
Moroccan Journal of Algebra 
and Geometry with Applications

Volume 2, Issue 2 (2023), pp 209-217

Supported by Sidi Mohamed Ben Abdellah University, Fez, Morocco 
Morocco

Title :Title :

A Fast and SPA secure scalar Multiplication  for Elliptic Curve Cryptography

Amadou Tall

Author(s):Author(s):

ISSN:  2820-7114

https://ced.fst-usmba.ac.ma/p/mjaga/
https://ced.fst-usmba.ac.ma/p/mjaga/


Moroccan Journal of Algebra
and Geometry with Applications
Vol. 2(2) (2023), 209–217
—————————————————————————————————————————————
Supported by Sidi Mohamed Ben Abdellah University, Fez, Morocco ISSN: 2820-7114

A Fast and SPA secure scalar Multiplication for Elliptic Curve
Cryptography

Amadou Tall
Université Cheikh Anta DIOP de Dakar, Senegal.

e-mail: amadou7.tall@ucad.edu.sn

Communicated by Abdenacer Makhlouf
(Received 19 December 2022, Revised 16 July 2023, Accepted 24 July 2023)
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1 Introduction

Elliptic curve cryptography was introduced in 1985 independently by Miller and Koblitz [1, 13,
18]. Given a point P on an elliptic curve over a finite field, computing the scalar multiple kP is
central to the actual implementation of elliptic curve cryptography. Various methods have been
proposed to speed up and secure this computation. Exponentiation algorithms have been shown
to be vulnerable to side-channel analysis, where an attacker observes the power consumption [5].
This attack is known as Simple Power Analysis (SPA). There are several algorithms that have been
proposed in the literature [5, 10, 8, 12, 21] to resist against SPA. It should be noted that differential
side-channel analysis will not be considered in this paper.

In this paper, we give a new fast and secure point multiplication algorithm, which resists SPA. The
algorithm is based upon a particular kind of addition-subtraction chain known as Lucas addition-
subtraction chains. Addition-subtraction chains and Lucas chains have both been studied in connec-
tion with speeding up scalar multiplication [23, 16, 26, 1, 25, 6, 8, 24, 17, 18, 11, 27]. However,
Lucas addition-subtraction chains have not yet been used before. The Lucas addition-subtraction
algorithm we propose is much simpler and as fast as known algorithms that resist SPA.

This paper is organized as follows. In the next section, we provide a brief background on elliptic
curves and review Lucas addition-subtraction chains. In Section 3, we present the new scalar multi-
plication algorithm based on Lucas addition-subtraction chains and show it resists SPA. In Section 4,
we compare our scalar multiplication to the classical double-and-add, and NAF scalar multiplication
algorithms. A deeper comparison will be done with some scalar multiplications that resist the SPA.
Finally, we conclude in the last section.

2 Background

In this section, we first give a brief overview of addition on elliptic curves. For more details, the
reader should consult [26]. We then review Lucas addition-subtraction chains [28].
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2.1 Elliptic curves

Definition 2.1. An elliptic curve E over a finite field K is given by an equation

E(K) : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, (1)

where a1, a2, a3, a4, a6 ∈ K are such that for each point (x, y) on E, the partial derivatives do not
simultaneously vanish.

In practice, if the characteristic of K is not 2 or 3, then equation for an elliptic curve is usally
simplified into y2 = x3 +ax+b. Here, a, b ∈ K , with 4a3 + 27b2 , 0. The set E(K) of the rational points
of an elliptic curve E (defined over K) is an abelian group where the identity element is a special
point O, called the point at infinity.

2.2 The addition law

The set of points of an elliptic curve forms a group under a certain addition rule. We now give this
rule explicitly. Let E be as in (1), and let P = (x1, y1), Q = (x2, y2) be two points of E, neither of which
is O. The inverse of the point P is given by

−P = (x1, −y1 − a1x1 − a3),

and their sum P +Q = (x3, y3) is defined as follows:

x3 = λ2 + a1λ− a2 − x1 − x2,

y3 = λ(x1 − x3)− y1 − a1x3 − a3,

where λ is:

λ =


y1−y2
x1−x2

, if P , ±Q,

3x1
2+2a2x1+a4−a1y1
2y1+a1x1+a3

, if P =Q.

2.3 Lucas addition-subtraction chains

Before giving the definition of Lucas addition-subtraction chains, we first define addition chains,
Lucas addition chains, and addition-subtraction chains. As can be inferred from their name, Lucas
addition-subtraction chains combine these three types of chains. For more details on these various
types of chains, see [23, 29, 22, 30, 20, 8, 3, 28].

Definition 2.2. Let n be an integer. A sequence c = {1 = a0, a1, . . . , al = n} is called an addition chain
for n if and only if for each ai ∈ c, there exists j,k with 0 ≤ j,k < i such that:

ai = aj + ak .

Example 2.3. The sequence {1, 2, 3, 5, 7, 9, 14, 19} is an addition chain for 19.

Lucas addition chains are a special case of addition chains.

Definition 2.4. An addition chain c = {a0, a1, . . . , al} is a Lucas addition chain if and only if:

if ai = aj + ak for some 0 ≤ i, j,k ≤ l, then aj = ak or |aj − ak | ∈ c.
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Example 2.5. The sequence {1, 2, 3, 5, 7, 9, 14, 19} is a Lucas addition chain for 19.

Notice that, in this example, 14 is obtained by 7 + 7 and not 9 + 5.

Example 2.6. The sequence {1, 2, 3, 5, 10, 12} is an addition chain for, but not a Lucas addition
chain.

Addition-subtraction chains are a generalization of addition chains.

Definition 2.7. A sequence c = {1 = a0, a1, . . . , al = n} is called an addition-subtraction chain for an
integer n if and only if for each ai ∈ c, then ai > 0 and there exists j,k with 0 ≤ j,k < i such that

ai = aj + ak or ai = aj − ak .

Example 2.8. The sequence {1, 2, 4, 8, 16, 24, 22} is an addition-subtraction chain for 22.

It is clear that a Lucas addition chain is an addition chain, and any addition chain is an addition-
subtraction chain. We now define Lucas addition-subtraction chains.

Definition 2.9. Let n be a integer. A Lucas addition-subtraction chain for n is a sequence c = {a0 =
1, a1, . . . , al = n} such that for each ai ∈ c, there exists j,k with 0 ≤ j, k < i satisfying

ai =



aj + ak and |aj − ak | ∈ c∪ {0},
or

aj + 1,

or

aj − ak .

Example 2.10. Let Fk be the kth Fibonacci number. That is

Fk =

1, for k = 0,1,

Fk−1 +Fk−2, for k ≥ 2.

Then {F1, F2, . . . , Fl} is a Lucas addition-subtraction chain for Fl .

Example 2.11. {1, 2, 3, 5, 10, 20, 19} is a Lucas addition-subtraction chain for 19.

Example 2.12. {1, 2, 3, 4, 7, 10, 11, 9} is a Lucas addition-subtraction chain for 9.

Throughout the remainder of the paper, we will use the shorthand LASC to denote a Lucas addition-
subtraction chain. We now give a simple way to create short LASCs with the following theorem.

Theorem 2.13. Let n be an integer. A Lucas addition-subtraction chain for n can be obtained recur-
sively in the following way:

1. If n is even, then append n to a Lucas addition-subtraction chain for n
2 .

2. If n ≡ 1 mod 4, then append n to a Lucas addition-subtraction chain for n− 1.

3. If n = a2k+1 + (2k −1) for some k, then append n to a Lucas addition-subtraction chain for n+ 1.
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Proof. We need just to show that each of the three steps given above satisfy the criteria for LASCs.
If c is a LASC for n

2 , then appending n to c will still be a valid LASC as n = n
2 + n

2 . If instead c is
a valid LASC for n − 1, then the definition for LASCs allows for adding 1 to an element of c, so we
can append n to c. Finally, if c is a LASC for n + 1, then always we have 1 ∈ c, and we may append
(n+ 1)− 1 = n to c.

For ease of notation, we label the steps in Theorem 2.13 as DBL (doubling), ADD (adding), and
SUB (subtracting).
Notice a DBL step is a doubling of the previous final element of the chain, an ADD step is an addition
of 1 to the previous final element of the chain, and a SUB step is a subtraction by 1. We illustrate the
theorem in the next two examples.

Example 2.14. Using Theorem 8, A Lucas addition-subtraction chain for 124 can be obtained as
follows:

124 = 62 · 2,
62 = 31 · 2,
31 = 32− 1,

32 = 16 · 2,
16 = 8 · 2,
...

2 = 1 · 2.

The corresponding Lucas addition-subtraction chain is:

{1, 2, 4, 8, 16, 32, 31, 62, 124}.

Example 2.15. Using Theorem 8, a Lucas addition-subtraction chain for 242 can be obtained as
follows:

242 = 121 · 2,
121 = 120 + 1,

120 = 60 · 2,
60 = 30 · 2,
30 = 15 · 2,
15 = 16− 1,

16 = 8 · 2,
...

2 = 1 · 2.

The corresponding Lucas addition-subtraction chain is:

{1, 2, 4, 8, 16, 15, 30, 60, 120, 121, 242}.

We note that there are other approaches to finding Lucas addition-subtraction chains (see [28, ?]).
However, this algorithm is significant because of its simplicity and the short length of the chains
produced. As seen above, each step is either a doubling (DBL), or an addition (ADD) or subtraction
(SUB) by 1. An ADD or SUB step is always followed by a minimum of two successive doubling steps.
This makes the computation very efficient.
We will see later that we generally have the same number of ADD and SUB (approximately) when
we compute the LASC of a random prime p using the approach in Theorem 2.13.
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3 The new scalar multiplication algorithm

As mentioned before, one of the key operations in the implementation of elliptic curve cryptography
is computing scalar multiples of points. Let P be a point on an elliptic curve, and k be the scalar
we wish to use. The following algorithm computes kP by constructing a Lucas addition-subtraction
chain for k.

Algorithm 1 scalarMultiplication(k, P )
Require: k : integer, P : a point of an elliptic curve E
Ensure: kP : a point of E

1: if k even then
2: return 2(scalarMultiplication(k/2, P ))
3: else
4: if bk/2c even then
5: return 2(scalarMultiplication(bk/2c, P )) + P
6: else
7: return 2(scalarMultiplication(bk/2c+ 1, P ))− P
8: end if
9: end if

The algorithm is at the worst case 2/3(λ(k))DBL + (λ(k)/3)ADD which is the average cost of the
double-and-add scalar multiplication, where λ(k) = blog2(k)c.

3.1 Side-Channel Analysis

Side-channel attacks[15, 14] are any attacks based on side-channel information. Side-channel infor-
mation refers to information that can be gained from the physical encryption device. This includes,
for example, timing information, power consumption, and electromagnetic leaks. In particular, since
the computational cost of addition and doubling of points on elliptic curves are distinguishable by
measuring the power consumption, an attacker can use SPA to exploit this information.

Several counter-measures have been proposed against these attacks [5, 12, 7, 3]. In this work, the
new scalar multiplication avoids simple power analysis (SPA) by taking advantage of the indistin-
guishability of addition and subtraction and that the ratio #ADD/#SUB is very close to 1/2. We
assume that an attacker can use the power consumption to determine the sequence of addition (or
subtraction) and the doubling steps of our algorithm. However, this will not produce enough infor-
mation about the binary expansion of the scalar k. If the attacker knows that there are m addition
steps, then if we have used Algorithm 1 there are roughly 2m possibilities for k. This follows because
each addition step could be either an ADD or SUB step. The attacker cannot distinguish between
any two possible candidates for k.

We illustrate this concept with an example. Suppose an SPA attack yields the sequence of dou-
blings and additions/subtractions used to compute a Lucas addition-subtraction chain for an integer
n. We list such a sequence in the second column below. The third and fourth columns show how
knowing this sequence does not determine n. This example demonstrates that knowing when to
double and when to add (or subtract) by itself does not help finding k because doubling and ad-
ditions/subtractions occur during the same corresponding steps within the process for these two
chains. In fact, this same sequence can also lead to chains for 1915, 1923, 1925, 2173, 2179, and
2181.
An attacker can check all the possibilities (knowing when to make an addition or subtraction) and
find a set of possible values of k, but this set will contain almost 2m possible values.
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Step Operation Chain for 1917 Chain for 2171
1 4 DBL {1, 2, 4, 8, 16} {1, 2, 4, 8, 16}
2 1 ADD 15 = (1111)2 17 = (10001)2
3 5 DBL {30, 60, 120, 240, 480} {34, 68, 136, 272, 544}
4 1 ADD 479 = (111011111)2 543 = (1000011111)2
5 2 DBL {958, 1916} {1086, 2172}
6 1 ADD 1917 2171

Figure 1: Two chains with the same doubling and addition/subtraction sequence.

We claim that we will have roughly the same number of ADD and SUB steps for a randomly chosen
k. We expect the odd values in the chain computed by Algorithm 1 to be uniformly distributed mod
4. That is, we expect about half of them to be ≡ 1 mod 4, while half are ≡ 3 mod 4. From this
it follows that the number of ADDs and SUBs will be approximately equal. The data in the next
section supports this conclusion.

4 Comparisons with classical algorithms

In this section, our new proposed scalar multiplication algorithm will be compared to the classic
double-and-add (binary) method, the non-adjacent form (NAF) method, and the FRLBM method
[18]. The FRLBM method resists SPA under the assumption that there are the same number of DBL’s
and ADD’s in a specific mixed coordinate. We will see that we obtain almost the same results whereas
our algorithm is much simpler. We implemented each method with 1000000 random 160-bit primes,
and display the average number of addition and doubling steps required. The next three tables do
the same for 384-bit , 512-bit, and 1024-bit integers.

Method binary NAF LASC FRLBM
Addition 88 52 55 107
Doubling 159 160 156 106

Total 247 212 211 213

Figure 2: Table comparing scalar multiplication methods for 1000000 random 160 bit primes

Method binary NAF LASC FRLBM
Addition 202 117 130 256
Doubling 383 384 384 256

Total 585 501 524 512

Figure 3: Table comparing scalar multiplication methods for 1000000 random 384 bit primes

From the tables we see that Algorithm 1 (which uses LASC’s) is comparable in efficiency to the
NAF and FRLBM methods, while each are more efficient than the classical binary double–and–add
technique.

We further analyzed our algorithm to determine the distribution of ADD versus SUB steps occur-
ring in the addition steps. When we have roughly the same number of additions as subtractions, it
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Method binary NAF LASC FRLBM
Addition 265 168 173 341
Doubling 511 512 511 341

Total 776 680 684 682

Figure 4: Table comparing scalar multiplication methods for 1000000 random 512 bit primes

Method binary NAF LASC FRLBM
Addition 530 350 455 682
Doubling 1023 1024 912 683

Total 1553 1374 1367 1365

Figure 5: Table comparing scalar multiplication methods for 1000000 random 1024 bit primes

decreases the chance of an attacker finding the right value for k. In each table we display the average
number of DBL, ADD, and SUB steps required.

Operation Average number of operations
ADD 28.06 additions (+1’s)
DBL 159.33 doublings
SUB 26.73 subtractions (-1’s)

Figure 6: 1000000 random prime numbers of 160–bits

Operation Average number of operations
ADD 44.05
DBL 255.33
SUB 42.73

Figure 7: 1000000 random prime numbers of 256–bits

Operation Average number of operations
ADD 65.06
DBL 383.33
SUB 65.73

Figure 8: 500000 random prime numbers of 384–bits

5 Conclusion

This paper has presented a new algorithm to compute scalar multiplication on elliptic curves. Our
method is fast, much simpler, and as secure as previously known algorithms in protecting against
SPA. The key tool used for the algorithm is Lucas addition-subtraction chains. Generally, these chains
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Operation Average number of operations
ADD 86.72
DBL 511.33
SUB 85.39

Figure 9: 250000 random prime numbers of 512–bits

have shorter length than the traditional Lucas addition chains [23, 28] and have the same properties.
We leave it as future work to examine the potential use of Lucas addition-subtraction chains in the
elliptic curve method ECM for factorization [4, 17, 18].
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