci
numbers and powers of 2 (see [9]), and Bravo et al solved the case of Tribonacci numbers and powers
of 2 (see [4]). We have also solved the case of Padovan numbers and Lucas numbers, by determining
the numbers c which have at least two representations as difference of Padovan and Lucas numbers.
More simply, we solved the equation Pm −Ln = c with m > 3. The articles [20, 19, 18, 17] also discuss
variants of the Pillai equation and other Diophantine equations solved by the method of logarithmic
linear forms. The purpose of this article is to prove the following result.
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Theorem 1.2. The only integers c having at least two representations of the form Pm −Ln with m ≥ 3
are

c ∈ { − 643,−310,−171,−74,−48,−27,−26,−13,−11,−9,−8,−6,−4,−2,−1,0,1,2,3,

4,5,6,8,9,10,14,17,18,19,20,26,36,38,47,64,68,75,85,189,2864,58269}
(7)

We organize this article as follows. In the next section, we recall some useful results for the proof
of the Theorem 1.2. The proof of the Theorem 1.2 is done in the last section.

2 Preliminaries

2.1 Some properties of Lucas and Padovan sequences

We recall here some properties of Lucas {Lk} and Padovan {Pk}k≥0 sequences which are useful to prove
our theorem.
The characteristic equation for the Padovan sequence is

x3 − x − 1 = 0,

has roots α,β,γ = β, where

α =
r1 + r2

6
, β =

−r1 − r2 + i
√

3(r1 − r2)
12

,

and

r1 =
3
√

108 + 12
√

69 and ; r2 =
3
√

108− 12
√

69.

Cardan’s formulas give for the real root the plastic number or silver number:

3

√
1
2

+

√
69

18
+

3

√
1
2
−
√

69
18
≈ 1,32472.

Also, Binet’s formula is
Pk = aαk + bβk + cγk , ; for all k ≥ 0, (8)

where

a =
(1− β)(1−γ)
(α − β)(α −γ)

=
1 +α

−α2 + 3α + 1
,

b =
(1−α)(1−γ)
(β −α)(β −γ)

=
1 + β

−β2 + 3β + 1
,

c =
(1−α)(1− β)
(γ −α)(γ − β)

=
1 +γ

−γ2 + 3γ + 1
= b.

(9)

Numerically, we have
1.32 < α < 1.33,
0.86 < |β| = |γ | = α−1/2 < 0.87,
0.72 < a < 0.73,
0.24 < |b| = |c| < 0.25.

(10)

Using induction, we can show that
αk−2 ≤ Pk ≤ αk−1, (11)

for all k ≥ 4.
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On the other hand, let (δ,η) = ((1 +
√

5)/2, (1 −
√

5)/2) be the roots of the characteristic equation
x2 − x − 1 = 0 of the Lucas sequence {Lk}k≥0. Binet’s formula for Lk

Lk = δk + ηk is valid for all k ≥ 0. (12)

This easily implies that the inequality

δk−1 ≤ Lk ≤ δk+1 (13)

holds for all positive integers k.
Now let’s discuss the notions of naive height and absolute logarithmic height.

2.1.1 Algebraic height

In this section, we recall the notion of algebraic height which is very useful as we will see later. We
begin by defining the naive height and then deducing from it the absolute logarithmic height.

Definition 2.1 (Naive height [3]).
For any algebraic number γ , we define the height of γ by:

H(γ) = max(|ad |, . . . , |a0|),

where f (x) = adxd + · · ·+a1x+a0 is a minimal polynomial of γ over Z. H(γ) is called the naive height
of γ .

Example 2.2.
Let α be an algebraic number:

• If γ ∈Z, H(γ) = |γ |.

• If γ ∈Q
(
i.e. γ =

b
a

with gcd(a,b) = 1
)
, H(γ) = max{|a|, |b|},

For any algebraic number γ , we have the following identity:

H(γ) = |ad |
d∏
i=1

max{1, |γi |}, (14)

where γi represent the roots of the minimal polynomial and f (x) = ad
d∏
i=1

(x − γi) is the minimal

polynomial of γ . We define in the next subsection, another height deduced from the previous one
called absolute logarithmic height. It is the most used.

Definition 2.3 (Absolute logarithmic height [3]).
For a nonzero algebraic number γ of degree d over Q where the minimal polynomial over Z is

f (x) = ad
d∏
i=1

(x −γi), we denote by:

h(γ) =
1
d

log |ad |+
d∑
i=1

logmax{1, |γi |}

 =
1
d

logH(γ), (15)

the usual absolute logarithmic height of γ .
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The properties of absolute logarithmic height are as follows:

Proposition 2.4 (Y. F. Bilu, Y. Bugeaud et M. Mignotte [3]).

1. Let γ , δ be two nonzero algebraic numbers. We have

Ţ h(γδ) ≤ h(γ) + h(δ),

Ţ h(γ + δ) ≤ h(γ) + h(δ) + log2.

2. For any algebraic number γ and n ∈Z (with γ , 0 and if n < 0) we have:
h(γn) = |n|h(γ).

More generally, for γ1,γ2, · · · ,γn, n algebraic numbers, we have:

Ţ h(γ1γ2 · · ·γn) ≤ h(γ1) + h(γ2) + · · ·+ h(γn)

Ţ h(γ1 +γ2 + · · ·+γn) ≤ h(γ1) + h(γ2) + · · ·+ h(γn) + logn.

Example 2.5.
Let γ be a root of x2 − 2x − 1, then

h(γ) =
1
2

(logmax{1, |α|}+ logmax{1, |β|}) =
1
2

logα,

where α = 1 +
√

2 and β = 1−
√

2.

Let us now state the theorems of Baker and Wüstholz [2], before that of Matveev.

Theorem 2.6 ( Baker and Wustholz ).

Let K be a real number field of degree d, η1, . . . ,ηs ∈K and b1, . . . , bn ∈Z\{0}. Let B ≥max{|b1|, . . . , |bn|}
and

Λ := ηb1
1 · · ·η

bn
n − 1.

If Λ , 0, then
|Λ| > exp

(
−(16nd)2n+4. logA1... logAn. logB

)
(16)

with Ai = max{H(αi), e}, for i = 1, · · · ,n; B = max{|b1|, · · · , |bn|, e} and d = [Q(α1, · · · ,αn) : Q].

Theorem 2.7 (A. Baker and G. Wüstholz ).
Let K be the field of algebraic numbers generated by α1, · · · ,αn of degree d over Q. Let α1, · · · ,αn ∈ K∗
and b1, · · · ,bn ∈Z∗. Put

Γ :=
n∑
i=1

bi log(αi)

Suppose B∗ = max{|b1|, · · · , |bn|} and w = A1A2...An with Aj =
1
d

(
max{h(αj ), | log(αj )|,1}

)
(1 ≤ j ≤ n).

Suppose also that Γ , 0, then;

log(|Γ |) > −18(n+ 1)!nn+1(32d)n+2w log(2nd) log(B∗).

Let us now state the result of E. Matveev [13] which is the most used to solve certain Diophantine
equations.
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Theorem 2.8 (E. M. Matveev).
Let K be an algebraic field of numbers of degree d over Q. If K ⊂ R, set ξ = 1 otherwise ξ = 2. Let
α1, . . . ,αn ∈K∗ and b1, . . . , bn ∈Z∗. Suppose

B∗ = max{|b1|, . . . , |bn|}, w = A1A2 . . .An, Aj ≥max{dh(αj ), | log(αj ),0.16|}

with (1 ≤ j ≤ n) and
Γ = b1 log(α1) + · · ·+ bn log(αn).

If Γ , 0, then
log(|Γ |) > −C1(n)d2w log(ed) log(eB∗)

with
C1(n) >min{1

ξ
(0.5en)ξ30n+3n3.5,26n+20}.

More simply, Y. Bugeaud, M. Mignotte and S. Siksek [5] established the following result.

Theorem 2.9 (Y. Bugeaud, M. Mignotte, and S. Siksek).
Let n ≥ 1 be an integer. Let K be the field of algebraic numbers of degree d. Let α1, . . . ,αn be nonzero
elements of K and let b1,b2, ...,bn be integers,

B = max{|b1|, ..., |bn|},
and

Λ = αb1
1 ...α

bn
n − 1.

Let A1, ...,An be real numbers such that

Aj ≥max{dh(αj ), | log(αj ),0.16|}, 1 ≤ j ≤ n.

Assuming Λ , 0, we have:

log |Λ| > −3× 30n+4 × (n+ 1)5.5 × d2 ×A1...An(1 + logd)(1 + lognB).

If K is real, then

log |Λ| > −1.4× 30n+3 × (n)4.5 × d2 ×A1...An(1 + logd)(1 + logB).

Note that for some values of n, the lower bound of the logarithm proposed by E.M. Matveev is
better (slightly) than that of Baker and Wüstholz.

When n = 2 and α1,α2 multiplicatively independent, we have these few results obtained by Lau-
rent, Mignotte, Nesterenko ( [12], Corollary 2, pp. 288).

Let in this case B1, B2 be real numbers greater than 1 such that:

logBi ≥max
{
h(αi),

| logαi |
d

,
1
d

}
for i = 1,2,

and let’s put

b′ :=
|b1|

d logB2
+
|b2|

d logB1
.

Let’s put
Γ := b1 logα1 + b2 logα2.

Note that Γ , 0 because α1 and α2 are multiplicatively independent.

Theorem 2.10 (Laurent, Mignotte, Nesterenko).
With the previous notations, let α1, α2 be multiplicatively independent positive numbers, then:

log |Γ | > −24.34d4
(
max

{
logb′ + 0.14,

21
d
,
1
2

})2
logB1 logB2.

Note that with Γ := b1 logα1 + b2 logα2, we have eΓ − 1 = Λ, where Λ := αb1
1 · · ·α

bn
n in case n = 2.
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3 Reduction method

During calculations, we get upper bounds on our variables which are too large, so we have to reduce
them. To do this, we use some results from the theory of continued fractions. Concerning the treat-
ment of homogeneous linear forms in two integer variables, we use the well-known method of the
classical result in the theory of Diophantine approximation.

Lemma 3.1 (Legendre).
Let τ be an irrational number. Let [a0, a1, a2, . . .] be the continued fraction of τ and

p0

q0
,
p1

q1
,
p2

q2
, . . . all the

convergents of the continued fraction of τ . Let M be a positive integer. Let N be a positive integer such that
qN >M. Then setting a(M) := max{ai : i = 0,1, . . . ,N }, the inequality∣∣∣∣τ − rs ∣∣∣∣ > 1

(a(M) + 2)s2
,

is valid for all pairs (r, s) of positive integers with 0 < s <M.

For a non-homogeneous linear form with two integer variables, we use a slight variation of a result
due to Dujella and Pethő ([11], Lemma 5a). The proof is almost identical to that of the corresponding
result in [11]. For a real number X, we write ‖X‖ := min{| X−n |: n ∈Z} for the distance from X to the
nearest integer.

Lemma 3.2 (Dujella, Pethő).
Let M be a positive integer,

p

q
a convergent of the continued fraction of the irrational number τ such that

q > 6M, and A,B,µ be algebraic numbers such as A > 0 and B > 1. Let ε :=
∥∥∥µq∥∥∥ −M ‖τq‖. If ε > 0, then

the following inequality:
0 < |uτ − v +µ| < AB−w,

does not admit an integer solution u, v and w with

u ≤M and w ≥
log(Aq/ε)

logB
.

On various occasions we need to find a lower bound for linear forms of logarithms with bounded
integer coefficients in three and four variables. In this case, we use the Lenstra-Lenstra-Lovász basic
lattice reduction algorithm (LLL-algorithm) which we describe below. Let τ1, τ2, . . . , τt ∈ R and the
linear form

x1τ1 + x2τ2 + · · ·+ xtτt with |xi | ≤ Xi . (17)

We set X := max{Xi}, C > (tX)t and consider the entire lattice Ω generated by:

bj := ej + bCτje for 1 ≤ j ≤ t − 1 and bt := bCτteet ,

where C is a sufficiently large positive constant and (e1, . . . , et) the canonical basis of Rt.

Lemma 3.3 (LLL-algorithm).
Let X1,X2, · · · ,Xt be positive integers such that X := max{Xi} and C > (tX)t is a sufficiently large fixed
positive constant. With the above notations on the lattice Ω, we consider a reduced basis bi to Ω and its
associated Gram-Schmidt orthogonalization basis {b∗i }. We fix

c1 := max
1≤i≤t

‖b1‖∥∥∥b∗i∥∥∥ , θ :=
‖b1‖
c1

, Q :=
t−1∑
i=1

X2
i , et R :=

1
2

1 +
t∑
i=1

Xi

 .
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If the integers xi are such that |xi | ≤ Xi , for 1 ≤ i ≤ t and θ2 ≥Q+R2, then we have∣∣∣∣∣∣∣
t∑
i=1

xiτi

∣∣∣∣∣∣∣ ≥
√
θ2 −Q −R

C
.

For proof and further details, we refer the reader to Cohen’s book. (Proposition 2.3.20 in [8], pp.
58− 63).

4 Main result

Suppose there are positive integers n,m,n1,m1 such that (n,m) , (n1,m1), and

Ln −Pm = Ln1
−Pm1

.

Due to symmetry, we can assume that m ≥ m1. If m = m1, then Ln = Ln1
, thus (n,m) = (n1,m1),

contradicting our hypothesis. Thus, m >m1. Seen that

Ln −Ln1
= Pm − Pm1

, (18)

and the right member is positive, we obtain that the left member is also positive and therefore n > n1.
Thus, n ≥ 2 and n1 ≥ 1. Using Binet’s formulas (12) and (8), the equation (18) implies that

δn−3 ≤ Ln−2 ≤ Ln −Ln1
= Pm −Pm1

< αm−1, (19a)

δn+1 ≥ Ln > Ln −Ln1
= Pm −Pm1

≥ Pm−5 ≥ αm−7, (19b)

Hence

(m− 7)
(

logα
logδ

)
− 1 < n < (m− 1)

(
logα
logδ

)
+ 3, (20)

where
logα
logδ

= 0.5843 . . . . If n <300, then m ≤ 190. We ran a computer program for 2 ≤ n1 < n ≤ 300

and 1 ≤ m1 < m < 190 and found only solutions from the list (7). From now on we assume that
n ≥ 300.
Note that the inequality (20) implies that m < 2n. So, to solve the equation (18), we need an upper
bound on n.

4.1 Upper bound on n

Note that using the numerical inequalities (10) we have

|η|n + |η|n1 + |b||β|m + |c||γ |m + |b||β|m1 + |c||γ |m1 < 3.02. (21)

Using Binet’s formulas in the Diophantine equation (18), we get

|δn − aαm| =
∣∣∣−ηn + δn1 + ηn1 + (bβm + cγm)− (aαm1 + bβm1 + cγm1)

∣∣∣
≤ δn1 + aαm1 + |η|n + |η|n1 + |b||β|m + |c||γ |m + |b||β|m1 + |c||γ |m1

< δn1 + aαm1 + 3.02

< 4.76max{δn1 ,αm1}.

By dividing by aαm and using the relation (19a), we obtain∣∣∣a−1δnα−m − 1
∣∣∣ < max

{4.76
aαm

δn1 ,
4.76
a
αm1−m

}
< max

{
5.01

δn1

α · δn−3 ,5.01αm1−m
}
.
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Therefore, we get ∣∣∣a−1δnα−m − 1
∣∣∣ <max{δn1−n+7,αm1−m+7}. (22)

For the left member, we apply the Theorem 2.8 with the data

s = 3, γ1 = a, γ2 = δ, γ3 = α, b1 = −1, b2 = n, b3 = −m.

Throughout our demonstrations, we work with the algebraic number field K = Q(
√

5,α) which de-
gree is d

K
= 6. Since max{1,n,m} ≤ 2n we take B := 2n. We have

h(γ2) =
logδ

2
and h(γ3) =

logα
3

.

Moreover, the minimal polynomial of γ1 is 23x3 −23x2 + 6x−1 and has roots a, b, c. Since |a| < 1 and
|b| = |c| <1, then

h(γ1) =
1
3

log23.

So we can take
A1 = 2log23, A2 = 3logδ, A3 = 2logα.

Put
Λ = a−1δnα−m − 1.

If Λ = 0, then δn(α−1)m = a, which is false, Since δn(α−1)m ∈ O
K

(the ring of integers of K) while a
does not belong to O

K
, as can be seen immediately at from its minimal polynomial. Thus, Λ , 0.

Then, by Theorem 2.8, the left side of the equation (22) is bounded by

log |Λ| > −1.4 · 306 · 34.5 · 62(1 + log6)(1 + log2n)(2log23)(3logδ)(2logα).

By comparing with (22), we get

min{(n−n1 − 7)logδ, (m−m1 − 7)logα} < 7.33× 1013(1 + log2n),

which gives
min{(n−n1) logδ, (m−m1) logα} < 7.33× 1013(1 + log2n).

Now two cases arise.
Case 1. min{(n−n1) logδ, (m−m1) logα} = (n−n1) logδ.

In this case, we rewrite (18) as

|(δn−n1 − 1)δn1 − aαm| =
∣∣∣−aαm1 + ηn − ηn1 + (bβm + cγm)− (bβm1 + cγm1)

∣∣∣
using (21) and dividing by αm, we get∣∣∣∣∣∣

(
δn−n1 − 1

a

)
δn1α−m − 1

∣∣∣∣∣∣ < 5.21αm1−m. (23)

We put

Λ1 =
(
δn−n1 − 1

a

)
δn1α−m − 1.

We see that, Λ1 , 0, for if Λ1 = 0, then δn − δn1 = aαm. This is impossible because aαm ∈ Q(α) and
δn −δn1 ∈Q(

√
5)\Q. Indeed, if δn −δn1 ∈Q, then when we take σ , id to be the unique non-trivial Q-

automorphism on Q(
√

5). Then we get

δn − δn1 = σ (δn − δn1) = ηn − ηn1 .
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However, the absolute value of the left member is at least δn−δn1 ≥ δn−2 ≥ δ298 > 2, while the absolute
value on the right is at most

∣∣∣ηn1 − ηn
∣∣∣ ≤ |η|n1 + |η|n < 2. By this obvious contradiction, we conclude

that Λ1 , 0.
We apply the Lemma 2.8 by taking s = 3, and

γ1 =
δn−n1 − 1

a
, γ2 = δ, γ3 = α, b1 = 1, b2 = n1, b3 = −m.

The minimal polynomial of δn−n1 + 1 divides

x2 + (2−Ln−n1
)x+ ((−1)n−n1 + 1−Ln−n1

),

where {Lk}k≥0 is the Lucas sequence defined by L0 = 2, L1 = 1, Lk+2 = Lk+1 +Lk for all k ≥ 0, for which
the Binet formula of its general term is

Lk = δk + ηk for all k ≥ 0.

On the other hand, the minimal polynomial of a is 23x3 − 23x2 + 6x − 1 and has roots a, b, c. Since

|b| = |c| < 1 and a < 1, then h(a) =
log23

3
.

Thus, we get
h(γ1) ≤ h (δn−n1 + 1) + h(a)

≤ h (δn−n1) + h(1) + log2 +
log23

3

≤ (n−n1)h (δ) + h(1) + log2 +
log23

3

<
1
2

(n−n1) logδ+ 1.74

< 3.66× 1013(1 + log2n).

(24)

Thus, we can take A1 := 2.2 × 1014(1 + log2n). Also, as before, we can take A2 := 3logδ and A3 :=
2logα. Finally, since max{1,n1,m} ≤ 2n, we can take B := 2n. We then obtain

log |Λ1| > −1.4 · 306 · 34.5 · 62(1 + log6)(1 + log2n)× (2.2× 1014(1 + log2n))(3logδ)(2logα).

Thereby,
log |Λ1| > −2.57 · 1027(1 + log2n)2.

Comparing this with (23), we get that

(m−m1) logα < 2.57 · 1028(1 + log2n)2.

Case 2. min{(n−n1) logδ, (m−m1) logα} = (m−m1) logα.

In this case, we rewrite (18) as

|δn − aαm + aαm1 | =
∣∣∣ηn + δn1 − ηn1 + (bβm + cγm)− (bβm1 + cγm1)

∣∣∣
then ∣∣∣∣∣ δnα−m1

a(αm−m1 − 1)
− 1

∣∣∣∣∣ < 4.03
a(1−αm1−m)α

δn1

αm−1 < 18δn1−n+3. (25)

Let
Λ2 = (a(αm−m1 − 1))−1δnα−m1 − 1.
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We see that, Λ2 , 0, for if Λ2 = 0 implies δ2n = α2m1a2(αm−m1 − 1)2., however, δ2n ∈ Q(
√

5)\Q, while
α2m1a2(αm−m1 −1)2 ∈Q(α), which is not possible. We apply again the Lemma 2.8. In this application,
we take s = 3, and

γ1 = a(αm−m1 − 1), γ2 = δ, γ3 = α, b1 = −1, b2 = n, b3 = −m1.

We have
h(αm−m1 − 1) ≤ h(αm−m1) + h(−1) + log2 = (m−m1)h(α) + log2

=
(m−m1) logα

3
+ log2 < 2.43× 1013(1 + log2n) + log2.

Thus, on

h(γ1) < 2.44× 1013(1 + log2n) + log2 +
log23

3
+ log

√
5

< 2.44× 1013(1 + log2n).

So we can take A1 := 1.47×1014(1+log2n). Also, as before, we can take A2 := 3logδ and A3 := 2logα.
Finally, since max{1,n,m1 + 1} ≤ 2n, we can take B := 2n. We then get this

log |Λ2| > −1.4 · 306 · 34.5 · 62(1 + log6)(1 + log2n)× (1.47× 1014(1 + log2n))(3logδ)(2logα).

Hence,
log |Λ1| > −1.71 · 1027(1 + log2n)2.

Comparing this with (25), we get that

(n−n1) logδ < 1.71 · 1027(1 + log2n)2.

Thus, in both cases 1 and 2, we have

min{(n−n1) logδ, (m−m1) logα} <7.33 · 1013(1 + log2n) (26a)

max{(n−n1) logδ, (m−m1) logα} <2.57 · 1027(1 + log2n)2. (26b)

We finally rewrite the equation (18) as

|δn − δn1 − aαm + aαm1 | =
∣∣∣δn − δn1 + (bβm + cγm)− (bβm1 + cγm1)

∣∣∣ < 3

Dividing both sides by aαm1(αm−m1 − 1), we get∣∣∣∣∣∣
(
δn−n1 − 1

a(αm−m1 − 1)

)
δn1α−m1 − 1

∣∣∣∣∣∣ < 3
a(1−αm1−m)α

1
αm−1 < 13.5δ3−n. (27)

To find a lower bound on the left side, we again use the Lemma 2.8 with s = 3, and

γ1 =
δn−n1 − 1

a(αm−m1 − 1)
, γ2 = δ, γ3 = α, b1 = 1, b2 = n1, b3 = −m1.

Using h(x/y) = h(x) + h(y) for two nonzero algebraic numbers x and y, we have

h(γ1) ≤ h

(
δn−n1 − 1

a

)
+ h(αm−m1 − 1)

<
1
2

(n−n1 + 4)logδ+
log23

3
+

(m−m1) logα
3

+ log2

< 2.14 · 1027(1 + log2n)2,
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where in the chain of inequalities above, we used the argument of (24) as well as the (26b) bound. So
we can take A1 := 1.54 ·1028(1+log2n)2 and certainly A2 := 3logδ and A3 := 2logα. Using arguments
similar to those in the proof that Λ1 , 0 we show that if we set

Λ3 =
(
δn−n1 − 1

a(αm−m1 − 1)

)
δn1α−m1 − 1,

then Λ3 , 0. The Lemma 2.8 gives

log |Λ3| > −1.4 · 306 · 34.5 · 62(1 + log6)(1 + log2n)× (1.54 · 1028(1 + log2n)2)(3logδ)(2logα),

which with (27) gives
(n− 3) < 1.8 · 1041(1 + log2n)3,

leading to n < 2.45 · 1047.

4.2 Reduction of the upper bound by n

We must now reduce the bound above for n and to do this we use the Lemma 3.2 several times and
each time M := 2.45 · 1047. To begin, let’s go back to (22) and set

Γ := n logδ −m logα − loga.

For technical reasons, we assume that min{n − n1,m −m1} ≥ 20. Let’s go back to the inequalities for
Λ, Λ1, Λ2.

Since we assume that min{n−n1,m−m1} ≥ 20, we get |eΓ −1| = |Λ| < 1
4

. However, |Λ| < 1
2

and since

the inequality |x| < 2|ex − 1| holds for all x ∈
(
−1

2 ,
1
2

)
, we get

|Γ | < 2max{δn1−n+7,αm1−m+7} ≤max{δn1−n+9,δm1−m+10}.

Assume Γ > 0. We then have the inequality

0 < n
(

logδ
logα

)
−m+

log(1/a)
logα

< max
{
δ9

logα
δ−(n−n1),

α10

logα
α−(m−m1)

}
< max{270 · δ−(n−n1),60 ·α−(m−m1)}.

We apply the Lemma 3.2 with

τ =
logδ
logα

, µ =
log(1/a)

logα
, (A,B) = (270,δ) or (60,α).

Let τ = [a0, a1, . . .] = [1;1,2,2,6,2,1,2,1,2,1,1,11, . . .] is the continued fraction of τ . We consider the
convergent 98-th

p

q
=
p98

q98
=

(78093067704223831799032754534503501859635391435517
45634243076387457097046528084208490147594968308975

which satisfies q = q98 > 6M. Moreover, this gives ε > 0.37, and therefore either

n−n1 ≤
log(270q/ε)

logδ
< 250, or m−m1 ≤

log(60q/ε)
logα

< 420.
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In the case of Γ < 0, we consider the following inequality:

m

(
logα
logδ

)
−n+

loga
logδ

< max
{
δ9

logδ
α−(n−n1),

α10

logδ
α−(m−m1)

}
< max{160 · δ−(n−n1),37 ·α−(m−m1)},

instead and apply the Lemma 3.2 with

τ =
logα
logδ

, µ =
loga
logδ

, (A,B) = (160,δ) or (35,α).

Let τ = [a0, a1, . . .] = [0,1,1,2,2,6,2,1,2,1,2,1,1,11, . . .] be the fraction sequence of τ (note that the
current τ is just the inverse of the previous τ). Again, we consider the convergent 98-th that satisfies
q = q98 > 6M. This again gives ε > 0.0867, and so either

n−n1 ≤
log(160q/ε)

logδ
< 246 < 250, or m−m1 ≤

log(35q/ε)
logα

< 413 < 420.

In conclusion, we have either n−n1 ≤ 250 or m−m1 ≤ 420 whenever Γ , 0.
Now, we must distinguish the cases n−n1 ≤ 250 and m−m1 ≤ 420. First suppose that n−n1 ≤ 250.

In this case, we consider the inequality (23) and assume that m−m1 ≥ 20. We ask

Γ1 = n1 logδ −m logα + log
(
δn−n1 − 1

a

)
.

Then the inequality (23) implies that
|Γ1| < 10.4αm1−m.

If we further assume that Γ1 > 0, then we get

0 < n1

(
logδ
logα

)
−m+

log((δn−n1 − 1)/a)
logα

<
10.4

(logα)
α−(m−m1) < 38α−(m−m1).

We apply again the Lemma 3.2 with the same τ as in the case where Γ > 0. We use the 100-th
p/q = p98/q98 convergent to τ as before. But in this case we choose (A,B) := (30,α) and use

µk =
log((δk − 1)/a)

logα
,

instead of µ for each possible value of k := n−n1 ∈ [1,2, . . .250]. For the remaining values of k, we get
ε > 0.00292. Thus, according to the Lemma 3.2, we obtain

m−m1 <
log(38q/0.00292)

logα
< 441.

Thus, n − n1 ≤ 250 implies m −m1 ≤ 441. In the case where Γ1 < 0 we follow the ideas of the case
where Γ1 > 0. We use the same τ as in the case where Γ < 0 but instead of µ we take

µk =
log(a/(δk − 1))

logδ
,

for each possible value of n− n1 = k = 1,2, . . . ,250. By using the Lemma 3.2 with this parameters we
also obtain in this case that n−n1 ≤ 250 implies m−m1 ≤ 435.
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In conclusion for n− n1 ≤ 250 we have m−m1 ≤ 441. Now let’s go to the case where m−m1 ≤ 420
and consider the inequality (25). we put

Γ2 = n logδ −m1 logα + log(1/(a(αm−m1 − 1))),

and we assume that n−n1 ≥ 20. We then have

|Γ2| <
36.1δ4

δn−n1
.

Assuming Γ2 > 0, we get

0 < n
(

logδ
logα

)
−m1 +

log((1/(a(αm−m1 − 1)))
logα

< 540 · δ−(n−n1).

We apply the Lemma 3.2 again with the same τ , q, M, (A,B) := (540,δ) and

µk =
log(1/(a(αk − 1))

logα
for k = 1,2, . . .420.

We obtain ε > 0.000354, thus

n−n1 <
log(540q/0.000354)

logδ
< 256.

A similar conclusion is reached when Γ2 < 0, indeed We get ε > 0.000508, so

n−n1 <
log(320q/0.000508)

logδ
< 256.

In conclusion, for m −m1 ≤ 420 we have n − n1 ≤ 256. So m −m1 ≤ 441 and n − n1 ≤ 256. Finally,
we go to (27). We put

Γ3 = n1 logδ −m1 logα + log
(
δn−n1 − 1

a(αm−m1 − 1)

)
.

Since n ≥ 200, the inequality (27) implies that

|Γ3| <
16.5
δn−4 =

27δ4

δn
.

Suppose Γ3 > 0. Then

0 < n1

(
logδ
logα

)
−m1 +

log((δk − 1)/(a(αl − 1)))
logα

< 240 · δ−n,

where (k, l) := (n− n1,m−m1). We apply the Lemma 3.2 again with the same τ =
logδ
logα

, q98, (A,B) :=

(240,δ) and µk,l =
log((δk − 1)/(a(αl − 1)))

logα
for 1 ≤ k ≤ 256, 1 ≤ l ≤ 441. We consider the 98-th

p98

q98
convergent. For all pairs (k, l) we get that ε > 1.43 × 10−6. Thus, the Lemma 3.2 shows that n <
log(240× q98 × 106/1.43)

logδ
< 271. This contradicts our assumption that n > 300, so the only integers

having at least two representations as differences of Padovan and Lucas numbers are those listed in
the Theorem 1.2. Futhermore, we have
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c (m,n)
−643 (20,14) , (37,21)

−310 (10,12) , (28,16)
−171 (13,11) , (19,12)
−74 (4,9) , (15,10)
−48 (13,9) , (19,11)
−27 (4,7) , (15,9) , (25,14)
−26 (5,7) (12,8)
−13 (7,6) , (11,7)
−11 (8,6) , (16,9)
−9 (4,5) , (9,6) , (18,10)
−8 (5,5) , (12,7)
−6 (7,5) , (10,6)
−4 (5,4) , (8,5)
−2 (4,3) , (7,4) , (9,5) , (11,6)
−1 (4,2) , (5,3) , (13,7)
0 (4,0) , (5,2) , (6,3) , (8,4)
1 (4,1) , (5,0) , (6,2) , (7,3) , (10,5) , (20,11)
2 (5,1) , (6,0) , (7,2) , (9,4) , (15,8)
3 (6,1) , (7,0) , (8,3) , (12,6)
4 (7,1) , (8,2)
5 (8,0) , (9,3) , (10,4) , (11,5)
6 (8,1) , (9,2)
8 (9,1) , (10,3) , (14,7)
9 (10,2) , (11,4)

10 (10,0) , (12,5) , (13,6) , (17,9)
14 (11,0) , (12,4)
17 (12,3) , (13,5)
18 (12,2) , (16,8)
19 (12,0) , (14,6)
20 (12,1) , (15,7)
26 (13,0) , (14,5)
36 (14,1) , (16,7)
38 (15,5) , (18,9)
47 (15,0) , (16,6)
64 (16,1) , (32,18)
68 (17,6) , (27,15)
75 (17,5) , (19,9)
85 (17,1) , (18,7)

189 (20,5) , (21,9)
2864 (36,20) , (44,25)

58269 (41,20) , (45,25)

In summary, we have shown in this article that there are only finitely many numbers c for which
that equation (1) holds true, and we have explicitly given those solutions. In the table above, we give
all the pairs (m,n) associated with each c. The Theorem 1.2 is thus proved.
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