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Abstract. Let R be a ring and let M be an R-module with S = EndR(M). A submodule N of M is said to be projection

invariant in M (denoted N Ep M) if eN ⊆ N for all e = e2 ∈ S. We call M π-dual Baer, if for each N Ep M there exists

e2 = e ∈ S such that {f ∈ S | f (M) ⊆ N } = eS. A characterization of π-dual Baer modules is provided. We show that the

class of π-dual Baer modules lies strictly between the classes of dual Baer modules and quasi-dual Baer modules. It is

also shown that in general, the class of π-dual Baer modules is neither closed under direct sums nor closed under direct

summands. The structure of π-dual Baer modules over Dedekind domains is completely determined. We conclude the

paper by studying right π-dual Baer rings. We call a ring R right π-dual Baer if the right R-module RR is right π-dual Baer.

A characterization of this class of rings is provided. We also investigate the transfer between a base ring R and many of

its extensions (for example, full matrix rings over R or R[x] or R[[x]]). In addition, we characterize the 2-by-2 generalized

triangular right π-dual Baer matrix rings.

Key Words: dual Baer module; quasi-dual Baer module; π-dual Baer module; endomorphism rings; projection invariant

submodule.
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1 Introduction

Throughout this paper R will always be an associative ring with unity and any module will be a
unital right R-module unless stated otherwise. Let M be an R-module. By S = EndR(M) and IM , we
denote the endomorphism ring of the module M and the subring of S generated by the idempotents
of S, respectively. For a ring R, we use I(R) to denote the subring of R generated by idempotents. The
notations N ⊆M, N ≤M and N ≤d M mean that N is a subset of M, N is a submodule of M and N
is a direct summand of M, respectively. Let N ≤M. Then N is called a fully invariant submodule of
M (denoted N EM) if f (N ) ⊆ N for all f ∈ S, and N is called a projection invariant submodule of M
(denotedNEpM) if e(N ) ⊆N for all e2 = e ∈ S. Note that every fully invariant submodule is projection
invariant and the projection invariant submodules of a module M form a complete sublattice of the
lattice of submodules ofM. One may observe that ifN is fully (projection) invariant inM, then there
exists a ring homomorphism α : S→ EndR(N ) (β : IM → IN ) defined by α(h) = h|N (β(h) = h|N ) for
all h ∈ S (h ∈ IM ) (see [7]). Note that a right ideal I of a ring R is called projection invariant in RR
(denoted IREp RR) if eI ⊆ I for all e2 = e ∈ R. Moreover, fully invariant right ideals of R coincide with
two-sided ideals of R.

The notions of Baer modules and quasi-Baer modules were introduced in 2004 (see [16]). In 2010
(see [13]), Keskin Tütüncü and Tribak dualized the notion of Baer modules. A moduleM is said to be
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dual Baer if for every submodule N of M, there exists an idempotent e ∈ S such that {f ∈ S | f (M) ⊆
N } = eS. The right ideal {f ∈ S | f (M) ⊆ N } of S will be denoted by DS(N ). For a subset X in S and
a submodule N of M, let X(N ) denote the submodule

∑
f ∈X f (N ) of M. Note that a module M is

dual Baer if and only if for every subset A of S, A(M) is a direct summand of M if and only if for
every right ideal A of S, A(M) is a direct summand of M (see [13, Theorem 2.1]). In 2013 (see [3]),
Amouzegar and Talebi introduced the notion of quasi-dual Baer modules by dualizing the notion of
quasi-Baer modules. A module M is said to be quasi-dual Baer if for every fully invariant submodule
N of M, there exists an idempotent e ∈ S such that DS(N ) = eS. In [18], the authors continued the
study of quasi-dual Baer modules. They showed that a module M is quasi-dual Baer if and only if
for every left ideal I of S, I(M) is a direct summand of M (see [18, Proposition 2.4]).

In 2020 (see [7]), Birkenmeier, Kara and Tercan introduced the notion of π-endo Baer (π-e.Baer for
short) modules. According to [7, Definition 3.3], a module M is called π-e.Baer, if for each ∅ , X ⊆M
such that j(X) ⊆ X for all j2 = j ∈ S there exists e2 = e ∈ S such that lS(X) = {s ∈ S | s(X) = 0} = Se. By
[7, Lemma 3.4], a module M is π-e.Baer if and only if for each N EpM, there exists f 2 = f ∈ S such
that lS(N ) = Sf if and only if for each SY Ep SS, there exists e2 = e ∈ S such that

⋂
g∈Y Kerg = eM.

Later in 2021, this notion was dualized by Kara (see [12]) by introducing the following definition.

Definition 1.1. A module M is called dual π-endo Baer, if for each N EpM, there exists e2 = e ∈ S
such that DS(N ) = eS.

Note that in [4] and [7], the authors used the terminology endomorphism Baer module, denoted
briefly by e-Baer, for the Baer modules defined by Rizvi and Roman in [16]. The rings R for which
the right R-module RR is π-e.Baer were studied in 2018 (see [6]). It was shown in [6, Proposition 2.1]
that the π-e.Baer property is left-right symmetric for any ring R. Then (right) π-e.Baer rings were
called π-Baer rings in [6, Definition 2.2].

Motivated by all these research works ([3], [7], [12] and [13]), we continue to study dual π-endo
Baer modules, but under the name π-dual Baer modules in this paper. We also study π-dual Baer
rings. A ring R is said to be right (left) π-dual Baer if the right (left) R-module RR (RR) is π-dual
Baer. The aim of this paper is to show that some results of π-e.Baer modules and π-Baer rings have
corresponding duals for π-dual Baer modules and right π-dual Baer rings. In addition, we will obtain
the π-dual Baer analogues of certain results appearing in [6] or in [18].

Section 2 is devoted to the study of some basic properties of π-dual Baer modules. We provide
some equivalent formulations of being a π-dual Baer module (Theorem 2.4). We show that for an
indecomposable Z-moduleM,M is dual Baer if and only ifM is π-dual Baer if and only ifM is quasi-
dual Baer if and only if M �Q or M �Z(p∞) or M �Z/pZ, where p is a prime number (Proposition
2.12). We construct some examples showing that the π-dual Baer condition is strictly between the
dual Baer and quasi-dual Baer conditions (Example 2.14).

In Section 3, we investigate direct sums and direct summands of π-dual Baer modules. We first
provide examples showing that, in general, the π-dual Baer condition is neither preserved under
direct sums nor preserved under direct summands (Examples 3.1 and 3.5). Then we prove that any
projection invariant direct summand of a π-dual Baer module inherits the property (Theorem 3.6).
It is also shown that if a module M = ⊕i∈IMi such that Mi EpM for all i ∈ I , then M is π-dual Baer if
and only if Mi is π-dual Baer for all i ∈ I (Theorem 3.8). We conclude this section by describing the
structure of π-dual Baer modules over Dedekind domains (Theorem 3.15).

In Section 4, we deal with right π-dual Baer rings. We show that the class of right π-dual Baer
rings lies strictly between the classes of dual Baer rings and quasi-dual Baer rings (Remark 4.14).
We provide a characterization of right π-dual Baer rings (Theorem 4.15). In addition, we study the
transfer of the right π-dual Baer property between a base ring R and several extensions. For example,
full matrix rings over R or R[x] or R[[x]] (see Propositions 4.19 and 4.21, Examples 4.20 and 4.22).
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We conclude the paper by characterizing the 2-by-2 generalized triangular right π-dual Baer matrix
rings (Theorem 4.24).

Throughout this paper, by Z, Q and Z(p∞) we denote the ring of integer numbers, ring of rational
numbers and the Prüfer p-group, respectively where p is a prime number.

2 Some results on π-dual Baer modules

Definition 2.1. A moduleM is called π-dual Baer, if for each N EpM, there exists e2 = e ∈ S such that
DS(N ) = eS.

Example 2.2. (i) Clearly, every semisimple module is π-dual Baer.
(ii) LetM be an indecomposable module. Then 0 and 1 are the only idempotents of S. This implies

that all submodules ofM are projection invariant. ThereforeM is dual Baer if and only ifM is π-dual
Baer.

(iii) Let R be a commutative ring. Using [13, Corollary 2.9], we see that the R-module R is dual
Baer if and only if it is π-dual Baer if and only if it is quasi-dual Baer if and only if R is semisimple.

Recall that an idempotent e ∈ R is called left semicentral if xe = exe for all x ∈ R. The set of left
semicentral idempotents of R is denoted by Sl(R). We begin with the following lemma which is
taken from [12, Lemmas 2.1 and 2.2] and [7, Lemma 3.1(iii)]. This lemma will be used throughout
the paper.

Lemma 2.3. Let M be a module with S = EndR(M).

(i) If N EpM, then DS(N )Ep SS.

(ii) If IS Ep SS, then I(M)EpM.

(iii) If I is a right ideal of S, then DS(I(M))(M) = I(M).

(iv) If N ≤M, then DS(DS(N )(M)) =DS(N ).

(v) Let e = e2 ∈ S. Then (eM)R EpMR if and only if (eM)R EMR if and only if e ∈ Sl(S).

The following characterization of π-dual Baer modules will be used later to obtain other results in
this study.

Theorem 2.4. Let M be a module. Then the following are equivalent:

(i) M is π-dual Baer;

(ii) For each IS Ep SS, I(M) is a (projection invariant) direct summand of M;

(iii) For each N Ep M, there exists a decomposition M = M1 ⊕M2 with M1 ≤ N , M1 Ep M and
HomR(M,N ∩M2) = 0;

(iv) For each N Ep M, there exists a decomposition M = M1 ⊕M2 with M1 ≤ N , M1 EM and
HomR(M,N ∩M2) = 0;

(v) For each N EpM, there exists a decomposition M = M1 ⊕M2 with M1 ≤ N and HomR(M,N ∩
M2) = 0.
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Proof. (i)⇔ (ii) This follows from [12, Proposition 2.4] and Lemma 2.3(ii).
(i) ⇒ (iii) This implication follows by adapted the proof of [18, Proposition 2.1((i) ⇒ (ii))] and

using Lemma 2.3.
(iii)⇒ (iv) This follows from Lemma 2.3(v) (see also [1, Proposition 3.1(4)]).
(iv)⇒ (v) This is evident.
(v)⇒ (i) The proof of this implication is similar to that of [18, Proposition 2.1((ii)⇒ (i))].

Example 2.5. Let M be a module such that HomR(M,N ) = 0 for every projection invariant proper
submodule N of M. Then M is π-dual Baer by Theorem 2.4. For example, the Prüfer p-group Z(p∞)
and the group of rational numbers Q are π-dual Baer Z-modules, where p is any prime number.

As applications of Theorem 2.4, we obtain the following corollaries.

Corollary 2.6. Let M be a π-dual Baer module and N EpM. Then the following are equivalent:

(i) N ≤d M;

(ii) DS(N )(M) =N .

Proof. (i) ⇒ (ii) Let π : M → N be the projection map and i : N → M be the inclusion map. Then
iπ ∈DS(N ) and iπ(M) =N . Hence DS(N )(M) =N .

(ii)⇒ (i) Since N EpM, DS(N )Ep SS by Lemma 2.3(i). Applying Theorem 2.4, we get DS(N )(M) ≤d
M. Therefore N ≤d M by (ii).

Corollary 2.7. Let M be a module such that every projection invariant submodule of M is a direct sum-
mand of M. Then M is π-dual Baer.

Proof. Let ISEp SS. Then by Lemma 2.3(ii), I(M)EpM. So, by hypothesis, I(M) ≤d M. From Theorem
2.4, it follows that M is a π-dual Baer module.

Corollary 2.8. Let M be an indecomposable module. Then the following are equivalent:

(i) M is a π-dual Baer module;

(ii) For every proper submodule N of M, HomR(M,N ) = 0.

Proof. Since M is indecomposable, the set of all idempotents of S is {0,1}. Therefore all submodules
of M are projection invariant.

(i)⇒ (ii) Let N be a proper submodule of M. By Theorem 2.4, HomR(M,N ) = 0.
(ii)⇒ (i) Let N EpM with N ,M. Since HomR(M,N ) = 0, DS(N ) = 0 is a direct summand of SS. If

N =M, then DS(N ) = S is again a direct summand of SS. This completes the proof.

Next, we compare the notions of dual Baer, π-dual Baer and quasi-dual Baer modules. From the
definitions of these three notions, we infer the following remark.

Remark 2.9. (see also [12, Theorem 2.6]) It is easily seen that the following implications hold for a
module M:
M is a dual Baer module⇒M is a π-dual Baer module⇒M is a quasi-dual Baer module.

Next, we provide some sufficient conditions under which these three notions coincide. Recall that
a ring R is called a right duo ring if every right ideal of R is a two-sided ideal.

Example 2.10. Let M be a module such that S = EndR(M) is a right duo ring. By [18, Remark 2.8],
M is quasi-dual Baer if and only if M is dual Baer. Therefore from Remark 2.9, it follows that M is
dual Baer if and only if M is π-dual Baer if and only if M is quasi-dual Baer.
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Proposition 2.11. LetR be a local ring with maximal right idealm andM = R/m. Assume that Rad(E(M)) ,
E(M). Then the following are equivalent:

(i) E(M) is a dual Baer R-module;

(ii) E(M) is a π-dual Baer R-module;

(iii) E(M) is a quasi-dual Baer R-module;

(iv) R is a division ring.

Proof. This follows directly from Remark 2.9 and [18, Corollary 2.14].

Proposition 2.12. Let M be an indecomposable Z-module. Then the following are equivalent:

(i) M is dual Baer;

(ii) M is π-dual Baer;

(iii) M is quasi-dual Baer;

(iv) M �Q or M �Z(p∞) or M �Z/pZ, where p is a prime number.

Proof. This is clear by Remark 2.9 and [18, Corollary 3.7].

Combining Remark 2.9 and [18, Corollary 3.9], we obtain the following proposition.

Proposition 2.13. Let M be a nonzero module over a commutative perfect ring R. Then the following
conditions are equivalent:

(i) M is dual Baer;

(ii) M is π-dual Baer;

(iii) M is quasi-dual Baer;

(iv) M is a semisimple module.

Next, we present some examples to show that the class of π-dual Baer modules lies properly be-
tween the class of dual Baer modules and that of quasi-dual Baer modules (see Remark 2.9).

Example 2.14. (i) Let S be a simple ring and let SNS be an S-S-bimodule. Consider the generalized

matrix ring R =
[
S N
N S

]
and the right R-module M = N ⊕ S. Assume that S is a domain that is not a

division ring. We know from [15, p. 1278] that EndR(M) � S (as rings). Then EndR(M) is a domain
and hence M is indecomposable. Therefore all submodules of M are projection invariant. By [18,
Example 2.9(ii)], M is a quasi-dual Baer module which is not dual Baer. This implies that M is a
quasi-dual Baer module which is not π-dual Baer by [12, Proposition 2.8(ii)].

(ii) Let R be a ring which is a finite product of simple rings such that R is not semisimple. Then
RR is a quasi-dual Baer module by [18, Proposition 2.10]. Let F be a free R-module with a finite rank
n > 1. Using [3, Theorem 2.7], we conclude that F is a quasi-dual Baer module. Thus F is π-dual Baer
by the proof of [12, Corollary 2.9]. On the other hand, the module F is not dual Baer, since otherwise
R will be semisimple by [13, Corollaries 2.5 and 2.9].

In the following result, we characterize the class of rings R for which every finitely cogenerated
right R-module is π-dual Baer.
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Proposition 2.15. The following conditions are equivalent for a ring R:

(i) Every finitely cogenerated right R-module is π-dual Baer;

(ii) Every finitely cogenerated right R-module is quasi-dual Baer;

(iii) R is a right V-ring.

Proof. (i)⇒ (ii) This is clear.
(ii) ⇒ (iii) Assume that R has a simple right R-module S which is not injective. Then E(S) , S.

Let M = A⊕ B be a right R-module such that A � S and B � E(S). Let S1 = Soc(B). Clearly, S1 � S.
Note that N = Soc(M) = A⊕ S1 is an essential submodule of M that is fully invariant in M. By [18,
Proposition 2.1], there exists a decomposition M =M1⊕M2 with M1 ⊆N and HomR(M,N ∩M2) = 0.
Since N ,M, we have M2 , 0 and hence N ∩M2 , 0. Therefore N ∩M2 contains a simple submodule
S2 with S2 � S � A. It follows that HomR(M,N ∩M2) , 0, a contradiction. This proves that R is a
right V-ring.

(iii)⇒ (i) This follows from the fact every finitely cogenerated right module over a right V-ring is
semisimple.

3 Direct sums and direct summands of π-dual Baer modules

A direct sum of π-dual Baer modules may not be π-dual Baer as we see in the following example.
Another example is provided in [12, Example 2.13].

Example 3.1. Let L be a simple R-module such that the injective hull of L has no maximal submod-
ules. It is shown in [18, Example 2.17] that the module M = E(L)⊕ L is not quasi-dual Baer. Thus M
is not π-dual Baer (see Remark 2.9). Now let R be a discrete valuation ring with maximal ideal m and
quotient field K . It is well known that K/R � E(R/m). Therefore the R-module (K/R)⊕ (R/m) is not
π-dual Baer. On the other hand, note that both K/R and R/m are π-dual Baer by [13, Theorem 3.4].

Next, we deal with a special case of direct sums of π-dual Baer modules. First, we include the
following lemma which will be useful to our work in this paper.

Lemma 3.2. [7, Lemma 3.1]

(i) Let XR ≤NR ≤M. Then X EpN EpM implies that X EpM.

(ii) Let M = ⊕i∈IMi and XR EpMR. Then X = ⊕i∈I (X ∩Mi) and X ∩Mi EpMi for all i ∈ I .

Theorem 3.3. LetM be a π-dual Baer module. Then every direct sum of copies ofM is a π-dual Baer
module.

Proof. Let N = ⊕i∈IMi such that Mi � M for all i ∈ I . Let X Ep N . By Lemma 3.2(ii), we have
X = ⊕i∈I (X ∩Mi) and X ∩Mi Ep Mi for all i ∈ I . Fix i ∈ I . Since Mi is π-dual Baer, there exists
a decomposition Mi = Ki ⊕ Li with Ki ≤ X ∩Mi and HomR(Mi ,X ∩ Li) = 0 by Theorem 2.4. Put
K = ⊕i∈IKi and L = ⊕i∈ILi . Clearly, M = K ⊕ L and K ⊆ X. Moreover, we have X ∩ L = ⊕i∈I (X ∩ Li).
Now assume that HomR(M,X ∩ L) , 0. Then there exist i, j ∈ I such that HomR(Mi ,X ∩ Lj ) , 0. But
Mj � Mi . So HomR(Mj ,X ∩ Lj ) , 0, a contradiction. Hence HomR(M,X ∩ L) = 0. Applying again
Theorem 2.4, it follows that N is a π-dual Baer module.

The following corollary is an immediate consequence of Theorem 3.3.

Corollary 3.4. Let R be a ring such that RR is a right π-dual Baer R-module. Then all free right R-modules
are π-dual Baer.
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Note that both the class of dual Baer modules and the class of quasi-dual Baer modules are closed
under direct summands (see [13, Corollary 2.5] and [18, Corollary 2.5]). However, the following
example illustrates that being π-dual Baer is not preserved by taking direct summands.

Example 3.5. Let R be a simple ring which is a domain but not a division ring. From [18, Proposition
2.10], we infer that RR is a quasi-dual Baer R-module. On the other hand, RR is not a π-dual Baer
module by [12, Proposition 2.8(ii)] and [13, Corollary 2.9]. Now consider a free right R-module
FR = ⊕ni=1Ri for some integer n > 1, where Ri � R for all 1 ≤ i ≤ n. Note that F is quasi-dual Baer by
[3, Theorem 2.7]. Then F is π-dual Baer by [12, Corollary 2.9].

As an application of Theorem 2.4, we can improve and generalize Proposition 2.11 of [12] as
follows. The proof and the techniques used are different from those of [12, Proposition 2.11].

Theorem 3.6. Let M = M1 ⊕M2 be a π-dual Baer module for some submodules M1 and M2 of M. If
M1 EpM, then M1 and M2 are π-dual Baer.

Proof. Let us first prove thatM1 is π-dual Baer. TakeN1EpM1. ThenN1EpM by Lemma 3.2(i). Since
M is π-dual Baer, there exists a decomposition M = K1 ⊕K2 with K1 ≤N1 and HomR(M,N1 ∩K2) = 0
(see Theorem 2.4). By modularity, we haveM1 = K1⊕(K2∩M1). Moreover,N1∩(K2∩M1) =N1∩K2. It
is clear that HomR(M1,N1 ∩K2) = 0. Using Theorem 2.4, we deduce that M1 is π-dual Baer. To show
that M2 is π-dual Baer, take N2 EpM2. Then N = M1 ⊕N2 EpM by [5, Lemma 4.13]. So there exist
submodules K and L ofM such thatM = K⊕L, K ⊆N , KEpM and HomR(M,N ∩L) = 0 (see Theorem
2.4). Note that K = (K ∩M1)⊕ (K ∩M2) by Lemma 3.2(ii). Hence M = (K ∩M1)⊕ (K ∩M2)⊕L and so
M2 = (K ∩M2)⊕ [((K ∩M1)⊕ L)∩M2]. In addition, it is clear that K ∩M2 = K ∩N2 ⊆ N2 as K ⊆ N .
Thus N2 = (K∩N2)⊕ [((K∩M1)⊕L)∩N2]. Moreover, since M = (K∩M1)⊕ (K∩N2)⊕L, it follows that
N = (K∩M1)⊕(K∩N2)⊕(N∩L) by modularity. ThereforeN2 = (K∩N2)⊕[((K∩M1)⊕(N∩L))∩N2]. Note
that ((K∩M1)⊕(N ∩L))∩N2 ⊆ ((K∩M1)⊕L)∩N2. Then ((K∩M1)⊕(N ∩L))∩N2 = ((K∩M1)⊕L)∩N2.
Now assume that HomR(M2,N2∩ [((K∩M1)⊕L)∩M2)]) , 0 and let f :M2→ ((K∩M1)⊕ (N ∩L))∩N2
be a nonzero homomorphism. Let π : (K ∩M1)⊕ (N ∩ L)→ N ∩ L be the projection map. It is easy
to check that 0 , πf ∈ HomR(M2,N ∩ L). This contradicts the fact that HomR(M,N ∩ L) = 0. From
Theorem 2.4, we infer that M2 is a π-dual Baer module.

Proposition 3.7. Let M =M1⊕M2 for some submodules M1 and M2 of M. If M is a π-dual Baer module
with IM1

= EndR(M1), then M1 is π-dual Baer.

Proof. By Remark 2.9, M is quasi-dual Baer. So M1 is quasi-dual Baer by [18, Corollary 2.5]. There-
fore M1 is π-dual Baer by [12, Proposition 2.8(iv)].

Combining [12, Theorem 2.14] and Lemma 2.3(v), we obtain the following theorem. By using
Theorem 2.4, we next provide another proof of this result.

Theorem 3.8. Let M = ⊕i∈IMi , where Mi EpM for all i ∈ I . Then M is π-dual Baer if and only if Mi

is π-dual Baer for all i ∈ I .

Proof. Assume that M is π-dual Baer. By Theorem 3.6, each Mi (i ∈ I) is π-dual Baer. Conversely,
assume that each Mi is π-dual Baer. By Lemma 2.3(v), Mi EM for all i ∈ I . So, HomR(Mi ,Mj ) = 0
for all i , j ∈ I . Let N Ep M. Thus N = ⊕i∈I (N ∩Mi) and N ∩Mi Ep Mi for all i ∈ I by Lemma
3.2(ii). Fix i ∈ I . By Theorem 2.4, there exists a decomposition Mi = Ki ⊕ Li with Ki ⊆ N ∩Mi and
HomR(Mi ,N ∩ Li) = 0. Set K = ⊕i∈IKi and L = ⊕i∈ILi . Clearly, M = K ⊕ L and K ⊆ N . Moreover, it
is easy to see that N ∩ L = ⊕i∈I (N ∩ Li). Combining the facts that HomR(Mi ,Mj ) = 0 for all i , j ∈ I
and HomR(Mi ,N ∩ Li) = 0 for all i ∈ I , we conclude that HomR(M,N ∩ L) = 0. Using Theorem 2.4, it
follows that M is π-dual Baer.
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Let M be a module. The radical of M will be denoted by Rad(M). Note that Rad(M) is a fully
invariant submodule of M by [2, Proposition 9.14]. Clearly, if M is semisimple, then Rad(M) = 0.

Corollary 3.9. Let an R-module M = M1 ⊕M2 be a direct sum of submodules M1 and M2 such that
Rad(M1) = M1, M2 is semisimple. If M is π-dual Baer, then M1 is π-dual Baer. The converse holds when
HomR(M2,M1) = 0.

Proof. Note that Rad(M) = Rad(M1)⊕Rad(M2) =M1 EM.
(⇒) This follows by Theorem 3.6.
(⇐) Since HomR(M2,M1) = 0, M2 EM. Now the result follows from Theorem 3.8.

For the proof of the implication (i)⇒ (ii) in the following proposition, we mainly follow the proof
of [18, Proposition 2.15((i)⇒ (ii))].

Proposition 3.10. Let an R-module M = M1 ⊕M2 be a direct sum of submodules M1 and M2 such that
Rad(M1) =M1 and M2 is semisimple. Then the following are equivalent:

(i) M is π-dual Baer;

(ii) M1 is π-dual Baer and I(M2)∩M1 ⊆ I(M1) for all IS Ep SS.

Proof. (i) ⇒ (ii) By Corollary 3.9, M1 is π-dual Baer. Now we will prove that I(M2) ∩M1 ⊆ I(M1)
for all IS Ep SS. Let IS Ep SS. By Lemma 2.3(ii), I(M1) + I(M2) = I(M) EpM. Hence I(M) = (I(M)∩
M1)⊕ (I(M)∩M2) by Lemma 3.2(ii). As M1 EM, we have I(M1) ⊆M1. By modularity, M1 ∩ I(M) =
M1∩(I(M1)+I(M2)) = I(M1)+(M1∩I(M2)). SinceM1∩I(M2) is semisimple, there exists a semisimple
submoduleN ofM1∩I(M2) such that I(M1)+(M1∩I(M2)) = I(M1)⊕N . Therefore I(M) = (I(M)∩M1)⊕
(I(M)∩M2) = I(M1)⊕N ⊕ (I(M)∩M2). Now by Theorem 2.4, I(M) = I(M1)⊕N ⊕ (I(M)∩M2) ≤d M.
Thus N ≤d M1 and so Rad(N ) =N ∩Rad(M1) =N ∩M1 =N . On the other hand, we have Rad(N ) = 0
sinceN is semisimple. ThereforeN = 0. This implies that I(M1)+(M1∩I(M2)) = I(M1). Consequently,
I(M2)∩M1 ⊆ I(M1).

(ii)⇒ (i) Let N EpM. Then N = (N ∩M1)⊕ (N ∩M2) and N ∩M1 EpM1 (see Lemma 3.2(ii)). Since
M1 is π-dual Baer, there exist submodules K1 and L1 of M1 such that M1 = K1 ⊕L1, K1 ⊆N ∩M1 and
HomR(M1,N ∩ L1) = 0 (see Theorem 2.4). Since M2 is semisimple, there exists a submodule L2 ≤M2
such thatM2 = (N ∩M2)⊕L2. Put K = K1⊕(N ∩M2) and L = L1⊕L2. ThenM = K⊕Lwith K ⊆N . It is
easily seen thatN∩L = (N∩L1)⊕(N∩L2). ButN∩L2 = 0, soN∩L =N∩L1. Applying Theorem 2.4, it
remains to prove that HomR(M,N ∩L1) = 0. Let f ∈HomR(M,N ∩L1) and consider the ideal I = Sf S
of S. By (ii), I(M2)∩M1 ⊆ I(M1). Note that f (M1) = 0 as HomR(M1,N ∩ L1) = 0. Since M1 EM, we
have I(M1) = 0. Therefore I(M2)∩M1 = 0 and hence f (M2)∩M1 = f (M2) = 0. It follows that f = 0,
as desired.

Next, we provide a characterization of π-dual Baer modules over a commutative semilocal ring.
But first we need a lemma.

Lemma 3.11. Let M be a π-dual Baer module over a commutative ring R. Then Ma is a direct summand
of M for any ideal a of R.

Proof. This follows from Remark 2.9 and [18, Proposition 3.3].

Proposition 3.12. Let M be a nonzero module over a commutative semilocal ring R. Then the following
are equivalent:

(i) M is π-dual Baer;
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(ii) M = M1 ⊕M2 is a direct sum of submodules M1 and M2 such that Rad(M1) = M1 is π-dual Baer
and M2 is semisimple, and I(M2)∩M1 ⊆ I(M1) for every IS Ep SS.

Proof. (i)⇒ (ii) By Lemma 3.11 and the proof of [18, Theorem 3.8], the module M has a decompo-
sition M = M1 ⊕M2 such that Rad(M1) = M1 and M2 is semisimple. The result now follows from
Proposition 3.10.

(ii)⇒ (i) This is clear by Proposition 3.10.

In the remainder of this section we assume that R is a Dedekind domain with quotient field Q
such that Q , R. Let M be an R-module. The set T (M) = {x ∈M | xr = 0 for some nonzero r ∈ R} is
a submodule of M which is called the torsion submodule of M. The module M is said to be torsion
(resp., torsion-free) if T (M) =M (resp., T (M) = 0). Let P denote the set of all nonzero prime ideals of
R. For any 0 , p ∈ P, let Tp(M) denote the set {x ∈M | pnx = 0 for some integer n ≥ 0} which is called
the p-primary component of M. The module M is called p-primary if Tp(M) = M. It is well known
that if M is a torsion R-module, then M is a direct sum of its p-primary components. The p-primary
component of the torsion R-module Q/R will be denoted by R(p∞).

Next, we aim to describe the structure of quasi-dual Baer modules and π-dual Baer modules over
Dedekind domains. First, we prove the following needed lemmas.

Lemma 3.13. Let M be a nonzero torsion-free R-module. If M is quasi-dual Baer, then M is an injective
module.

Proof. Assume that M is quasi-dual Baer and let 0 , s ∈ R. By [18, Proposition 3.3], there exists
a submodule K of M such that M = sM ⊕ K . Hence sK = 0. Therefore K = 0 since M is torsion-
free. Thus M = sM. Hence M is a divisible R-module. By [17, Proposition 2.7], it follows that M is
injective.

Lemma 3.14. LetM be a torsion R-module. Assume thatM is quasi-dual Baer. ThenM = E⊕F is a direct
sum of an injective submodule E and a semisimple submodule F.

Proof. By [18, Corollary 2.5], every primary component Tp(M) is quasi-dual Baer. Note that every
direct sum of injective R-modules is injective since R is a noetherian ring. So without loss of gen-
erality we can assume that M = Tp(M) for some nonzero prime ideal p of R. Since pM EM, there
exists a decomposition M =M1⊕M2 with M1 ⊆ pM and HomR(M,pM∩M2) = 0 (see [18, Proposition
2.1]). Then pM = M1 ⊕ (pM ∩M2) by modularity. Moreover, we have pM = pM1 ⊕ pM2. Therefore
pM1 = M1 and pM ∩M2 = pM2. Thus HomR(M2,pM2) = 0. This implies that rM2 = 0 for all r ∈ p,
that is, pM2 = 0. Hence M2 is a semisimple module. Moreover, we have M1 = pM = Rad(M) and
M = pM⊕M2. It follows that pM = p(pM). This yields Rad(M) = Rad(Rad(M)). Since R is a Dedekind
domain, we see that Rad(M) =M1 is injective. This completes the proof.

For an R-module M, we will denote the sum of all divisible (injective) submodules of M by d(M).
It is well known that d(M) is an injective fully invariant submodule ofM. It is shown in [11, Theorem
7] that every injective R-module is a direct sum of copies of Q and R(p∞) for various nonzero prime
ideals p. An R-module M is said to be reduced if M has no divisible submodules (that is d(M) = 0).

Theorem 3.15. Let R be a Dedekind domain with quotient field Q such that Q , R. Then the follow-
ing assertions are equivalent for an R-module M:

(i) M is dual Baer;

(ii) M is π-dual Baer;

(iii) M is quasi-dual Baer;
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(iv) M is a direct sum of copies of Q, (R(p∞i ))i∈I and (R/q)j∈J , where (pi)i∈I and (q)j∈J are nonzero
prime ideals of R with pi , qj for every couple (i, j) ∈ I × J .

Proof. (i)⇒ (ii)⇒ (iii) See Remark 2.9.
(iii)⇒ (iv) Since d(M) is injective, it follows that M = d(M)⊕ L for some reduced submodule L of

M. Note that d(M) and L are quasi-dual Baer by [18, Corollary 2.5]. Since T (L) E L, there exists a
decomposition L = N ⊕K with N ⊆ T (L) and HomR(L,T (L)∩K) = 0 (see [18, Proposition 2.1]). But
T (L)∩K = T (K). Then HomR(L,T (K)) = 0. Now assume that T (K) , 0. Then K has a direct summand
K0 which is isomorphic to R/pn for some nonzero prime ideal p of R and some positive integer n
(see [11, Theorem 9]). Since K0 ⊆ T (K), we have HomR(K,T (K)) , 0. Hence HomR(L,T (K)) , 0, a
contradiction. Therefore T (K) = 0 and so T (L) = N . Using again [18, Corollary 2.5], we infer that
N and K are quasi-dual Baer. Now taking into account Lemmas 3.13 and 3.14, we conclude that
K = 0 and N = L is semisimple. Note that d(M) is a direct sum of copies of Q and R(p∞) for various
nonzero prime ideals p. Moreover, for each nonzero prime ideal p of R, the R-module R(p∞)⊕R/p is
not quasi-dual Baer by [18, Example 2.17]. Now (iv) follows from the fact that the class of quasi-dual
Baer modules is closed under direct summands (see [18, Corollary 2.5]).

(iv)⇒ (i) This follows from [13, Theorem 3.4].

4 π-dual Baer Rings

We will call a ring R a right π-dual Baer (resp., right dual Baer) ring if the right R-module RR is π-
dual Baer (resp., dual Baer). Following [18], a ring R is called a right quasi-dual Baer ring if the right
R-module RR is a quasi-dual Baer module. Left π-dual Baer rings, left dual Baer rings and left quasi-
dual Baer rings are defined similarly. It was shown in [13, Corollary 2.9] and [18, Corollary 2.11]
that dual Baer and quasi-dual Baer properties are left-right symmetric for any ring R. Moreover, the
dual Baer rings are exactly the semisimple rings and the class of quasi-dual Baer rings is precisely the
class of finite product of simple rings. This implies that a commutative ring R is (right) π-dual Baer
if and only if R is semisimple. We begin by characterizing right π-dual Baer rings in some special
cases.

Recall that a ring R is called Abelian if every idempotent of R is central.

Remark 4.1. (i) Let R be an Abelian ring. By [12, Proposition 2.8(iii)], we infer that R is a right π-dual
Baer ring if and only if R is a left π-dual Baer ring if and only if R is a semisimple ring.

(ii) Let R be a ring with I(R) = R. Combining [12, Proposition 2.8(iv)] with [18, Proposition 2.10],
we conclude that R is a right π-dual Baer ring if and only if R is a left π-dual Baer ring if and only if
R is a quasi-dual Baer ring if and only if R is a finite product of simple rings.

Recall that a ring R is called projection invariant Baer (or π-Baer) if for each RY Ep RR, there exists
c2 = c ∈ R such that rR(Y ) = {r ∈ R | Y r = 0} = cR (see [6, Definition 2.2]). It is proven in [6] that π-Baer
condition for a ring is left-right symmetric. Therefore R is π-Baer if and only if for each YR Ep RR,
there exists c2 = c ∈ R such that lR(Y ) = {r ∈ R | rY = 0} = Rc.

Next, we compare the class of right π-dual Baer rings and that of π-Baer rings.

Remark 4.2. From [12, Proposition 3.1], it follows that every right or left π-dual Baer ring R is a
π-Baer ring.

Remark 4.3. It was shown in [6, Corollary 2.2(ii)] that if R is a π-Baer ring and S is a subring of R
with I(R) ⊆ S, then S is π-Baer. The analogue of this fact is not true, in general, for right π-dual Baer
rings. To see this, consider the ring Q which is (right) π-dual Baer. However, since the subring Z of
Q is not semisimple, the ring Z is not (right) π-dual Baer even if I(Q) = Z (see Remark 4.1(i)).
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Note that a ring R is a domain if and only if it is π-Baer and 0 and 1 are its only idempotents. In
the following example, we present some rings which are π-Baer, but not right π-dual Baer.

Example 4.4. Let R be a π-Baer ring such that R is not semisimple and the right R-module RR is
indecomposable. Then R cannot be right π-dual Baer by Remark 4.1(i). Explicit examples are:

(i) Let R be the free ring Z < x,y >. Since R is a domain, R is a π-Baer ring (see [6, Example 2.1]).
On the other hand, the ring R is not semisimple.

(ii) Let A be a prime ring such that Z(AA) , 0, Z(AA) , A and AA is a uniform module (see specific
examples in [8, Example 4.3]). Thus A is not a domain and {0,1} is the set of all idempotent elements
of A. Therefore A is not a π-Baer ring. Now let R = Matn(A) be the n-by-n full matrix ring over A
for some integer n > 1. It is well known that I(R) = R. Moreover, by [6, Example 2.2], R is a π-Baer
ring. On the other hand, suppose that the ring R is right π-dual Baer. Then R is quasi-dual Baer (see
Remark 4.1(ii)). Hence A is also quasi-dual Baer (see Proposition 4.23 below). Using [18, Proposition
2.10], we deduce that A is a simple ring since AA is indecomposable. This contradicts the fact that
Z(AA) , 0 and Z(AA) , A. This proves that R is not a right π-dual Baer ring.

Lemma 4.5. Let e be a central idempotent in a ring R. Then eR is π-dual Baer as a right R-module if and
only if eR is π-dual Baer as a right eR-module.

Proof. This follows directly from Theorem 2.4.

Proposition 4.6. Assume that R is a right π-dual Baer ring and let e2 = e ∈ R. If eREp RR, then e and
1−e are central idempotents. Moreover, eR = eRe and (1−e)R = (1−e)R(1−e) are right π-dual Baer rings.

Proof. Note that R is quasi-dual Baer. Thus R is a semiprime ring by the proof of [18, Proposition
2.10((iii) ⇒ (iv))]. Since eR Ep RR, eR is a two-sided ideal of R by Lemma 2.3(v). Now using [10,
Lemma 3.1], it follows that e is central. So 1− e is also central. The last assertion follows directly by
applying Theorem 3.6 and Lemma 4.5.

Proposition 4.7. For a ring R, the following are equivalent:

(i) R is a right π-dual Baer ring;

(ii) Every projection invariant right ideal of R is a direct summand of RR;

(iii) Every projection invariant right ideal of R is a two-sided ideal of R and R is a quasi-dual Baer ring.

Proof. Given a ∈ R, let ϕa : R→ R be the R-endomorphism of RR defined by ϕa(x) = ax for all x ∈ R.
(i)⇒ (ii) Let IR Ep RR. Define the set I = {ϕa : a ∈ I}. It is not hard to see that I is a right ideal of

S = EndR(RR). Moreover, IS Ep SS. To see this, let e2 = e ∈ S. Then e = ϕe(1) and e(1) is an idempotent
in R. Hence e(1)I ⊆ I . Now let ϕb ∈ I , where b ∈ I . Then ϕe(1)ϕb = ϕe(1)b ∈ I . Therefore eI ⊆ I . It
follows that IS Ep SS. Now by Theorem 2.4, I (RR) =

∑
a∈I ϕa(R) =

∑
a∈I aR = I ≤d RR.

(ii)⇒ (iii) Note that every two-sided ideal of R is a direct summand of RR. Thus R is a quasi-dual
Baer ring by [18, Proposition 2.10]. Let IR Ep RR. By (ii), I ≤d RR. Hence there exists an idempotent
e ∈ R such that I = eR. By Lemma 2.3(v), I is fully invariant in RR and hence I is a two-sided ideal of
R.

(iii)⇒ (i) Let IR Ep RR. By (iii), I is a two-sided ideal of R. Therefore I ≤d RR by [18, Proposition
2.10]. Hence R is a right π-dual Baer ring by Corollary 2.7.

Proposition 4.8. Let {Ri : i ∈ I} be a family of rings. Then the direct product R =
∏
i∈I Ri is a right π-dual

Baer ring if and only if the indexing set I is finite and each Ri is right π-dual Baer.
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Proof. Using Theorem 3.8 and Lemma 4.5, we are reduced to proving that if R is right π-dual Baer,
then I is a finite set. Suppose that R is right π-dual Baer. Assume that I is not finite. Note that
A = ⊕i∈IRi is a two-sided ideal of the ring R. Hence the right ideal A is a direct summand of RR by
Proposition 4.7. Therefore RR = A ⊕ X for some proper right ideal X of R. This is impossible. It
follows that I is a finite set.

To obtain another characterization of right π-dual Baer rings, we introduce the following type of
rings which is a stronger form of simple rings.

Definition 4.9. A ring R is said to be a right (left) π-simple ring if 0 and R are the only projection
invariant right (left) ideals in R.

It is clear that any right π-simple ring is a simple ring which is right π-dual Baer.

Lemma 4.10. Let R be a simple ring. Then the following conditions are equivalent:

(i) R is a right π-dual Baer ring;

(ii) R is a right π-simple ring.

Proof. (i)⇒ (ii) Let IR Ep RR. By Proposition 4.7, I is a two-sided ideal of R. Since R is a simple ring,
it follows that I = 0 or I = R.

(ii)⇒ (i) This is immediate.

In the next example, we exhibit some right π-simple rings.

Example 4.11. Let R be a simple ring such that I(R) = R. Then R is a right and left π-dual Baer ring
by Remark 4.1(ii). Therefore R is a right and left π-simple ring by Lemma 4.10. For example, if R′

is a simple ring and n > 1 is a positive integer, then Matn(R′) is a simple ring by [14, Theorem 3.1].
Moreover, we have I(Matn(R′)) = Matn(R′). It follows that Matn(R′) is a right and left π-simple ring.

Proposition 4.12. Let R be a right π-simple ring. Then either R is a division ring or R has a non-trivial
idempotent element.

Proof. Assume that R has no idempotent element except 0 and 1. Then clearly every right ideal of R
is projection invariant. Since R is right π-simple, it follows that R is a division ring.

Next, we present some simple rings which are not right π-simple.

Example 4.13. Let R be a simple ring that is not a division ring which has no idempotent element
except 0 and 1. Then R is not a right π-simple ring by Proposition 4.12. As explicit examples, we can
take:

(a) Weyl algebras, An(F), over a field F of characteristic zero (see [14, Corollary 3.17]), or
(b) the Zalesskii-Neroslavskii example (see, for example [9, Example 14.17]).

Remark 4.14. By Remark 2.9, the following implications hold for any ring R:
R is a (right) dual Baer ring⇒ R is a right π-dual Baer ring⇒ R is a (right) quasi-dual Baer ring.
The following examples show that these implications are not reversible, in general:
(i) Let R be a simple ring which is not semisimple (see [14]) and let n > 1 be a positive integer. Then

Matn(R) is a right π-dual Baer ring by Lemma 4.10 and Example 4.11. Let e be the matrix unit E11 in
Matn(R). Then the rings eMatn(R)e and R are isomorphic (see [14, Example 21.14]). Now using [14,
Corollary 21.13], we see that the ring Matn(R) is not semisimple. Hence Matn(R) is not a (right) dual
Baer ring by [13, Corollary 2.9].

(ii) Using [18, Proposition 2.10] and Lemma 4.10, it follows easily that the rings given in Example
4.13(a)-(b) are quasi-dual Baer, but not right π-dual Baer.
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Theorem 4.15. For a ring R, the following are equivalent:

(i) R is a right π-dual Baer ring;

(ii) R is a finite product of right π-simple rings.

Proof. (i)⇒ (ii) Assume that R is a right π-dual Baer ring. Then R is a (right) quasi-dual Baer ring by
Remark 4.14. By [18, Proposition 2.10], there exist nonzero two-sided ideals R1, . . ., Rn of R for some
positive integer n such that R = R1⊕· · ·⊕Rn and each Ri (1 ≤ i ≤ n) is a simple ring. By [2, Proposition
7.6], there exist pairwise orthogonal central idempotents e1, . . ., en ∈ R with 1 = e1 + · · · + en, and
Ri = eiR for every i = 1, . . . ,n. From Proposition 4.6, it follows that each Ri (1 ≤ i ≤ n) is a right π-dual
Baer ring. Now using Lemma 4.10, we infer that each Ri (1 ≤ i ≤ n) is a right π-simple ring.

(ii)⇒ (i) This follows from Proposition 4.8 and Lemma 4.10.

Remark 4.16. It would be desirable to investigate if the property of being a π-dual Baer ring is left-
right symmetric but we have not been able to do this. Note that from Theorem 4.15, it follows that
the π-dual Baer ring property is left-right symmetric if and only if so is the π-simple ring property.

Let R be a ring. For each A ⊆ R, the right annihilator of A in R is

rR(A) = {r ∈ R | ar = 0 for all a ∈ A}.

In the next proposition, we provide a necessary condition for a ring to be right π-simple.

Proposition 4.17. Let R be a right π-simple ring. Then for every nonzero projection invariant left ideal I
of R, we have rR(I) = 0.

Proof. Note that R is a right π-dual Baer ring by Theorem 4.15. Then R is a π-Baer ring by Remark
4.2. Let 0 , RI Ep RR. Then rR(I)EpRR by [6, Lemma 2.1]. Since R is right π-simple, we have rR(I) = 0
or rR(I) = R. But I , 0. So rR(I) = 0.

Proposition 4.18. Let R be a ring with Soc(RR) essential in RR. Then the following are equivalent:

(i) R is a dual Baer ring;

(ii) R is a right π-dual Baer ring;

(iii) R is a quasi-dual Baer ring;

(iv) R is a semisimple ring.

Proof. (i)⇒ (ii)⇒ (iii) are clear by Remark 4.14.
(iii) ⇒ (iv) Note that Soc(RR) is a two-sided ideal of R. Then Soc(RR) is a direct summand right

ideal of R by [18, Proposition 2.10]. Hence R = Soc(RR) since Soc(RR) is essential in RR.
(iv)⇒ (i) is clear.

Next, we investigate the transfer of the right π-dual Baer condition between a base ring R and
several extensions. We begin with R[x] and R[[x]].

Proposition 4.19. Let R be a ring satisfying one of the following conditions:

(i) R[x] is a right π-dual Baer ring;

(ii) R[[x]] is a right π-dual Baer ring.

Then R is a right π-dual Baer ring.
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Proof. (i) Suppose that R[x] is a right π-dual Baer ring and let I be a projection invariant right ideal
of R. By [6, Lemma 4.1(iv)], I[x] is a projection invariant right ideal of R[x]. This implies that
I[x] = e(x)R[x] for some idempotent e(x) = e0 + e1x + · · · + enxn ∈ R[x] (see Proposition 4.7). Let us
show that I = e0R. Since e(x) ∈ I[x], we have e0 ∈ I and so e0R ⊆ I . Now let a ∈ I . Therefore
a ∈ I[x] = e(x)R[x]. Hence a = e(x)f (x) for some f (x) = f0 + f1x + · · · + fmxm ∈ R[x]. It follows that
a = e0f0 ∈ e0R. This proves that I = e0R. Therefore R is a right π-dual Baer ring by Proposition 4.7.

(ii) This follows by the same method as in (i).

The next example shows that polynomial extensions of right π-dual Baer rings need not be right
π-dual Baer.

Example 4.20. Let F be a field. Clearly, F is a right π-dual Baer ring. On the other hand, it is well
known that both F[x] and F[[x]] are integral domains, but they are not semisimple. From Remark
4.1(i), it follows that neither R[x] nor R[[x]] is right π-dual Baer.

We conclude this paper by investigating when full or generalized triangular matrix rings are right
π-dual Baer.

Proposition 4.21. Let R be a quasi-dual Baer ring (in particular if R is a right π-dual Baer ring). Then
Matn(R) is a right and left π-dual Baer ring for every positive integer n > 1.

Proof. By [18, Proposition 2.10], there exists a positive integer t such that R =
∏t
i=1Ri is a finite

product of simple rings Ri (1 ≤ i ≤ t). Let n > 1 be a positive integer. Note that A = Matn(R) �∏t
i=1 Matn(Ri) (as rings). By [14, Theorem 3.1], each Matn(Ri) (1 ≤ i ≤ t) is a simple ring. Since

I(A) = A, it follows from Remark 4.1(ii) that A a right and left π-dual Baer ring.

The next example illustrates the fact that the right π-dual Baer property is not Morita invariant.

Example 4.22. It is well known that for any ring R and any positive integer m, the rings R and
Matm(R) are Morita equivalent (see [2, Corollary 22.6]). Let R be a simple ring which is not right
π-simple (see Example 4.13). Then R is not right π-dual Baer by Lemma 4.10. On the other hand,
for every positive integer n > 1, Matn(R) is a right π-dual Baer ring by Proposition 4.21.

Proposition 4.21 and Example 4.22 should be compared with the following proposition.

Proposition 4.23. Let R be a ring. Then the following statements are equivalent:

(i) R is a quasi-dual Baer ring;

(ii) Matn(R) is a quasi-dual Baer ring for every positive integer n;

(iii) Matn(R) is a quasi-dual Baer ring for some positive integer n > 1.

Proof. (i)⇒ (ii) This follows from Remark 4.14 and Proposition 4.21.
(ii)⇒ (iii) This is immediate.
(iii) ⇒ (i) Let n > 1 be a positive integer such that A = Matn(R) is a quasi-dual Baer ring. Then

A is a semiprime ring (see the proof of [18, Proposition 2.10]). Let e be the matrix unit E11 in A.
Clearly, e is an idempotent in A. Moreover, eAe = {aE11 | a ∈ R} and R are isomorphic rings (see [14,
Example 21.14]). Let us show that eAe is a quasi-dual Baer ring. Take a two-sided ideal U of eAe.
Then AUA is a two-sided ideal of A. Thus AUA is a direct summand of AA by [18, Proposition 2.10].
This implies that AUA = f A for some f 2 = f ∈ A. Since A is a semiprime ring, it follows from [10,
Lemma 3.1] that f is a central idempotent in A. Now [14, Theorem 21.11(2)] gives thatU = e(AUA)e.
Therefore U = e(f A)e. Hence U = e2(f Ae) = ef e(eAe) as f is central. Moreover, it is clear that ef e is
an idempotent in the ring eAe. It follows that U is a direct summand of eAeeAe. Consequently, eAe is
a quasi-dual Baer ring by [18, Proposition 2.10].
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Next, we characterize right π-dual Baer 2-by-2 generalized triangular matrix rings.

Theorem 4.24. Let T =
[
R M
0 S

]
denote a 2-by-2 generalized upper triangular matrix ring where R

and S are rings and M is an (R,S)-bimodule. Then the following statements are equivalent:

(i) T is a right π-dual Baer ring;

(ii) R and S right π-dual Baer rings and M = 0.

Proof. (i)⇒ (ii) It is well known that Rad(T ) =
[
Rad(R) M

0 Rad(S)

]
is a two-sided ideal of T and hence

it is a direct summand of TT by Proposition 4.7. But Rad(T ) is small in TT . Then
[
Rad(R) M

0 Rad(S)

]
=[

0 0
0 0

]
. This yields M = 0. It follows that T =

[
R 0
0 S

]
� R × S (as rings). Now from Proposition 4.8,

we infer that R and S are right π-dual Baer rings.
(ii)⇒ (i) This follows by using again Proposition 4.8.

Remark 4.25. From the previous theorem, it follows that for any nonzero ring R, the 2-by-2 upper
triangular matrix ring over R is never a right π-dual Baer ring.
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