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Abstract. Let R be a commutative ring and CR the category of commutative unital R-algebras. We show that CR is a

pre-additive category if and only if R is a zero ring. When these conditions hold, a functor F from CR to a pre-additive

category D with finite products is an additive functor (in the classical sense) if and only if F is additive in the sense due to

Chase-Harrison-Rosenberg (the latter sense of “additive functor" meaning that F commutes with finite products), if and

only if F(R) is a terminal object of D. More generally, if C and D are additive categories (that is, pre-additive categories

with finite products) and F : C→D is a functor, then F is additive if and only if F commutes with finite products. For such

categories C and D, we also give four other new characterizations of the additive functors F : C→D.
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1 Introduction

Let C be a category, with |C| its class of objects; and for all C1,C2 ∈ |C|, let C(C1,C2) denote the “hom-
set" of all morphisms in C having domain C1 and codomain C2. It will be convenient to let Ab denote
the category of abelian groups and (abelian) group (homo)morphisms. In the early days of homolog-
ical algebra, one often said [19, page 32] (cf. also [4, page 19]) that a category C is an additive category
if, for all C1,C2 ∈ |C|, there is an “addition function" + = +C1,C2

: C(C1,C2) ×C(C1,C2)→ C(C1,C2),
with the accompanying notation (ϕ,ψ) 7→ ϕ +ψ := +(ϕ,ψ), such that C(C1,C2) is thereby an additive
abelian group (that is, an object of Ab). Subsequently, the definition of an “additive category" evolved
and now also includes, at least, the requirement that the following two properties hold for all (not
necessarily pairwise distinct) objects C1,C2 and C3 of C:

f (g + h) = f g + f h for all g,h ∈ C(C1,C2) and all f ∈ C(C2,C3);and

(f + g)h = f h+ gh for all h ∈ C(C1,C2) and all f ,g ∈ C(C2,C3).

One should not regard the just-displayed properties as indicating a logical gap in either [19] or[4].
Indeed, those early texts had a special interest, for any unital ring R, in the category RMod consisting
of unital left R-modules and R-module homomorphisms (and in its special case

Z
Mod = Ab); of

course, the naturally occurring “addition functions" in RMod are given by pointwise addition (more
precisely, if ϕ,ψ are each left R-module homomorphisms A → B, then (ϕ + ψ)(a) = ϕ(a) + ψ(a) for
all a ∈ A) and evidently satisfy the two just-displayed properties. So, RMod satisfies all the above
axioms/properties. However, as category theory (and, with it, homological algebra) has continued to
evolve, it would be more appropriate to use the terminology “C is a pre-additive category" [20, page 6]
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or “C is an Ab-category" [16, page 28] to describe a category C that satisfies all the above properties.
Pre-additive categories will suffice as a general context for the ring-theoretic work that is the main
object of this note. (For the sake of completeness, let us record that it is nowadays commonly agreed
to define an additive category as a pre-additive category C that has a null object (that is, an object
which is both an initial object of C and a terminal object of C) and is such that, for all objects C1 and
C2 of C, there exists a biproduct (in the sense of [16, Definition, page 194]) of C1 and C2 in C; cf. also
[13, page 126] and [9, page 60].) Fortunately, all relevant references agree (cf. [16, page 29], [20, page
7]) that if D and E are pre-additive categories and F : D→ E is a (covariant) functor, then F is called
an additive functor if, for all objects D1 and D2 of D, the assignment f 7→ Ff (:= F(f )) determines an
abelian group homomorphism D(D1,D2)→ E(F(D1),F(D2)) (that is, if, for all objects D1 and D2 of D
and for all ϕ,ψ ∈D(D1,D2), one has F(ϕ +ψ) = F(ϕ) +F(ψ)).

As mentioned above, our main interest here is in studying rings. Indeed, from this point on,
all rings are assumed commutative and unital; all algebras are assumed to be commutative and
unital; and all algebra homomorphisms and all modules are also assumed to be unital. For any
(commutative unital) ring R, we let CR denote the category of (commutative unital) R-algebras and
(unital) R-algebra homomorphisms. In particular, C

Z
is the category of (commutative unital) rings

and (unital) ring homomorphisms. For a ring R, we have already mentioned one connection with
the above material, namely, the fact that RMod is a pre-additive category. It is well known that
RMod(R,B) (= HomR(R,B)) � B for all R-modules B. Consequently, RMod(R,B) is a singleton set
(namely, {0}) if and only if B = 0. Thus RMod(R,0) = 0 for any ring R. However, RMod(D,E) = 0 for
all (unital) R-modules D and E⇔ R = 0 (for if the identity map ι on R is identically 0 and r ∈ R, then
r = ι(r) = 0; and if R = 0, any (unital) R-module is (isomorphic to) 0). In other words, every hom-set
of RMod is a singleton set if and only if R is a singleton set (if and only if 1 = 0 in R; if and only if R
is a zero ring). It seems natural to ask whether CR exhibits the same kind of categorical behavior as
RMod. It is true that a (commutative unital) ring R is a zero ring if and only if every hom-set of CR
is a singleton set. (To find a proof of this, consider what it would mean to be a polynomial ring over
a zero ring – such musings will lead to the proof in Remark 2.3.) However, it is also true that, unlike
RMod, CR is rarely a pre-additive category. Indeed, as recorded in Corollary 2.4, CR is a pre-additive
category if and only if R is a zero ring. Also, as recorded in Corollary 2.7 (b) and Remark 2.11 (b), if
R is a zero ring, then some general conclusions can be drawn concerning the additive functors from
CR to some pre-additive categories (such as CR or Ab).

While developing Galois Theory for rings, Chase, Harrison and Rosenberg introduced a rather
different meaning for the terminology “additive functor" in [5, page 30]. To avoid confusion, we
will call that notion a “CHR-additive functor." If C and D are categories with finite products, then
a functor F : C → D is called a CHR-additive functor if F preserves finite products; that is, if, for all
finite lists C1, . . . ,Cn (possibly with repetition) of objects of C, the canonical morphism

F(
n∏
i=1

Ci)→
n∏
i=1

F(Ci),

induced by applying F to the projection maps
∏n
i=1 Ci → Cj (for 1 ≤ j ≤ n), is an isomorphism in D.

It was noted without proof in [5] that for any ring R, the unit functor and the Picard group functor
are each (in the above terminolgy) CHR-additive functors from CR to Ab. The assertion concerning
the unit functor is clear; for the sake of completeness, a proof of the assertion concerning the Picard
group functor was given in [6, Theorem 1.27].

Frankly, [6] paid little, if any, attention to zero rings and empty products (and perhaps that can
also be said of [5]). It is easy to see that the unit functor and the Picard group functor each send
any zero ring to 0 (that is, to a/the abelian group with only one element). The rest of this paragraph
and the next paragraph will go beyond those contexts and develop some facts that will be used in
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Section 2. Observe that for any category C, an empty product in C is the same as a terminal object
of C. Thus, the case n = 0 in the definition in the preceding paragraph implies that if C and D are
categories with finite products, then any CHR-additive functor F : C → D sends some, hence each,
terminal object of C to a terminal object of D. With an eye to applications in situations where (C
and D are each assumed to have finite products and) C is a full subcategory of C

Z
(note that in any

such situation, any zero ring in |C| is an empty product and a terminal object of C), we can conclude
that any CHR-additive functor F : C → D sends each zero ring in |C| to a terminal object of D. In
particular, in any such situation whereD = Ab, we can conclude that any CHR-additive functor sends
any zero ring in |C| to 0.

It is natural to ask whether additive functors exhibit behavior that is somewhat like the behavior
that was just noted for certain CHR-additive functors. A familiar argument (cf. the proof of Lemma
2.1 (a) below) shows that if K and L are pre-additive categories and F : K → L is an additive functor,
then F sends any zero morphism f to a zero morphism (that is, if K1,K2 ∈ |K | and f is the neutral
element in the abelian group K(K1,K2), then Ff is the zero morphism in L(F(K1),F(K2))). Under these
assumptions, it follows that if K3 is a terminal object of K , then F(K3) is a null object of L. (Indeed,
the preceding sentence implies that the identity map on K3 (which is the only endomorphism of K3
and, hence, is the neutral element in K(K3,K3)) is sent to the neutral element in L(F(K3),F(K3)) and,
because F is a functor, it is also sent to the identity map on F(K3). Then [16, Proposition 1, page 194]
can be applied to conclude that F(K3) is a null object of L.) We have just shown that any additive
functor sends any terminal object to a null object. When this fact is compared with what was shown
in the preceding paragraph (specifically, that for categories with finite products, any CHR-additive
functor sends any terminal object to a terminal object), it is natural to ask whether the concepts
of “additive functor" and “CHR-additive functor" are equivalent in categorical settings where the
context for the definition of each of these concepts is satisfied. For domain categories C of the form
CR, that question will be answered in the affirmative in Corollary 2.7 (b) (i). The next paragraph will
recall an apparently different categorical context for which [5] gave an affirmative answer. The final
paragraph of the Introduction briefly summarizes the connections between the above material and
the main results in this paper.

In [5], Chase, Harrison and Rosenberg noted one context where the notions of an additive functor
and (what we have called) a CHR-additive functor agree, namely, for a functor F : C→D where both
C and D are abelian categories. (Cf. also [9, Theorem 3.11].) Perhaps the most familiar examples
of abelian categories are RMod (for any unital ring R) and the category of Ab-valued sheaves on X
(for any topological space X). The term “abelian category" is due to Grothendieck [13, page 127],
who defined an abelian category as an additive category in which every morphism has a kernel and
a cokernel and which satisfies the so-called AB2 axiom (which can be paraphrased as requiring that
the First Isomorphism Theorem holds in the category). An equivalent definition of abelian categories
was introduced slightly earlier by Buchsbaum in the appendix of [4], where (what are now called)
abelian categories were called “exact categories": see, especially, [4, pages 379-381]. We recommend
[9] as an excellent introduction to abelian categories. For instance, [9] contains a lucid proof that the
dual of any abelian category is an abelian category; this conclusion can also be found elsewhere, for
example in [16, page 201].

One problem suggested by the title is to study the rings R and the functors F : CR → Ab such
that F is both additive (in the classical sense reviewed in the first paragraph) and also CHR-additive
(in the sense defined four paragraphs ago). Unfortunately, the observation of Chase, Harrison and
Rosenberg that was mentioned at the beginning of the preceding paragraph would seem to be of little
help in such studies, since CR is not an abelian category if R is a nonzero ring. (Indeed, since any
abelian category is an additive category, it must have a null object. However, if R is a nonzero ring,
then CR does not have a null object, since the initial object R of CR is not isomorphic to the terminal
object 0 of CR.) Recall that the classical definition of an additive functor F requires the domain of F



When Two Definitions of an Additive Functor Agree 41

to be a pre-additive category. We show in Corollary 2.4 that CR can be given the structure of a pre-
additive category (relative to some binary operation of “addition" in the hom-sets of CR) if and only
if R is a zero ring. Our first main result, Corollary 2.7, shows, among other things, that if R is a zero
ring, then a functor CR→ Ab is additive if and only if it is CHR-additive. Despite the comparatively
simple nature of CR when R is a zero ring, Example 2.10 constructs, for any such ring R, two non-
additive functors CR→ Ab. Our second main result, Theorem 2.18, examines the functors F : C→D
in the most general relevant context, namely, where both C and D are pre-additive categories with
finite products (and, hence, also with finite coproducts), that is, where both C and D are additive
categories. The main contribution of Theorem 2.18 is the explication of five new characterizations of
the additive functors F : C→D for any given additive categories C and D.

2 Results

For the sake of completeness, we begin with a lemma that establishes some basic facts about pre-
additive categories. Some other useful facts about pre-additive categories will be given in Proposition
2.5 and Lemma 2.6.

Following [16, page 33], we will use the following notation concerning dual categories. Let C be a
category. Then the dual category of C is the category Cop which is defined as follows: |Cop| = |C|; for
any C1,C2 ∈ |Cop|, there is a bijection of hom-sets C(C2,C1)→ Cop(C1,C2), denoted by h 7→ hop; and
for all C1,C2,C3 ∈ |Cop| and all gop ∈ Cop(C1,C2) and f op ∈ Cop(C2,C3), one defines f opgop := (gf )op.
It is harmless (and customary) to identify (Cop)op with C (so that a morphism (hop)op is identified
with h).

Lemma 2.1. Let C be a pre-additive category. Then:
(a) Let C1,C2,C3 ∈ |C|, f ∈ C(C1,C2), and g ∈ C(C2,C3). Also let n1, n2 and n3, respectively, denote the

neutral elements in the abelian groups C(C1,C2), C(C2,C3) and C(C1,C3). Then

gn1 = n3 = n2f .

(b) Cop is a pre-additive category.

Proof. (a) Since n1 +n1 = n1 and C is a pre-additive category, we have

gn1 = g(n1 +n1) = gn1 + gn1.

By adding −(gn1) to the extreme members of the last displayed equations and then using group
axioms to simplify the resulting expressions, we get

n3 = −(gn1) + gn1 = −(gn1) + (gn1 + gn1) = (−(gn1) + gn1) + gn1 =

n3 + gn1 = gn1. Similarly, n2f = (n2 +n2)f = n2f +n2f leads to

n3 = −(n2f ) +n2f = −(n2f ) + (n2f +n2f ) = (−(n2f ) +n2f ) +n2f =

n3 +n2f = n2f .
(b) If C,D ∈ |Cop|, the canonical bijection C(D,C)→ Cop(C,D) allows the abelian group structure

on C(D,C) (which exists because C is assumed to be a pre-additive category) to be transferred to an
abelian group structure on Cop(C,D). In detail: if λop,µop ∈ Cop(C,D), then

λop +µop := (λ+µ)op.
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It only remains to show that for all objects C1,C2 and C3 of C, the following two “distributivity laws"
hold:

f op(gop + hop) = f opgop + f ophop

for all gop,hop ∈ Cop(C1,C2) and all f op ∈ Cop(C2,C3);and

(f op + gop)hop = f ophop + gophop

for all hop ∈ Cop(C1,C2) and all f op, gop ∈ Cop(C2,C3).

We will prove the first of these “laws" and leave to the reader the (similar) proof of the second “law".
An interesting feature of the proof will be that the first (resp., second) of the distributivity laws in
Cop will follow from the second (resp., first) of the distributivity laws in C.

Given gop,hop ∈ Cop(C1,C2) and f op ∈ Cop(C2,C3), we have

f op(gop + hop) = f op(g + h)op = ((g + h)f )op.

As the morphisms in C satisfy both distributivity laws (because C is a pre-additive category), the
right-most member in the last display can be expressed as

(gf + hf )op = (gf )op + (hf )op = f opgop + f ophop.

The proof is complete.

In any pre-additive category C, it is customary to let 0 denote the neutral element in any hom-
set C(C1,C2). One can do so because each such hom-set is an abelian group under some “addition"
operation +. Using the “0" notation in this way allows us to restate the conclusion of Lemma 2.1
(a) as g0 = 0 = 0f (for C, f and g as supposed above). However, this sort of use of the notation “0"
can be ambiguous if it is not clear which objects of C are intended to be the domain and codomain,
respectively, of “0." For that reason, the above statement of Lemma 2.1 (a) used the symbols n1, n2
and n3 (instead of the generic symbol 0), out of an abundance of caution. In most situations, no harm
is likely in using the notation “0" in a pre-additive category. The proof of Proposition 2.2 will use the
fact that 0f = 0, but it will not need to explicitly use the fact that g0 = 0.

The proof of Lemma 2.1 (a) was necessarily quite fussy. Half of that fussiness could have been
avoided if we had proved part (b) of Lemma 2.1 before proving part (a). (We did not choose that
reorganization because our usual pedagogic/expository preference is to begin with the easier proofs.)
Let us give the details of how one could use Lemma 2.1 (b) and the “g0 = 0" conclusion from Lemma
2.1 (a) to prove the “0f = 0" conclusion in Lemma 2.1 (a). In detail,

0f = (0op)op(f op)op = (f op0op)op = (0op)op = 0.

The preceding details give a nice example of using dual categories to avoid excessive fussiness. In
particular, observe that the third equality in the preceding display used the fact that 0op is the neutral
element in the appropriate hom-set of Cop (and applied the first equation in Lemma 2.1 (a) to the
pre-additive category Cop and its morphism g := f op).

The proof of Proposition 2.2 will also use [16, Proposition 1, page 194], which is the first result
in the section on pre-additive categories in [16]. The proof of that result in [16] is short, slick, very
clever and, in our opinion, somewhat incomplete in two ways, the first of which is very minor and
the second of which is more noteworthy. First, the proof of [16, Proposition 1, page 194] uses the fact
that 0f = 0. We agree that this fact is available at that point in [16], because our statement of Lemma
2.1 (a) can be gleaned from the first half of the (in our opinion, very terse) final sentence preceding
the statement of [16, Proposition 1, page 194]. Indeed, that half of that sentence can be interpreted,
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using the above terminology, as stating the following:“Again, a composite with the neutral element of
a hom-set in a pre-additive category is necessarily the neutral element of the appropriate hom-set in
that category". One can find what was apparently intended to serve as a proof of the assertion in the
first half of the final sentence preceding the statement of [16, Proposition 1, page 194] by reading the
following second half of the final sentence preceding the statement of [16, Proposition 1, page 194]:
“, since composition is distributive over addition." We would agree that the preceding quotation does
give the second most important step in the proof that 0f = 0, but it has omitted the most important
step (which would begin the argument by observing that 0f = (0 + 0)f ) and it has also omitted the
last step of the proof (which is to use the abelian group structure of the hom-sets by adding −(0f )
to both sides of the equation 0f = 0f + 0f and then simplifying by using the group axioms satisfied
by that hom-set). I suggest that a clearer wording for the second half of the final sentence preceding
the statement of [16, Proposition 1, page 194] would have been the following: “: mimic the usual
proof that r0 = 0 = 0r for any element r of a ring R". Thus, my first complaint about the proof of
[16, Proposition 1, page 194] is only a critique of the terse manner in which it justified the step
asserting that 0f = 0. The second “somewhat incomplete" aspect of that proof is more serious. The
statement of [16, Proposition 1, page 194] is that four conditions, (i)-(iv), in a pre-additive category
A are equivalent and, hence, that “In particular, any initial (or terminal) object in A is a null object."
This “In particular" assertion justifies the main step in the proof given below of Proposition 2.2.
Also, one can see at once that this “In particular" assertion is clear if one has truly proven that (i)-(iv)
are equivalent (for the ambient pre-additive category). However, an objective report on the complete
published three-sentence proof of [16, Proposition 1, page 194] is the following: its first sentence
implicitly uses 0f = 0 to show that (i) ⇒ (iii) ⇒ (iv), its second sentence explicitly uses 0f = 0 to
prove that (iii) ⇒ (ii), and its third sentence states that “The rest follows by duality." I agree that
what Mac Lane has called “the rest" would follow by duality if one knew that the dual of the ambient
pre-additive category is itself a pre-additive category. Unfortunately, I cannot find anything in [16]
prior to its page 194 that would suggest that one should (or does) know that the class of pre-additive
categories is stable under the formation of dual categories. That deficiency in the exposition in [16,
page 194] is why Lemma 2.1 (b) was given above. With both parts of Lemma 2.1 in hand, one can now
use the preceding comments to give what I would consider to be a complete proof of [16, Proposition
1, page 194]. With that in hand, the proof of Proposition 2.2 that is given below will be seen as also
being complete. However, I am frankly concerned that such a category-laden approach to proving
Proposition 2.2 may deter some inexperienced readers. So, let me mention here that another proof
of Proposition 2.2 will be given in Remark 2.3 and this alternate proof will use only the fact that
0f = 0 from Lemma 2.1 (a) and the universal mapping property of a polynomial ring over a nonzero
commutative ring. I would like to end this long paragraph with a three-part apologia of sorts for its
existence. This paragraph has allowed me to rectify what I have long considered to be one of the
exceedingly rare blemishes in the writings of Saunders Mac Lane (I know of only one other serious
blemish in his writings) – Mac Lane was an outstanding creative mathematician and expositor; this
paragraph has allowed me a forum to publish something that I discovered in April 1967 during my
first week of doctoral research (my doctoral advisor, who was one of the authors of [5], advised me
that the contents of what are here called Remark 2.3 and Corollary 2.4 should not appear in my
eventual doctoral thesis [6], and I was frankly too intimidated to request an explanation from him or
to otherwise pursue the matter further at that time); and this paragraph has given me the opportunity
to alert any commutative ring-theorists who would prefer to read as little category theory as possible
that one can proceed to the proofs in Remark 2.3 and Corollary 2.4 at once after reading the proof of
Lemma 2.1 (a).

Recall that a zero ring is a ring with a unique element (equivalently, a singleton set R, with the
unique function R×R→ R necessarily taken as both the “addition" operation on R and the “multipli-
cation" operation on R, and with the unique element of R necessarily playing both the additive role
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of 0 in R and the multiplicative role of 1 in R). It is easy to see (and we will need to use this triviality
later) that if R and S are rings and R is a zero ring, then S is a zero ring if and only if R � S (as rings).

We can now give a necessary condition for CR to be a pre-additive category.

Proposition 2.2. Let R be a ring such that CR is a pre-additive category. Then R is a zero ring.

Proof. There is a unique way to view R as a (commutative unital) R-algebra (namely, via s · r := sr
for all s, r ∈ R). Observe that R is then an initial object of CR. Choose T to be any zero ring, and let
t ∈ T denote the unique element of T . There is exactly one way to view T as a (commutative unital)
R-algebra (namely, via r · t := t for each r ∈ R). Observe that T is then a terminal object of CR. Since
CR is assumed to be a pre-additive category, it follows from [16, Proposition 1, page 194] that every
initial object of CR is a terminal object of CR. Hence, both R and T are terminal objects of CR. But
any two terminal objects of a category are isomorphic in that category. Consequently, R and T are
isomorphic in CR. Thus, by equating cardinalities, we get |R| = |T | = 1. Therefore, R is a zero ring, as
asserted.

The assertion in the preceding proof that every initial object of CR is a terminal object of CR (as-
suming that CR is a pre-additive category) follows from the implication (i)⇒ (ii) in [16, Proposition
1, page 194]. That implication was proved in the first and second sentences of the proof of [16,
Proposition 1, page 194]. Thus, all that the above proof of Proposition 2.2 needed from [16, Proposi-
tion 1, page 194] was the first and second sentences of the latter’s proof. If the proof of Proposition
2.2 had, instead, used the fact that any two initial objects of a category are isomorphic, we would
have needed to know that any terminal object of a pre-additive category is an initial object of that
category; that, in turn, would have required the proof of Proposition 2.2 to use/explicate the third
sentence of the proof of [16, Proposition 1, page 194] (namely, the above-mentioned sentence, “The
rest follows by duality."); that, in turn, would have required us to develop Lemma 2.1 (b). By the way,
the above proof of Proposition 2.2 also needed (because of its role in proving that (i)⇒ (ii)) the part
of the second sentence of the proof of [16, Proposition 1, page 194] which asserted that 0f = 0, which
is half of the content of Lemma 2.1. In summary, a justifiable appeal to [16, Proposition 1, page 194]
in the proof of Proposition 2.2 required us to develop half of Lemma 2.1 (a), while contemplation
of the proof that was published for [16, Proposition 1, page 194] led us to develop Lemma 2.1 (b)
and the “other" half of Lemma 2.1 (a). We hope that much of the rest of this paper will convince
the reader that there is merit in our emphasis here on pre-additive categories, as that emphasis will
lead to new technical information about pre-additive categories (in Proposition 2.5 and Lemma 2.6)
and, ultimately, to the solution of the paper’s motivating question in Corollary 2.7 (b) (i), along with
several categorical characterizations of the category of zero rings in Corollary 2.7 (a), as well as more
substantial categorical generalizations in Theorem 2.18.

We next give an alternate, less categorical proof of Proposition 2.2. The results and arguments
given in Remark 2.3 and Corollary 2.4 were found by the author in April 1967.

Remark 2.3. While readers who are comfortable with the basics of category theory may find the
above proof of Proposition 2.2 to be terse (and perhaps self-contained and elegant), we believe that
many readers will find the following alternate proof of Proposition 2.2 to be more direct and acces-
sible than the proof which was given above. We will give an indirect argument (that is, a “proof by
contradiction"). So, we assume that CR is a pre-additive category and that the ring R is not a zero
ring, and our task is to find a contradiction. Let X be an indeterminate over the ring R. By the uni-
versal mapping property of a polynomial ring over a nonzero commutative ring (cf. [14, Theorem
5.5, page 152]), the assignment ϕ 7→ ϕ(X) determines a bijection CR(R[X],R)→ R. The inverse of this
bijection sends any r ∈ R to the R-algebra homomorphism ψr : R[X]→ R such that ψr(X) = r. Since
CR is a pre-additive category, the hom-set CR(R[X],R) is an abelian group (under some “addition"
operation which we need not specify). The neutral element in this abelian group (which we hesitate
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to denote by the overworked symbol “0") is, by the preceding observation, of the form ψn for some
uniquely detemined element n ∈ R. (This choice of notation is motivated by the condition that ψn is
a neutral element.) By the second assertion in Lemma 2.1 (a), we get that if A is any (commutative
unital) R-algebra and ρ : A→ R[X] is any (unital) R-algebra homomorphism, then ψnρ is the neutral
element of the abelian group CR(A,R). In particular, if A = R[X] and ρ is taken to be the R-algebra
endomorphism of R[X] determined by X 7→ X + 1, then ψnρ is the neutral element of the abelian
group CR(R[X],R). In other words, ψnρ = ψn. Applying these equal functions to X ∈ R[X], we get
that ψn(X) + 1 = ψn(X) +ψn(1) =

ψn(X + 1) = ψn(ρ(X)) = (ψnρ)(X) = ψn(X) = ψn(X) + 0,

whence 1 = 0 in R, whence each r ∈ R satisfies r = r · 1 = r · 0 = 0, whence R is a zero ring, the desired
contradiction. This completes the proof. This completes the remark.

It is natural to ask if the converse of Proposition 2.2 is valid. The next result answers this question.

Corollary 2.4. Let R be a (commutative unital) ring. Then the following conditions are equivalent:
(1) CR is a pre-additive category;
(2) R is a zero ring.

Proof. (1)⇒ (2): Apply Proposition 2.2 (or Remark 2.3).
(2)⇒ (1): Assume that R is a zero ring. It follows easily that each (unital) R-algebra (that is, each

object of CR) is also a zero ring. Hence, it also follows easily that for any objects S and T of CR,
the unique function fS,T : S → T is an R-algebra homomorphism, and so the hom-set CR(S,T ) is the
singleton set {fS,T }. Of course, this singleton set can be given the structure of an additive abelian
group in a unique way (by defining fS,T + fS,T to be fS,T ). It remains only to prove that, with addition
having been explicated (in fact, forced) in all the hom-sets of CR, both distributivity laws hold in
CR. We will prove the first of those laws, leaving to the reader the (similar) proof of the second
distributivity law.

Suppose, then, that S, T and U are objects of CR, with g,h ∈ CR(S,T ) and f ∈ CR(T ,U ). It remains
only to prove that f (g + h) = f g + f h. This, in turn, is evident, since f (g + h) and f g + f h are each
elements of the singleton set CR(S,U ). The proof is complete.

We would caution the reader not to rework the above proof of Corollary 2.4 by using copious
occurrences of the symbol “0". A more careful approach (for example, using notation such as the
above “fS,T ”) will yield clear benefits in Corollary 2.7 where, among other things, we will answer
this paper’s motivating question. We would also caution the reader, in case R is a zero ring, not to
view CR as having a unique object. While it is true (cf. [2, Chapter II, 1.2]) that a strong version of
the Axiom of Choice (specifically, that the universe can be well-ordered) implies that every category
is equivalent to a “skeletal" category (that is, to a category in which any two isomorphic objects
are equal) and it has been known for more than 80 years (cf. [12]) that such a strong Axiom of
Choice is consistent with ZFC, we recommend that one should not decide to make such an additional
foundational assumption simply because of a desire to simplify some notation.

We next give two categorical results. Proposition 2.5 shows one way in which CHR-additive func-
tors and additive functors behave similarly in relevant contexts, where each of these properties of
functors is shown to be stable under natural equivalence. While the proof of Proposition 2.5 will
seem routine for readers who are comfortable with category theory, we will provide full details for
that proof, in order to enhance accessibility. That result can be seen as motivation for some of Ex-
ample 2.10. The path to our first main result, Corollary 2.7, will be eased by Lemma 2.6, which
collects/states some facts that were proved in the Introduction.
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Proposition 2.5. (a) Let C and D be pre-additive categories, let F : C→ D be an additive functor, and let
G : C→D be a functor such that F and G are naturally equivalent. Then G is an additive functor.

(b) Let C and D each be categories with finite products, let F : C→D be a CHR-additive functor, and let
G : C→D be a functor such that F and G are naturally equivalent. Then G is a CHR-additive functor.

Proof. (a) By hypothesis, we can pick a natural equivalence η : F → G. Thus for each object C of C,
one has a “natural" isomorphism ηC : F(C)→ G(C) in D. Our task is to prove that if f ,g ∈ C(C1,C2)
(for some objects C1 and C2 of C), then G(f + g) = G(f ) +G(g). Of course, F(f + g) = F(f ) +F(g), since
F is assumed to be an additive functor. Moreover, when the “naturality" of the above-mentioned
isomorphisms of the form ηC is applied to the morphisms f , g and f + g, we get

G(f )ηC1
= ηC2

F(f ),G(g)ηC1
= ηC2

F(g) and G(f + g)ηC1
= ηC2

F(f + g).

Therefore, since composition distributes over addition of morphisms in (the pre-additive category)
D, we get

G(f ) +G(g) = ηC2
F(f )(ηC1

)−1 + ηC2
F(g)(ηC1

)−1 =

ηC2
(F(f ) +F(g))(ηC1

)−1. This simplifies to ηC2
F(f + g)(ηC1

)−1 = G(f + g), as desired.
(b) Let us first deal with the case of empty products. In that regard, it will suffice to show that if T

is a terminal object of C such that F(T ) is a terminal object of D, then G(T ) is also a terminal object of
D. This can be shown by using basic category theory (without the hypothesis that F is CHR-additive
and without the hypothesis that the object T is terminal in C), as follows. Our task is to show that if
D ∈ |D |, then D(D,G(T )) is a singleton set. By hypothesis, D(D,F(T )) is a singleton set. Let ϕ denote
its unique element. Pick a natural equivalence η : F → G. Then ψ := ηTϕ ∈ D(D,G(T )), where as
usual, ηT denotes the “natural" isomorphism F(T )→ G(T ) given by η. It remains only to prove that
if ψ∗ ∈ D(D,G(T )), then ψ∗ = ψ (that is, ψ∗ = ηTϕ). This, in turn, holds since (ηT )−1ψ∗ = ϕ, the point
being that (ηT )−1ψ∗ ∈D(D,F(T )) = {ϕ}.

It remains to consider nonempty finite products. Let C1,C2, . . . ,Cn be a finite list (possibly with
repetition) of elements in |C|, for some integer n ≥ 2. Fix a (direct) product P =

∏n
i=1 Ci in C; also

fix products
∏
i F(Ci) and

∏
i G(Ci) in |D |. The structures of these products include projection maps

pj : P → Cj , πj :
∏
i F(Ci)→ F(Cj ) and ρj :

∏
i G(Ci)→ G(Cj ), for j = 1, . . . ,n. The universal mapping

property of products gives uniquely determined morphisms

α : F(P )→
n∏
i=1

F(Ci) and β : G(P )→
n∏
i=1

G(Ci)

such that πjα = F(pj ) and ρjβ = G(pj ) for j = 1, . . . ,n. By hypothesis, α is an isomorphism. Our task
is to show that β is an isomorphism.

Pick a natural equivalence η : F → G. Recall that ηC is an isomorphism for each C ∈ |C|. The
universal mapping property of products gives uniquely determined morphisms

γ :
n∏
i=1

F(Ci)→
n∏
i=1

G(Ci) and δ :
n∏
i=1

G(Ci)→
n∏
i=1

F(Ci)

such that ρjγ = ηCjπj and πjδ = (ηCj )
−1ρj for j = 1, . . . ,n.

We next make the following two claims: the composite morphisms γδ and δγ are each identity
maps. As the proofs of these claims are similar, we will prove the claim about γδ and leave the claim
about δγ to the reader. By the “uniqueness" aspect of the universal mapping property of products,
the claim will follow if we show that ρj(γδ) = ρj for j = 1, . . . ,n. For each j, we have

ρj(γδ) = (ρjγ)δ = (ηCjπj )δ = ηCj (πjδ) = ηCj ((ηCj )
−1ρj ) = ρj ,
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thus proving the above claim(s).
It follows (now that we have proved the above claims) that γ is an isomorphism, with γ−1 = δ.

Hence, being a composite of isomorphisms, γα(ηP )−1 is an isomorphism. Therefore, to complete the
proof, it will suffice to show that β = γα(ηP )−1. By the universal mapping property of

∏
i G(Ci), an

equivalent task is to show that

ρjβ = ρj(γα(ηP )−1) if j = 1, . . . ,n.

Fix j. Note via the naturality of η that G(pj )ηP = ηCjF(pj ), and so G(pj ) = (ηCjF(pj ))(ηP )−1. Hence,

ρjβ = G(pj ) = ηCjF(pj )(ηP )−1 = ηCj (πjα)(ηP )−1 = (ηCjπj )α(ηP )−1 =

(ρjγ)α(ηP )−1 = ρj(γα(ηP )−1),

as desired. The proof is complete.

Lemma 2.6. (a) Let C and D each be categories with finite products, let F : C → D be a CHR-additive
functor, and let C be a terminal object of C. Then F(C) is a terminal object of D.

(b) Let C and D be pre-additive categories and let F : C → D be an additive functor. Then F sends
any zero morphism to a zero morphism (that is, if C1,C2 ∈ |C| and f is the neutral element of the abelian
group C(C1,C2), then Ff is the zero morphism in D(F(C1),F(C2))). Moreover, it follows that, under these
assumptions, F sends any terminal object of C to a null object of D.

Proof. (a) This assertion was proved in the fourth paragraph of the Introduction.
(b) This assertion was proved in the fifth paragraph of the Introduction.

It will be convenient to let Z denote the category of zero rings, that is, the full subcategory of C
Z

whose class of objects is the collection of zero rings.
We next present our first main result.

Corollary 2.7. Let R be a (commutative unital) ring. Let Z denote the category of zero rings. Then:
(a) The following conditions are equivalent:

(1) R is a zero ring;
(2) CR = Z;
(3) CR is a pre-additive category;
(4) CR is an additive category;
(5) CR is an abelian category;
(6) CR =RMod.

(b) Assume, moreover, that R is a zero ring. Then the following assertions, (i)-(iii), are valid:
(i) Let D be a pre-additive category with finite products. (For instance, D could be CR or Ab.) Let

F : CR→D be a functor. Then F is an additive functor if and only if F is a CHR-additive functor.
(ii) Every hom-set CR(S,T ) in CR is a singleton set, and every morphism in CR is an isomorphism.
(iii) Let D be a pre-additive category (resp., let D be a category with finite products). Let F : CR→ D

be an additive functor (resp., a CHR-additive functor). Let S,T ∈ |CR| and let fS,T denote the unique
morphism S→ T in CR. Then F(S) and F(T ) are each null objects (resp., terminal objects) of D. Moreover
F(S) � F(T ) in D, and F(fS,T ) : F(S)→ F(T ) is an isomorphism in D, with inverse F(fT ,S ).

Proof. (a) (1)⇔ (3): Apply Corollary 2.4.
(1) ⇒ (2): Suppose that R is a zero ring. If S ∈ |CR| and s ∈ S, then s = 1 · s = 0 · s = 0, so S is a

zero ring, that is, S ∈ |Z|. It follows easily that if S and T are objects of |CR|, then the unique function
S→ T is an R-algebra homomorphism (and hence a ring homomorphism). Thus, every object (resp.,
morphism) of CR is an object (resp., morphism) of Z. Now, consider any object V of Z. Let 0V
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(resp., 0R) denote the (unique) element of V (resp., of R). There is exactly one way to endow the
zero ring V with the structure of an R-algebra, namely, via 0R · 0V := 0V . Moreover, if zero rings V
and W = {0W } are thus endowed with R-algebra structures, it is easy to see that the unique function
h : V → W (that is, the unique ring homomorphism V → W ) is an R-algebra homomorphism. (In
detail: 0R · h(0V ) = 0R · 0W = 0W = h(0V ) = h(0R · 0V ).) Thus, every object (resp., morphism) of Z is an
object (resp., morphism) of CR. This concludes the proof of (2).

(2)⇒ (1): Suppose that CR = Z. Since R is a (unital) R-algebra (and hence R is an object of CR), it
follows that R is an object of Z (and hence R is a zero ring).

(6)⇒ (5): It suffices to use the fact that for all (unital but not necessarily commutative) rings Λ,
the category ΛMod of (left) R-modules (and R-module homomorphisms) is an abelian category.

(5)⇒ (4)⇒ (3): These implications hold for arbitrary categories.
(1)⇒ (6): Of course, any object (resp., morphism) in CR is an object (resp., morphism) in RMod.

Assume (1), with 0R denoting the unique element of R. Let M ∈ |RMod|. Let 0M denote the addi-
tive identity element of M. Since M is an (unital) R-module and 0R is the multiplicative identity
element of R, each m ∈ M satisfies m = 0R ·m = 0M ∈ M, and so M = {0M}. Moreover, by defin-
ing “multiplication on M" to be the unique binary operation on M, one checks easily that M is a
zero ring. Thus, since (2) ⇒ (1), M ∈ |CR|. It remains only to show that if M,N ∈ |R Mod| and
fM,N : M = {0M} → N = {0N } is an R-module homomorphism (that is, if fM,N is the unique function
M→N ), then fM,N is an R-algebra homomorphism. This, in turn, follows since

fM,N (0M · 0M ) = fM,N (0M ) = 0N = 0N · 0N = fM,N (0M ) · fM,N (0M ).

Although a proof of (a) is complete at this point, we next provide an alternate direct proof that
(1)⇒ (5), in order to have a self-contained proof of the equivalence of conditions (1)-(5) in (a) that
would avoid any mention of condition (6).

(1)⇒ (5): Assume that R is a zero ring. As (1)⇔ (3), we already know that CR is a pre-additive
category. We will prove that CR is an abelian category. This can be done by verifying that CR sat-
isfies the conditions in the characterization of abelian categories in [13] that was mentioned in the
Introduction. We will leave the details of that kind of verification to the reader. Instead, we will
next sketch how to verify that CR satisfies the conditions in the (possibly more accessible) five-part
characterization of abelian categories that can be found in [16, Definition, page 198].
• CR is a pre-additive category: This was observed above (since R is a zero ring).
• CR has a null object: This holds since R being a zero ring ensures that R is a null object of CR.
• CR has binary biproducts: This follows from [16, Theorem 2, page 194], since CR is a pre-additive
category and S × S � S for each object S of CR (the latter fact being an easy consequence of the fact
that CR(S,T ) is a singleton set for all objects S and T of CR).
• Each morphism in CR has a kernel and a cokernel: This holds by the following reasoning. Since
CR(S,T ) is a singleton set for all objects S and T of CR, it follows from the discussion of equalizers
(resp., coequalizers) on page 70 (resp., page 64) of [16] that for each/the morphism f : S → T in CR,
the identity map on S (resp., the identity map on T ) is an equalizer (resp., a coequalizer) of the pair
consisting of f and f , and thus that identity map is a kernel (resp., a cokernel) of f .
• Each monomorphism in CR is a kernel and each epimorphism in CR is a cokernel: This can be
shown to hold by using the facts (including the references) in the proof of the preceding bulleted
item. Indeed, one can thus show that each morphism f : S→ T in CR is both a kernel and a cokernel
of the unique morphism T → S. This completes the proof of (a).

(b) (i) It suffices to combine (a) with both parts of Lemma 2.6. For the sake of completeness, we
next provide the details.

Suppose first that F is a CHR-additive functor. Since each object of CR is a terminal object, Lemma
2.6 (a) ensures that F sends each object of CR to a terminal object of D. Let S,T ∈ |CR|. Since F(T )
is a terminal object, D(F(S),F(T )) is a singleton set. On the other hand, CR(S,T ) is also a singleton
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set, with unique element, say, f . To show that F is an additive functor, it suffices to prove that
F(f + f ) = F(f ) +F(f ). Necessarily, f + f = f . Thus, F(f + f ) = F(f ). Moreover, since D(F(S),F(T )) is a
singleton set, F(f ) +F(f ) = F(f ). Hence, F(f + f ) = F(f ) +F(f ), as desired.

Conversely, suppose that F is an additive functor. Since each object of CR is a terminal object,
Lemma 2.6 (b) ensures that F sends each object ofCR to a terminal object ofD. Moreover, ifC1, . . . ,Cn
is a nonempty finite list (possibly with repetition) of objects of CR, then T :=

∏n
i=1 F(Ci) is a product

of finitely many terminal objects of D, and so T is a terminal object of D. As F(
∏n
i=1 Ci) is also a

terminal object of D, there exists an isomorphism h : F(
∏n
i=1 Ci)→T (in D). Any such h must be the

unique element of D(F(
∏n
i=1 Ci),T ). Thus, the canonical morphism F(

∏n
i=1 Ci)→T must be h and so

is an isomorphism, whence F is a CHR-additive functor.
To accommodate readers who may have preferred the second approach to the proof of (b) (i) (which

avoided using condition (6) in (a)), we will next give proofs of parts (ii) and (iii) of (b) that will avoid
explicit mention of that condition (6). Readers who preferred the first approach to the proof of (b) (i)
(which used condition (6) in (a)) are advised that some of the details in the following self-contained
proofs of (ii) and (iii) necessarily repeat some observations from the above proof that (1)⇒ (6) in (a).

(ii) Let S,T ∈ |CR|. By the implication (1) ⇒ (2) in (a), CR = Z, and so both S and T are zero
rings. It will be convenient to let 0S (resp., 0T ) denote the unique element of S (resp., T ). It is easy
to check that the unique function fS,T : S → T (sending 0S to 0T ) is an R-algebra homomorphism,
and so CR(S,T ) = {fS,T }, which is a singleton set. Necessarily, the composite functions fS,T fT ,S and
fT ,SfS,T are identity maps (on T and S, respectively), and so fS,T (the typical morphism in CR) is an
isomorphism in CR (with fT ,S serving as its inverse).

(iii) The nature of fS,T was exposed in the proof of (ii). To prove the assertion that F(S) and F(T )
are each null objects (resp., terminal objects) of D, use the first assertion in (ii) to conclude that S
and T are each terminal objects of CR and then apply part (b) (resp, part (a)) of Lemma 2.6. The final
assertions can be proven by combining the following facts: the proof of (ii) showed that fS,T is an
isomorphism with inverse fT ,S , and functors preserve isomorphisms and their inverses. Note that an
alternate proof that F(S) � F(T ) is available, since any two null (resp., terminal) objects of a category
are isomorphic.

We can now give a companion for Proposition 2.5.

Corollary 2.8. Let R be a zero ring and let D a pre-additive category with finite products. Let F and G be
additive functors (equivalently, CHR-additive functors) CR→D. Then F and G are naturally equivalent.

Proof. The parenthetical equivalence follows from Corollary 2.7 (b) (i). By using either part of
Lemma 2.6, we see that for all objects T of CR, the functors F and G each send T to (a possibly
different) terminal object of D, whence there is a (unique) isomorphism ηT : F(T )→ G(T ) in D. Now,
consider any objects T1, T2 of CR and the (unique) morphism f ∈ CR(T1,T2). Since G(T2) is a terminal
object of D, we have ηT2

F(f ) = G(f )ηT1
. Hence, η is a natural transformation from F to G. As ηT is an

isomorphism for each object T , it follows that η is a natural equivalence. The proof is complete.

Note, as a consequence of Corollary 2.7 (a), that the category Z of zero rings is an abelian category.
In view of the equivalence (1)⇔ (5) in Corollary 2.7 (a), one sees that, for the special case where

D is an abelian category, the conclusion in Corollary 2.7 (b) (i) follows from an observation of Chase,
Harrison and Rosenberg [5] that we mentioned in the penultimate paragraph of the Introduction.
The conclusion obtained above in Corollary 2.7 (b) (i) (where D a pre-additive category with finite
products) is a stronger result. Indeed, in the Foreword to [10] (a reprint of [9]), Freyd [10, page 21
of Foreword] has given an example of a pre-additive category with finite products which is not an
abelian category. For the sake of completeness, the next result states the specifics of Freyd’s example.
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Example 2.9. (Freyd [10, page 21 of Foreword]) There exists a pre-additive category with finite prod-
ucts which is not an abelian category. One way to construct such a category D is the following. Let
K be a field; let X1,X2, . . . be denumerably many (commuting) algebraically independent indeter-
minates over K ; let A be the polynomial ring K[{Xi | i ≥ 1}]; let I be the ideal of A generated by
{XiXj | 1 ≤ i ≤ j}; let R := A/I ; and let D be the full subcategory of RMod whose class of objects is the
collection of finitely presented R-modules. Indeed, the (endo)morphism in D(R,R) which is given by
multiplication by X1 + I does not have a kernel in D.

Let R be a zero ring and let D be a pre-additive category with finite products. Perhaps because
of the nature of what has been emphasized in the existing literature, much of the above material
has focused on functors CR → D that are additive (equivalently, CHR-additive). We next give two
examples showing that for suitable such D (for instance, take D to be Ab), a functor CR → D need
not be additive (equivalently, need not be CHR-additive). Some readers may find the following fact
to be interesting. The functor constructed in Example 2.10 (a) sends every object to an object G such
that G×G is not isomorphic to G, but the functor constructed in Example 2.10 (b) sends every object
to an object G such G ×G � G.

Example 2.10. (a) Let R be a zero ring. Let D be a pre-additive category with finite products such
that there exists an object G of D with the property that G ×G and G are not isomorphic in D. (For
instance, take D = Ab and take G to be any nontrivial finite abelian group.) One can obtain a functor
F1 : CR→D via the following construction. For each S ∈ |CR|, put F1(S) := G; and for each morphism
f in CR, define F1(f ) to be the identity map on G. Then F1 is not an additive functor and F1 is not a
CHR-additive functor.

(b) Let R be a zero ring. Let G be an infinite abelian group such that G×G � G in Ab. (For instance,
takeG to be the direct product ofℵ0 many copies of Z/2Z.) One can obtain a functor F2 : CR→ Ab via
the following construction. For each S ∈ |CR|, put F2(S) := G; and for each morphism f in CR, define
F2(f ) to be the identity map on G. Then F2 is not an additive functor and F2 is not a CHR-additive
functor.

Proof. (a) We can use considerations of cardinality to verify the parenthetical assertion that if G is a
nontrivial finite abelian group, then G×G is not isomorphic to G in Ab. Indeed, since n := |G| satisfies
2 ≤ n <∞ by hypothesis, we have |G| = n < n2 = |G|2 = |G ×G|.

Let us now return to the main assertion. It is straightforward to check that F1 is a functor. By
Corollary 2.7 (b) (i), F1 is not an additive functor if and only if F1 is not a CHR-additive functor.
We will show directly that the functor F1 is neither additive nor CHR-additive. Recall that in any
category K , if T is a terminal object of K , then the product T ×T exists in K and T ×T � T in K . Thus,
since G ×G is not isomorphic to G in D by hypothesis, we get that G is not a terminal object of D.
Therefore, it follows from the second assertion in part (b) (resp., from part (a)) of Lemma 2.6 that F1
is not an additive functor (resp., that F1 is not a CHR-additive functor). For an alternative proof in
case D = Ab and G is a nontrivial finite abelian group, combine the fact that the identity map G→ G
is not a zero morphism in Ab with the first assertion in Lemma 2.6 (b) to conclude that F1 is not an
additive functor (and then use Corollary 2.7 (b) (i) to conclude that F1 is not CHR-additive).

(b) Let us first address the parenthetical assertion. This can be done via considerations of cardi-
nality. Indeed, if G is the direct product in Ab of ℵ0 many copies of Z/2Z, then in Ab, G ×G is the
direct product of (ℵ0)2 many copies of Z/2Z. However, a standard fact about arithmetic with infinite
cardinal numbers (assuming, as we do, the ZFC foundations) gives (ℵ0)2 = ℵ0, whence G ×G � G in
Ab, as desired.

Let us now return to the main assertion. Observe that the terminal objects in Ab are the trivial
(necessarily abelian) groups. Of course, G is not a trivial group (since G is infinite), and so G is
not a terminal object of Ab. To complete the proof, it is now straightforward to tweak the final two
sentences of the above proof of (a).
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Much of what we have said here (and much of what we will say below) has to do with the fact that if
R is a zero ring, then the category CR has the property that each of its morphisms is an isomorphism.
This property can be restated, using standard terminology in category theory, as saying that under
the stated conditions, CR is a groupoid. (Some users restrict the “groupoid" terminology to small
categories in which each morphism is an isomorphism, but I will ignore that “small" foundational
issue in this comment.) Many mathematicians are somewhat familiar with such a concept, having
studied the fundamental group(oid) of a (possibly path-connected) topological space as part of an
introduction to homotopy in a course on algebraic topology or winding numbers in a course on
complex analysis. Interested readers are invited to examine how far one go in extending our methods
here so as to generalize our results on CR when R is a zero ring (that is, our work here on the category
Z of all zero rings) to categorical facts about groupoids in which each hom-set is a singleton set. See
Remark 2.11 for an indication of what may/should be possible along these lines.

Remark 2.11. (a) Following Corollary 2.4, we mentioned that certain strong foundational assump-
tions that are consistent with ZFC allow one to prove that any category is equivalent to a skeletal
category. In the spirit of the above comments about groupoids, part (a) of this remark will examine
how the use of the above-mentioned foundational assumptions would simplify and strengthen the
work in Example 2.10.

Consider the category CR for some zero ring R. (By Corollary 2.7 (a), this CR is equal to the cat-
egory of all zero rings.) By the above-mentioned strong foundational assumptions, CR is equivalent
to a skeletal category, say K . Since each hom-set in CR is a singleton set, the “skeletal" property (in
conjunction with the fact that a categorical equivalence is a certain kind of fully faithful functor)
shows that K is the simplest kind of nonempty category, namely, a category with a unique object and
a unique morphism. It is straightforward to verify directly that K is a pre-additive category with
finite products. In fact, K is an abelian category. Let us consider what happens when the role of CR
in Example 2.10 is played instead by the equivalent category K . The earlier roles of a pre-additive
category D with finite products and of Ab will not change. The reader may wish to pause reading
at this point in order to consider whether the possible additive or CHR-additive nature of a functor
is (un)affected by this change of functorial domains. That issue will, in effect, be handled by the
discussion in (b).

Because of the simple nature of K , it is clear that the functors F from K to D (resp., to Ab) are in
one-to-one correspondence with the objects G of D (resp., of Ab), via the assignment sending each F
to its value at the unique object of K . For each object G of D, let FG denote the functor F associated to
G; that is, G is the value of FG at the unique object of K . It is a straightforward (and not overly long)
exercise in basic category theory to show, by using both parts of Lemma 2.6 and [16, Proposition 1,
page 194] (cf. also the second paragraph of the proof of Corollary 2.7 (b) (i)), that the following holds
for each functor F as above (that is, F = FG for some object G): F is an additive functor ⇔ F is an
CHR-additive functor⇔ G is a terminal (equivalently, a null) object (of D or of Ab, depending on the
context). This result suggests a underlying reason which explains why each of F1 and F2 in Example
2.10 was neither additive nor CHR-additive, namely, neither of the abelian groups G in parts (a) and
(b) of Example 2.10 was a null object of Ab (that is, neither of those groups G was a trivial group).
The present analysis via an equivalent skeletal category suggests/reveals that the key tool that has
been introduced here for such questions is Lemma 2.6, whereas the fact that exactly one of the two
abelian groups G in Example 2.10 satisfies G ×G � G is, however interesting it may have seemed,
only of peripheral importance.

(b) It seems reasonable to expect that some readers would not wish to make the strong founda-
tional assumption that led us in (a) to replace CR (for a zero ring R) with an equivalent skeletal
category. Now that (a) has indicated what may be expected, we will proceed (with the help of some
of the above material, especially Corollary 2.7) to show that those expectations are realized even if
we use only the usual ZFC foundations. Once again, let R be a zero ring and let D be a pre-additive
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category with finite products. We will characterize when a functor from CR → D is additive (resp.,
CHR-additive). As above, if S,T ∈ |CR| (that is, if S and T are zero rings), we let fS,T denote the
unique function (equivalently, the unique R-algebra homomorphism; equivalently, the isomorphism
in CR) S→ T .

“Having" a functor F : CR → D (or “letting" F be such a functor) is equivalent to having the
following four items:
(i) a nonempty class D of pairwise isomorphic objects of D;
(ii) for each (ordered) pair of objects D1,D2 ∈ D, a singleton set {hD1,D2

} ⊆D(D1,D2), such that
(ii)1: for all D3,D4,D5,D6 ∈ D, we have hD4,D5

hD3,D4
= hD3,D5

and hD6,D6
is the identity map on D6;

(iii) an assignment S 7→ F(S) sending each object S of CR to some element F(S) ∈ D, such that
(iii)1: D is the collection of all objects of D that are of the form F(S) for some object S of CR; and

(iv) for each (ordered) pair of objects S,T of CR, a function CR(S,T ) → D(F(S),F(T )) sending the
morphism fS,T to hF(S),F(T ).

Indeed, the “object assignment" aspect of any functor F of the kind being considered must sat-
isfy (i) and (iii), since a functor must preserve isomorphisms; and (ii)1 and (iv) are required so that
F behaves functorially on morphisms (that is, so that F behaves “homomorphically" on composites
of morphisms and sends identity maps to the appropriate identity maps). Note that while the par-
ticular functors F1 and F2 that were constructed in Example 2.10 necessarily satisfied (i)-(iv), their
construction was as simple as possible, in the sense that the corresponding sets playing the role of D
were chosen to be singleton sets. The above (more complicated) characterization of relevant functors
F in terms of (i)-(iv) will be needed in the next paragraph where we will characterize when an arbi-
trary such functor is additive (resp., CHR-additive). As a pedagogic aside, the explicitness of (i)-(iv)
also serves as a reminder that the construction of a functor requires more than simply stipulating the
associated object assignment. (Along those lines, one may examine the route that I took in proving
the first significant result in my doctoral research, [7, Chapter I, Theorem 3.10]; we will have reason
to mention [7] again in Remark 2.20.)

We can now state the desired result. Let R be a zero ring, let D be a pre-additive category with
finite products, and let F : CR→D be a functor. Let D be the collection of all objects of D that are of
the form F(S) for some object S of CR. Then the following five conditions are equivalent:
(1) F is an additive functor;
(2) F is a CHR-additive additive functor;
(3) Some (equivalently, every) element of D is a terminal object of D;
(4) Some (equivalently, every) element of D is an initial object of D;
(5) Some (equivalently, every) element of D is a null object of D.

Let us very briefly sketch a proof of the result. Since D is a pre-additive category, it follows from
[16, Proposition 1, page 194] that an object D of D is a terminal object of D if and only if D is an
initial object of D, if and only if D is a null object of D. It follows that (3), (4) and (5) are equivalent.
In view of the above methods and accumulated information (especially Corollary 2.7), we can give
almost the same hint for a proof of the equivalence of (1), (2), (3) that was given for the proof of the
analogous equivalences in (a): use both parts of Lemma 2.6, [16, Proposition 1, page 194], and the
second and third paragraphs of the proof of Corollary 2.7 (b) (i). This completes the remark.

The constructions in Example 2.10, which gave functors F1 and F2 that were neither additive
nor CHR-additive, had the property that F1 and F2 each sent all objects to an object that was not a
terminal object. Nevertheless, one could use Corollary 2.7 (b) (i) to recover the fact that if R is a zero
ring, then the restrictions of the unit functor and the Picard group functor each give a CHR-additive
functor CR → Ab, since one can see directly and easily that each of these restrictions is an additive
functor. For such a direct analysis, the underlying fact is that the unit group of a zero ring and the
Picard group of a zero ring are each trivial groups. We will say more about “zero-ish" matters in
Remark 2.19. In closing, Remark 2.20 will recall some facts about some variants/applications of
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CHR-additive functors from some of our early work and point the way to possible future work at the
interface of commutative algebra and algebraic geometry.

Before proceeding to the two above-mentioned remarks, we will give our second main result,
Theorem 2.18, which addresses the more general categorical question that is suggested by the results
in Corollary 2.7 (b) (i) and Remark 2.11 (b). Theorem 2.18 not only generalizes those earlier results,
but it also serves to validate the insight of Chase, Harrison and Rosenberg in [5] that [9, Theorem
3.11] is relevant to finding contexts for which the concepts of “additive functor" and (what we have
called) “CHR-additive functor" are equivalent.

The next sentence pertains to some terminology used in Lemma 2.12 (and later). We will use 1E
to denote the identity map E→ E on an object E of a given category; and a “zero morphism," usually
denoted by 0, in a pre-additive category E will refer to the neutral element (with respect to addition)
in some hom-set of E. Also, in a pre-additive category E with a null object N , the zero morphism in
a hom-set E(E1,E2) is the same as a morphism E1→ E2 that factors through N . (A proof of this fact
can be found easily by using Lemma 2.1 (a).)

Lemma 2.12. Let F : C → D be a functor, where C and D are each a pre-additive category with a null
object. Then the following conditions are equivalent:

(1) F sends each zero morphism of C to a zero morphism of D;
(2) F sends some null object of C to a null object of D;
(3) F sends each null object of C to a null object of D.

Proof. (3)⇒ (2): Trivial.
(2)⇒ (3): This equivalence can be proven by applying the following three facts in order. Any two

null objects of a given category are isomorphic; functors preserve isomorphisms; and null objects are
preserved by isomorphisms.

(1)⇒ (3): Assume (1). LetN be a null object of C. Then 1N is a zero morphism, by [16, Proposition
1, page 194]. Thus, by (1), 1F(N ) = F(1N ) is a zero morphism. Hence, by [16, Proposition 1, page 194],
F(N ) is a null object.

(3)⇒ (1): Assume (3). Let f = 0 ∈ C(C1,C2). Our task is to show that g := F(f ) ∈ D(F(C1),F(C2))
satisfies g = 0. By the above comments, f = f2f1 where f1 = 0 ∈ C(C1,N ) and f2 = 0 ∈ C(N,C2) for
some null object N of C. As (3) ensures that F(N ) is a null object of D, it follows that 1F(N ) = 0 by
[16, Proposition 1, page 194], and so F(f2) = F(f2)1F(N ) = F(f2)0 = 0 by Lemma 2.1 (a). Therefore,
g = F(f2)F(f1) = 0F(f1) = 0 by Lemma 2.1 (a). The proof is complete.

Much in the results 2.15-2.18 will concern when the “canonical morphisms" α : F(A×B)→ F(A)×
F(B) and β : F(A) ⊕ F(B)→ F(A ⊕ B) are isomorphisms. Since (direct) product and (direct) sum are
defined only up to isomorphism (even when they exist), one may well ask the apparently more basic
question of whether α and β are actually well-defined morphisms. A specialist in category theory
would perhaps reply, for good reason, "Yes, up to isomorphism." But such a reply may worry some
readers who wish to avoid the conceptual problems associated with the 19th century’s studies (be-
fore the foundations of the theory of Riemann surfaces were rigorously developed) of the supposed
domain and range of a so-called “many-valued function." Propositions 2.13 and 2.14 will carefully
identify and then resolve some of the underlying issues. Readers who are familiar with the defini-
tions of Amitsur cohomology in a functor or of Cech cohomology in a presheaf (or perhaps only in
a sheaf) have already dealt with similar issues. After all, the definitions of those cohomology groups
use the definitions of some underlying cochain complexes, and the latter definitions assume that it
is meaningful to apply a functor to certain tensor products or to apply a presheaf to certain fiber
(co)products, even though those tensor products or fiber products are only defined up to isomor-
phism. Such readers who have already made their peace with that aspect of the literature (perhaps
by emulating the spirit of [16, pages 195-196]) will likely not be surprised by the proofs of Proposi-
tions 2.13 and 2.14.
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Proposition 2.13 will prove in detail that “α is an isomorphism" is a well-defined property (even
though α is only “defined up to isomorphism"). The proof of Proposition 2.14, while being largely left
to the reader, does give hints for ways to prove that “β is an isomorphism" is a well-defined property
(even though β is only “defined up to isomorphism"). Our approach to proving Propositions 2.13
and 2.14 will not take the somewhat draconian step of replacing each relevant category with an
equivalent skeletal category; nor will we pretend that it would suffice to merely point out that two
objects of a certain comma category are isomorphic. Instead, in Proposition 2.13, we will assume
only that we are given a functor F : C → D, along with (possibly equal) objects A and B of C, such
that a product of A and B exists in C and a product of F(A) and F(B) exists in D; we will show that,
under these assumptions, various versions of α are certainly well defined and that, if one of those
versions of α is an isomorphism, then all the other versions of α are also isomorphisms. In short,
Proposition 2.13 gives a precise sense in which “α is an isomorphism" is a well defined property
and shows that this property holds under what are arguably the most general conditions for which
such a study should be pursued. One can say that Proposition 2.14 will essentially do for β (resp.,
sums) what Proposition 2.13 will have done for α (resp., products). Indeed, Proposition 2.14 gives
the corresponding conclusions about the various analogous versions of β (assuming the existence of
the appropriate sums, A⊕B in C and F(A)⊕F(B) in D).

Proposition 2.13. Let C be a category, and let A and B be (possibly isomorphic) objects of C. Let P1 be a
product of A and B in C, with projection morphisms p1 : P1 → A and p2 : P1 → B. Let P2 be a (possibly
different) product of A and B in C, with projection morphisms p∗1 : P2→ A and p∗2 : P2→ B. Let θ : P1→ P2
be the unique morphism (actually, an isomorphism, given by the universal mapping property of the product
P2) such that p∗1θ = p1 and p∗2θ = p2. Let D be a category and let F : C → D be a functor. Let Q1 be
a product of F(A) and F(B) in D, with projection morphisms π1 : Q1 → F(A) and π2 : Q1 → F(B). Let
Q2 be a (possibly different) product of F(A) and F(B) in D, with projection morphisms π∗1 : Q2 → F(A)
and π∗2 : Q2 → F(B). Let ψ : Q1 → Q2 be the unique morphism (actually, an isomorphism, given by the
universal mapping property of the product Q2) such that π∗1ψ = π1 and π∗2ψ = π2. Let α1 : F(P1)→Q1 be
the (uniquely determined, since Q1 is a product) canonical morphism such that π1α1 = F(p1) and π2α1 =
F(p2). Let α2 : F(P2)→ Q2 be the (uniquely determined, since Q2 is a product) canonical morphism such
that π∗1α2 = F(p∗1) and π∗2α2 = F(p∗2). Then:

(a) α2F(θ) = ψα1.
(b) α1 is an isomorphism (in D) if and only if α2 is an isomorphism (in D).

Proof. Of course, θ and ψ are isomorphisms because in any category, any two objects with the same
universal mapping property are isomorphic (cf. [14, proof of Theorem 7.3, page 54; also page 57]).
As functors preserve isomorphisms, F(θ) is also an isomorphism. This fact will be used in the proof
of (b). Also, a piece of the above information can be rewritten as π∗k = πkψ

−1 for k ∈ {1,2}; this fact
will be used in the proof of (a).

(a) Sinceψ is an isomorphism, our task can be rephrased as the requirement to prove thatψ−1α2F(θ) =
α1. Thus, in view of the above characterization of α1, our task can be rephrased as the requirement
to prove that

π1ψ
−1α2F(θ) = F(p1) and π2ψ

−1α2F(θ) = F(p2).

To accomplish this task, note that for k ∈ {1,2}, we have

F(pk) = F(p∗kθ) = F(p∗k)F(θ) = π∗kα2F(θ) = πkψ
−1α2F(θ).

(b) It will be enough to assume that α1 is an isomorphism and then prove that α2 is an isomor-
phism. Recall that F(θ) and ψ are isomorphisms. Thus, by (a), α2 = ψα1(F(θ))−1, which is a compo-
sition of isomorphisms, and so α2 is an isomorphism.
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Proposition 2.14. Let C be a category, and let A and B be (possibly isomorphic) objects of C. Let S1 be a
(direct) sum of A and B in C, with injection morphisms i1 : A→ S1 and i2 : B→ S1. Let S2 be a (possibly
different) sum of A and B in C, with injection morphisms i∗1 : A→ S2 and i∗2 : B→ S2. Let ϕ : S1→ S2 be
the unique morphism (actually, an isomorphism, given by the universal mapping property of the sum S1)
such that ϕi1 = i∗1 and ϕi2 = i∗2. Let D be a category and let F : C → D be a functor. Let T1 be a sum of
F(A) and F(B) in D, with injection morphisms j1 : F(A)→ T1 and j2 : F(B)→ T1. Let T2 be a (possibly
different) sum of F(A) and F(B) in D, with injection morphisms j∗1 : F(A)→ T2 and j∗2 : F(B)→ T2. Let
Ψ : T1→ T2 be the unique morphism (actually, an isomorphism, given by the universal mapping property
of the sum T1) such that Ψ j1 = j∗1 and Ψ j2 = j∗2. Let β1 : T1→ F(S1) be the (uniquely determined, since T1
is a sum) canonical morphism such that β1j1 = F(i1) and β1j2 = F(i2). Let β2 : T2→ F(S2) be the (uniquely
determined, since T2 is a sum) canonical morphism such that β2j

∗
1 = F(i∗1) and β2j

∗
2 = F(i∗2). Then:

(a) β2Ψ = F(ϕ)β1.
(b) β1 is an isomorphism (in D) if and only if β2 is an isomorphism (in D).

Proof. We leave to the reader the details involved in intuitively “dualizing" the proof of Proposi-
tion 2.13. Readers seeking a more rigorous approach to such “dualizing" arguments are encouraged
to skip ahead to Remark 2.15 (a), to familiarize themselves with the one-to-one correspondence of
functors F↔F (with F : C→ D and F : Cop→ Dop) which is established there, and then to use that
correspondence to fashion an alternate proof of Proposition 2.14. The details of that alternate proof
are also left to the reader.

Some of the considerations in Theorem 2.18 will require us to go a step further than what was
done in the preceding two results. In view of the statements of Propositions 2.13 and 2.14, one
can ask whether, when given objects A1, . . . ,An (possibly listed with repetition) of a pre-additive
category C with finite products and a functor F : C → D, where D is also a pre-additive category
with finite products, one can say, for the “canonical morphisms" α : F(

∏n
i=1 Ai) →

∏n
i=1 F(Ai) and

β :
∐n
i=1 F(Ai)→ F(

∐n
i=1 Ai), that “α is an isomorphism" and “β is an isomorphism" are well defined

properties. (Notice that this question about α is basically asking whether the concept of a CHR-
additive functor is well defined.) The answer(s) is/are in the affirmative, and we expect that the
interested reader will be able to obtain this/these answer(s) by building on the proofs of Propositions
2.13 and 2.14. If necessary, some readers may wish to review the general associative laws (up to
natural isomorphisms) for finite (direct) products and finite coproducts in such categories: in this
regard, see Remark 2.15 (a) and the third paragraph of Remark 2.16.

In the spirit of the characterization of additive functors F of abelian categories given in [9, Theorem
3.11], one of the characterizations given in Theorem 2.18 will be that F carries biproduct diagrams to
biproduct diagrams. Remark 2.15 (a) will recall the definition of a biproduct diagram (for the more
general context of Theorem 2.18) and some of its useful consequences. Parts (b) and (c) of Remark
2.15 will develop a useful categorical technique that involves dual categories and will then examine
some of its applications, especially to pre-additive categories with finite products.

Remark 2.15. (a) Let C and D be (possibly isomorphic) pre-additive categories with finite products.
Let A and B be (possibly isomorphic) objects of C. Fix a product P of A and B (in C). By [16, Theorem
2, page 194] (and its proof), the existence of the product P leads to a biproduct diagram, say D, for
A and B in C. According to the definition of a biproduct diagram (see [16, page 194]), D consists of
injection morphisms, i1 : A→ P and i2 : B→ P , and projection morphisms, p1 : P → A and p2 : P → B,
such that p1i1 = 1A, p2i2 = 1B and i1p1 + i2p2 = 1P (and, necessarily, p1i2 = 0 and p2i1 = 0, as in [16,
page 195, lines 3-4]). It follows that the maps i1 and i2 determine P as a sum (that is, as a coproduct)
of A and B (in C) while the maps p1 and p2 determine P as a product of A and B (in C).

It will be interesting and useful to ask whether applying F to the data in D produces a biproduct
diagram in D. By definition, an affirmative answer would mean that the object P := F(P ) of D has
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injection morphisms, j1 := F(i1) : F(A) → P and j2 := F(i2) : F(B) → P , and projection morphisms,
π1 := F(p1) : P → F(A) and π2 := F(p2) : P → F(B), such that π1j1 = 1F(A), π2j2 = 1F(B) and j1π1 +
j2π2 = 1P (and, necessarily, π1j2 = 0 and π2j1 = 0). Then P would be a sum of F(A) and F(B) (in D)
determined by the injection morphisms j1 and j2, while P would be a product of F(A) and F(B) (in
D) determined by the projection morphisms π1 and π2.

A nontrivial consequence of the reasoning two paragraphs ago is that if C, A and B are as above
(not necessarily such that F carries D to a biproduct diagram), then any product of A and B in C
is a sum of A and B in C. Combining this observation with Lemma 2.1 (b), we get (for C, A and B
as above) that any sum of A and B in C is a product of A and B in C. It is not difficult to conclude
therefrom that a pre-additive category with finite products is the same as a pre-additive category with
finite coproducts. These basic facts will be used in Theorem 2.18. While the just-mentioned facts in
this paragraph and the facts in the preceding two paragraphs are true, we believe that the above
exposition of them here has been incomplete, owing to what we consider to be some incomplete
or vague passages in [16]. (For the same reason, one should also comment further on the use of
the proof of [16, Theorem 2, page 195] which will be implicitly appealed to later in part (c) of the
present remark in order to have certain biproduct diagrams.) Remark 2.16 will, in our opinion,
provide enough details to rectify matters.

(b) This paragraph will develop the following result: for any categories K1 and K2, there is a
natural one-to-one correspondence between the (covariant) functors F : K1 → K2 and the (covari-
ant) functors F : Kop

1 → K
op
2 . (Of course, the notation Kop

i means (K i)
op.) To see this, let us begin

by observing that any F as above induces a (covariant) functor F : Kop
1 → K

op
2 , where the object

assignment of F is the same as the object assignment of F, while F is defined on morphisms by
F (f op) := (F(f ))op. Noting that any category K satisfies (Kop)op = K , one checks easily that if a func-
tor F induces F : Kop

1 → K
op
2 as above, then the functor that F induces from K1 to K2 is F itself.

Similarly, if one uses a functor G : Kop
1 → K

op
2 to induce a functor G : K1→ K2, then one checks easily

that the functor which G induces from K
op
1 to Kop

2 is G itself. This completes (a sketch of) the proof
of the above-asserted one-to-one correspondence between the functors K1 → K2 and the functors
K

op
1 → K

op
2 . (We have not used notation such as “F = Fop", nor will we do so, for the following

reason. A number of speakers and authors have seen fit to convert a (possibly naturally occurring)
“contravariant functor" H : K1 → K2 to a (covariant) functor, which they have denoted by Hop, ei-
ther from K

op
1 to K2 or from K1 to Kop

2 . That sort of construction should not be confused with the
above assignment F 7→ F that induced the above one-to-one correspondence, as our construction of
F in terms of F involved dualizing both the domain of F and the codomain of F. Apart from this
parenthetical aside, all the functors considered in this paper are assumed to be covariant.)

This paragraph collects some material that can be useful in applying the preceding paragraph to
pre-additive categories. First, recall from the proof of Lemma 2.1 (b) that the definition of addition
of morphisms in the dual of a pre-additive category, which was essentially given by

λop +µop := (λ+µ)op,

led to the fact that a category Kop is a pre-additive category if (and only if) K is a pre-additive
category. The next two observations will be useful for the context of Theorem 2.18, that is, whenever
when C and D are each pre-additive categories with finite products and F : C → D is a functor. Let
F : Cop→Dop be the functor induced by F via the construction in the preceding paragraph. Loosely
stated, here is the next observation: if F satisfies condition (2) in the statement of Theorem 2.18,
then so does F . More precisely put: if F carries each biproduct diagram in C to a biproduct diagram
in D, then F carries each biproduct diagram in Cop to a biproduct diagram in Dop. (For a proof,
combine the following three items: the definition of a biproduct diagram in [16, Definition, page
194], as recalled in (a) above; the equivalence of (1) and (2) in Theorem 2.18 (taken directly from
[16, Proposition 4, page 197]); and the fact (which is a consequence of the second sentence in this
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paragraph) that additive functors preserve each of the three identities appearing in the definition
of a biproduct diagram.) Here is another useful observation: it is easy to see that F sends each
zero morphism in C to a zero morphism if and only if F sends each zero morphism in Cop to a
zero morphism. (In view of the definition of F on morphisms, the following elementary categorical
observation provides the appropriate detail to prove the preceding “easy" comment. It follows from
Lemma 2.1 (b) and the definition of addition of morphisms in the dual of a pre-additive category E
that if µ is the neutral element in a hom-set (abelian group) E(E1,E2) (that is, if µ is the zero morphism
from E1 to E2 in E), then µop is the zero morphism from E2 to E1 in Eop.)

(c) LetC andD be (possibly isomorphic) pre-additive categories with finite products, letH : C→D
be a functor, and fix (possibly isomorphic) objects A and B of C. It will often be convenient to replace
the previously used notations α and β with αH and βH , respectively. Thus, for fixed A and B as above,
αH denotes the canonical morphism H(A × B) → H(A) ×H(B) in D and βH denotes the canonical
morphism H(A)⊕H(B)→ H(A⊕B) in D. If F↔ F is the one-to-one correspondence constructed in
(b) and if A, B ∈ |C|, then αF = (βF )op and (so, by replacing F with F , which is permissible in view of
Lemma 2.1 (b), we also get that) βF = (αF )op.

For a proof, we begin by fixing a product P of A and B in C. This leads to a biproduct diagram, say
D, for A and B in C. By definition, D consists of injection morphisms, i1 : A→ P and i2 : B→ P , and
projection morphisms, p1 : P → A and p2 : P → B, such that p1i1 = 1A, p2i2 = 1B and i1p1 + i2p2 = 1P
(and, necessarily, p1i2 = 0 and p2i1 = 0). It follows that i1 and i2 determine P as a coproduct of A and
B (in C) while p1 and p2 determine P as a product of A and B (in C). Next, fix a product P of F(A) and
F(B) in D. As above, an ensuing biproduct diagram (this time, in D) features injection morphisms,
j1 : F(A)→ P and j2 : F(B)→ P , and projection morphisms, π1 : P → F(A) and π2 : P → F(B), such
that π1j1 = 1F(A), π2j2 = 1F(B) and j1π1 + j2π2 = 1P (and, necessarily, π1j2 = 0 and π2j1 = 0). Then P
is a coproduct of F(A) and F(B) (in D) determined by the injection morphisms j1 and j2, while P is a
product of F(A) and F(B) (in D) determined by the projection morphisms π1 and π2.

Let us repeat the above reasoning, this time focusing on the functor F (rather than on F) and on
A and B as objects of Cop (rather than C). The upshot is that the injection morphisms, (i1)∗ := (p1)op :
A → P and (i2)∗ := (p2)op : B → P in Cop, determine P as a coproduct of A and B in Cop, while the
injection morphisms, (j1)∗ := (π1)op : F (A) = F(A)→ P and (j2)∗ := (π2)op : F (B) = F(B)→ P in Dop,
determine P as a coproduct of F (A) and F (B) in Dop.

It remains to prove that αF = (βF )op. It follows from the universal mapping properties of product
and coproduct that αF is (uniquely) determined by the conditions π1αF = F(p1) and π2αF = F(p2);
and that βF is determined by the conditions βF (j1)∗ = F ((i1)∗) and βF (j2)∗ = F ((i2)∗). It suffices to
prove that (βF )op has the just-mentioned properties which determine αF . In other words, it suffices
to prove that

π1(βF )op = F(p1) and π2(βF )op = F(p2).

As the proofs of the two just-displayed equations are similar, we will give the first of those proofs
next, while leaving the proof of the second equation to the reader. By applying the op operator, we
see that our task is equivalent to proving that

(π1(βF )op)op = (F(p1))op.

Accordingly, the proof concludes via the following calculation:

(π1(βF )op)op = βF(π1)op = βF(j1)∗ = F ((i1)∗) =

F ((p1)op) := (F(p1))op.
We are optimistic that additional uses of the one-to-one correspondence F ↔ F will be noticed

and become popular in presentations of a variety of topics in category theory. This completes the
remark.
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The next remark fulfills the expository purposes that were mentioned in the third paragraph of
Remark 2.15 (a).

Remark 2.16. Let A and B be objects of a pre-additive category E. At first glance, the proof of [16,
Theorem 2, pages 194-195] would seem to prove the following two things: the first sentence of the
statement of that result, namely, that a (direct) product A

∏
B (also denoted by A × B) exists in E if

and only if A and B have a biproduct diagram (in the sense defined in [16, Theorem 2, page 194]
and recalled in Remark 2.15 (a)) in E; and the first part of the second sentence in the statement of
[16, Theorem 2, page 194], which essentially explains how to extract a product of A and B from a
biproduct diagram associated to A and B. The statement of [16, Theorem 2, page 194] asserts more
(and the proof of Theorem 2.18 and some argumentation leading to that proof will need it), namely,
for A, B and E as above, the following two things: the second part of the second sentence in the
statement of [16, Theorem 2, page 194], which essentially explains how to extract a coproduct of A
and B from a biproduct diagram associated to A and B; and the assertion that A

∏
B exists in E if and

only if a (direct sum, that is, a) coproduct A
∐
B (also denoted by A⊕ B) exists in E. (Note that the

“only if" part of the preceding equivalence was given in [9, Exercise A1, page 60], although Freyd’s
usage ruled out the easy case where E has at most one object. In the just-mentioned exercise, Freyd
went on conclude that A

∐
B is isomorphic to A

∏
B if the latter exists (cf. also [9, Theorem 2.35],

which is a result on abelian categories). That same conclusion can be drawn from the statement of
[16, Theorem 2, page 194].) To be fair, these extra assertions in the statement of [16, Theorem 2, page
194] can be viewed as proven, as the statement of that result includes the word “dually" and we can
see, thanks to Lemma 2.1 (b), that such usage is appropriate. (For instance, a product of A and B in
the pre-additive category Eop would be the same as a coproduct of A and B in E; and an instructive
calculation using the operator op reveals how a biproduct diagram associated to A and B in Eop leads
to a biproduct diagram associated to A and B in E.)

We next follow up on the above comment about “Freyd’s usage". As category theory was a quickly
developing field in the early 1960s, it is perhaps not surprising that with the passage of time, some of
the terminology that had been used in [9] has changed its meaning. We will next give two instances
of such changes. (These are pertinent to the statement of some results in [9] that are related to [9,
Theorem 3.11]). First, what was called an “additive category" in [9, page 60] is what would nowadays
be called a “pre-additive category with finite products and a null object". (Equivalently, by [16,
Proposition 1, page 194], a result whose validity we explicated above with the aid of Lemma 2.1
(b), this kind of category would nowadays be called a “pre-additive category with finite products".)
Second, what was called a “pre-additive category" in [9, page 60] would now be called a “pre-additive
category with a null object and greater than one object."

Lastly, we address something that was mentioned in the Introduction and is implicit in the state-
ment of conditions (5) and (7) of Theorem 2.18, namely, the fact that a pre-additive category K with
finite products necessarily also has finite coproducts. The issue of the existence of an empty coprod-
uct (that is, an initial object) of K is settled by [16, Proposition 1, page 194], which guarantees that
any empty product in K (that is, any terminal object of K) is an initial object of K . The issue of the
existence of binary coproducts A⊕B in K was handled two paragraphs ago. Finally, for integers n ≥ 3,
the existence of coproducts

∐n
i=1 Ai in K can be discerned from the proof that (6)⇒ (7) in Theorem

2.18 below. This completes the remark.

The next result contains the final technical information that will be needed in the proof of Theorem
2.18. Readers seeking a shorter path to Theorem 2.18 may be interested to know that the proof of
Proposition 2.17 (a) was the last proof that I completed while doing this research, as it enabled me
to complete the proof that (4)⇒ (3) in Theorem 2.18.

To avoid possible confusion, Proposition 2.17 and Theorem 2.18 will occasionally use the follow-
ing enhanced notation for zero morphisms. If E1 and E2 are (possibly equal) objects of a pre-additive
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category E, then the neutral element of the abelian group E(E1,E2) will be denoted by 0E1,E2
.

Proposition 2.17. Let C and D be (possibly isomorphic) pre-additive categories with finite products, and
let F : C → D be a functor. Let F : Cop→ Dop be the functor that is induced by F by using the construc-
tion in Remark 2.15 (b). Let A and B be (possibly equal) objects of C. Let P be a product of A and B in
C (and hence also a sum of A and B in C), with projection morphisms p1 : P → A and p2 : P → B, and
also with injection morphisms i1 : A → P and i2 : B → P , such that the set of data {A,B,P ,p1,p2, i1, i2}
gives a (uniquely determined) biproduct diagram D in C (that is, such that p1i1 = 1A, p2i2 = 1B and
i1p1 + i2p2 = 1P , and, necessarily, p1i2 = 0B,A and p2i1 = 0A,B). Put P := F(P ). Let Q be a product of F(A)
and F(B) inD (and hence also a sum of F(A) and F(B) inD), with projection morphisms π1 :Q→ F(A) and
π2 : Q→ F(B), and also with injection morphisms j1 : F(A)→ Q and j2 : F(B)→ Q, such that the set of
data {F(A),F(B),Q,π1,π2, j1, j2} gives a (uniquely determined) biproduct diagram E inD (that is, such that
π1j1 = 1F(A), π2j2 = 1F(B) and j1π1 + j2π2 = 1Q, and, necessarily, π1j2 = 0F(B),F(A) and π2j1 = 0F(A),F(B)).
Let α be the canonical morphism F(A × B) → F(A) × F(B), viewed as the morphism α : P → Q in D
that is uniquely determined by π1α = F(p1) and π2α = F(p2). Also, consider the canonical morphism
β : F(A) ⊕ F(B) → F(A ⊕ B), viewed as the morphism β : Q → P in D that is uniquely determined by
βj1 = F(i1) and βj2 = F(i2). Then:

(a) Suppose that B is a null object of C and that α is an isomorphism. Then F(0A,B) = 0F(A),F(B).
(b) Suppose that A is a null object of C and that β is an isomorphism. Then F(0A,B) = 0F(A),F(B).
(c) Suppose that α is an isomorphism, F(0A,B) = 0F(A),F(B) and F(0B,A) = 0F(B),F(A). Then β is an isomor-

phism.
(d) Suppose that β is an isomorphism, F(0A,B) = 0F(A),F(B) and F(0B,A) = 0F(B),F(A). Then α is an isomor-

phism.
(e) Suppose that F carries D to a biproduct diagram in D. Then both α and β are isomorphisms.
(f) Suppose that α is an isomorphism, F(0A,B) = 0F(A),F(B) and F(0B,A) = 0F(B),F(A). Then F carries D to a

biproduct diagram in D.
(g) Suppose that β is an isomorphism, F(0A,B) = 0F(A),F(B) and F(0B,A) = 0F(B),F(A). Then F carries D to

a biproduct diagram in D.

Proof. Note that the existence of the product P (resp., Q) implies the existence of the biproduct
diagram D (resp., E) with the stated properties by virtue of the proof of [16, Theorem 2, pages 194-
195] (as supplemented by Remark 2.16). Note also that the various assumptions or conclusions that
α (resp., β) is an isomophism are unambiguous, by Proposition 2.13 (b) (resp., Proposition 2.14 (b)).

(a) Since B is a terminal object of |C|, there is a unique morphism, say u, from A to B in |C|. Since
C is a pre-additive category, u is a zero morphism; that is, u = 0A,B. Let C ∈ |C|. Let v denote
the unique morphism from C to B in |C|. By the uniqueness of v, it is clear that uθ = v for each
θ ∈ C(C,A). It follows that for each λ ∈ C(C,A), there exists a unique ψ ∈ C(C,A) such that 1Aψ = λ
and uψ = v, namely, ψ = λ. Therefore, A is a product of A and B in C when considered together
with the projection maps p∗1 = 1A : A → A and p∗2 = u : A → B. This view of A as a product with
respect to these projection maps leads to an associated biproduct diagram in C, by the proof of [16,
Theorem 2, pages 194-195] (cf. also Remark 2.15 (a) and the first paragraph of Remark 2.16). In view
of Proposition 2.13 (b), it is clear that, in regard to the task of proving (a), there is no harm in taking
A = P , p∗1 = p1 and p∗2 = p2, with the just-mentioned biproduct diagram being D, together with the
items i1 and i2 as in the statement of (a). Then we also have P := F(P ) = F(A).

Let ũ denote the morphism F(u) : P → F(B). We claim that P is a product of F(A) and F(B) in
D when considered together with the projection maps 1F(A) : P → F(A) and ũ. Recall that α : P =
F(A×B)→ F(A)×F(B) =Q is assumed to be an isomorphism; and thatQ is a product of F(A) and F(B)
with associated projection morphisms π1 :Q→ F(A) and π2 :Q→ F(B). Consequently, P is a product
of F(A) and F(B) in D when considered together with the projection maps π1α : P → F(A) = P and
π2α : P → F(B). Recall from Proposition 2.13 that the definition of α entails that π1α = F(p1) and
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π2α = F(p2). Observe that F(p1) = F(p∗1) = F(1A) = 1F(A); and F(p2) = F(p∗2) = F(u) = ũ. This completes
the proof of the above claim.

In view of the above established claim, it is clear that, in regard to the task of proving (a), there is
no harm in viewing F(A) × F(B) as Q = P , together with the projection maps π1 = 1F(A) and π2 = ũ.
Now, consider any object D of D, along with any morphisms ρ1 ∈ D(D,F(A)) and ρ2 ∈ D(D,F(B)).
Since P has the universal mapping property of a product of F(A) and F(B) in D, there exists a unique
morphism ϕ : D → P in D such that 1F(A)ϕ = ρ1 and ũϕ = ρ2. Necessarily, ϕ = 1F(A)ϕ = ρ1, and so
ũρ1 = ρ2.

Now, consider the special case of the result in the preceding paragraph when we take D := F(A)
and ρ1 := 1P . With ρ now playing the role of ρ2 from the preceding paragraph, we get the following
conclusion: for each morphism ρ : F(A)→ F(B) in D, ϕ = 1P is the unique morphism P → P in D
such that ũϕ = ρ, and so ρ = ũϕ = ũ1P = ũ. Hence, ũ is the only element of the set D(F(A),F(B)).
Since D is a pre-additive category, ũ is a zero morphism; that is, ũ = 0F(A),F(B). Thus,

F(0A,B) = F(u) = ũ = 0F(A),F(B),

as desired. The proof of (a) is complete.
(b) We have an object P that is both a product of A and B in C and a sum of A and B in C; and we

also have an object Q that is both a product of F(A) and F(B) in D and a sum of F(A) and F(B) in D.
Note that P is both a sum of A and B in Cop and a product of A and B in Cop; and Q is both a sum of
F(A) and F(B) in Dop and a product of F(A) and F(B) in Dop. Also, recall that P := F(P ).

For reasons that will become clear, let αF (rather than simply α) denote the canonical morphism
F(A×B)→ F(A)×F(B), viewed as αF : P →Q, in D; and similarly, let βF (rather than simply β) denote
the canonical morphism F(A)⊕ F(B)→ F(A⊕B), viewed as βF : Q→ P , in D. Let F : Cop → Dop be
the functor induced by F via the construction in Remark 2.15 (b). In the spirit of two sentences ago,
we introduce the following notation: let αF denote the canonical morphism F (A×B)→F (A)×F (B),
viewed as αF : P → Q, in Dop; and let βF denote the canonical morphism F (A)⊕F (B)→ F (A⊕B),
viewed as βF :Q→P , in Dop. Recall from Remark 2.15 (c) that αF = (βF )op and βF = (αF )op.

There are two hypotheses in (b). The first of these is the assumption thatA is a null object of C, and
this assumption is equivalent to A being a null object of Cop. The second hypothesis in (b) is that βF
is an isomorphism in D; equivalently, that (αF )op is an isomorphism in D. We claim that this second
hypothesis implies that αF is an isomorphism in Dop. (Actually, one can strengthen that “implies" to
“is equivalent to" here, but we will not need that stronger fact.) To prove the above claim, it suffices
to show that if h : E1→ E2 is an isomorphism in a category E, then hop : E2→ E1 is an isomorphism
in Eop. To accomplish this task will require two elementary categorical observations. For those, see
the next paragraph.

First, it follows easily from the definition of composition of morphisms in a dual category that if E
is an object of a category E and f := 1E : E→ E is the identity morphism on E in E , then f op : E→ E
is the identity morphism on E in Eop. Second, if h : E1→ E2 is an isomorphism in a category E with
inverse h−1 : E2 → E1 (in E), then it follows easily from the preceding sentence that hop : E2 → E1 is
an isomorphism in Eop with inverse (h−1)op : E1→ E2 (in Eop). It is clear that the above claim follows
from the two observations in this paragraph.

We can use the above (established) claim that αF is an isomorphism in Dop by applying (a) to
F . (Note that (a) is applicable to F by Lemma 2.1 (b) since Cop and Dop inherit from C and D,
respectively, the property of being a pre-additive category with finite products. That application
shows that F sends the zero morphism u : B→ A in Cop to the zero morphism v : F (B) = F(B)→
F (A) = F(A) in Dop.

By the final comment in Remark 2.15 (b), it follows that if E is a pre-additive category and if µ is
the neutral element in a hom-set (abelian group) E(E1,E2) (that is, µ is the zero morphism from E1
to E2 in E), then µop is the zero morphism from E2 to E1 in Eop. In particular, if z denotes the zero



When Two Definitions of an Additive Functor Agree 61

morphism from A to B in C, then zop is the zero morphism from B to A in Cop (that is, zop = u); and
if ζ denotes the zero morphism from F(A) to F(B) in D, then ζop is the zero morphism from F(B) to
F(A) in Dop (that is, ζop = v, the zero morphism from F (B) to F (A) in Dop). Therefore, by applying
(a) to F and also using the definition of F on morphisms from Remark 2.15 (b) (together with several
applications of the fact that any morphism g satisfies (gop)op = g), we get

F(0A,B) = F(z) = F(uop) = (F (u))op = vop = ζ = 0F(A),F(B),

as desired. The proof of (b) is complete.
(c) Since α is an isomorphism, P is a product (and hence also a sum) of F(A) and F(B) in D.

Therefore, it follows from Proposition 2.13 (b) and Proposition 2.14 (b) that, in proving (c), we can
assume, without loss of generality, that Q = P . Hence, α is the uniquely determined endomorphism
of P in D such that π1α = F(p1) and π2α = F(p2); and β is the uniquely determined endomorphism
of P in D such that βj1 = F(i1) and βj2 = F(i2).

We claim that it suffices to prove (under the assumptions that α is an isomorphism and F sends
both 0A,B and 0B,A to zero morphisms) that αβα = α. Indeed, if αβα = α, then (since α is an isomor-
phism),

β = α−1(αβ) = α−1(αα−1) = α−11P = α−1,

which is an isomorphism. This proves the above claim.
We will next prove that αβα = α. This is equivalent to showing that π1αβα = F(p1) and π2αβα =

F(p2). It is interesting to observe that the proof of the first (resp., second) of these equations will use
the fact that F sends 0B,A (resp., 0A,B) to a zero morphism. We will provide a detailed proof of the
first of these equations, leaving the similar proof of the second equation to the reader.

Note that F(p1)F(i1) = F(p1i1) = F(1A) = 1F(A) and, similarly, F(p2)F(i2) = 1F(B); and F(p1)F(i2) =
F(p1i2) = F(0B,A) = 0F(B),F(A) (by hypothesis) and, similarly, F(p2)F(i1) = F(0A,B) = 0F(A),F(B) (by hy-
pothesis). Therefore, using at a crucial point that composition of morphisms distributes over addi-
tion in a pre-additive category, we get that

π1αβα = F(p1)β(1P )α = F(p1)β(j1π1 + j2π2)α =

F(p1)βj1π1α +F(p1)βj2π2α.

Since F(p1)βj1π1α = F(p1)F(i1)π1α = F(p1i1)π1α = F(1A)π1α = 1F(A)π1α = π1α = F(p1), we need only
show that F(p1)βj2π2α = 0P ,F(A), the neutral element in the additive abelian group D(P ,F(A)). That,
in turn, holds (thanks, in part, to Lemma 2.1 (a)), since

F(p1)βj2π2α = F(p1)F(i2)π2α = F(p1i2)π2α = F(0B,A)π2α =

0F(B),F(A)π2α = 0P ,F(A). The proof of (c) is complete.
(d) We will explain how (d) follows from (c) in the same spirit of the above proof which explained

how (b) follows from (a). As above, let αF denote the canonical morphism F(A × B)→ F(A) × F(B),
viewed as αF : P → Q, in D; and similarly, let βF denote the canonical morphism F(A) ⊕ F(B) →
F(A ⊕ B), viewed as βF : Q → P , in D. Let F : Cop → Dop be the functor induced by F via the
construction in Remark 2.15 (b). Let αF denote the canonical morphism F (A × B)→ F (A) × F (B),
viewed as αF : P → Q, in Dop; and let βF denote the canonical morphism F (A)⊕F (B)→ F (A⊕B),
viewed as βF :Q→P , in Dop. Recall from Remark 2.15 (c) that αF = (βF )op and βF = (αF )op.

As we have assumed in (d) that F(0A,B) = 0F(A),F(B) and F(0B,A) = 0F(B),F(A), it follows from the
reasoning in the final paragraph of Remark 2.15 (b) that F sends both the zero morphism B→ A in
Cop and the zero morphism A→ B in Cop to zero morphisms (in Dop). Moreover, by hypothesis, βF
is an isomorphism; that is, (αF )op is an isomorphism. Therefore, by reasoning as in the third and
fourth paragraphs of the proof of (b), we get that αF is an isomorphism. Recall also that both Cop
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and Dop are pre-additive categories with finite products. Consequently, by applying (c) to F , we
get that βF is an isomorphism; that is, (αF)op is an isomorphism. Hence, by another appeal to the
just-mentioned part of the proof of (b), αF is an isomorphism. The proof of (d) is complete.

(e) Recall that the biproduct diagram D in C is given by the data set {A,B,P ,p1,p2, i1, i2}, such
that p1i1 = 1A, p2i2 = 1B and i1p1 + i2p2 = 1P , and, necessarily, p1i2 = 0B,A and p2i1 = 0A,B. Assume
that F carries D to a biproduct diagram in D; that is, that F(p1)F(i1) = 1F(A), F(p2)F(i2) = 1F(B) and
F(i1)F(p1)+F(i2)F(p2) = 1F(P ) (=1P ), and, necessarily, F(p1)F(i2) = 0F(B),F(A) and F(p2)F(i1) = 0F(A),F(B)).
Our task is to show that both α and β are isomorphisms.

Recall from the proof of [16, Theorem 2, pages 194-195] that the fact thatD is a biproduct diagram
implies that P is a product of A and B (in C) with projection morphisms p1 : P → A and p2 : P → B.
For the sake of completeness, we next show how to modify the just-cited argument in [16] to prove
that the fact thatD is a biproduct diagram implies that P is also a sum ofA and B (in C) with injection
morphisms i1 : A→ P and i2 : B→ P .

Consider any morphisms f1 : A→ C and f2 : B→ C for some object C of C. To prove the above
“sum" assertion, it suffices to show that there exists a unique morphism h : P → C such that hi1 = f1
and hi2 = f2. As for existence, it suffices to show that h := f1p1 +f2p2 satisfies hi1 = f1 and hi2 = f2. We
will prove the first of these equations, leaving the similar proof of the second equation to the reader.
We have

hi1 = (f1p1 + f2p2)i1 = f1(p1i1) + f2(p2i1) = f11A + f20A,B =

f1 + 0A,C = f1. As for uniqueness, suppose that a morphism h∗ : P → C satisfies h∗i1 = f1 and h∗i2 = f2.
Then

h∗ = h∗1P = h∗(i1p1 + i2p2) = (h∗i1)p1 + (h∗i2)p2 = f1p1 + f2p2 = h.

This completes the proof of the above “sum" assertion.
Recall that F is assumed to carry D to a biproduct diagram, say ∆, in D. Thus, by the reasoning

in the preceding two paragraphs, F(P ) (= P ) is a product of F(A) and F(B) in regard to the projection
morphisms F(p1) : P → F(A) and F(p2) : P → F(B), and P is also a sum of F(A) and F(B) in regard to
the injection morphisms F(i1) : F(A)→P and F(i2) : F(B)→P . We claim that, in view of Proposition
2.13 (b) and Proposition 2.14 (b), we can assume, without loss of generality, that Q = P . To prove
this claim, one must show that if one takes Q = P , along with π1 = F(p1), π2 = F(p2), j1 = F(i1) and
j2 = F(i2), then these changes of variables still give a biproduct diagram in D. In other words, one
must show that

F(p1)F(i1) = 1F(A),F(p2)F(i2) = 1F(B),F(i1)F(p1) +F(i2)F(p2) = 1P ,

(and, necessarily, F(p1)F(i2) = 0F(B),F(A) and F(p2)F(i1) = 0F(A),F(B)). The three just-displayed desired
equations are precisely what it means to say that ∆ is a biproduct diagram in D. This proves the
above claim (that we can take Q = P along with the above identifications of the associated structural
morphisms).

It remains to prove that α : P → P and β : P → P are isomorphisms. Recall that α is uniquely
determined by the conditions π1α = F(p1) and π2α = F(p2); and that β is uniquely determined by the
conditions βj1 = F(i1) and βj2 = F(i2). Hence, in view of the above changes of variables, α is uniquely
determined by F(p1)α = F(p1) and F(p2)α = F(p2); and β is uniquely determined by βF(i1) = F(i1) and
βF(i2) = F(i2). The uniqueness of those determinations ensures that α = 1P and β = 1P . In particular,
both α and β are isomorphisms. The proof of (e) is complete.

(f), (g): Suppose that α is an isomorphism (resp., β is an isomorphism), F(0A,B) = 0F(A),F(B) and
F(0B,A) = 0F(B),F(A). Then by (c) (resp, by (d)), β is an isomorphism (resp., α is an isomorphism). Recall
that the set of data {A,B,P ,p1,p2, i1, i2} gives a uniquely determined biproduct diagram D in C (that
is, such that p1i1 = 1A, p2i2 = 1B and i1p1 + i2p2 = 1P , and, necessarily, p1i2 = 0B,A and p2i1 = 0A,B).
Our task is to show that F carries D to a biproduct diagram in D; that is, that F(p1)F(i1) = 1F(A),
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F(p2)F(i2) = 1F(B) and F(i1)F(p1) + F(i2)F(p2) = 1F(P ) (= 1P ). The first and second of these equations
follow easily from the corresponding equations given above since F is a functor. Thus, it remains
only to prove that

F(i1)F(p1) +F(i2)F(p2) = 1P .

To that end, let us use the determining conditions π1α = F(p1), π2α = F(p2), βj1 = F(i1) and βj2 =
F(i2). These lead to

F(i1)F(p1) +F(i2)F(p2) = βj1π1α + βj2π2α = β(j1π1 + j2π2)α =

β1Pα = βα. Hence, we need only prove that βα = 1P . Since α is an isomorphism, we need only prove
that αβα = α. That, in turn, can be shown by repeating the final two paragraphs of the proof of (c).
The proof is complete.

Recall (cf. [16, page 196]) that an additive category is a pre-additive category with a null object and
binary products. (Equivalently, one could define an additive category as a pre-additive category with
finite products.) One could summarize Theorem 2.18, which is our second main result, as giving, for
additive categories C and D, five new characterizations of the additive functors C→D.

Theorem 2.18. Let C and D be (possibly isomorphic) pre-additive categories with finite products,
and let F : C→D be a functor. Then the following seven conditions are equivalent:

(1) F is an additive functor;
(2) F carries each biproduct diagram (in the sense defined in [16, Definition, page 194]) in C to a

biproduct diagram in D;
(3) F is a CHR-additive functor;
(4) If A,B ∈ |C|, the canonical morphism F(A×B)→ F(A)×F(B) is an isomorphism in D;
(5) If A1, . . . ,An ∈ |C| for some integer n ≥ 2, then the canonical morphism F(

∏n
i=1 Ai)→

∏n
i=1 F(Ai)

is an isomorphism in D;
(6) If A,B ∈ |C|, then the canonical morphism F(A)⊕F(B)→ F(A⊕B) is an isomorphism in D;
(7) If A1, . . . ,An ∈ |C| for some integer n ≥ 2, then the canonical morphism

∐n
i=1 F(Ai)→ F(

∐n
i=1 Ai)

is an isomorphism in D.

Proof. We begin by proving the following useful facts: if (4) holds (resp., if (6) holds) and if A and
B are (possibly equal) objects of C, then F(0A,B) = 0F(A),F(B). To see this, note first that u := 0A,B
factors through some null object N of C; that is, there exists a null object N of C such that u = vw
for some morphisms w ∈ C(A,N ) and v ∈ C(N,B). Since C is a pre-additive category and N is a
null object, we have w = 0A,N and v = 0N,B. Moreover, since (4) holds (resp., since (6) holds) and
N is a null object, it follows from part (a) (resp., part (b)) of Proposition 2.17 that F(w) = 0F(A),F(N )
(resp., that F(v) = 0F(N ),F(B)). Therefore, by Lemma 2.1 (a), F(0A,B) = F(u) = F(vw) = F(v)F(w) equals
F(v)0F(A),F(N ) = 0F(A),F(B) (resp., equals 0F(N ),F(B)F(w) = 0F(A),F(B)), as asserted.

(4)⇔ (6) : By the preceding paragraph, part (c) (resp., part (d)) of Proposition 2.17 gives (4)⇒ (6)
(resp., gives (6)⇒ (4)).

(4) ⇔ (5) : It is trivial that (5) ⇒ (4). Conversely, the implication (4) ⇒ (5) follows from the
associativity, up to natural isomorphism, of nonempty (direct) products. (That, in turn, follows from
the proof, not the statement, of [16, Proposition 1, page 73].)

(6) ⇔ (7) : It is trivial that (7) ⇒ (6). Conversely, the implication (6) ⇒ (7) can be proved by
adapting the above proof that (4)⇒ (5). That adaptation, which is being left to the reader, proceeds
via a straightforward dualization that focuses on coproducts rather than products.

(1)⇔ (2) : This equivalence was proved in [16, Proposition 4, page 197]. While the statement of
[16, Proposition 4, page 197] includes fewer explicit assumptions than the statement of the present
Theorem 2.18, an examination of the proof of [16, Proposition 4, page 197] reveals that it uses all the
assumptions of our Theorem 2.18.
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(2) ⇒ (3): Assume (2). Since (2) ⇒ (1), it follows from Lemma 2.6 (b) that F sends any terminal
object N of (that is, any empty product in) C to a null (hence, terminal) object of (hence, an empty
product in)D. Hence, the canonical morphism inD from F(N ) to an empty product, being the unique
morphism between two terminal (actually, null) objects in a pre-additive category, is necessarily an
isomorphism. Thus, by the definition of a CHR-additive functor, our task of proving (3) has been
reduced to proving (5). As we proved above that (4)⇒ (5), the task of proving (3) can be reduced to
proving (4). That, in turn, follows since Proposition 2.17 (e) ensures that (2)⇒ (4) (and, incidentally,
also that (2)⇒ (6)).

(3)⇒ (4): This implication follows at once from the definition of a CHR-additive functor.
(4) ⇒ (2): It suffices to combine the first paragraph of this proof with Proposition 2.17 (f). The

proof is complete.

The equivalence of conditions (1) and (3) in Theorem 2.18 makes precise a statement of the result
that was promised in the penultimate sentence of the Abstract. I trust that it would not be considered
immodest or inaccurate for me to add that, because of Example 2.9, one can conclude that the equiv-
alence (1)⇔ (3) in Theorem 2.18 gives a strict generalization of the above-mentioned observation of
Chase, Harrison and Rosenberg [5] concerning abelian categories.

In regard to the results that were promised in the final sentence of the Abstract: the equivalence
of (1), (4), (5), (6) and (7) in Theorem 2.18 provides four additional new characterizations of the
additive functors F : C → D whenever C and D are pre-additive categories with finite products.
Thus, for such categories, Theorem 2.18 has provided five new characterizations of the associated
additive functors. Of course, the equivalence of conditions (1) and (2) in Theorem 2.18 also serves to
characterize those additive functors, but as noted in the proof of Theorem 2.18, its equivalence (1)
⇔ (2) can be found in [16].

One consequence of the equivalence (1)⇔ (4) in Theorem 2.18 is that, for the data in Example 2.10
(b), the canonical morphism α : F2(A×B)→ F2(A)×F2(B) is not an isomorphism for some zero rings A
and B. (This follows since it was shown in Example 2.10 (b) that the functor F2 is not additive.) This
consequence may seem surprising, as those data satisfy G×G � G in Ab and F2 sends every object of
CR to G. So, it may be of interest to have the following short proof that if A = B = N is an arbitrary
(necessarily null) object of CR (for the ambient zero ring R), then α is not an isomorphism. Let
p1 : N ×N → N and p2 : N ×N → N be the projection morphisms that are pertinent to the product
N ×N in CR. Then p1 = p2 since N is a terminal object of CR. Then F2(p1) = F2(p2). Recall that
F2(N ) = G in |Ab|. As G is a nontrivial (in fact, infinite) group, one can pick distinct elements a,b ∈ G.
Suppose, contrary to the above assertion, that α is an isomorphism (in Ab). As α is then surjective,
there exists a (in fact, unique) element ξ ∈ F2(N×N ) (= G) such that α(ξ) = (a,b). Let π1 and π2 be the
projection morphisms F2(N ) × F2(N )→ F2(N ) (that is, G ×G→ G) that are pertinent to the product
F2(N )× F2(N ) in Ab. Hence, π1(a,b) = a and π2(a,b) = b. By the universal mapping property of this
(direct) product, α is determined by the two conditions π1α = F2(p1) and π2α = F2(p2). Therefore,

a = π1(a,b) = π1(α(ξ)) = F2(p1)(ξ) = F2(p2)(ξ) = π2(α(ξ)) =

π2(a,b) = b, the desired contradiction, thus completing the promised “short proof."
The result in the previous paragraph gives a sense in which we cannot weaken condition (4) in the

statement of Theorem 2.18. In particular, the preceding paragraph shows that if C and D are each
pre-additive categories with finite products and F : C→D is a functor such that F(A×B) � F(A)×F(B)
for all objectsA and B ofC, then it need not be the case that F is an additive functor. Thus, the functor
F2 from Example 2.10 (b) illustrates the importance of requiring that the isomorphisms stipulated
in condition (4) of Theorem 2.18 be “canonical" or “natural". The reader is invited to use the F↔F
correspondence to construct an example that makes the analogous point about the isomorphisms
stipulated in condition (6) of Theorem 2.18.
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This paragraph and the next two paragraphs will discuss some theoretical and/or pedagogical
matters that we believe to be of some interest. The multitude of conditions in the statements of
Proposition 2.17 and Theorem 2.18 leads naturally to several different reasonable ways to organize
the proofs of those results. Exploring those ways can lead to some material for use in a graduate
course on category theory. First, in regard to the proof of Proposition 2.17, one could ask whether a
proof of its part (g) would be possible (as was the case for the above proofs of its parts (b) and (d))
by using the F↔ F correspondence from Remark 2.15 (b). The answer is in the affirmative, but for
reasons of space, we will only sketch the relevant details in the next paragraph.

Let F : C→D be as in the setting for Proposition 2.17. Let F : Cop→Dop be the functor induced by
F using the construction in Remark 2.15 (b). Let D be a biproduct diagram in C, featuring projection
morphisms p1 and p2 and injection morphisms i1 and i2. We have seen in Proposition 2.17 and
Theorem 2.18 that it can be fruitful to study whether F carries D to a biproduct diagram in D. One
can ask if it would be fruitful to ask the analogous question about F . The answer is in the affirmative,
but before stating it, we need to make precise what is meant by the opposite of a biproduct diagram.
In short, by definition, Dop features projection morphisms iop

1 and iop
2 and injection morphisms pop

1
and p

op
2 . One can show that F carries D to a biproduct diagram in D if and only if F carries Dop

to a biproduct diagram in Dop. (Since the correspondence F↔F is a one-to-one correspondence, it
suffices to prove the “only if" part of the preceding statement.) This result can be used to show that
part (f) of Proposition 2.17 (when applied to F instead of F) implies part (g) of Proposition 2.17 (and
vice versa), thus answering a question that was raised in the preceding paragraph. The calculations
involving in proving this result, as one may expect from having worked out the details in the above
proofs of parts (b) and (d) of Proposition 2.17, give some worthwhile and instructive experience in
dealing with the definitions of composition and addition of morphisms in a dual category, as well as
the definition of the action of F on morphisms. For instance, a proof of the result that we just stated
includes verifying that

F (pop
1 )F (iop

1 ) +F (pop
2 )F (iop

2 ) = (1F(P ))
op

and a complete verification of the just-displayed equation involves (at least) five steps.
Next, any search for alternate ways to present a proof of Theorem 2.18 comes down to asking for

different ways of stating and organizing the various parts of Proposition 2.17. In that regard, our
preliminary work did find direct proofs (for given objects A and B) that led to the conclusion that
condition (2) in Theorem 2.18 implies each of conditions (3)-(7) in Theorem 2.18. For a lecture or
homework, an instructor could ask a class to find some of those direct proofs and to see how such
arguments could be used to create different presentations of Proposition 2.17 and Theorem 2.18. A
somewhat harder assignment would be to ask for direct proofs that each of (4)-(7) implies (2). The
latter task would be somewhat easier if the assignment allowed students to also assume that F sends
both 0A,B and 0B,A to zero morphisms.

Remark 2.19. Although we have had reason to discuss several “zero-ish” concepts here, I hesitated
to title this paper, “Much ado about zero”, for two reasons. First, our work here would likely suffer
in comparison with a similarly titled play by Shakespeare. Second (and more seriously), one must
admit that there are some mathematical situations where consideration of a zero element or a zero
ring would be inconvenient and, ultimately, irrelevant for the study at hand. (We will discuss a
family of such situations in the next paragraph.) However, one must also admit that in some other
mathematical situations, one cannot ignore zero rings, as they can provide answers to some natural
questions (as in this paper’s Corollaries 2.4 and 2.7.) Moreover, in the final paragraph of this remark,
we will discuss an anecdote illustrating how objects such as zero rings can be part of some mathe-
maticians’ fundamental views about the basis and nature of mathematics. That anecdote will also
serve to explain this paper’s dedication.

Since the turn of the century, there has been considerable interest in, and research on, a variety of
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graphs that are defined in terms of the structure of a given nonzero (commutative unital) ring R. To a
large extent, the history of such research began with a remarkable paper [3] on “colorings" by István
Beck that was published in 1986. To some readers, the graphs that resulted from the methodology in
[3] were unnecessarily complicated while studying the zero-divisors of R because that methodology
required the element 0 ∈ R to be treated in the same way as each nonzero (possibly zero-divisor)
element of R. A much more attractive approach to such questions was begun by D. F. Anderson and
P. S. Livingston in a paper [1] that was published in 1999. The methodology that was introduced
in [1] to study the set of zero-divisors of R produced more tractable graphs than those which would
have resulted from [3] because Anderson and Livingston took the set of vertices of the appropriate
graph to be the set of nonzero zero-divisors of R. By thus not allowing the element 0 ∈ R to be a
vertex of the graph, [1] produced a more intelligible graph (with, for a nonzero ring, fewer vertices
and typically many fewer edges). Once it had been decided to disallow consideration of the element
0 ∈ R, it was clearly pointless (pun intended) to consider any zero ring as a possible R. (Indeed, if one
deletes that element from a zero ring, one gets the empty set, and no one would seriously suggest
that graph theory could/should be used to deeper our understanding of ∅.) Moreover, I believe that
most ring theorists would find no merit in considering the set of zero-divisors of a zero ring. In that
regard, perhaps Kaplansky said it best [15, Note, page 34]: “It is perhaps treacherous to try to talk
about zero-divisors on the zero module".

During my final year in graduate school (1968-69), I was a student in a course on category the-
ory that was taught by Jon Beck (not to be confused with István Beck). The highlight of the course
was Professor Beck’s presentation of his famous “tripleability theorem" (cf. [16, pages 151-159]).
Much earlier in the course, one of the students interrupted a lecture by asking the following ques-
tion: “Why do we need to consider zero to be a ring?". (Of course, everyone understood that, by
“zero", the student meant “{0}".) Perhaps Professor Beck knew that the student who had asked the
question was doing doctoral research in algebraic geometry (and so was I, with more of an emphasis
on “algebraic" and less on “geometry" than the other student). Professor Beck immediately replied,
“Because [the category of] Schemes needs an initial object." My initial reaction to that reply was that
it must have been intended as a joke, as it could be translated, at least for affine schemes, via duality,
as saying that the category of commutative unital rings needs a terminal object. Within moments, I
understood more deeply that Professor Beck’s reply had not been meant as a joke. After all, every-
one agrees that ∅ is an initial object in the category of sets, and it is only a small step from there to
agree that the empty scheme is an initial object in the category of (not necessarily affine) schemes. Of
course, the empty scheme can be realized as Spec(R) where R is any zero ring. Elucidating the (ad-
mittedly easy/trivial) sheaf-theoretic details of the structure of that (empty) scheme as a local ringed
space took me only a few more moments, and then I was able to resume listening to the lecture.
The way in which Professor Beck handed the question has, over the years, given me much food for
thought as I considered how to teach advanced graduate courses, because of the following aspects,
each of which slowly dawned upon me as time passed. In saying just six words, Professor Beck had
managed to do all of the following: he welcomed the question; he answered it in a way that was
consistent with the course’s point of view (and, as I learned later, with his personal point of view of
mathematics); he treated the audience with respect, seeing them as young professionals by giving
an answer that would be clear to some of the students but would possibly require other students to
think and study before being able to understand his reply; and he exuded authenticity by using his
view that category theory is central to mathematics in order to inform his teaching practices. Many
readers will be familiar with the following saying of a 19th century historian and journalist, Henry
Adams: “A teacher affects eternity; he can never tell where his influence stops." Whenever I hear or
read that saying, I think of three of my teachers. In chronological order, the first of these, who was
female, was my History teacher in high school; the second of these directed my masters thesis; and
the third of these memorable teachers was Jon Beck. This completes the remark.
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We close with some background and a recommendation for one possible direction of future re-
search.

Remark 2.20. For any field k, let Dk be the full subcategory of Ck whose objects are (isomorphic
to) finite products of finite-dimensional separable field extensions of k, and let Ad be the category
whose objects are the CHR-additive functors from Dk to Ab. See [7, Chapter I, especially Theorem
3.13, pages 29-30, also pages 56-57] for a result showing how Ck and Dk can be used (along with
Cech cohomology in the étale topology for (Spec)(k)) to determine the cohomological dimension of k
(that is, the cohomological dimension of the Galois group of the separable closure of k, in the sense
of Serre and Tate). For base rings R (that need not be fields), [7, Chapter II, especially pages 86-
87] developed tools for use on “R-based topologies" T (which are certain affine-inspired variants of
Grothendieck topologies) and the associated notions of a T -additive functor (which is a certain kind
of CHR-additive functor), a T -sheaf, and Cech cohomology in T . In Chapter III (resp., Chapter IV)
of [7], a specific R-based topology T was introduced that reduced to the classical étale setting from
Chapter I if R is a field but also, in case R is a certain kind of one-dimensional valuation domain,
produced (by use of the above-mentioned tools, especially Cech cohomology in T-additive functors)
a T -cohomological dimension of R that coincides with the classical cohomological dimension of the
quotient field (resp., with the classical cohomological dimension of the residue field) of R.

Having thus demonstrated the applicability of the notion of a CHR-additive functor in various
settings, we returned, in [8], to the context of a base field k. Let Ad denote the category of CHR-
additive functors from Dk to Ab. This category is amenable to the classical methods of homological
algebra, as it was shown in [8, Corollary 2.3] that Ad is a Grothendieck category with a generator.
Moreover, precise categorical descriptions of Ad were obtained via an exact left adjoint functor in [8,
Theorem 2.2] and a categorical equivalence in [8, Remark 2.5]. In [8, Section 3], these descriptions
of Ad led to examples of behavior of Amitsur cohomology of certain finite-dimensional non-Galois
field extensions (for certain associated CHR-additive functors) which were qualitatively different
from the behavior of group cohomology, Grothendieck sheaf cohomology, or Cech cohomology of
CHR-additive functors in the above-mentioned étale setting. The interpretation in terms of the étale
topology of Spec(k) is that, while the direct limit of certain cohomology groups, when indexed by a
geometrically interesting set of covers, may exhibit classical behavior, very different behavior can be
exhibited by those cohomology groups when one focuses on only one cover which is a singleton set.
An affine analogue of that conclusion is the following fact, which has surely been observed by many
commutative algebraists. While an integral domain D may be severely restricted when one requires
every overring of D (inside the quotient field of D) to have a certain property P , there may exist more
general integral domains D with some overrings that satisfy P and other overrings (of D) that do not
satisfy P . For instance, if every proper overring of a Noetherian domain D is Noetherian, then D and
each of its overrings have Krull dimension at most 1 (cf. [15, Exercise 20, page 64], [11, page 363]),
but any Noetherian domain of finite Krull dimension n ≥ 3 has a proper Noetherian overring of Krull
dimension 2: cf. [15, Theorem 85].

Recent decades have witnessed a variety of transfusions connecting commutative algebra with
algebraic geometry and cohomology theories. In our opinion, much remains to be learned along these
lines, that is, by suitably translating various results from multiplicative ideal theory into the modern
language of algebraic geometry, and vice versa, and that some of that prospective research should
involve CHR-additive functors. This opinion may receive some support from algebraic geometers,
since many interesting sheaves are CHR-additive functors, as one can see from the method of proof
of a result [6, Proposition 5.2, page 51] in the classical étale setting (cf. also [18, page 707]). In
particular, given the intuitive geometric meaning of a “cover", it would seem reasonable in many
situations to expect an Ab-valued T -sheaf of some commutative algebras (resp., an Ab-valued sheaf
of some affine schemes) to send the 0 algebra (resp., the empty scheme) to the abelian group 0. In
that regard and in view of the attention that was paid to null objects and zero morphisms leading
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up to and during the proof of Theorem 2.18, one should note our long-held interest in ensuring that
certain cohomologically relevant functors of commutative algebras send the 0 algebra to the abelian
group 0: cf. “M∗(0) = 0" in [7, Definition 3.8, page 24]. Note, however, as a closing counterpoint, that
a sheaf in an R-based topology need not be a T -additive functor: see [7, page 176, line 4] (where the
reference there to “page 33" was intended to be to page 33 of Chapter II, that is, to page 101 of that
volume).
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