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Abstract. Our aim for this paper is to present the notion of 1-absorbing prime submodules of A-module M. We display that

the new notion is a generalization of prime submodules coinciding it is a sort of specialized 2-absorbing submodule. Along

with some properties of them, we characterize the quasi local rings by the help of the new concept. Also, we investigate

their behaviors under homomorphisms, in the localization of modules, and in a cartesian product of modules. After

introducing the minimal 1-absorbing prime submodules, the radical1 of ideals and submodules, we obtain some famous

results for them. Furthermore, we obtain two characterizations of the concept in a multiplication module. Finally, we

obtain a result for 1-absorbing prime submodules similar to the Prime Avoidance Theorem.
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1 Introduction

In abstract algebra, there are a great many publications addressing the structure of rings and mod-
ules, see [2, 4, 14, 15, 17, 18]. In this article, we focus on only commutative rings with a non-zero
identity and non-zero unital modules. Let A always denote such a ring and let M denote such a
A-module. The concept of prime ideals and its generalizations have a significant position in commu-
tative algebra since they are used in understanding the structure of rings. Note that throughout this
paper L (resp., Q) denotes a proper submodule (resp., ideal) of M (resp., A). Recall that Q is called
a prime ideal if ab ∈ Q yields a ∈ Q or b ∈ Q, [3]. Some authors expanded the concept of prime ideals
to modules, [8, 11, 13]. Also, L is called prime if whenever ax ∈ L for any a ∈ A,x ∈M, then x ∈ L or
aM ⊆ L, [13].
Id(A) and S(M) denote the lattice of all ideals of A and the lattice of all submodules in M, re-

spectively. The radical of Q, denoted by
√
Q, is defined as the intersection of all prime ideals contain

Q. Note that we have the equality
√
Q = {r ∈ A | rk ∈ Q for some k ∈ N}, see [3]. For any a ∈ A, the

principal ideal generated by a is denoted by (a). All unit elements of A is denoted by U (A). For any
element m ∈M, the set < m >= Am = {rm : ∀r ∈ A} is the cyclic submodule of M generated by m. If
M =< X >, we say that M is a finitely generated A-module for any finite subset X of M. Note that the
ideal {a ∈ A : aM ⊆ L} is said to be the residue of L by M and we denote as (L :A M). If A is clear, it is
written by only (L : M). Especially, Ann(M) := (0 :A M) is said to be the annihilator in M. Whenever
Ann(M) = 0A, it is said to be a faithful module. Then for an element m ∈ M, the annihilator of m is
defined as Ann(m) := {r ∈ A : rm = 0M} and it is an ideal of A. Moreover, we denote the radical of L as
rad(L).

In 2007, Badawi has introduced the concept of 2-absorbing ideals as a generalization of prime
ideals: Q is called a 2-absorbing ideal if whenever r, s, t ∈ A and rst ∈Q, then rs ∈Q or rt ∈Q or st ∈Q,
see [5]. Then in 2011, A. Y. Darani and F. Soheilnia defined the concept of 2-absorbing submodules
as following: L is called 2-absorbing if whenever r, s ∈ A; x ∈ M with rsx ∈ L, either rx ∈ L or sx ∈ L
or rs ∈ (L : M), see [7]. Actually, the concept of 2-absorbing submodules is a generalization of prime
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submodules.
In 2021, Yassine, Nikmehr and Nikandish introduced a recent class of ideals that it is a class of

ideals between 2-absorbing ideals and prime ideals: Q is called 1-absorbing prime whenever for all
non-units r, s, t ∈ A with rst ∈ Q, rs ∈ Q or t ∈ Q, see [19]. Afterwards, the authors introduced the
notion of weakly 1-absorbing prime: whenever for all non-units r, s, t ∈ A with 0 , rst ∈ Q, rs ∈ Q
or t ∈ Q, see [10]. Note that every prime ideal is a 1-absorbing prime and every 1-absorbing prime
ideal is a 2-absorbing ideal. Thus, we have a chain: prime ideals ⇒ 1-absorbing prime ideals ⇒ 2
absorbing ideals. On the other hand, we have a second chain: prime submodules ⇒ 2 absorbing
submodules. Thus we realize that there is a missing part in the second chain, which it is between
prime submodules and 2-absorbing submodules. Then we define the missing part of the chain as
1-absorbing prime submodules.

In Section 2, after introducing the notion of 1-absorbing prime submodules, we examine the main
properties of the new class. For all non-unit elements r, s ∈ A and x ∈M, if rsx ∈ L, either rs ∈ (L :M)
or x ∈ L, then L is said to be 1-absorbing prime, see Definition 2.1. Firstly, we investigate in Proposition
2.3, the relation between 1-absorbing prime submodules and other special submodules, for example
prime submodules, 2-absorbing submodules. We prove that every prime submodule is a 1-absorbing
prime submodule, but the converse is not true: To see this, consider the cyclic submodule of Z4-
module Z4[X] generated byX, that is, < X >. Indeed, it is a 1-absorbing prime submodule, but is not a
prime submodule of Z4-module Z4[X], see Example 2.4. Also, we show that every 1-absorbing prime
submodule is a 2-absorbing submodule. However, it is not true that every 2-absorbing submodule is
1-absorbing prime. Consider the cyclic submodule of Z-module Z30 generated by 6, it is 2-absorbing
but not 1-absorbing prime, see Example 2.5. Actually, by the help of Proposition 2.3, the second chain
is completed. For the completed picture of these algebraic structures, see Figure 1. Among other
results in this section, we give a characterization of 1-absorbing prime submodules, see Theorem 2.8.
In Theorem 2.9, we characterize the quasi local rings by the help of our new concept. Furthermore,
we examine the attitudes of the concept in a cartesian product of modules, in the localization of
modules, and under homomorphisms. In Section 3, we introduce the minimal 1-absorbing prime
submodules, the radical1 of ideals and submodules. In Theorem 3.2 and Corollary 3.3, we obtain
some famous results for 1-absorbing prime submodules. Afterwards, the Section 4 aims to give
two characterizations of the concept in multiplication modules. By the help of some main proven
results, we obtain two characterizations, see Theorem 4.1 and Theorem 4.10. Finally, the last section
is dedicated to the Prime Avoidance Theorem for 1-absorbing prime submodules. After proving
some propositions, we obtain 1-Prime Avoidance Theorem for submodules and 1-Prime Avoidance
Theorem for cosets, see Theorem 5.2 and Theorem 5.6, respectively.

2 Properties of 1-absorbing prime submodules

Definition 2.1. For all non-units element r, s ∈ A and x ∈ M, if rsx ∈ L, either rs ∈ (L : M) or x ∈ L,
then L is called 1-absorbing prime.

Example 2.2. Assume (A,X) is a local ring with X2 = (0A) and M is a A-module. Then every proper
submodule in M is 1-absorbing prime. To see this, choose non-units r, s ∈ A and x ∈ M such that
rsx ∈ L. Since rs ∈ X2 = (0A), we have rs ∈ (L :M), which implies L is 1-absorbing prime.

Proposition 2.3. {Prime submodules} ⊆ {1-absorbing prime submodules} ⊆ {2-absorbing submodules}.
Proof. Suppose L is a prime submodule ofM. Take non-unit elements r, s ∈ A; x ∈M such that rsx ∈ L.
Since L is prime, rs ∈ (L : M) or x ∈ L, as desired. Suppose L is 1-absorbing prime. Take any r, s ∈ A
and x ∈ M such that rsx ∈ L. Then we must obtain that rs ∈ (L : M) or rx ∈ L or sx ∈ L. If r, s are
non-units, we have rs ∈ (L : M) or x ∈ L, as required. Without loss generality, let r be unit. Thus one
can see rsx ∈ L yields sx ∈ L, as desired.
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Example 2.4. (1-absorbing prime submodule that is not prime) Consider the submodule L =< X >
of Z4-module Z4[X]. By previous example, L is a 1-absorbing prime submodule. However, L is not a
prime submodule.

Example 2.5. (2-absorbing submodule that is not 1-absorbing prime) Let consider Z-module Z30.
Suppose that N is the cyclic submodule of Z-module Z30 generated by 6, that is, N =< 6 >. It is clear
that < 6 > is a 2-absorbing submodule of Z-module Z30, but < 6 > is not 1-absorbing prime. Indeed,
2 · 2 · 3 ∈< 6 > but 4 < (N : Z30) and 3 << 6 > .

Figure 1: 1-absorbing prime submodules (ideals) vs other classical submodules (ideals)

Proposition 2.6. Let L be a 1-absorbing prime submodule in M.

1. (L :M) is a 1-absorbing prime ideal in A, hence
√

(L :M) is prime.

2. (L : x) is 1-absorbing prime, hence
√

(L : x) is a prime ideal of A for every x ∈M\L.

Proof. (1) Choose non-units r, s, t ∈ Awith rst ∈ (L :M). For all x ∈M then rstx ∈ L. By our hypothesis,
rs ∈ (L :M) or tx ∈ L. This implies that t ∈ (L :M) or rs ∈ (L :M). Consequently, (L :M) is 1-absorbing
prime. Also, since (L : M) is 1-absorbing prime, we conclude

√
(L :M) is prime with the help of

Theorem 2.3 in [19].
(2) Similar to (1).

The next example displays that when (L : M) is 1-absorbing prime, one can not say that L is 1-
absorbing prime.
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Example 2.7. LetM = Z×Z and A = Z. Consider L =< (3,0) >= Z(3,0). Then it is clear that (L :M) =
(0). Then (L :M) is a prime ideal of Z, so 1-absorbing prime ideal in Z. But Z(3,0) is not 1-absorbing
prime. Indeed, choose (1,0) ∈Z×Z and 3,2 ∈Z, thus 3 · 2 · (1,0) ∈Z(3,0). However, 6 < (L :M) = (0)
and (1,0) <Z(3,0). Thus Z(3,0) is not 1-absorbing prime.

Now, we give a characterization of the concept of 1-absorbing submodules of an A-module M.

Theorem 2.8. The items are equivalent:

1. L is a 1-absorbing prime submodule of M.

2. (L : ab) ⊆ L for all non-units a,b ∈ A such that ab < (L :M).

3. For all non-units a,b ∈ A; a submodule K of M, abK ⊆ L implies either ab ∈ (L :M) or K ⊆ L.

4. If IJK ⊆ L, then K ⊆ L or IJ ⊆ (L : M) for any two proper ideals I, J and a proper submodule K
of M.

Proof. (1)⇒ (2) Choose x ∈ (L :M ab), that is, abx ∈ L. By hypothesis, either ab ∈ (L : M) or x ∈ L. The
first one contradicts with our assumption, so that we conclude (L :M ab) ⊆ L.

(2)⇒ (3) Let a,b ∈ A be non-units and K be a submodule of M with abK ⊆ L, i.e., K ⊆ (L :M ab).
Assume ab < (L :M). By the item (2), we obtain K ⊆ (L :M ab) ⊆ L, as needed.

(3) ⇒ (4) Choose any two proper ideals I, J and a proper submodule K of M such that IJK ⊆ L.
Suppose IJ * (L :M). Then there are non-units a,b ∈ A such that a ∈ I, b ∈ J and ab ∈ IJ\(L :M). Also,
IJK ⊆ L implies that abK ⊆ L. Thus, we have K ⊆ L by the item (3).

(4) ⇒ (1) Choose non-unit x,y ∈ A and m ∈ M with xym ∈ L. Assume m < L. This means that
< m >* L. Consider I = (x), J = (y) and K =< m >. Since IJK ⊆ L and K * L, by our hypothesis,
IJ ⊆ (L :M). Consequently, it means that xy ∈ (L :M), as desired.

Note that if A has exactly one maximal ideal, then A is called a quasilocal ring. In the following
theorem, we prove a result on 1-absorbing prime submodules over quasilocal rings.

Theorem 2.9. If N is a 1-absorbing prime submodule in M which is not a prime submodule, then A
is a quasilocal ring.

Proof. Assume that N is 1-absorbing prime that is not prime. Then there exist a non-unit r ∈ A;
m ∈M which rm ∈N but r < (N :M) andm <N. Choose a non-unit element s ∈ A.Hence we have that
rsm ∈ N and m < N. Because N is 1-absorbing prime, rs ∈ (N : M). Let us take a unit element u ∈ A.
We claim that s + u is a unit element of A. To see this, assume s + u is non-unit. Then r(s + u)m ∈ N .
As N is 1-absorbing prime, r(s + u) ∈ (N : M). This means that ru ∈ (N : M), i.e., r ∈ (N : M), which
is a contradiction. Thus for any non-unit element s and unit element u in A, we have s + u is a unit
element. Similar to the proof of Theorem 2.4 in [19], we obtain A is a quasilocal ring.

Corollary 2.10. Assume M is a A-module, where A is not a quasilocal ring. L is 1-absorbing prime
necessary and sufficient condition L is prime.

Proof. It follows from previous theorem.

Proposition 2.11. Let {Ni}i∈M be a chain of 1-absorbing prime submodules of A-module M. Then the
followings hold:

1.
⋂
i∈M
Ni is 1-absorbing prime.
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2. Assume that M is finitely generated. Then
⋃
i∈M
Ni is 1-absorbing prime.

Proof. (1) Take non-unit r, s ∈ A and x ∈M such that rsx ∈
⋂
i∈M
Ni .Assume that x <

⋂
i∈M
Ni , so there exists

i ∈M such that x <Ni . Since Ni is 1-absorbing prime, we get rs ∈ (Ni :M). For any j ∈M, we two cases.
Case 1: If Ni ⊆Nj , then (Ni :M) ⊆ (Nj :M), that is, rs ∈ (Nj :M).
Case 2: If Nj ⊂ Ni , we obtain that rs ∈ (Nj : M) since x < Nj and Nj is 1-absorbing prime. As a
consequence, we have rs ∈ (

⋂
i∈M
Ni :M).

(2) Since M is finitely generated,
⋃
i∈M
Ni is a proper submodule of M. Choose non-unit r, s ∈ A

and x ∈ M such that rsx ∈
⋃
i∈M
Ni and x <

⋃
i∈M
Ni . Thus for i ∈M, rsx ∈ Ni and x < Ni . This gives us

rs ∈ (Ni :M) ⊆ (
⋃
i∈M
Ni :M), which completes the proof.

Proposition 2.12. Let g :M→M ′ be a homomorphism of A-moduleM andM ′. Then the followings hold:

1. If L′ is 1-absorbing prime in M ′ with g−1(L′) ,M, g−1(L′) is 1-absorbing prime in M.

2. Assume g is an epimorphism. If L is a 1-absorbing prime submodule of M with Ker(g) ⊆ L, g(L) is a
1-absorbing prime submodule of M ′ .

Proof. (1) Take non-units r, s ∈ A and x ∈M such that rsx ∈ g−1(L′). This means that rsg(x) = g(rsx) ∈
L′ . Since L′ is 1-absorbing prime, one can see rs ∈ (L′ : M ′) or g(x) ∈ L′ . Then either rs ∈ (g−1(L′) : M)
or x ∈ g−1(L′).

(2) Choose non-units r, s ∈ A and x′ ∈M ′ such that rsx′ ∈ g(L). By assumption there exists x ∈M
such that x′ = g(x) and so g(rsx) ∈ g(L). Then rsx ∈ g−1(g(L)) ⊆ L, asKer(g) ⊆ L. This implies that either
rs ∈ (L : M) or x ∈ L. If rs ∈ (L : M), then rsM ⊆ L, that is, rsg(M) = rsM ′ ⊆ g(L). Thus rs ∈ (g(L) : M ′),
it is done. If x ∈ L, then x′ = g(x) ∈ g(L), as required.

One can easily obtain the following result by previous proposition.

Corollary 2.13. Let K ⊂ L be submodules of M. If L is a 1-absorbing prime submodule of M, then L/K is
a 1-absorbing prime submodule of M/K .

Theorem 2.14. Let ∅ , S ⊆ A be a multiplicatively closed subset and S−1L , S−1M. If L is 1-absorbing
prime in M, S−1L is 1-absorbing prime in S−1A-module S−1M.

Proof. Choose two non-units a
x ,
b
y ∈ S

−1A and m
z ∈ S

−1M such that a
x
b
y
m
z ∈ S

−1L. Then there is v ∈ S
with vabm ∈ L.As L is 1-absorbing prime, one can see either ab ∈ (L :M) or vm ∈ L. This result implies
that either ab

xy ∈ S
−1(L :M) ⊆ (S−1L : S−1M) or vm

vz = m
z ∈ S

−1L, which completes the proof.

Theorem 2.15. Let M1 ×M2 be a module over A1 ×A2, where A1 and A2 are two commutative rings
with nonzero identities. For two proper submodules L1 ofM1 and L2 ofM2, if L1×L2 is a 1-absorbing
prime submodule in M1 ×M2, L1 and L2 are 1-absorbing prime.

Proof. Take two non-units r, s ∈ A1; x ∈M1 with rsx ∈ L1. Then consider (r,0)(s,0)(x,0) ∈ L1 × L2. As
L1 × L2 is 1-absorbing prime, either (rs,0) ∈ (L1 × L2 : M1 ×M2) or (x,0) ∈ L1 × L2. This implies that
rs ∈ (L1 : M1) or x ∈ L1, that is, L1 is 1-absorbing prime. Similarly, one can obtain L2 is 1-absorbing
prime.
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3 The radical1 of ideals and submodules

Definition 3.1. Let P be a 1-absorbing prime submodule of M which L ⊆ P . If there isn’t a 1-
absorbing prime P ′ such that L ⊆ P ′ ⊂ P , then P is called a minimal 1-absorbing prime submodule
of L.

Theorem 3.2. If P is a 1-absorbing prime submodule of M with L ⊆ P , there exists a minimal 1-
absorbing prime submodule in L that it is contained in P .

Proof. Let define Λ := {Pi ∈ S(M) : Pi is a 1-absorbing prime submodule in M with L ⊆ Pi ⊆ P }. Since
L ⊆ P , we get Λ , ∅. Consider (Λ,⊇). Let us take a chain {Pi}i∈M in Λ. By Proposition 2.11(1), since⋂
i∈M
Pi is a 1-absorbing prime, we can use Zorn’s Lemma. Thus, there exists a maximal element K ∈Λ.

Then K is 1-absorbing prime and L ⊆ K ⊆ P . Now, we shall prove K is minimal 1-absorbing prime.
For the contrary, assume that there exists a 1-absorbing prime submodule K ′ which L ⊆ K ′ ⊆ K. Then
K ′ ∈Λ and K ⊆ K ′ . This implies K = K ′ . It is done.

Corollary 3.3. For a proper submodule L in M, the statements hold:

1. Each 1-absorbing prime submodule contains at least one minimal 1-absorbing prime submodule of
M.

2. Suppose that M is finitely generated. Every proper submodule of M has at least one minimal 1-
absorbing prime submodule of M.

3. If M is finitely generated, then there exists a 1-absorbing prime submodule of M which contains L.

Proof. (1) Obvious by Theorem 3.2.
(2) Let M be finitely generated. Then there exists a prime submodule P such that L ⊆ P , see [13].

Then P is 1-absorbing prime. Thus, by (1), it is done.
(3) By the claim in (2), it is clear.

Definition 3.4. For any I ∈ Id(A), we define

Ω := {Ii ∈ Id(A) : Ii is a 1-absorbing prime ideal with I ⊆ Ii}.

The intersection of all elements in Ω is called the radical1 of I, and we denote it as

rad1(I) :=
⋂
Ii∈Ω

Ii and if Ω = ∅ or I = A, we define rad1(I) := A.

Remark 3.5. One can easily see rad1(I) ⊆
√
I = rad(I), since every prime ideal is a 1-absorbing prime

ideal.

Definition 3.6. For any N ∈ S(M), we define

Ω := {Pi ∈ S(M) : Pi is a 1-absorbing prime submodule such that N ⊆ Pi}.

Then the intersection of all elements in Ω is called the radical1 of N, and we denote it as

rad1(N ) :=
⋂
Pi∈Ω

Pi and if Ω = ∅ or N =M, we define rad1(N ) :=M.

Remark 3.7. It is clear that rad1(N ) ⊆ rad(N ), since every prime submodule is a 1-absorbing prime
submodule.
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Proposition 3.8. Let N,L be two submodules of M. Then the following statements hold:

1. N ⊆ rad1(N ).

2. rad1(rad1(N )) ⊆ rad1(N ).

3. rad1(N ∩L) ⊆ rad1(N )∩ rad1(L).

4. rad1(IM) ⊆ rad1(
√
IM).

5. rad1(L :M) ⊆ (rad1(L) :M).

Proof. The first four items are elementary.
(5) If rad1(L) = M, it is trivial. Let rad1(L) ,M. Then there is a 1-absorbing prime submodule K

such that L ⊆ K. Thus (K : M) is 1-absorbing prime with (L : M) ⊆ (K : M). Hence rad1(L : M) ⊆ (K :
M), that is, rad1(L :M)M ⊆ K. The containment is held for all 1-absorbing prime submodules Ki with
L ⊆ Ki . This implies that rad1(L :M)M ⊆ rad1(L), i.e., rad1(L :M) ⊆ (rad1(L) :M).

Proposition 3.9. Let M be finitely generated. Then rad1(L) =M if and only if L =M.

Proof. Let rad1(L) = M. Suppose that L , M. By Corollary 3.3(3), there exists a 1-absorbing prime
submodule L′ of M which L ⊆ L′ . Hence, we conclude that rad1(L) = M ⊆ L′ , a contradiction. The
other way of the claim is clear.

Theorem 3.10. Let M be finitely generated and K, L be two submodules in M. Then K +L =M if and
only if rad1(K) + rad1(L) =M.

Proof. Assume that K + L = M. We know that K ⊆ rad1(K) and L ⊆ rad1(L). Thus M = K + L ⊆
rad1(K) + rad1(L), it is done. Conversely, suppose that K +L ,M. Since M is finitely generated, there
is a maximal submodule T of M such that K + L ⊆ T , see [13]. Furthermore, T is prime (thus, 1-
absorbing prime). As rad1(K) ⊆ T and rad1(L) ⊆ T ,we have rad1(K)+rad1(L) ⊆ T , that is,M ⊆ T . This
contradicts with our assumption. Consequently, it must be K +L =M.

4 Characterizations of 1-absorbing prime submodules of multiplication
modules

Now, our aim is to give two characterizations of the new concept in multiplication modules. For the
integrity of our study, we will remind some knowledge about multiplication modules. An A-module
M is said to be multiplication if each submodule L of M has the form JM for an ideal J of A, see [9].
It is clear that one can write L = JM ⊆ (L :M)M ⊆ L. Then if M is multiplication, L = (L :M)M.

For the first characterization examine the following result:

Theorem 4.1. Assume M is a faithful finitely generated multiplication A-module. Then L is 1-
absorbing prime in M if and only if for each submodules K1,K2,K3 of M if K1K2K3 ⊆ L, either
K1K2 ⊆ L or K3 ⊆ L.

Proof. Let L be a 1-absorbing prime submodule of M. Suppose K1K2K3 ⊆ L. Since M is a multiplica-
tion module, there are some ideals I1, I2, I3 ofA such thatK1 = I1M,K2 = I2M, andK3 = I3M.Consider
I1I2I3M ⊆ L. By Theorem 2.8, it must be either I1I2 ⊆ (L : M) or I3M ⊆ L. This implies that K1K2 ⊆ L
or K3 ⊆ L because M is multiplication. For the converse, let I1, I2 be two ideals in A and choose a
proper submodule K of M which I1I2K ⊆ L. As M is a multiplication module, there is an ideal I3 of
A such that K = I3M. Then I1I2I3M ⊆ L, by our hypothesis, I1I2M ⊆ L or I3M ⊆ L. The second option
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means K ⊆ L, it is done by Theorem 2.8. If I1I2M ⊆ L = (L :M)M,we conclude I1I2 ⊆ (L :M)+Ann(M)
by Corollary in page 231 of [16]. Since M is faithful, I1I2 ⊆ (L : M), which completes the proof with
Theorem 2.8.

Recall from [9], a multiplication module can be represented by a maximal ideal. Assume P is a
maximal ideal of A. To give the characterization, let us define the submodule TP (M) = {x ∈M : there
is a p ∈ P such that (1 − p)x = 0M}. Whenever TP (M) = M, M is said to be a P -torsion module. Also,
if there is p ∈ P ; x ∈M with (1 − p)M ⊆ Ax, M is called a P -cyclic module. In Theorem 1.2 of [9], the
authors proved that M is a multiplication A-module if and only if for any maximal ideal P of A, M
is a P -cyclic or M is a P -torsion. For more information about multiplication modules, we refer the
reader to [1], [6].

To obtain the second characterization, firstly we need the following results.

Theorem 4.2. Let M be a faithful multiplication A-module. Let J be a 1-absorbing prime ideal of A.
Then abx ∈ JM implies ab ∈ J or x ∈ JM for all non-units a,b ∈ A; x ∈M.

Proof. Take x ∈M; non-units a,b ∈ A with abx ∈ JM. Suppose ab < J. Let us define J ′ := {r ∈ A : rx ∈
JM}. In case J ′ = A, there is nothing to prove. So, J ′ , A. Then there is a maximal ideal P of A, which
J ′ ⊆ P . Now, we will prove x < TP (M). If x ∈ TP (M), there is p ∈ P with (1 − p)x = 0M . This yields
1− p ∈ J ′ ⊆ P , a contradiction. Hence, TP (M) ,M. As M is multiplication, M is P -cyclic by the help
of Theorem 1.2 in [9]. So, there is p′ ∈ P and x′ ∈M which (1 − p′)M ⊆ Ax′ . Then (1 − p′)x ∈ Ax′ , so
that there exists s ∈ A with (1 − p′)x = sx′ . Then (1 − p′)abx = sabx′ ∈ JM and (1 − p′)abx ∈ Ax′ . Thus,
there are a′ ∈ J such that (1− p′)abx = a′x′ . Since sabx′ = a′x′ , we obtain abs− a′ ∈ Ann(x′). Moreover,
(1 − p′)M ⊆ Ax′ gives us (1 − p′)Ann(x′)M ⊆ AAnn(x′)x′ = 0M , i.e., (1 − p′)Ann(x′) ⊆ Ann(M). Then
(1 − p′)Ann(x′) = 0A, because M is faithful. This implies (1 − p′)(abs − a′) = 0A. Hence, one can see
abs(1− p′) = a′(1− p′) ∈ J. Then abs(1− p′) ∈ J. Now, there are two cases for s ∈ A :

Case 1: Assume s is unit. Then ab(1 − p′) ∈ J. If 1 − p′ is unit, then ab ∈ J. This contradicts our
assumption ab < J . Suppose 1 − p′ is non-unit. As J is 1-absorbing prime, ab ∈ J (which gives a
contradiction) or 1 − p′ ∈ J. If 1 − p′ ∈ J, then we have (1 − p′)x ∈ JM, that is, 1 − p′ ∈ J ′ ⊆ P , a
contradiction.

Case 2: Assume s is non-unit. Now, we have two possibilities for 1−p′ . If 1−p′ is a unit element of
A, then sab ∈ J. Since J is 1-absorbing prime, ab ∈ J (again, it is not possible) or s ∈ J. Then sx′ ∈ JM.
Since sx′ = (1 − p′)x, we have (1 − p′)x ∈ JM. So, 1 − p′ ∈ J ′ ⊆ P , which is not possible. If 1 − p′ is
non-unit, because J is 1-absorbing prime, either abs ∈ J or 1 − p′ ∈ J. Again, since it is 1-absorbing
prime, we have ab ∈ J or s ∈ J or 1− p′ ∈ J. Every probability concludes a contradiction by the help of
the previous explications.

Consequently, J ′ = A, i.e., x ∈ JM.

Corollary 4.3. Suppose M is a faithful multiplication A-module. Let J be an ideal of A such that JM ,M.
If J is a 1-absorbing prime ideal of A, then JM is 1-absorbing prime.

Proof. Take non-unit elements x,y ∈ A and m ∈M such that xym ∈ JM. Suppose xy < (JM :M). Then
xy < J. By Theorem 4.2, it must be m ∈ JM, as required.

Theorem 4.4. Let M be a faithful finitely generated multiplication A-module. Let I be an ideal of A
such that IM ,M. Then IM is a 1-absorbing prime submodule of M if and only if I is a 1-absorbing
prime of A.

Proof. Let IM be 1-absorbing prime. Take non-unit x,y,z ∈ A such that xyz ∈ I. Suppose xy < I. By
Theorem 10 in [16], we have I = (IM : M). This implies that xy < (IM : M) and xyzM ⊆ IM. Since
IM is 1-absorbing prime, it must be either xy ∈ (IM : M) or zM ⊆ IM. The first one contradicts with
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xy < I. Thus, the second one implies z ∈ (IM : M) = I, as needed. The other way of the claim is
obvious from Corollary 4.3.

The proof of the next result is omitted since it is straightforward by Theorem 4.4.

Corollary 4.5. Let M be a faithful finitely generated multiplication A-module and N be a proper submod-
ule of M. Then

1. N is a 1-absorbing prime submodule of M if and only if (N :M) is 1-absorbing prime ideal of A.

2. N is a 1-absorbing prime submodule of M if and only if N = IM for some 1-absorbing prime ideal I
of A.

Proposition 4.6. Let T ,Q be some ideals in A with T ⊆Q. If Q is 1-absorbing prime, Q/T is 1-absorbing
prime.

Proof. Choose non-unit x + T ,y + T ,z + T in A/T such that xyz + T ∈ Q/T . This implies that xyz ∈ Q.
Since {r + T : r ∈ U (A)} ⊆ U (A/T ), one can see x,y,z are non-units. As Q is 1-absorbing prime, either
xy ∈Q or z ∈Q. This means xy + T ∈Q/T or z+ T ∈Q/T .

Definition 4.7. Let Q be an ideal of A. If the following equation U (A/Q) = {r +Q : r ∈ U (A)} holds,
then we say A satisfies the good unit element property for Q.

For the other way of Proposition 4.6, we need to the good unit element property:

Remark 4.8. (Corollary 2.17 in [19]) Let Q be an ideal of A such that T ⊆Q and U (A/T ) = {r +T : r ∈
U (A)}. Then Q is 1-absorbing prime if and only if Q/T is a 1-absorbing prime ideal in A/T .

Proposition 4.9. Let A satisfy the good unit element property for Ann(M). When L is a 1-absorbing prime
submodule in M over A/Ann(M), L is a 1-absorbing prime submodule in M over A.

Proof. Choose x ∈M; non-unit a,b ∈ A with abx ∈ L. We must show that either ab ∈ (L :A M) or x ∈ L.
Consider (a+Ann(M))(b+Ann(M))x = abx+Ann(M)x ∈ L. By our hypothesis, one can say a+Ann(M)
and b+Ann(M) are non-unit elements in A/Ann(M). Since L is a 1-absorbing prime submodule over
the ring A/Ann(M), we obtain ab +Ann(M) ∈ (L :A/Ann(M) M) or x ∈ L. If the second one holds, it is
done. The first one implies abM ⊆ L, i.e., ab ∈ (L :AM), as required.

As a final result in this section, we give the second characterization of 1-absorbing prime submod-
ules of multiplication modules in the next theorem.

Theorem 4.10. Let A satisfy the good unit element property for Ann(M),whereM is a multiplication
A-module. Then the followings are equivalent:

1. L is a 1-absorbing prime submodule of M.

2. (L :M) is a 1-absorbing prime ideal of A.

3. For a proper ideal P of A such that Ann(M) ⊆ P and P is 1-absorbing prime, then L = PM.

Proof. (1)⇒ (2) By Proposition 2.6.
(2)⇒ (3) Consider P = (L :M).
(3) ⇒ (1) By page 759 of [9], as M is a multiplication A-module, it is also a faithful multipli-

cation A/Ann(M)-module. Moreover, because P is a 1-absorbing prime ideal in A, P /Ann(M) is a
1-absorbing prime ideal in A/Ann(M) by Proposition 4.6. Then [P /Ann(M)]M is a 1-absorbing prime
submodule in A/Ann(M)-module M with the help of Corollary 4.3. Then Proposition 4.9 implies
that [P /Ann(M)]M is 1-absorbing prime. As [P /Ann(M)]M = L, it is done.
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5 The 1-absorbing Prime Avoidance Theorem

Our aim for the part is to demonstrate the Prime Avoidance Theorem for 1-absorbing prime sub-
modules of M. Firstly, we need the following proposition.

Now, recall from [12], a covering N ⊆ N1 ∪N2 ∪ · · · ∪Nn is efficient if N is not contained in the
union of any (n − 1) of the submodules N1,N2, . . . ,Nn. Similary, N = N1 ∪N2 ∪ · · · ∪Nn is said to be
an efficient union if none of the Ni may be excluded, where i = 1,2, . . . ,n. Also, note that a covering
consists of two submodules can not be efficient.

Proposition 5.1. Let N,N1,N2, . . . ,Nn be submodules of a A-module M such that N ⊆N1 ∪N2 ∪ · · · ∪Nn
is an efficient covering (n > 2). If

√
(Nj :M) *

√
(Nk :m) for ∀ m < Nk and ∀ j , k, then no Nk is a

1-absorbing prime submodule of M, where k = 1,2, . . . ,n.

Proof. It is clear that N = (N1 ∩N )∪ (N2 ∩N )∪ · · · ∪ (Nn ∩N ) is an efficient union. Hence, for every

k ≤ n, there is ek ∈N −Nk .Note that
n⋂
j,k
Nj∩N ⊆N∩Nk by Lemma 2.1 in [12]. Now, without losing the

generality assume that N1 is 1-absorbing prime. It must be
√

(Nj :M) *
√

(N1 :m) for ∀ m < N1 and

∀ j = 2,3, . . . ,n, by our hypothesis. Thus there is sj ∈
√

(Nj :M) and sj <
√

(N1 :m). This implies that

there exists nj ∈N such that s
nj
j ∈ (Nj :M). Let β =max {nj}j=2,3,...,n. Consider s = (s2s3···sn)β ∈ (Nj :M).

Then clearly se1 ∈ sM ⊆Nj for ∀ j = 2,3, . . . ,n. This implies that se1 ∈
n⋂
j=2
N ∩Nj . Here, note that since

e1 < N1 and N1 is 1-absorbing prime, by Proposition 2.6(2), (N1 : e1) is a 1-absorbing prime ideal
of R. Moreover,

√
(N1 : e1) is a prime ideal by Theorem 2.3 in [19]. Now, we claim that se1 < N1.

Indeed, if s ∈ (N1 : e1), we would have s2s3 · · · sn ∈
√

(N1 : e1), this gives us sj ∈
√

(N1 : e1) for some j.
Since sj <

√
(N1 :m) for ∀ m < N1 and e1 < N1, we would obtain a contradiction. Hence, we conclude

se1 ∈
n

(
⋂
j=2
N ∩Nj )−N ∩N1, a contradiction. Consequently, N1 is not 1-absorbing prime.

Theorem 5.2. (1-absorbing Prime Avoidance Theorem for Submodules) Let N1,N2, . . . ,Nn be a fi-
nite number of submodules of aA-moduleM andN be a submodule inM whichN ⊆N1∪N2∪···∪Nn.

Suppose that at most two of the Ni ’s are not 1-absorbing prime and
√

(Nj :M) *
√

(Nk :m) for ∀
m <Nk and ∀ j , k. Then N ⊆Nk for some k = 1,2, . . . ,n.

Proof. By using the containment N ⊆ N1 ∪N2 ∪ · · · ∪Nn, we can find N ⊆ Nj1 ∪Nj2 ∪ · · · ∪Njt , which
is an efficient covering. Then 1 ≤ t ≤ n and t , 2. If t > 2, there is at least one Lji , which is 1-
absorbing prime. On the other hand, by the help of Proposition 5.1, we conclude a contradiction with√

(Nj :M) *
√

(Nk :m) for ∀ m <Nk and ∀ j , k. Thus t = 1, that is, N ⊆Nk for some k = 1,2, . . . ,n.

As a final conclusion of our study, we will present "1-absorbing Prime Avoidance Theorem for
Cosets". For this reason, we need the followings.

Let N,N1,N2, . . . ,Nn be submodules of a A-module M and N1 +m1,N2 +m2, . . . ,Nn +mn be cosets
in M. Then a covering N ⊆ (N1 +m1)∪ (N2 +m2)∪ · · · ∪ (Nn +mn) is said to be efficient if N is not
contained in the union of any (n− 1) of the cosets, see [12].

Remark 5.3. Consider the above efficient covering. If mj = m for every j ∈ {1,2, . . . ,n}, then the
covering equals to N −m ⊆N1∪N2∪ · · · ∪Nn. Thus, N −m is a coset efficiently covered by a union of
submodules, see [12].



172 Moroccan Journal of Algebra and Geometry with Applications / Emel Aslankarayigit Ugurlu

In order not to lose the entireness of the article, let us notice the following:

Lemma 5.4. (Lemma 2.4 in [12]) Let N ⊆ (N1 +m1)∪ (N2 +m2)∪ · · · ∪ (Nn +mn) be an efficient covering

of a submodule of N by cosets, where n ≥ 2. Then N ∩ (
n⋂
j,k
Nj ) ⊆Nk and N *Nk for all k.

Proposition 5.5. Let N +m ⊆ N1 ∪ N2 ∪ · · · ∪ Nn be an efficient covering for m ∈ M with n ≥ 2. If√
(Nj :M) *

√
(Nk :M) for ∀ j , k. Then no Nk is 1-absorbing prime in M, where k = 1,2, . . . ,n.

Proof. AssumeN+m ⊆N1∪N2∪···∪Nn is an efficient covering form ∈M with n ≥ 2. Then by Remark

5.3, we can apply Lemma 5.4. Thus, we conclude that N ∩ (
n⋂
j,k
Nj ) ⊆Nk and N *Nk for all k. Without

losing the generality, let k = 1. For the contradictory, suppose N1 is 1-absorbing prime. Consider

the ideal I = (
n⋂
j=2
Nj : M). This implies that I2N ⊆ IN ⊆ N ∩ (

n⋂
j=2
Nj ) ⊆ N1. Since N1 is 1-absorbing

prime, either I2 ⊆ (N1 : M) or N ⊆ N1 by Theorem 2.8. The second one gives us a contradiction.

Assume I2 ⊆ (N1 : M). Then
√
I =
√
I2 ⊆

√
(N1 :M). As

√
(
n⋂
j=2
Nj :M) =

√
n⋂
j=2

(Nj :M) =
n⋂
j=2

√
(Nj :M),

then
n⋂
j=2

√
(Nj :M) ⊆

√
(N1 :M).Note that

√
(N1 :M) is a prime ideal by Proposition 2.6(1). This result

gives us
√

(Nj :M) ⊆
√

(N1 :M) for some j, which contradicts with our assumption. Consequently,

N1 is not a 1-absorbing prime submodule.

Finally, by the help of Remark 5.3, we can express the following result.

Theorem 5.6. (1-absorbing Prime Avoidance Theorem for Cosets) LetN +m ⊆N1∪N2∪···∪Nn be a

covering form ∈M. Suppose that at most one submodule Ni is not 1-absorbing prime. If
√

(Nj :M) *√
(Nk :M) for ∀ j , k, then the submodule N+ < m >⊆Nk for some k = 1,2, . . . ,n.

Proof. By using the covering N +m ⊆ N1 ∪N2 ∪ · · · ∪Nn, we can find an efficient covering, N +m ⊆
Nj1 ∪Nj2 ∪ · · · ∪Njt . Then 1 ≤ t ≤ n. It follows from Proposition 5.5 that t = 1. Thus, we conclude
N +m ⊆Nk for some k = 1,2, . . . ,n. It is clear that N+ < m >⊆Nk since m ∈N +m ⊆Nk .
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