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Abstract. If {Ai ↪→ Bi } is a directed system of minimal (unital) ring extensions (involving associative unital rings that

need not be commutative) and the canonical injection A := lim−−→i
Ai → B := lim−−→i

Bi is used to view A as a subring of B, then

either A = B or A ⊂ B is a minimal ring extension. The preceding assertion is the case n = 1 of a more general result which

assumes that there exists an integer n ≥ 0 such that for each i, each chain of rings contained between Ai and Bi has length

at most n. For commutative rings, an (upward-)directed union of ramified (resp., decomposed) minimal ring extensions

Ai ↪→ Bi for which each (Ai ,Mi ) is quasi-local, Mj ∩ Bi = Mi whenever i ≤ j in I , and each transition map Ai ↪→ Aj is

an integral extension produces a minimal ring extension A := lim−−→i
Ai → lim−−→i

Bi =: B (that is, ∪iAi ↪→ ∪iBi ) such that if

M := ∪iMi , then the minimal ring extension A/M ⊂ B/M is ramified (resp., decomposed) and A ⊂ B is a minimal ring

extension. Applications involving denumerable (upward-)directed unions of fields whose “steps" are algebraic are given

to algebraically closed fields and to perfect closures (in the sense of Bourbaki), by using the µ-field extensions of Gilbert

and Quigley.
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µ-field extension, algebraically closed field, perfect field, perfect closure, direct limit, length of a chain
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1 Introduction

All rings considered below are assumed to be unital and associative, but not necessarily commuta-
tive. All inclusions of rings, ring extensions, subrings, algebras, and ring/algebra homomorphisms
will be assumed unital. Proper inclusions will be denoted by ⊂ or ⊃. Recall that if A ⊂ B are (dis-
tinct) rings, then A ⊂ B is called a minimal ring extension (and B is called a minimal ring extension of
A) if there does not exist a ring C such that A ⊂ C ⊂ B. Although the original definition of “minimal
ring extension" (in [15]) also required (A and) B to be commutative and minimal ring extensions in-
volving commutative rings have been extensively investigated, the “minimal ring extension" concept
has been fruitfully studied for arbitrary rings in recent years, perhaps most notably, in chronological
order, in [14], [1], [7] and [8]. To be more complete, one should note that a special class of commu-
tative minimal ring extensions was introduced by Gilmer and Heinzer [19] a few years before the
appearance of [15], and it is noteworthy that some of the reasoning in [19] does carry over to the
more general setting in [15].

As explained more fully later in this Introduction, our recent work in [7] was necessarily confined
to the study of certain ring extensions that involved only finite rings. The impetus for the present
work was the naïve thought that one way to build “larger" minimal ring extensions of “larger" rings
may be to use the union of an upward-directed strictly increasing infinite chain of rings, or more
generally, direct limits that would generalize such unions. Thus, the two titular topics were critical
to the motivation for this work. However, the work will be pursued in greater generality. So, before
summarizing that work, we next devote two paragraphs to some background for that more general
study.
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Let (I,≤) be a nonempty poset; that is, I is a nonempty set and ≤ is a partial order on I . Recall
that for any positive integer n, a (finite) chain of length `(C) = n in I is a finite subset C = {i1, . . . , in} of
I such that i1 < . . . < in; and that a (finite) chain of length `(C) = 0 in I is a singleton subset of I . The
length of I , denoted by `(I), is defined to be a nonnegative integer m if the supremum of the lengths
of finite chains in I is m; and we take `(I) =∞ if no such finite supremum exists. These concepts can
be applied to any ring extension A ⊆ B, as follows. As usual, let [A,B] denote the set of intermediary
rings, that is, {C | C is a ring such that A ⊆ C ⊆ B}. Since [A,B] is a poset under inclusion, it makes
sense to discuss `([A,B]). Note that A ⊂ B is a minimal ring extension if and only if `([A,B]) = 1; and
that A = B if and only if `([A,B]) = 0. The relationship hinted at in this paper’s title concerns how
the ` operator behaves in regard to direct limits. Before stating the main results along those lines, we
pause to make some relevant ideas more precise.

Recall that (I,≤) is said to be a directed set if ≤ is a reflexive and transitive binary relation on the
(nonempty) set I such that for all α,β,γ ∈ I with α ≤ β and α ≤ γ , there exists δ ∈ I such that β ≤ δ and
γ ≤ δ. We assume that the reader is somewhat familiar with the usual construction of a direct limit of
rings indexed by a directed set (cf. [2, Exercise 21, page 34], noting that the riding assumption in [2]
that all rings are commutative plays no role in the just-cited exercise). Nevertheless, the statements
of our first main result (Theorem 2.1) and its first application (Corollary 2.2) carefully specify all the
technical aspects of the ambient direct limit structures (including their transition maps, their maps
from the domains and codomains into the respective direct limits, and the compatibility equations
among these various ring homomorphisms). After those two results, subsequent results, applications
and examples feature statements that are slightly more relaxed in regard to the technical aspects
involving direct limits. Readers seeking additional facts about direct limits (indexed by directed
sets) may consult standard sources such as [2, pages 32-34].

A “relaxed" version of the statement of Theorem 2.1 is the following: if 0 ≤ n <∞ and {Ai ⊆ Bi | i ∈
I} is a directed system of ring extensions (in the obvious sense) such that `([Ai ,Bi]) ≤ n for each i, then
`([lim−−→i

Ai , lim−−→i
Bi]) ≤ n. The most important application of Theorem 2.1 for us here is its case n = 1

(Corollary 2.2), which states that any direct limit of minimal ring extensions is either an identity map
or a minimal ring extension. As Example 2.3 illustrates, the inequality asserted in Theorem 2.1 (and
implicitly in Corollary 2.2) can be strict. Indeed, by using classic information from multiplicative
ideal theory, Example 2.3 builds, for each positive integer n, a denumerable upward-directed system
of ring extensions {Ai ⊆ Bi} such that `([Ai ,Bi]) = n for each i but `([lim−−→i

Ai , lim−−→i
Bi]) = 0. In other

words, although each “level/layer" of the directed system has length n ≥ 1, that system “collapses"
in the (direct) limit, in the sense that taking the direct limit of the inclusion maps Ai ⊆ Bi leads to
lim−−→i

Ai = lim−−→i
Bi . The basic idea behind the construction is best understood in case n = 1, where one

starts with a minimal ring extension A1 ⊂ B1, uses the fact that every nonzero ring R has a standard
minimal ring extension, let us denote it here by E(R), that is constructed using an idealization (for
commutative rings in [5] and, by tweaking that method, for arbitrary rings, in [14]), and builds the
subsequent levels of the directed system in the following “crisscross" manner: A2 := B1, B2 := E(A2),
A3 := B2, B3 = E(A3), . . . . Notice that this construction satisfies lim−−→i

Ai = ∪iAi = ∪iBi = lim−−→i
Bi .

When confronted with the drama of this “collapse", one’s first response may be to despair of finding
a nontrivial sufficient condition for the union of a strictly increasing upward-directed sequence of
minimal ring extensions to be a minimal ring extension (that is, to fail to collapse). Nevertheless, we
present such a sufficient condition in our second main result, Theorem 2.5. Its proof uses information
about what has come to be called the “crucial maximal ideal" of any minimal ring extension A ⊂ B
involving commutative rings. (For such an extension, the important roles played by that maximal
ideal of A were discovered by Ferrand and Olivier and presented in [15, Théorème 2.2]; as with all
necessary background, details are provided at opportune points in the paper.) Proposition 2.6 shows
how to begin with a suitable strictly ascending denumerable chain of commutative ring extensions
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A1 ⊂ A2 ⊂ A3 ⊂ . . . and then construct (warning: I am about to use some standard terminology
for two of the three kinds of integral minimal ring extensions of commutative rings) “ramified" or
“decomposed" layers An → Bn forming an upward-directed strictly increasing directed system that
satisfies the sufficient condition from Theorem 2.5, thus avoiding the “crisscross" pitfall, and hence
producing, in principle, a ramified example and a decomposed example where lim−−→n

An ↪→ lim−−→n
Bn is

a minimal ring extension. With this methology in place and background summarized in Lemma 2.7,
we then produce some concrete examples of nontrivial directed unions of minimal ring extensions
that are (either ramified or decomposed, as desired) commutative minimal ring extensions. These
examples are, of course, constructed by beginning with a suitable chain A1 ⊂ A2 ⊂ A3 ⊂ . . . of fields.
We choose to highlight two such chains: one due to Quigley [31], who found such a chain going from
any field that is not real closed or algebraically closed to an algebraically closed field; and the other
chain, due to M. S. Gilbert [17] who found a suitable chain going from any non-perfect field K to the
perfect closure of K (in the sense of [3]) in any algebraic closure of K .

Several questions are raised but not fully pursued here, and we hope that some of these will be of
interest to some readers. For instance, one could consider non-collapsing analogues of Example 2.3
for the ` operator going beyond the context of minimal ring extensions; generalizations of Theorem
2.5 for more complicated direct limits; attention to the behavior of inert extensions, which form the
third kind of commutative integral minimal ring extension of commutative rings; attention to the
behavior of integrally closed minimal ring extensions in a possible variant of Theorem 2.5; search
for sufficient conditions for a directed union of noncommutative minimal ring extensions to fail to
collapse; . . . . Other possible avenues for study may occur to readers of Remarks 2.9 and 2.10. As a
final tribute to the work of Ferrand and Olivier, we devote the final remark to a detailed proof of a
minor result from [15], a result whose proof was (perhaps wisely) left to the reader in [15] although
Remark 2.11 argues that this result can now be seen as a thematic precursor for the present Corollary
2.2.

We think/hope that it is significant that the setting for (Theorem 2.1 and) Corollary 2.2 is broad
enough to accommodate the topic of noncommutative minimal ring extensions. Note that the recent
paper [7] was able to study minimal ring extensions, especially for finite noncommutative rings,
in some detail, because of the fact that any minimal ring extension of a finite ring is itself a finite
ring. This important ring-theoretic fact was easily obtained by Jarboui and the author in [11, Lemma
2.1 (c)] by using a deep rng-theoretic result that is due independently to Klein [26] and Laffey [27].
Beyond the universe of finite rings, it seems that much specific information remains to be learned
about noncommutative minimal ring extensions. In Remark 2.10 (a), we do give an analogue of part
of Theorem 2.5 for certain noncommutative minimal ring extensions. Remark 2.10 (c) mentions the
theme of a paper that is in preparation in this general area and also comments on some other relevant
open matters.

As usual, if R is a commutative ring, then Spec(R) denotes the set of prime ideals of R, viewed as
a poset under inclusion. Any unexplained material is in standard references, such as [2], [18], [25].

2 Results

We move at once to our first main result. In its proof, it will be convenient, for rings C ⊆ D and an
element w ∈D, to let C〈w〉 denote the subring of D that is generated by C ∪ {w}.

Theorem 2.1. Let n be a nonnegative integer. Let (I,≤) be a directed set. For each i ∈ I , let hi :
Ai ↪→ Bi be a ring extension such that `([Ai ,Bi]) ≤ n. If i ≤ j in I , let the transition maps be ring
homomorphisms denoted by fij : Ai → Aj and gij : Bi → Bj , such that fii and gii are identity maps. If
i ≤ j ≤ k in I , suppose that fjkfij = fik : Ai → Ak and gjkgij = gik : Bi → Bk . Consider the direct limits
A := lim−−→i∈I

Ai and B := lim−−→i∈I
Bi . For all i ∈ I , let αi : Ai → A and βi : Bi → B denote the canonical ring
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homomorphisms (such that, for all j ≤ k in I , αkfjk = αj and βkgjk = βj ). View the induced injective
ring homomorphism h : A→ B (such that, for all i ∈ I , hαi = βihi : Ai → B) as an inclusion map. Then
`([A,B]) ≤ n.

Proof. As the assertion is clear if n = 0, we can suppose, without loss of generality, that n ≥ 1, that is,
A ⊂ B. It will be convenient to let

Nn := {ν | ν is a nonnegative integer such that ν ≤ n}.

We next suppose that the assertion fails (and it will suffice to produce a contradiction). Then there
exists a chain of rings

A = R0 ⊂ R1 ⊂ R2 ⊂ . . . ⊂ Rn+1 = B.

For the rest of this paragraph, fix ν ∈ Nn. Since Rν ⊂ Rν+1, we can choose xν ∈ Rν+1 \ Rν . By a
standard construction of direct limits (cf. [2, Exercise 15, page 33]), there exist kν ∈ I and xν,kν ∈ Bkν
such that βkν (xν,kν ) = xν .

As I is a directed set, there exists σ ∈ I such that kν ≤ σ for all ν ∈Nn. Put

yν,σ := gkν ,σ (xν,kν ) (∈ Bσ ), for all ν ∈Nn.

Then yν,σ ∈ Bσ satisfies βσ (yν,σ ) = βσ (gkν ,σ (xν,kν )) = βkν (xν,kν ) = xν . Next, observe that

βσ (Aσ ) = βσhσ (Aσ ) = hασ (Aσ ) = ασ (Aσ ) ⊆ A,

whence, Aσ ⊆ β−1
σ (A). Consider the rings

β−1
σ (A) = β−1

σ (R0) ⊆ β−1
σ (R1) ⊆ β−1

σ (R2) ⊆ . . . ⊆ β−1
σ (Rn+1) = β−1

σ (B).

Once again, for the rest of this paragraph, fix ν ∈Nn. We have yν,σ ∈ β−1
σ (Rν+1), since βσ (yν,σ ) = xν ∈

Rν+1. However, yν,σ < β−1
σ (Rν) since βσ (yν,σ ) = xν < Rν .

Recall that Aσ ⊆ β−1
σ (A). Of course, β−1

σ (Rn+1) ⊆ Bσ (since the domain of βσ is Bσ ). But the existence
of the elements y0,σ , y1,σ , . . . , yn,σ ensures that

Aσ ⊆ β−1
σ (R0) ⊂ β−1

σ (R1) ⊂ β−1
σ (R2) ⊂ . . . ⊂ β−1

σ (Rn+1) ⊆ Bσ .

Omitting “Aσ ⊆" and “⊆ Bσ " from the last display produces a chain {β−1
σ (Rλ) | 0 ≤ λ ≤ n+1} in [Aσ ,Bσ ]

of length n+ 1, contradicting the hypothesis that `([Aσ ,Bσ ]) ≤ n. The proof is complete.

We next isolate the titular result. It is the case n = 1 of Theorem 2.1.

Corollary 2.2. Let n be a nonnegative integer. Let (I,≤) be a directed set. For each i ∈ I , let hi : Ai ↪→ Bi
be a ring extension such that either Ai = Bi or Ai ⊂ Bi is a minimal ring extension. If i ≤ j in I , let the
transition maps be ring homomorphisms denoted by fij : Ai → Aj and gij : Bi → Bj , such that fii and gii
are identity maps. If i ≤ j ≤ k in I , suppose that fjkfij = fik : Ai → Ak and gjkgij = gik : Bi → Bk . Consider
the direct limits A := lim−−→i∈I

Ai and B := lim−−→i∈I
Bi . For all i ∈ I , let αi : Ai → A and βi : Bi → B denote the

canonical ring homomorphisms (such that, for all j ≤ k in I , αkfjk = αj and βkgjk = βj ). View the induced
injective ring homomorphism h : A→ B (such that, for all i ∈ I , hαi = βihi : Ai → B) as an inclusion map.
Then either A = B or A ⊂ B is a minimal ring extension.

With the above two results having been painstakingly stated, we will be more relaxed in describ-
ing the direct limits that appear below. While the necessary terminology has not become absolutely
standard, certain notions have appeared widely (albeit with a variety of names). For instance, one
finds in [2, Exercise 18, page 33] the notion of a “homomorphism of directed systems" (albeit of
module homomorphisms). In the same spirit but changing the ambient category, one could speak of
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a “homomorphism of directed systems of ring homomorphisms", or of its special case of a “homo-
morphism of directed systems of ring extensions." To describe this notion, we will find it convenient
to use, instead, the term “directed system of ring extensions." Often, the directed systems in ques-
tion, {Aj | j ∈ I} and {Bj | j ∈ I}, will be directed unions (in the sense that the associated transition
maps fij and gij are inclusion maps whose codomains are respective subrings of given rings, say A
and B, such that Ai is a subring of A and Bi is a subring of B for all i ∈ I). To describe this kind
of special case, it will be appropriate to use the name “directed union of ring extensions", since its
associated induced injective ring homomorphism h : A→ B can be identified with the inclusion map
A = lim−−→i∈I

Ai = ∪i∈IAi ↪→ B = lim−−→i∈I
Bi = ∪i∈IBi of subrings of the universe B. In discussing a “di-

rected system of (possibly minimal) ring extensions" or a “directed union of (possibly minimal) ring
extensions", we will feel free to use, without further explanation, the symbols fij , A, fi , gij , B, gi , hi
and h (along with the associated compatibility conditions) from the statements of Theorem 2.1 and
Corollary 2.2, while also always assuming that the index set I is a directed set.

There are some obvious situations where the inequalities asserted in the statements of Theorem
2.1 and Corollary 2.2 are trite, in the sense that `([A,B]) = `([Ai ,Bi]) = n for all i ∈ I . This happens,
for instance, if `([Ai ,Bi]) = n for all i ∈ I and I is finite (for there then exists k ∈ I such that i ≤ k for all
i ∈ I , whence h : A→ B can be identified with hk : Ak→ Bk). This also happens in the following (only
slightly less trivial) situation where `([Ai ,Bi]) = n for all i ∈ I and each transition map (that is, each
fij , along with each gij ) is an isomorphism (for once again, h can be identified with an hk). It is much
less trivial (and possibly surprising) that the conclusion `([A,B]) ≤ n in Theorem 2.1 can sometimes
be sharpened to become a strict inequality even if one has `([Ai ,Bi]) = n for all i ∈ I . The next result
uses some classic material from multiplicative ideal theory to show this in dramatic fashion.

Example 2.3. Let N be a positive integer. Then there exists a denumerable directed union of ring
extensions Ai ⊆ Bi , i ≤ −1 (with Ai ⊂ Ai+1 and Bi ⊂ Bi+1 for each negative integer i) such that

`([Ai ,Bi]) =N for all negative integers i, but

A := lim−−→i≤−1
Ai = ∪i≤−1Ai and B := lim−−→i≤−1

Bi = ∪i≤−1Bi satisfy `([A,B]) = 0. It can further be arranged
that there exists a (commutative) valuation domain V such that all the rings Ai and Bi are valuation
domains and, in fact, overrings of V (that is, unital V -subalgebras of the quotient field of V ). One
way to construct such data is the following. Take V to be a valuation domain with maximal ideal M
such that Spec(V ) consists of the denumerably many prime ideals

P∞ := 0 ⊂ . . . ⊂ Pn+1 ⊂ Pn ⊂ . . . ⊂ P1 ⊂ P0 :=M;

and, for each nonnegative integer n, take the entry in the sequence of inclusion maps Ai ↪→ Bi which
corresponds to the index n to be

VPn ↪→ VPN+n
.

Proof. It is well known that ifW is a valuation domain with quotient field L, then: each overring ofW
(that is, each ring T such that W ⊆ T ⊆ L) is a valuation domain, necessarily of the form WP for some
P ∈ Spec(W ) (cf. [18, Theorem 17.6 (a)], [25, Theorems 64 and 65]); and if P ,Q ∈ Spec(W ), then either
P ⊆ Q or Q ⊆ P , with P ⊆ Q if and only if WQ ⊆ WP (cf. [18, Exercise 12, page 59]). It follows that
the set of overrings of a valuation domain W is, as a poset under inclusion, order-anti-isomorphic to
Spec(W ) (when viewed as a poset under inclusion). As a consequence, we will next prove that there
exists a valuation domain V whose prime spectrum is as in the second display in the statement of
this example; equivalently, that there exists a valuation domain V whose set of overrings is (when
viewed as a poset under inclusion) order-anti-isomorphic to the poset in the second display in the
statement of this example. Notice that this poset (and the poset obtained by reversing its order) each
have the following three properties: being a linearly ordered set with a (unique) minimal element
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and a (unique) maximal element; being closed under suprema and infima of nonempty (necessarily
linearly ordered) subsets; and whenever two of its elements satisfy a < b, then there exist elements
c and d in the poset such that a ≤ c < d ≤ b and no element e of the poset satisfies c < e < d. It is
classically known (cf. also [28, Theorem 3.1, (a)⇒ (c)]) that posets that have these three properties
are order-isomorphic to the prime spectrum of some valuation domain. Hence, the existence of a
valuation domain V with the asserted properties has been shown. It remains only to establish the
assertions concerning the ` operator.

It suffices to observe that

A := ∪n≥0An = ∪n≥0VPn = ∪n≥0VPN+n
= ∪n≥0Bn =: B,

although for each nonnegative integer n, we have `([An,Bn]) = N since the only maximal chain in
[An,Bn] is

An := VPn ⊂ VP1+n
⊂ VP2+n

⊂ . . . ⊂ VPN+n
=: Bn,

which is of length N . The proof is complete.

Remark 2.4. (a) It seems natural to ask what sort of example can be built by reversing the (linear)
partial order that was used in the proof of Example 2.3. In detail: by invoking [28, Theorem 3.1, (a)
⇒ (c)] once again, we obtain a valuation domain W , say with maximal ideal N and quotient field L,
such that Spec(W ) consists of the denumerably many prime ideals

P0 := 0 ⊂ P1 ⊂ P2 ⊂ . . . ⊂ Pn ⊂ Pn+1 ⊂ . . . ⊂ P∞ =N.

Hence, by the information recalled at the start of the proof of Example 2.3, the set of overrings of W
consists of the following (valuation) domains:

V = VN = VP∞ ⊂ . . . ⊂ VPn+1
⊂ VPn ⊂ . . . ⊂ VP1

⊂ VP0
= L.

The assembled data leads to a (downward-)directed union of minimal ring extensions An := VPn+1
↪→

VPn =: Bn (as n runs through the set of nonnegative integers). Notice that the index (directed) set is
obtained by reversing the natural order on the set of nonnegative integers. Also, this directed union
of minimal ring extensions satisfies

lim−−→
n≥0

An = ∪n≥0VPn+1
= VP1

⊂ VP0
= ∪n≥0VPn = ∪n≥0Bn = lim−−→

n≥0

Bn.

Thus, we have an explicit example of a denumerable directed union of minimal ring extensions
producing a minimal ring extension. This shows, in conjunction with the case N = 1 of Example 2.3,
that Corollary 2.2 is best possible. (An interested reader may seek additional examples to determine
whether Theorem 2.1 is best possible, but we choose to focus on minimal ring extensions for the rest
of this paper.) While it has been somewhat interesting to see where a “dualization" of the proof of
Example 2.3 would lead, it is perhaps more interesting to note that the construction here in (a) of a
concrete example of a direct limit of minimal ring extensions that produces a minimal ring extension
is of a third trivial kind, a companion to two other kinds of trivial examples that were noted prior
to Example 2.3. Indeed, for the construction in (a), the singleton set consisting of the index n = 0 is
cofinal, so that the canonical inclusion map A ⊆ B of direct limits is immediately identified with the
minimal ring extension A0 ↪→ B0, that is, with VP1

↪→ L.
(b) In principle, any (infinite) sequence R1 ⊂ R2 ⊂ . . . ⊂ Rn ⊂ . . . of minimal ring extensions (in-

volving not necessarily commutative rings, such that some “large" ring R has each Rn as a subring)
can be used to construct an example of a directed union of minimal ring extensions An ↪→ Bn such
that the canonical map h : lim−−→n≥1

An ↪→ lim−−→n≥1
Bn is an identity map, as follows. For each positive
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integer n, let An := Rn and let Bn := Rn+1. It is clear that {An ↪→ Bn | n ≥ 1} (that is, {Rn ↪→ Rn+1 | n ≥ 1})
satisfies the definition of a denumerable (upward-)directed union of minimal ring extensions. (In
detail: the compatibility conditions are clearly satisfied since each transition map is an inclusion
map.) Moreover, h is an identity map (that is, A := lim−−→n≥1

An = lim−−→n≥1
Bn =: B) since

lim−−→
n≥1

An = ∪n≥1Rn = ∪n≥2Rn = ∪n≥1Rn+1 = ∪n≥1Bn = lim−−→
n≥1

Bn.

(c) In practice, naturally occurring sequences R1 ⊂ R2 ⊂ . . . ⊂ Rn ⊂ . . . of rings of the kind posited
in (b) are somewhat uncommon. Accordingly, we will devote some of the following results to some
examples of (or built using) such sequences. In part to simplify matters, we will often consider
certain such sequences where each ring Rn is a field.

In studies of minimal ring extensions, it has often been fruitful (especially when the relevant rings
are commutative) to begin with a context where the base ring is a field. Recall the first classification
result for minimal ring extensions, due to Ferrand and Olivier [15, Lemme 1.2]: if K is a field and
S is a commutative ring such that K ⊆ S, then K ⊂ S is a minimal ring extension if and only if
(exactly) one of the following three conditions holds: S is K-algebra isomorphic to K[X]/(X2) where
X is a commuting indeterminate over K (and where we view K ⊆ K[X]/(X2) via the unique K-algebra
homomorphism K → K[X]/(X2)); S is K-algebra isomorphic to K×K (where we view K ⊆ K×K via the
unique K-algebra homomorphism K → K×K); S is K-algebra isomorphic to a minimal field extension
of K . Moreover, if R is a finite commutative (quasi-)local ring, then the class of commutative R-
algebras represented by commutative minimal ring extensions of R is infinite if and only if R is a
field [6, Corollary 2.6]. In addition, for any such R, the so-called “ramified" (resp., “decomposed")
analogues of K[X]/(X2) (resp., K × K) account for only finitely many such R-algebra isomorphism
classes [6, Proposition 2.2]; and it follows that the collection of R-algebra isomorphism classes in
question is infinite if and only if the so-called “inert" analogues of the minimal field extensions
of K represent infinitely many of those R-algebra isomorphism classes. The above pieces of the
historical record serve to motivate our upcoming focus on (denumerable) sequences of minimal field
extensions.

(d) We next record analogues of Theorem 2.1 in some other concrete categories besides the cate-
gory of rings. Recall (cf. [23, Definition 7.6, page 55]) that a concrete category is a category C with
an associated “underlying object" functor from C to the category of sets. Thus, roughly speaking,
a concrete category is a category whose objects are sets with some “enriched" structure and whose
morphisms are functions that preserve that “enriched" structure in some sense (and whose composi-
tion is essentially that of the underlying functions). Many of the categories that are of fundamental
interest in various areas of algebra (such as the categories of rings, left modules over a given ring,
commutative rings, etc.) are concrete categories and it makes sense to ask if analogues of Theorem
2.1 hold for these categories. In many instances (including the category of left modules over a given
ring and the category of commutative rings), the answer is in the affirmative; in fact, the proof of
Theorem 2.1 carries over, mutatis mutandis, to those other contexts.

It has long been known that direct limits lim−−→i∈I
Ai can be constructed in essentially the same way

in categories that are sufficiently like the category of abelian groups. In that regard, see [21, Propo-
sition 1.8, pages 133-134], where it is assumed that the Ai are objects in an abelian category that has
arbitrary coproducts. By imposing a somewhat stronger axiom, Grothendieck also showed in [21,
Proposition 1.8, pages 133-134] that if {Ai → Bi | i ∈ I} is a directed family of monomorphisms in
an abelian category that satisfies axiom AB5, then the induced morphism from lim−−→i

Ai to lim−−→i
Bi is

a monomorphism (and, more generally, that the direct limit functor is an exact functor under these
conditions). Since the concept of a “minimal morphism" makes sense in many concrete categories
besides the category of rings, it seems natural to seek analogues of Corollary 2.2 even in some con-
crete categories that are not abelian categories. Note that if R is any nonzero commutative ring, then
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the category of commutative R-algebras is not even a pre-additive category: see [9, Proposition 2.2].
Readers interested in notions generalizing direct limits in some “‘less concrete" categorical situ-

ations should search for work on “colimits." A valuable early contribution along those lines can be
found in Freyd’s discussion of “roots" (with “right root" generalizing a direct limit) in [16, pages
75-78]. This completes the remark.

For reference purposes, this paragraph will summarize some background about commutative min-
imal ring extensions, especially the ramified-decomposed-inert trichotomy that was alluded to in Re-
mark 2.4 (c). This paragraph is the result of lightly editing two paragraphs from the introduction of
one of my earlier papers. If A ⊂ B is a minimal ring extension of commutative rings, it follows from
[15, Théorème 2.2 (i) and Lemme 1.3] that there exists a maximal ideal M of A (called the crucial
maximal ideal of A ⊂ B) such that the canonical injective ring homomorphism AM → BM (:= BA\M )
can be viewed as a minimal ring extension while the canonical ring homomorphism AP → BP is an
isomorphism for all prime ideals P of R except M. In a survey article in 2009, I gave an easy proof,
via globalization and a case analysis, that conversely, a minimal ring extension of commutative rings
can be characterized as a ring extension involving commutative rings for which there exists a crucial
maximal ideal (in the above sense). For our purposes, since our base rings will often be fields in
the rest of this paper, we will restrict attention here to the integral minimal ring extensions. Recall
that Ferrand-Olivier [15, Lemme 1.2] proved that if K is a field, then a commutative ring extension
K ⊂ B is a minimal ring extension of K if and only if B is K-algebra isomorphic to (exactly one of)
K[X]/(X2), K ×K or a minimal field extension of K . Now, let A ⊂ B be an integral ring extension of
commutative rings, with the conductor M := (A : B). By a standard homomorphism theorem, A ⊂ B
is a minimal ring extension if and only if A/M ⊂ B/MB (= B/M) is a minimal ring extension. In fact
(cf. also [15, Lemme 1.2 and Proposition 4.1], [12, Lemma II.3]), the above-mentioned classification
result of Ferrand-Olivier leads to the following trichotomy: A ⊂ B is a (an integral) minimal ring
extension if and only if M is a maximal ideal of A and (exactly) one of the following three conditions
holds: A ⊂ B is said to be respectively ramified, decomposed or inert if B/MB (= B/M) is isomorphic, as
an algebra over the field K := A/M, to K[X]/(X2), K ×K or a minimal field extension of K .

We next present our second main result. It sharpens the conclusion of Corollary 2.2 for certain
directed unions where the relevant rings are commutative and the given minimal ring extensions are
integral. Indeed, Theorem 2.5 will establish that both the “ramified" and “decomposed" properties
of minimal ring extensions are inherited by those directed unions.

Theorem 2.5. Let (I,≤) be a directed set. Let {Ai ↪→ Bi | i ∈ I} be an (upward-)directed union of
integral minimal ring extensions hi : Ai ↪→ Bi , with Mi denoting the crucial maximal ideal of Ai ⊂ Bi
for each i ∈ I . Assume that if i ≤ j in I , then fij : Ai ↪→ Aj is an integral ring extension. Consider
the direct limits A := lim−−→i∈I

Ai (= ∪i∈IAi) and B := lim−−→i∈I
Bi (= ∪i∈IBi); for all i ∈ I , let αi : Ai → A and

βi : Bi → B denote the canonically induced inclusion maps; and let h : A→ B denote the canonically
induced inclusion map. (More precisely, assume also that if i ≤ j in I , then the transition functions
fij : Ai → Aj and gij : Bi → Bj are inclusion maps, while fii : Ai → Ai and gii : Bi → Bi are identity
maps; assume also that if i ≤ j ≤ k in I , then fjkfij = fik : Ai → Ak and gjkgij = gik : Bi → Bk ; assume
also that for all j ≤ k in I , αkfjk = αj and βkgjk = βj ); and assume also that for all i ∈ I , hαi = βihi .)
Assume also that if i ≤ j in I , thenMj∩Ai =Mi . (Note that the assumption in the preceding sentence
holds automatically if Ai is quasi-local and, in particular, it holds if Ai is a field.) Then:

(a) If i ≤ j in I and the canonical map Bi/Mi → Bj /Mj is an injection (that is, if i ≤ j in I and
Mj ∩ Bi = Mi) and the minimal ring extension Ai ⊂ Bi is ramified, then the minimal ring extension
Aj ⊂ Bj is ramified.

(b) IfMj∩Bi =Mi whenever i ≤ j in I and if the minimal ring extension Ai ⊂ Bi is ramified for each
i ∈ I , then A/M ⊆ B/M is a ramified minimal ring extension and A ⊆ B is a minimal ring extension.

(c) If i ≤ j in I with Mj ∩ Bi = Mi and if the minimal ring extension Ai ⊂ Bi is decomposed, then
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the minimal ring extension Aj ⊂ Bj is decomposed.
(d) If Mj ∩ Bi = Mi whenever i ≤ j in I and if the minimal ring extension Ai ⊂ Bi is decomposed

for each i ∈ I , then A/M ⊆ B/M is a decomposed minimal ring extension and A ⊆ B is a minimal ring
extension.

(e) Suppose that Mj ∩Bi =Mi whenever i ≤ j in I . Suppose also that there does not exist i ∈ I such
that the minimal ring extension Ai ⊂ Bi is inert. Then A/M ⊆ B/M is a minimal ring extension which
is either ramified or decomposed, and A ⊂ B is a minimal ring extension.

Proof. Let us begin by dispatching the parenthetical assertion. Suppose that i ≤ j in I with (Ai ,M)
and (Aj ,N ) each quasi-local. Then, by default, M is the crucial maximal ideal of the minimal ring
extension Ai ⊂ Bi and N is the crucial maximal ideal of the minimal ring extension Aj ⊂ Bj . As
maximal ideals lie over maximal ideals in integral extensions involving commutative rings (cf. [2,
Corollary 5.8], [18, Theorem 11.4], [25, Theorem 44]), one necessarily has N ∩ Ai = M, that is,
Mj ∩Ai =Mi .

Next (no longer assuming that each Ai is quasi-local), observe that for each i ∈ I , Mi = (Ai : Bi)
is a common ideal of Ai and Bi , whence by [12, Lemma II. 3], Ai/Mi ⊆ Bi/Mi inherits the property
of being an integral minimal ring extension from Ai ⊆ Bi . Consider M := lim−−→i∈I

Mi = ∪i∈IMi . It is
easy to see that M is a common ideal of ∪i∈IAi (= A) and ∪i∈IBi (= B). We will next review some
categorical background material to establish that M is a maximal ideal of A and that (what is thus
the field) A/M is canonically isomorphic to lim−−→i∈I

Ai/Mi (that is, to the directed union of the fields
Ai/Mi).

One application of a comment in Remark 2.4 (d) is that direct limit is an exact functor when
applied to directed systems of exact sequences of modules over any ring. For each i, consider the
exact sequences

0→Mi → Ai → Ai/Mi → 0 and 0→Mi → Bi → Bi/Mi → 0.

So, we have exact sequences 0→ lim−−→i
Mi → lim−−→i

Ai → lim−−→i
Ai/Mi → 0 and 0→ lim−−→i

Mi → lim−−→i
Bi →

lim−−→i
Bi/Mi → 0 (of abelian groups), that is,

0→M→ A→ lim−−→
i

Ai/Mi → 0 and 0→M→ B→ lim−−→
i

Bi/Mi → 0.

Moreover, in view of the monomorphisms A ↪→ B and lim−−→i
Ai/Mi ↪→ lim−−→i

Bi/Mi , it is easy to see that
the maps in the second of the just-displayed exact sequences induce the corresponding maps in the
first of those exact sequences. Put differently, the isomorphism B/M → lim−−→i

Bi/Mi (obtained via the
First Isomorphism Theorem) restricts to the isomorphism A/M→ lim−−→i

Ai/Mi (which is also obtained
via the First Isomorphism Theorem). It is easy to check that these isomorphisms of abelian groups
each preserve multiplication and send 1 to 1; that is, these are ring isomorphisms. As lim−−→i

Ai/Mi =
∪iAi/Mi is a directed union of fields, it is itself a field, and so A/M is a field. Consequently, M is a
maximal ideal of A. It is clear that if i ∈ I , then M ∩Ai = Mi (in detail: observe that M ∩Ai ⊇ Mi ,
M∩Ai is an ideal ofAi , 1 <M∩Ai , andMi is a maximal ideal ofAi), and so we have a natural algebraic
field extension Ai/Mi ↪→ A/M. (This could also have been obtained by composing the inclusion map
Ai/Mi ↪→ lim−−→j

Aj /Mj with the isomorphism lim−−→j
Aj /Mj → A/M.)

Some readers may have noticed that the facts established in the preceding paragraph are widely
known and can be proven faster. Anyone interested in devising such alternative arguments is advised
to consult folklore about the prime ideals of direct limits of rings (cf. [22, Proposition 6.1.2, page
128]) and to use the behavior of prime ideals in integral extensions.

Recall that for each i ∈ I , it follows from [12, Corollary II. 3] that Ai/Mi ⊆ Bi/Mi inherits the
property of being an integral minimal ring extension from Ai ⊆ Bi . Moreover, since Mi is the crucial
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maximal ideal of Ai ⊂ Bi , these two extensions (Ai/Mi ⊆ Bi/Mi and Ai ⊂ Bi) are the same kind of
integral minimal ring extension (that is, ramified, decomposed or inert). Similarly, the integral ring
extension A ⊆ B is a minimal ring extension if and only if (the integral ring extension) A/M ⊆ B/M
is a minimal ring extension; and, if these conditions hold with M being the crucial maximal ideal
of A ⊂ B, then the extensions A ⊆ B and A/M ⊆ B/M are the same kind of integral minimal ring
extension. It will be convenient to denote the field A/M by F and to denote its extension ring B/M by
E. Just as we let h denote the canonical integral ring homomorphism A ↪→ B, it will be convenient to
let h∗ denote the canonical integral (in fact, algebraic) ring homomorphism F ↪→ E. As a final piece
of notational convenience, let Fk := Ak/Mk and Ek := Bk/Mk for all k ∈ I .

(a) By hypothesis, i ≤ j in I and the minimal ring extension Fi ⊂ Ei is ramified, and our task is
to prove that the (integral) minimal ring extension Fj ⊂ Ej is ramified. Since Fi and Fj are fields, it
follows from Ferrand-Olivier’s classification result [15, Lemme 1.2] that we can assume that Ei is Fi-
algebra isomorphic to Fi[X]/(X2) (for some indeterminateX over Fi) and our task can be reformulated
as needing to show that Fj ⊂ Ej is neither decomposed nor inert (that is, that Ej is not Fj-algebra
isomorphic to either Fj ×Fj or a minimal field extension of Fj ).

By hypothesis, Ei is the internal direct sum Fi ⊕ Fie as an Fi-module, where e ∈ Ei is a nonzero
element such that e2 = 0. Suppose that the assertion fails. The hypothesis that Mj ∩Bi = Mi ensures
that Ei can be viewed as a subring of Ej . Thus Ej cannot be (isomorphic to) a field, since any ring
containing Ei as a subring must contain the nonzero nilpotent element e. Therefore, it cannot be
the case that Ej is Fj-algebra isomorphic to a minimal field extension of Fj . So, necessarily, Ej is
Fj-algebra isomorphic to Fj × Fj . Hence, by considering the preimages of (1,0) and (0,1) in Ej for
such an isomorphism, we see that there exist nonzero elements c and d in Ej such that cd = 0 and,
moreover, that there exist ξ,η ∈ Fj such that e = ξc + ηd. Since e , 0, either ξ , 0 or η , 0 (or both).
However, since cd = 0, we have

0 = e2 = (ξc+ ηd)(ξc+ ηd) = ξ2c2 + 2ξηcd + η2d2 = ξ2c2 + η2d2.

Applying the above Fj-algebra isomorphism Ej → Fj × Fj converts the (extreme members of the)
just-displayed equation into

(0,0) = ξ2 · (1,0)2 + η2 · (0,1)2 = (ξ2,η2) ∈ Fj ×Fj ,

whence ξ2 = 0 = η2 ∈ Fj , whence ξ = 0 = η ∈ Fj (since a field cannot contain a nonzero nilpotent
element), the desired contradiction.

(b) Without loss of generality, I , ∅. By hypothesis, the minimal ring extension Ai ⊂ Bi is ramified
for some i ∈ I , and so by (a), Aj ⊂ Bj is ramified for each j ∈ I such that i ≤ j. As the set of such j is
cofinal in (the directed set) I , we can assume, without loss of generality, that Aj ⊂ Bj is ramified for
each j ∈ I ; that is, Fj ⊂ Ej is ramified for each j ∈ I . In particular, for some i ∈ I , there exists a nonzero
element ei ∈ Ei such that e2

i = 0. The assumption that Mj ∩Bi = Mi whenever i ≤ j in I ensures that
the canonical map β∗i : Ei ↪→ E is an injection. Hence, we can use this map to view ei = β∗i (ei) ∈ E, still
such that e2

i = 0 , ei . Consequently, E is not a field. However, since F is a field, we have F , E. Hence,
by Corollary 2.2, F ⊂ E is a minimal ring extension. Therefore, by the above comments, A ⊂ B is a
minimal ring extension. It remains to prove that the minimal ring extension F ⊂ E is ramified.

As F ⊂ E is an integral extension, it suffices to prove that the minimal ring extension F ⊂ E is
neither decomposed nor inert, that is, that E is not F-algebra isomorphic to either F ×F or a minimal
field extension of F. Neither of these options is tenable, since no ring that is isomorphic to either
F × F or a field can contain a nonzero nilpotent element (such as the above ei). Thus, by the process
of elimination, F ⊂ E is ramified, as asserted.

(c) By hypothesis, i ≤ j in I and the minimal ring extension Fi ⊂ Ei is decomposed, and our task is
to prove that the (integral) minimal ring extension Fj ⊂ Ej is decomposed. Since Fi and Fj are fields,
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it follows from Ferrand-Olivier’s classification result [15, Lemme 1.2] that we can assume that Ei is
Fi-algebra isomorphic to Fi × Fi and our task can be reformulated as needing to show that Fj ⊂ Ej is
neither ramified nor inert (that is, that Ej is not Fj-algebra isomorphic to either Fj [X]/(X2) (for some
indeterminate X over Fj ) or a minimal field extension of Fj ). By applying an Fi-algebra isomorphism
between Ei and Fi ×Fi and considering the counterparts of (1,0) and (0,1), we find nonzero elements
c and d in Ei such that cd = 0 and c2 = c. (We could also arrange that c + d = 1 and d2 = d, but we
will not need these additional properties.) Of course, no field can contain such elements. Therefore,
since the hypothesis that Mj ∩ Bi = Mi ensures that Ei is a subring of Ej , it follows that Ej is not
(isomorphic to) a field.

Suppose that the assertion fails. Then, necessarily, Ej is Fj-algebra isomorphic to Fj [X]/(X2) for
some indeterminate X over Fj . Hence, Ej is the internal direct sum Fj ⊕ Fje as an Fj-module, where
e ∈ Ej is a nonzero element such that e2 = 0. As c,d ∈ Ei ⊆ Ej (where the inclusion is a consequence of
the hypothesis that Mj ∩Bi =Mi), there exist ξ1,η1,ξ2,η2 ∈ Fj such that

c = ξ1 + η1e and d = ξ2 + η2e.

Since e2 = 0, we get
0 = cd = (ξ1 + η1e)(ξ2 + η2e) = ξ2

1 + (ξ1η2 + ξ2η1)e.

As 1 and e are linearly independent over Fj , ξ
2
1 = 0 and ξ1η2 + ξ2η1 = 0. Since the field Fj cannot

contain a nonzero nilpotent element, ξ1 = 0. Thus c = η1e. Hence

0 , c = c2 = (η1e)
2 = η2

1e
2 = η2

1 · 0 = 0,

the desired contradiction.
(d) Without loss of generality, I , ∅. By hypothesis, the minimal ring extension Fi ⊂ Ei is decom-

posed for some i ∈ I and so, as in the proof of (c), there exist nonzero elements ci ,di ∈ Ei such that
c2
i = ci and cidi = 0. The hypothesis that Mj ∩ Bi = Mi whenever i ≤ j in I ensures that the canoni-

cal map β∗i : Ei ↪→ E is an injection. Considering this map as an inclusion map allows us to view ci
and di as elements of E. By tweaking the approach in the first paragraph of the proof of (b), we use
Corollary 2.2 to show that F ⊂ E and A ⊂ B are minimal ring extensions. It remains only to prove that
the minimal ring extension F ⊂ E is decomposed. This can be done by the process of elimination,
as follows. By tweaking the second paragraph of the proof of (c), we get that the fact that Ei ⊂ Fi is
decomposed leads to the conclusion that the minimal ring extension F ⊂ E is not ramified (that is,
E is not F-algebra isomorphic to F[X]/(X2) for some indeterminate X over F). Finally, the presence
of the nontrivial zero-divisors ci and di in E shows that E is not a field, whence the minimal ring
extension F ⊂ E is not inert, thus completing the proof of (d).

(e) Without loss of generality, I , ∅. By hypothesis (and the ramified-decomposed-inert trichotomy
for integral minimal ring extensions involving commutative rings), there exists i ∈ I such that the
minimal ring extension Ai ⊂ Bi is either ramified or decomposed. Therefore, since I is directed,
appeals to (a) and (c) show that the cofinal subset J of I consisting of the indices j ∈ I such that i ≤ j
has the following property: either Ak ⊂ Bk is ramified for all k ∈ J or Ak ⊂ Bk is decomposed for all
k ∈ J . Therefore, appeals to (b) and (d) show that the canonical map lim−−→k∈J

Ak/Mk → lim−−→k∈J
Bk/Mk

is a minimal ring extension which is either ramified or decomposed. Since J is a cofinal subset of I ,
the just-mentioned map can be canonically identified with h : A/M ↪→ B/M. Thus, A/M ⊂ B/M is
a minimal ring extension which is either ramified or decomposed. Moreover, by [12, Lemma II.3],
A ⊂ B is also a minimal ring extension. The proof is complete.

If i ≤ j in I , one can say in general only that Mj ∩ Bi ⊇Mi . The possibility that “⊇" could be “⊃"
in some example is genuine, and that possibility can lead to a situation where A = B. This is, in fact,
what occurs with the kind of construction that was described in Remark 2.4 (b) (where Bn+1 = An
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for each n ≥ 1) if each An ⊂ An+1 is ramified (resp., decomposed). A family of examples of directed
unions of ramified (resp., decomposed) extensions satisfying the condition “Mj ∩Bi =Mi for all i ≤ j
in I" will be given in Corollary 2.8. That corollary will be our main application of Theorem 2.5.

One natural question about the data and conclusions in Theorem 2.5 asks for conditions under
which M is the crucial maximal ideal of A ⊂ B. Although that question is open at this time, that fact
will not deter us from building explicit applications of Theorem 2.5. Those will be given in Corollary
2.8 by using the methods developed in Proposition 2.6 and the background material collected in
Lemma 2.7.

Proposition 2.6. Let (I,≤) be a directed set. Let {Ai | i ∈ I} be an (upward-)directed set of commutative
rings, with transition map fij : Ai ↪→ Aj if i ≤ j in I (such that if i ≤ j ≤ k in I , then fjkfij = fik and
fii is an identity map). Assume that if i ≤ j in I , then Aj is integral over Ai . Consider the direct limit
A := lim−−→i∈I

Ai (= ∪i∈IAi). For each i ∈ I , view the canonical injective ring homomorphism αi : Ai → A as
an inclusion map (such that if i ≤ j in I , then αjfij = αi). Let M be a maximal ideal of A. For each i ∈ I ,
consider the maximal idealMi := (αi)−1(M) (=M∩Ai) of Ai . (Note that if i ≤ j in I , thenMj∩Ai =Mi and
lim−−→i∈I

Mi (= ∪i∈IMi) =M.) Then there exist (upward-)directed unions of integral minimal ring extensions
of commutative rings, Ai ↪→ Bi and Ai ↪→ Ci , such that for each i ∈ I , Ai ⊂ Bi is a ramified minimal ring
extension with crucial maximal ideal Mi and Ai ⊂ Ci is a decomposed minimal ring extension with crucial
maximal ideal Mi , and also such that, for the direct limits B := lim−−→i∈I

Bi (= ∪i∈IBi) and C := lim−−→i∈I
Ci (=

∪i∈ICi), one has that A ⊂ B is an (integral) ramified minimal ring extension with crucial maximal ideal M
and A ⊂ C is an (integral) decomposed minimal ring extension with crucial maximal ideal M.

Proof. Despite its title, the main result in [5] is that ifΛ is any nonzero commutative ring, then for any
maximal idealM of Λ (and at least one suchM exists, thanks to Zorn’s Lemma), Λ ⊂Λ(+)Λ/M is an
integral minimal ring extension; moreover, by a result of G. Picavet and M. Picavet-L’Hermitte [30,
Lemma 2.1], this extension is subintegral, and so we can conclude that it is a ramified minimal ring
extension, necessarily with crucial maximal ideal (Λ : Λ(+)Λ/M) =M. (To check this calculation of
the conductor, note that for any module E over a commutative ring Γ , one views Γ as a subring of the
idealization Γ (+)E via the canonical injective (unital) Γ -algebra homomorphism Γ → Γ (+)E, given by
γ 7→ (γ,0) for all γ ∈ Γ .) For each i ∈ I , let Bi := Ai(+)Ai/Mi . If i ≤ j in I , we have thatMj∩Ai =Mi , and
so the inclusion map Ai ⊆ Aj and the canonical injective Ai-algebra homomorphism Ai/Mi → Aj /Mj

can be used to get a canonical injective ring homomorphism (which is defined coordinatewise)

gij : Bi := Ai(+)Ai/Mi → Aj(+)Aj /Mj =: Bj .

It is easy to see that if i ≤ j ≤ k in I , then gjkgij = gik and gii is an identity map. The direct limit (that
is, the directed union)

B := lim−−→
i∈I

Bi = ∪i∈IBi = ∪i∈I (Ai(+)Ai/Mi) =

∪i∈IAi(+)∪i∈I Ai/Mi = A(+)((∪i∈IAi)/(∪i∈IMi)) = A(+)A/M.

By the main result of [5] (or, alternatively, by Theorem 1.5), A ⊂ B is an integral ramified minimal
ring extension. Its crucial maximal ideal is (A : B) = (A : A(+)A/M) =M.

The proof of the “decomposed" assertion has the same tempo as the above proof of the “ramified"
assertion. For each i ∈ I , we define Ci := Ai × Ai/Mi and view Ai ⊆ Ci via the canonical injective
ring homomorphism Ai → Ai × Ai/Mi , given by a 7→ (a,a +Mi) for all a ∈ Ai . This ring extension
is clearly integral. By the second sentence of the proof of [13, Corollary 2.5], Ai ⊆ Ci is a minimal
ring extension; moreover, the crucial maximal ideal of this integral minimal ring extension is (Ai :
Ci) = (Ai : Ai ×Ai/Mi) = Mi . If i ≤ j in I , the identity map Ai → Ai combines with the canonical ring
homomorphism Ai/Mi → Aj /Mj to produce a canonical injective ring homomorphism Ai ×Ai/Mi →
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Aj ×Aj /Mj (defined coordinatewise); we view this homomorphism as an inclusion map and as the
transition map g∗ij : Ci → Cj . It is easy to see that the transition maps satisfy the usual desired
compatibility conditions, and so one has the direct limit

C := lim−−→
i∈I

Ci = ∪i∈ICi = ∪i∈I (Ai ×Ai/Mi) =

(∪i∈IAi)× (∪i∈IAi/Mi) = A× ((∪i∈IAi)/(∪i∈IMi)) = A×A/M.

By another appeal to the proof of [13, Corollary 2.5], A ⊆ C is a minimal ring extension; moreover,
the crucial maximal ideal of this integral minimal ring extension is (A : C) = (A : A×A/M) =M. The
proof is complete.

It seems appropriate to record the fact that the constructions in Proposition 2.6 satisfy all the
hypotheses from Theorem 2.5. We will do so now for the “ramified" part of the construction, leaving
the similar details for the “decomposed" part to the interested reader. For the “ramified" part, the
only missing detail (“missing" because it was not needed in the proof of Proposition 2.6) is to verify
that “if i ≤ j in I , then Mj ∩ Bi = Mi ." For each k ∈ I , the relevant maximal ideal of Ak(+)Ak/Mk is
Mk(+)Ak/Mk . Thus, our task is to show that if i ≤ j in I , then

(Mj(+)Aj /Mj )∩ (Ai(+)Ai/Mi) =Mi(+)Ai/Mi .

This, in turn, holds since Mj ∩Ai =Mi and Ai/Mi ↪→ Aj /Mj .
The segue prior to Proposition 2.6 promised to build examples satisfying the hypotheses of Theo-

rem 2.5. To complete the fulfillment of that promise, it will now suffice to construct algebraic field
extensions K ⊂ L such that there is a denumerable maximal chain of fields going from K to L. Before
constructing or considering specific such chains

K = A0 ⊂ A1 ⊂ A2 ⊂ . . . ⊂ An ⊂ An+1 ⊂ . . . ⊂ L,

it will convenient to recall some material from [17] and [31]. That material will be collected in
Lemma 2.7. Before that, we devote two paragraphs to a variety of background material which is
presupposed in Lemma 2.7.

The next paragraph will merely define two concepts that were introduced in the (unpublished)
doctoral thesis of Michael S. Gilbert [17]. While that thesis was largely concerned with extensions
of commutative rings, we will confine the contexts for the definitions in this paragraph and for the
results quoted from [17] in Lemma 2.7 to the special cases whose contexts involve field extensions.
Although [17] develops extensive information about finite-dimensional λ-field extensions, Lemma
2.7 will emphasize the infinite-dimensional λ-field extensions (as those are the ones that will matter
in our applications to nontrivial directed unions in Corollary 2.8).

Let K ⊆ L be fields. Then K ⊆ L is said to be a λ-extension (or a λ-field extension) if the poset [K,L] is
linearly ordered (by inclusion). We say that K ⊆ L is a µ-extension (or a µ-field extension) if there exists
an element α ∈ L \K such that α ∈ F for every field F such that K ⊂ F ⊆ L; when this condition holds,
some of the analogous ring-theoretic literature would say that K is “a subfield of L that is maximal
without α." Note that for any field K , K ⊆ K is a λ-extension but not a µ-extension.

This second paragraph of background material concerns fields of characteristic p > 0. In [17,
Proposition 3.26], Gilbert reported the following information from [3]. If K a field of characteristic
p > 0, then there exists a purely inseparable (algebraic) field extension K ⊆Π such that Π is a perfect
field; such Π is unique up to K-algebra isomorphism and is called a perfect closure of K ; given an
algebraic closure K of K , one construction for such a field takes Π := {u ∈ K | u is purely inseparable
over K}, and this Π is called the perfect closure of K (in K). The proofs of these facts and some related
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facts in [3] and [17] use the following definition. If K ⊆ L are fields of characteristic p > 0 (if L is not
specified, it is assumed to be an algebraic closure of K) and if r is any positive integer, then

K (p−r ) := {u ∈ L | u(pr ) ∈ K}.

It is known (and easy to prove) that if L and r are as above, then K (p−r ) is a field; K (p−r ) ⊆ K (p−(r+1)) for
all r > 0; and L is purely inseparable over K (if and) only if L = ∪r>0K

(p−r ).

Lemma 2.7. (a) (Gilbert [17, Theorem 3.1 (1), (2)]) Let K ⊆ L be a λ-field extension. Then L is algebraic
over K and every element of [K,L] is a field.

(b) (Gilbert [17, Theorem 3.1 (3) (ii)]) Let K ⊆ L be a λ-field extension such that dimK (L) =∞. Then
(and only then) [K,L] is a denumerable set, consisting of

K = F0 ⊂ F1 ⊂ F2 ⊂ . . . ⊂ Fn ⊂ Fn+1 ⊂ . . . ⊂ L,

where dimK (Fn) <∞ for each integer n ≥ 0, and L = ∪n≥0Fn.
(c) (Gilbert [17, Proposition 3.15 (1)]) Let K ⊆ L be a µ-field extension. Then L is algebraic over K .
(d) (Gilbert [17, Proposition 3.15 (2)]) Let K ⊂ L be a λ-field extension (such that K , L). Then K ⊆ L is

a µ-extension.
(e) (Gilmer and Heinzer [20, page 96, lines 6-11], cited by Gilbert in [17, Remarks 3.16 (i)]) There exists

a µ-field extension that is not a λ-field extension.
(f) (Gilbert [17, Proposition 3.17 (2)]) Let K ⊂ L be a λ-field extension. Then either L is purely insepara-

ble over K or K is purely inseparably closed in L (the latter option meaning, by definition, that no element
of L \K is purely inseparable over K).

(g) (Gilbert [17, Proposition 3.17 (3)]) A field extension K ⊂ L is a µ-extension if and only if there is a
(necessarily unique) field K0 such that K ⊂ K0 ⊆ L and K0 ⊆ F for each field F such that K ⊂ F ⊆ L; when
these conditions hold, K0 is the unique minimal proper field extension of K that is a subfield of L. If K ⊂ L
is a µ-field extension and α ∈ L, then K is a subfield of L that is maximal without α if and only if α ∈ K0\K ;
when these conditions hold, K0 = K(α) = K[α]. Moreover, if K ⊂ L is a µ-field extension, then either L is
purely inseparable over K or K is purely inseparably closed in L.

(h) (Gilbert [17, Theorem 3.25]) Let K ⊂ L be a purely inseparable (algebraic) extension of (distinct)
fields of characteristic p > 0. Then the following four conditions are equivalent:

(1) There exists u ∈ K (p−1) such that K (p−1) = K(u);
(2) [K (p−1) : K] = p;
(3) K ⊂ L is a µ-extension and K (p−1) = K0 (where K0 is as in (g));
(4) K ⊂ L is a µ-extension.

(i) (Gilbert [17, Proposition 3.26]) Each field of characteristic p > 0 has a perfect closure.
(j) (Gilbert [17, Theorem 3.29]) Let K be a non-perfect field of characteristic p > 0 and let Π be a perfect

closure of K . Then the following four conditions are equivalent:
(1) K ⊂Π is a λ-extension;
(2) K ⊂Π is a µ-extension;
(3) [K : Kp] = p;
(4) There exists u ∈ K such that K = Kp(u).

(k) (Gilbert [17, Corollary 3.30 and Proposition 3.24]) Let K be a non-perfect field of characteristic p > 0,
let Π be a perfect closure of K , and suppose that K ⊂Π is a λ-extension. Then [K,Π] is a denumerable set,
consisting of

K ⊂ K (p−1) ⊂ K (p−2) ⊂ . . . ⊂ K (p−n) ⊂ K (p−(n+1)) ⊂ . . . ⊂Π,

where dimK (K (p−n)) = pn for each integer n > 0, and L = ∪n>0K
(p−n).

(l) (Gilbert [17, Examples 3.31 (b)]) Let K be a field of characteristic p > 0 such that [K : Kp] = p, and let
Π be the perfect closure of K inside an algebraic closure K of K . Then Π is an infinite-dimensional purely
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inseparable (algebraic) λ-extension of K (and µ-extension of K) and, for each positive integer n, K (p−n) is
the unique pn-dimensional field extension of K inside K .

(m) (Gilbert [17, Theorem 3.36]) Let K ⊂ L be a proper finite-dimensional Galois field extension. Then
K ⊂ L is a λ-extension⇔ K ⊂ L is a µ-extension⇔ the Galois group of L/K is cyclic of prime-power order.

(n) (Gilbert [17, Theorems 3.37 and 3.38]; cf. also Gilmer and Heinzer [20, Theorem 2.5]) Let K ⊂ L
be an infinite-dimensional algebraic Galois field extension. Then K ⊂ L is a λ-extension⇔ K ⊂ L is a µ-
extension⇔ the Galois group of L/K is isomorphic (as a topological profinite group) to the additive group
of the ring of p-adic integers, for some prime number p.

(o) (Gilbert [17, Theorem 3.25]) Let L be a purely inseparable algebraic field extension of a proper subfield
K of characteristic p > 0. Then: K ⊆ L is a µ-extension ⇔ K (p−1) = K(u) for some element u ∈ K (p−1) ⇔
[K (p−1) : K] = p.

(p) (Gilbert [17, Theorem 3.29, Proposition 3.27, Corollary 3.30, Examples 3.31 (a)]) Let K be a non-
perfect field of characteristic p > 0 and let Π be the perfect closure of K (in some algebraic closure of K).
Then: K ⊆ Π is a λ-extension⇔ K ⊆ Π is a µ-extension⇔ [K : Kp] = p ⇔ K = Kp(u) for some element
u ∈ K . If these equivalent conditions hold, then [Π : K] =∞. For each prime number p, an example of K
(andΠ) satisfying these equivalent conditions can be built as follows: take K := F(X) where F is any perfect
field of characteristic p and X is an indeterminate over F (and Π is a perfect closure of K).

(q) (Quigley [31, Theorems 1, 2 and 3]) Let K ⊂ L be a proper field extension such that L is algebraically
closed. Then K ⊆ L is a µ-extension⇒ K ⊆ L is a λ-extension. (Also, by [17, Proposition 3.15 (2)], K ⊂ L
is a λ-extension⇒ K ⊆ L is a µ-extension.) Also (by [17, Proposition 3.15 (1)] and Artin-Schreier theory,
as in [24, pages 269-278]): if K ⊂ L is a µ-extension (with L still being assumed to be algebraically closed)
and [L : K] <∞, then K is a real closed field (hence of characteristic 0) and L = K(u) for some u ∈ L such
that u2 = −1.

Proof. We will comment here only about any deviations that the above statements may manifest in
comparison with their cited sources.

(b): The statement of [17, Theorem 3.1 (3) (ii)] did not include the parenthetical phrase “and only
then", as it would already have been known to readers of [17], the point being that [17, Theorem 3.1
(3) (ii)] pointed out, inter alia, that if dimK (L) <∞ (and K ⊆ L is a λ-field extension), then [K,L] is a
finite set.

(c): Gilbert’s proof of (c) simply observed that Quigley’s proof of [31, Lemma 1] can be applied to
the present situation because that proof did not use the standing hypothesis in [31] that the “top"
field L is algebraically closed. This “proof" is complete.

Perhaps it is of interest to record that in [17, Remark 3.39], Gilbert used what we have just called
Lemma 2.7 (n) (and a known nontrivial fact about profinite groups) in a proof that if ` is either 0 or
a prime number, there exist fields K ⊂ L of characteristic ` such that K ⊂ L is an algebraic infinite-
dimensional Galois field extension which is also a λ-extension.

We are now ready to complete our promise to “build examples satisfying the hypotheses of Theo-
rem 2.5." This can be done by combining Proposition 2.6 and Lemma 2.7. In view of the abundance
of infinite-dimensional λ-extensions of fields noted above, one can obtain several interesting appli-
cations in this way. To save space, we will make only three of those applications explicit in Corollary
2.8, thereby further highlighting what I consider to be some of the most important algebraic contri-
butions of Gilbert and Quigley.

Corollary 2.8. Let the proper field extension K ⊂ L satisfy (at least) one of the following three conditions:
(i) K ⊂ L is an infinite-dimensional algebraic Galois field extension whose Galois group is isomorphic (as a
topological profinite group) to the additive group of the ring of p-adic integers, for some prime number p;
(ii) K is a non-perfect field of characteristic p > 0, [K : Kp] = p and L is a perfect closure of K (an example
satisfying (ii) can be found by taking K := F(X) where F is any perfect field of characteristic p and X is an
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indeterminate over F (and L is a perfect closure of K));
(iii) The field K is not real closed and the field L is algebraically closed (and K ⊂ L).
Then it is known that K ⊂ L is an algebraic field extension and [K,L] is a denumerable set consisting of
fields, as follows:

K = A1 ⊂ A2 ⊂ . . . ⊂ An ⊂ An+1 ⊂ . . . ⊂ L,

with A := lim−−→i∈I
Ai (= ∪i∈IAi) = L. Moreover, there exist upward-directed unions of integral minimal ring

extensions of commutative rings, Ai ↪→ Bi and Ai ↪→ Ci , such that for each i ∈ I , Ai ⊂ Bi is a ramified
minimal ring extension and Ai ⊂ Ci is a decomposed minimal ring extension, and also such that, for the
direct limits B := lim−−→i∈I

Bi (= ∪i∈IBi) and C := lim−−→i∈I
Ci (= ∪i∈ICi), one has that K ⊂ B is an (integral)

ramified minimal ring extension and K ⊂ C is an (integral) decomposed minimal ring extension.

Proof. The specific examples in (i), (ii) and (iii) of (proper) infinite-dimensional λ−field extensions
K ⊂ L were given, respectively, in [17, Theorem 3.38] (cf. also [20, Theorem 2.5]); [17, Proposition
3.26] (cf. also [3]) and [17, Theorem 3.29 and Examples 3.31 (b)]; and [31, Theorems 1, 2 and 3].
They can also be seen in parts (n); (j), (k), (l) and (p); and (q), respectively, of Lemma 2.7. (Perhaps I
should have explicitly noted earlier that the other parts of Lemma 2.7 were included to make those
six just-mentioned parts easier to understand and to provide supporting background about λ-field
extensions and µ-field extensions.) Of course, once one knows that each of (i), (ii) and (iii) gives a
denumerable maximal chain of fields going from K to L, an application of Proposition 2.6 completes
the proof.

The paper will close with three remarks. The first of these comments further on minimal ring
extensions involving commutative rings.

Remark 2.9. (a) One should not be surprised that the ramified (resp., decomposed) minimal ring
extension B (of A) that was found in Corollary 2.8 turned out to be A(+)A/M (resp., A×A/M). (This
identification of B was obtained toward the end of the proof of Proposition 2.6.) For many rings A,
this is, up to A-algebra isomorphism, the only possibility. In case A is a field (as it was in Corollary
2.8), that fact is a consequence of [15, Lemme 1.2]. Shapiro and the author showed that the same kind
of classification as in [15, Lemme 1.2] holds if A is any (commutative) integral domain that is not a
field. Subsequently, in [13, Theorem 2.4], Shapiro and the author showed that this overall kind of
classification of the commutative minimal ring extensions could be extended to cover commutative
base rings A that do not contain any maximal ideals that are also minimal prime ideals and do have
von Neumann regular total quotient rings. Later, in [29], Lucas showed that sufficiently general
commutative rings A could admit ramified or decomposed (integral) minimal ring extensions that
are not A-algebra isomorphic to A(+)A/M or A×A/M for some maximal ideal M of R.

(b) Apart from Example 2.3 and Remark 2.4 (a), we have not paid much attention here to com-
mutative integrally closed minimal ring extensions. For a characterization of such extensions over
quasi-local base rings with von Neumann regular total quotient rings which features Kaplansky
transforms, see [13, Theorem 3.7]. More generally, for characterizations of commutative integrally
closed minimal ring extensions of an arbitrary commutative ring, some of which feature generalized
Kaplansky transforms, see [4].

(c) If A ⊂ B is a minimal ring extension involving commutative rings, the integral closure of A
in B is an element of [A,B]; so if such an extension is a minimal ring extension, it must be either
integral or integrally closed. For this reason, the study of commutative minimal ring extensions has
broken naturally into separate studies of the “integral" and the “integrally closed" contexts. No such
facile bifurcation seems to be possible in analyzing noncommutative minimal ring extensions. For an
overview of some noncommutative research on topics abutting that of integrality, one can see a brief
recent survey by Jarboui and the author in the second and third paragraphs of [10, Remark 2.11].
This completes the remark.
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Remark 2.10 comments further on noncommutative minimal ring extensions. Its part (a) will
establish that Theorem 2.5 (e) admits an analogous conclusion in a noncommutative setting. First,
we anticipate that the following basic background information may be of help to some readers. Recall
that a nonzero (not necessarily one-sided Artinian) ring R is said to be a simple ring if 0 and R are the
only two-sided ideals of R. It is clear that a commutative simple ring is the same as a field. Recall
also that a ring R is said to be a prime ring if aRb , 0 whenever a and b are nonzero elements of R.
It is clear that a commutative prime ring is the same as a (commutative) integral domain. It is not
difficult to prove (and it is well known) that each simple ring is a prime ring. The converse is false,
even in the commutative case: consider Z.

Remark 2.10. (a) Let {An ↪→ Bn} be a directed union of minimal ring extensions, with index set I
being the set of positive integers (with its natural ordering), such that B := ∪nBn is not commutative,
B is not a prime ring and, for each n, An is a field and Bn is not a prime ring. Then (with A := ∪nAn
as usual): A ⊂ B is a minimal ring extension and B is isomorphic to a (noncommutative) idealization
AnM for some simple A-A bimodule M.

We begin a proof of the above assertion by establishing its first part. As A is the directed union of
fields, A is a field and, hence, a commutative ring. Since B is assumed noncommutative, it follows
that A , B. Therefore, by Corollary 2.2, A ⊂ B is a minimal ring extension.

The rest of the proof will assume some familiarity with [14]. Since A is a simple ring and A ⊂ B
is a minimal ring extension, the classification of the minimal ring extensions of a simple ring in
[14, Theorem 6.1] shows that, up to “A-isomorphism," B satisfies one of four properties which are
labeled (P), (PI), (SI) and (N). In the just-cited result, Dorsey and Mesyan noted that if a minimal ring
extension A ⊂ C (with A a simple ring, as it is here) satisfies either (P) or (PI), then C is a prime ring.
Since B is assumed to not be a prime ring, A ⊂ B must satisfy either (SI) or (N). However, it follows at
once from the definition of (SI) that A ⊂ B cannot satisfy (SI) since B is not “A-isomorphic" to A×A
(since A ×A is commutative and B is assumed to be noncommutative). Therefore, by the definition
of (N), the proof is complete.

(b) The proof in (a) used the notion of an “A-isomorphism" Λ→Ω when Λ and Ω are rings which
each contain A as a subring. Although the terminology of “A-isomorphism" is used extensively in
[14], I have been unable to find a definition of this terminology anywhere in [14]. It seems clear from
reading [14] that its authors intended an “A-isomorphism" Λ→ Ω to have as many of the familiar
properties of an algebra isomorphism (over a commutative base ring) that would be reasonable in a
not-necessarily-commutative setting. This feeling is only reinforced by reading the definitions in [14,
pages 3465-3466], given a ring R, of an R-ring, an R-rng, and an R-homomorphism from one R-rng
to another. In using [14] (this includes my use of it in the second paragraph of (a)), one must be sure
that the various “A-isomorphic to" assertions being quoted are referring to unital maps. This specific
lack of detail in [14] is regrettable, as I believe that any objective reading of that paper leaves open
this question: must an “A-isomorphism" of A-rings Λ→Ω send the multiplicative identity element
1 in Λ to the multiplicative identity element 1 in Ω?

As indicated above, I am reasonably certain that the authors of [14] intended their “A-isomorphisms"
of A-rings to be unital. I will be devoting an article (that is in preparation) to studying the noncom-
mutative minimal ring extensions of a field. Of course, some of that work will appeal to the above-
mentioned classification result over simple rings [14, Theorem 6.1]. But in some situations where
the published proof of a nontrivial result in [14] has been marred by what I consider to be a lack
of attention to unital behavior, I will address special cases as needed via explicit ad hoc methods to
prove some of the assertions in the article that is in preparation.

I believe that much remains to be discovered about the noncommutative minimal ring extensions
of a field. For instance, while my recent paper [8] answered in the affirmative the question from
[14] as to whether, for every prime number p, Fp is, up to isomorphism, the only field of charac-
teristic p with no noncommutative minimal ring extensions, I believe that the following companion
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question from [14] remains open: is Q, up to isomorphism, the only field of characteristic 0 with no
noncommutative minimal ring extensions?

(c) While my article in preparation will focus on the (cardinal) number of “isomorphism" classes
of noncommutative minimal ring extensions of a given field, I hope that some readers will pursue
some of the lines of inquiry that were begun in (a). The result in (a) should be regarded as a non-
commutative analogue of Theorem 2.5 (e), since a commutative minimal ring extension of a field K
which is not a prime ring must, by [15, Lemme 1.2], be K-algebra isomorphic to either K ×K (which
is property (SI) of [14, Theorem 6.1]) or K[X]/(X2) (and this latter option is K-algebra isomorphic to
the idealization K nK , which is often denoted in the literature by K(+)K). I would expect that the
setting in (a) could be changed from directed unions to a more general class of direct limits. Also, it
may be of interest to allow the rings Ai in (a) to be simple rings (rather than fields), in view of the ob-
servation of Dorsey and Mesyan [14, page 3481, lines 23-24] that any direct limit of simple rings is a
simple ring. In that regard, let me add the following: a thoroughly non-commutative variant of some
of Theorem 2.5 can be obtained by applying the “n× n matrix operator" Mn(. . . ) to each of the rings
in Theorem 2.5, thanks to the result of Al-Kuleab and Jarboui [1, Corollary 1.2] that a ring extension
Λ ⊂Ω is a minimal ring extension if and only if, for some (equivalently, for each) positive integer n,
Mn(Λ) ⊂Mn(Ω) is a minimal ring extension. Finally, I would hope that someone who is better versed
than I in noncommutative ring theory will be able to determine conditions under which one could
remove (or at least alter) the hypothesis in (a) that B is not a prime ring. The remark is complete.

We close by viewing a result from [15] as being an antecedent for Corollary 2.2.

Remark 2.11. Ferrand and Olivier left the proof of the following assertion [15, Lemme 1.3] to the
reader. If A ⊂ B is a minimal ring extension with B (and A) commutative and S is a multiplicatively
closed subset of A then, by viewing the canonical injective A-algebra homomorphism AS → BS as
an inclusion map, we have that either AS = BS or AS ⊂ BS is a minimal ring extension. As the
conclusion in this assertion has somewhat the same flavor as the conclusion in Corollary 2.2, it seems
appropriate, for the sake of completeness, to give a detailed proof of [15, Lemme 1.3]. SinceA ⊂ B is a
minimal ring extension, it follows by a process of elimination that it will suffice to show that if T is a
ring such that AS ⊆ T ⊆ BS , then there exists a ring C such that A ⊆ C ⊆ B and T = CS . (Showing that
will not need the hypothesis that A ⊂ B is a minimal ring extension.) Let h : B→ BS be the (unique) B-
algebra homomorphism from B to BS . ConsiderC := h−1(T ) = {b ∈ B | b/1 ∈ T }. It follows from general
principles that C is a ring and, hence, a subring of B. Also, A ⊆ C, since A ⊆ h−1(AS ) ⊆ h−1(T ) = C.
Next, if b ∈ C and s ∈ S, then b/s = (1/s)(b/1) ∈ AST ⊆ T 2 = T . This proves that CS ⊆ T . Lastly, if t ∈ T ,
then there exist b ∈ B and s ∈ S such that t = b/s, whence b/1 = (s/1)t ∈ AST ⊆ T 2 = T and so b ∈ C,
whence t ∈ CS . This shows that T ⊆ CS , completing the proof of [15, Lemme 1.3].
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