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Abstract. Let R be a ring and let M be an R-module with § = Endg(M). A submodule N of M is said to be projection
invariant in M (denoted N <, M) if eN C N for all e = e? € S. We call M n-dual Baer, if for each N <p M there exists
e2 = ¢ € S such that {f €S| f(M)C N} =eS. A characterization of -dual Baer modules is provided. We show that the
class of 7t-dual Baer modules lies strictly between the classes of dual Baer modules and quasi-dual Baer modules. It is
also shown that in general, the class of t-dual Baer modules is neither closed under direct sums nor closed under direct
summands. The structure of w-dual Baer modules over Dedekind domains is completely determined. We conclude the
paper by studying right 7t-dual Baer rings. We call a ring R right rt-dual Baer if the right R-module Rp is right 7t-dual Baer.
A characterization of this class of rings is provided. We also investigate the transfer between a base ring R and many of
its extensions (for example, full matrix rings over R or R[x] or R[[x]]). In addition, we characterize the 2-by-2 generalized
triangular right rr-dual Baer matrix rings.

Key Words: dual Baer module; quasi-dual Baer module; t-dual Baer module; endomorphism rings; projection invariant
submodule.
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1 Introduction

Throughout this paper R will always be an associative ring with unity and any module will be a
unital right R-module unless stated otherwise. Let M be an R-module. By S = Endgz(M) and I, we
denote the endomorphism ring of the module M and the subring of S generated by the idempotents
of S, respectively. For a ring R, we use I(R) to denote the subring of R generated by idempotents. The
notations N C M, N < M and N <; M mean that N is a subset of M, N is a submodule of M and N
is a direct summand of M, respectively. Let N < M. Then N is called a fully invariant submodule of
M (denoted N < M) if f(N)C N for all f €S, and N is called a projection invariant submodule of M
(denoted N<,M)if ¢(N) C N for all e? = e € S. Note that every fully invariant submodule is projection
invariant and the projection invariant submodules of a module M form a complete sublattice of the
lattice of submodules of M. One may observe that if N is fully (projection) invariant in M, then there
exists a ring homomorphism a : S — Endg(N) ( : Iy — Iy) defined by a(h) = h|y (B(h) = h|y) for
all h € S (h € Iy) (see [7]]). Note that a right ideal I of a ring R is called projection invariant in Rg
(denoted I <, Rg) if el C T for all e? = e € R. Moreover, fully invariant right ideals of R coincide with
two-sided ideals of R.

The notions of Baer modules and quasi-Baer modules were introduced in 2004 (see [L6]). In 2010
(see [13]]), Keskin Tutiincii and Tribak dualized the notion of Baer modules. A module M is said to be
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dual Baer if for every submodule N of M, there exists an idempotent e € S such that {f €S| f(M) C
N} = eS. The right ideal {f € S| f(M) C N} of S will be denoted by Dg(N). For a subset X in S and
a submodule N of M, let X(N) denote the submodule ZfeX f(N) of M. Note that a module M is
dual Baer if and only if for every subset A of S, A(M) is a direct summand of M if and only if for
every right ideal A of S, A(M) is a direct summand of M (see [13, Theorem 2.1]). In 2013 (see [3])),
Amouzegar and Talebi introduced the notion of quasi-dual Baer modules by dualizing the notion of
quasi-Baer modules. A module M is said to be quasi-dual Baer if for every fully invariant submodule
N of M, there exists an idempotent e € S such that Dg(N) = eS. In [18], the authors continued the
study of quasi-dual Baer modules. They showed that a module M is quasi-dual Baer if and only if
for every left ideal I of S, I(M) is a direct summand of M (see [18] Proposition 2.4]).

In 2020 (see [7]]), Birkenmeier, Kara and Tercan introduced the notion of t-endo Baer (7t-e.Baer for
short) modules. According to [7) Definition 3.3], a module M is called 7t-e.Baer, if for each 0 = X C M
such that j(X) C X for all j? = j € S there exists ¢? = ¢ € S such that Ig(X) = {s € S| s(X) = 0} = Se. By
[7, Lemma 3.4], a module M is 7-e.Baer if and only if for each N <, M, there exists f?=feSsuch
that Ig(N) = Sf if and only if for each gY <, ¢S, there exists e? = e € § such that ﬂgey Kerg = eM.
Later in 2021, this notion was dualized by Kara (see [12]) by introducing the following definition.

Definition 1.1. A module M is called dual m-endo Baer, if for each N = M, there exists e2 = e € S
such that Dg(N) = €S.

Note that in [4] and [7], the authors used the terminology endomorphism Baer module, denoted
briefly by e-Baer, for the Baer modules defined by Rizvi and Roman in [16]]. The rings R for which
the right R-module Ry is 7-e.Baer were studied in 2018 (see [6]). It was shown in [[6, Proposition 2.1]
that the 7-e.Baer property is left-right symmetric for any ring R. Then (right) 7-e.Baer rings were
called 7t-Baer rings in [6 Definition 2.2].

Motivated by all these research works ([3]], [7]], [L2] and [13]]), we continue to study dual 7t-endo
Baer modules, but under the name n-dual Baer modules in this paper. We also study m-dual Baer
rings. A ring R is said to be right (left) m-dual Baer if the right (left) R-module Rg (grR) is m-dual
Baer. The aim of this paper is to show that some results of 7r-e.Baer modules and 7-Baer rings have
corresponding duals for t-dual Baer modules and right t-dual Baer rings. In addition, we will obtain
the 7t-dual Baer analogues of certain results appearing in [6] or in [18].

Section 2 is devoted to the study of some basic properties of t-dual Baer modules. We provide
some equivalent formulations of being a 7-dual Baer module (Theorem |2.4). We show that for an
indecomposable Z-module M, M is dual Baer if and only if M is rt-dual Baer if and only if M is quasi-
dual Baer if and only if M = Q or M = Z(p*) or M = Z/pZ, where p is a prime number (Proposition
[2.12). We construct some examples showing that the 7-dual Baer condition is strictly between the
dual Baer and quasi-dual Baer conditions (Example[2.14).

In Section 3, we investigate direct sums and direct summands of 7-dual Baer modules. We first
provide examples showing that, in general, the m-dual Baer condition is neither preserved under
direct sums nor preserved under direct summands (Examples[3.1]and [3.5). Then we prove that any
projection invariant direct summand of a 7t-dual Baer module inherits the property (Theorem |3.6).
It is also shown that if a module M = ®;¢;M; such that M; 9, M for all i € I, then M is rt-dual Baer if
and only if M; is -dual Baer for all i € I (Theorem [3.8). We conclude this section by describing the
structure of m-dual Baer modules over Dedekind domains (Theorem .

In Section 4, we deal with right t-dual Baer rings. We show that the class of right -dual Baer
rings lies strictly between the classes of dual Baer rings and quasi-dual Baer rings (Remark [4.14).
We provide a characterization of right 7t-dual Baer rings (Theorem [4.15). In addition, we study the
transfer of the right rt-dual Baer property between a base ring R and several extensions. For example,

full matrix rings over R or R[x] or R[[x]] (see Propositions and Examples and |4.22).
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We conclude the paper by characterizing the 2-by-2 generalized triangular right rt-dual Baer matrix

rings (Theorem [4.24)).
Throughout this paper, by Z, Q and Z(p*) we denote the ring of integer numbers, ring of rational
numbers and the Priifer p-group, respectively where p is a prime number.

2 Some results on 7t-dual Baer modules

Definition 2.1. A module M is called mt-dual Baer, if for each N <M, there exists e2 = e € S such that
Ds(N) =eS.

Example 2.2. (i) Clearly, every semisimple module is 7t-dual Baer.

(ii) Let M be an indecomposable module. Then 0 and 1 are the only idempotents of S. This implies
that all submodules of M are projection invariant. Therefore M is dual Baer if and only if M is rt-dual
Baer.

(iii) Let R be a commutative ring. Using [13 Corollary 2.9], we see that the R-module R is dual
Baer if and only if it is t-dual Baer if and only if it is quasi-dual Baer if and only if R is semisimple.

Recall that an idempotent e € R is called left semicentral if xe = exe for all x € R. The set of left
semicentral idempotents of R is denoted by S;(R). We begin with the following lemma which is
taken from [12, Lemmas 2.1 and 2.2] and [7, Lemma 3.1(iii)]. This lemma will be used throughout
the paper.

Lemma 2.3. Let M be a module with S = Endg(M).
(i) If N 9, M, then Ds(N) <, Ss.
(ii) If Is <, Ss, then I(M) <, M.
(iii) IfI is a right ideal of S, then Dg(I(M))(M) = I(M).
(iv) If N <M, then Dg(Dg(N)(M)) = Dg(N).
(v) Let e =e? €8. Then (eM)g <y My if and only if (eM)g < My if and only if e € 5(S).

The following characterization of 7-dual Baer modules will be used later to obtain other results in
this study.

Theorem 2.4. Let M be a module. Then the following are equivalent:

(i) M is m-dual Baer;
(ii) For each Is <, Sg, I(M) is a (projection invariant) direct summand of M;

(iii) For each N 9, M, there exists a decomposition M = M; & M, with My < N, M; <, M and
Hompg(M,N NM,)=0;

iv) For each N <, M, there exists a decomposition M = M; & M, with M; < N, M; <M and
P p
Hompg(M,N N M,;) =0;

(v) For each N 9, M, there exists a decomposition M = M; & M, with M; < N and Homg(M,N N
Mz) = 0
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Proof. (i) & (ii) This follows from [12| Proposition 2.4] and Lemma ii).

(i) = (iii) This implication follows by adapted the proof of [18, Proposition 2.1((i) = (ii))] and
using Lemma 2.3}

(iii) = (iv) This follows from Lemma [2.3v) (see also [I}, Proposition 3.1(4)]).

(iv) = (v) This is evident.

(v) = (i) The proof of this implication is similar to that of [18] Proposition 2.1((ii) = (i))]. O

Example 2.5. Let M be a module such that Homz(M, N) = 0 for every projection invariant proper
submodule N of M. Then M is n-dual Baer by Theorem [2.4] For example, the Priifer p-group Z(p*)
and the group of rational numbers Q are -dual Baer Z-modules, where p is any prime number.

As applications of Theorem |2.4] we obtain the following corollaries.

Corollary 2.6. Let M be a t-dual Baer module and N <, M. Then the following are equivalent:
(i) N <4M;
(ii) Dg(N)(M)=N.

Proof. (i) = (ii) Let w: M — N be the projection map and i : N — M be the inclusion map. Then
it € Dg(N) and imt(M) = N. Hence Dg(N)(M) = N.

(ii) = (i) Since N 9, M, Dg(N) <, Sg by Lemma i). Applying Theorem we get Dg(N)(M) <4
M. Therefore N <; M by (ii). O

Corollary 2.7. Let M be a module such that every projection invariant submodule of M is a direct sum-
mand of M. Then M is mt-dual Baer.

Proof. Let Is <9,Ss. Then by Lemma ii), I(M)<, M. So, by hypothesis, (M) <; M. From Theorem
it follows that M is a t-dual Baer module. O]

Corollary 2.8. Let M be an indecomposable module. Then the following are equivalent:
(i) M is a t-dual Baer module;
(ii) For every proper submodule N of M, Homg(M,N) = 0.

Proof. Since M is indecomposable, the set of all idempotents of S is {0,1}. Therefore all submodules
of M are projection invariant.

(i) = (ii) Let N be a proper submodule of M. By Theorem [2.4) Homg(M,N) = 0.

(ii) = (i) Let N 9, M with N = M. Since Homg(M,N) =0, Ds(N) = 0 is a direct summand of Sg. If
N =M, then Dg(N) =S is again a direct summand of Sg. This completes the proof. O

Next, we compare the notions of dual Baer, t-dual Baer and quasi-dual Baer modules. From the
definitions of these three notions, we infer the following remark.

Remark 2.9. (see also [12, Theorem 2.6]) It is easily seen that the following implications hold for a
module M:
M is a dual Baer module = M is a 7-dual Baer module = M is a quasi-dual Baer module.

Next, we provide some sufficient conditions under which these three notions coincide. Recall that
aring R is called a right duo ring if every right ideal of R is a two-sided ideal.

Example 2.10. Let M be a module such that S = Endg(M) is a right duo ring. By [18| Remark 2.8],
M is quasi-dual Baer if and only if M is dual Baer. Therefore from Remark 2.9} it follows that M is
dual Baer if and only if M is -dual Baer if and only if M is quasi-dual Baer.
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Proposition 2.11. Let R be a local ring with maximal right ideal m and M = R/m. Assume that Rad(E(M)) =
E(M). Then the following are equivalent:
(i) E(M) is a dual Baer R-module;
(ii) E(M) is a m-dual Baer R-module;
(iii) E(M) is a quasi-dual Baer R-module;
(iv) R is a division ring.
Proof. This follows directly from Remark[2.9/and [I8, Corollary 2.14]. ]
Proposition 2.12. Let M be an indecomposable Z-module. Then the following are equivalent:
(i) M is dual Baer;
(ii) M is -dual Baer;
(iii) M is quasi-dual Baer;
(iv) M=Qor M =Z(p*®) or M = Z/pZ, where p is a prime number.
Proof. This is clear by Remark [2.9]and [18] Corollary 3.7]. O
Combining Remark[2.9]and [I8, Corollary 3.9], we obtain the following proposition.

Proposition 2.13. Let M be a nonzero module over a commutative perfect ring R. Then the following
conditions are equivalent:

(i) M is dual Baer;
(ii) M is t-dual Baer;
(iii) M is quasi-dual Baer;
(iv) M is a semisimple module.

Next, we present some examples to show that the class of t-dual Baer modules lies properly be-
tween the class of dual Baer modules and that of quasi-dual Baer modules (see Remark [2.9).

Example 2.14. (i) Let S be a simple ring and let ¢Ng be an S-S-bimodule. Consider the generalized
Iff Z;] and the right R-module M = N & S. Assume that S is a domain that is not a
division ring. We know from [I5} p. 1278] that Endg(M) = S (as rings). Then Endgz(M) is a domain
and hence M is indecomposable. Therefore all submodules of M are projection invariant. By [18}
Example 2.9(ii)], M is a quasi-dual Baer module which is not dual Baer. This implies that M is a
quasi-dual Baer module which is not 7t-dual Baer by [12, Proposition 2.8(ii)].

(ii) Let R be a ring which is a finite product of simple rings such that R is not semisimple. Then
Rp is a quasi-dual Baer module by [18), Proposition 2.10]. Let F be a free R-module with a finite rank
n> 1. Using [3 Theorem 2.7], we conclude that F is a quasi-dual Baer module. Thus F is rt-dual Baer
by the proof of [12, Corollary 2.9]. On the other hand, the module F is not dual Baer, since otherwise
R will be semisimple by [13} Corollaries 2.5 and 2.9].

matrix ring R =

In the following result, we characterize the class of rings R for which every finitely cogenerated
right R-module is t-dual Baer.
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Proposition 2.15. The following conditions are equivalent for a ring R:
(i) Every finitely cogenerated right R-module is t-dual Baer;
(ii) Every finitely cogenerated right R-module is quasi-dual Baer;
(iii) R is a right V-ring.

Proof. (i) = (ii) This is clear.

(ii) = (iii) Assume that R has a simple right R-module S which is not injective. Then E(S) = S.
Let M = A® B be a right R-module such that A = S and B = E(S). Let S; = Soc(B). Clearly, S; = S.
Note that N = Soc(M) = A® S; is an essential submodule of M that is fully invariant in M. By [18]
Proposition 2.1], there exists a decomposition M = M; & M, with M; € N and Homz(M,N NM,) = 0.
Since N # M, we have M, # 0 and hence N N M, # 0. Therefore N N M, contains a simple submodule
S, with S, = S = A. It follows that Homg(M,N N M;) # 0, a contradiction. This proves that R is a

right V-ring.
(iii) = (i) This follows from the fact every finitely cogenerated right module over a right V-ring is
semisimple. O]

3 Direct sums and direct summands of 7t-dual Baer modules

A direct sum of rt-dual Baer modules may not be rt-dual Baer as we see in the following example.
Another example is provided in [12, Example 2.13].

Example 3.1. Let L be a simple R-module such that the injective hull of L has no maximal submod-
ules. It is shown in [18, Example 2.17] that the module M = E(L)® L is not quasi-dual Baer. Thus M
is not 7t-dual Baer (see Remark[2.9). Now let R be a discrete valuation ring with maximal ideal m and
quotient field K. It is well known that K/R = E(R/m). Therefore the R-module (K/R) @ (R/m) is not
n-dual Baer. On the other hand, note that both K/R and R/m are rt-dual Baer by [13] Theorem 3.4].

Next, we deal with a special case of direct sums of -dual Baer modules. First, we include the
following lemma which will be useful to our work in this paper.

Lemma 3.2. [7, Lemma 3.1]
(i) Let Xgr < Ngr <M. Then X <, N 9, M implies that X <, M.

(ii) Let M = @ M; and Xg <p Mg. Then X = ®;c(X N M;) and XN M; 9, M; forall i € 1.

Theorem 3.3. Let M be a 7-dual Baer module. Then every direct sum of copies of M is a t-dual Baer
module.

Proof. Let N = @;¢/M; such that M; = M for all i € I. Let X 9, N. By Lemma [3.2{ii), we have
X = @ier(XNM;) and X NM; <, M; for all i € I. Fix i € I. Since M; is m-dual Baer, there exists
a decomposition M; = K; @ L; with K; < X N M; and Homg(M;,X N L;) = 0 by Theorem Put
K = ®;¢;K; and L = ®;¢[L;. Clearly, M = K& L and K C X. Moreover, we have X N L = ®;c;(X NL;).
Now assume that Homg(M, X N L) # 0. Then there exist i,j € I such that Homg(M;, X N L;) # 0. But
M; = M;. So Homg(M;, X NL;) =0, a contradiction. Hence Homp(M,X NL) = 0. Applying again
Theorem [2.4] it follows that N is a 7t-dual Baer module. O

The following corollary is an immediate consequence of Theorem 3.3}

Corollary 3.4. Let R be a ring such that Ry is a right 7t-dual Baer R-module. Then all free right R-modules
are 1t-dual Baer.
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Note that both the class of dual Baer modules and the class of quasi-dual Baer modules are closed
under direct summands (see [13 Corollary 2.5] and [18, Corollary 2.5]). However, the following
example illustrates that being 7t-dual Baer is not preserved by taking direct summands.

Example 3.5. Let R be a simple ring which is a domain but not a division ring. From [18], Proposition
2.10], we infer that Rg is a quasi-dual Baer R-module. On the other hand, Ry is not a 7t-dual Baer
module by [12] Proposition 2.8(ii)] and [13] Corollary 2.9]. Now consider a free right R-module
Fr = @/, R; for some integer n > 1, where R; = R for all 1 <i < n. Note that F is quasi-dual Baer by
[3, Theorem 2.7]. Then F is it-dual Baer by [12], Corollary 2.9].

As an application of Theorem [2.4), we can improve and generalize Proposition 2.11 of [12] as
follows. The proof and the techniques used are different from those of [12, Proposition 2.11].

Theorem 3.6. Let M = M & M, be a t-dual Baer module for some submodules M; and M, of M. If
M; <, M, then M; and M, are rt-dual Baer.

Proof. Let us first prove that M is i-dual Baer. Take Ny <, M;. Then N; <, M by Lemma i). Since
M is rt-dual Baer, there exists a decomposition M = K; & K, with K; < N; and Homg(M,N; NK,) =0
(see Theorem|2.4). By modularity, we have M; = K; ®(K,NM;). Moreover, N;N(K;NM;) = N1NK;. It
is clear that Homg(M;, Ny N K3) = 0. Using Theorem |2.4}, we deduce that M; is t-dual Baer. To show
that M, is t-dual Baer, take N, <, M. Then N = M; ® N, <, M by [5, Lemma 4.13]. So there exist
submodules K and L of M such that M = K&L, K C N, K<, M and Homg(M,NNL) =0 (see Theorem
. Note that K = (KN M;)®(KNM,) by Lemma ii). Hence M = (KNM;)®(KNM;)® L and so
M, = (KNnM,)®[(KNM;)®L)NM,;]. In addition, it is clear that KNM, = KN N, C N, as K C N.
Thus N, = (KNN,)®[((KNM;)®L)NN,]. Moreover, since M = (KNM;)®(KNN,)&L, it follows that
N = (KNM;)®(KNN,)®(NNL) by modularity. Therefore N, = (KNN,)®[((KNM;)®(NNL))NN,]. Note
that (KNM;)®(NNL))NN, C((KNM;)®L)NN,. Then (KNM;)®(NNL))NN, = ((KNM;)®L)NN,.
Now assume that Homg(M,, N, N[((KNM;)®L)NM;)]) =0and let f : My — (KNM;)®(NNL))NN,
be a nonzero homomorphism. Let 7 : (KN M;)® (N NL)— N NLbe the projection map. It is easy
to check that 0 # 7f € Homg(M,, N N L). This contradicts the fact that Homg(M,N N L) = 0. From
Theorem |2.4] we infer that M, is a t-dual Baer module. O

Proposition 3.7. Let M = M| ® M, for some submodules My and M, of M. If M is a 1t-dual Baer module
with Iy, = Endgr(M,), then M, is mt-dual Baer.

Proof. By Remark [2.9) M is quasi-dual Baer. So M; is quasi-dual Baer by [I8} Corollary 2.5]. There-
fore M; is rt-dual Baer by [12}, Proposition 2.8(iv)]. O

Combining [12, Theorem 2.14] and Lemma v), we obtain the following theorem. By using
Theorem [2.4] we next provide another proof of this result.

Theorem 3.8. Let M = ®;c;M;, where M; <, M for all i € I. Then M is r-dual Baer if and only if M;
is t-dual Baer for all i € I.

Proof. Assume that M is t-dual Baer. By Theorem each M; (i € I) is m-dual Baer. Conversely,
assume that each M; is m-dual Baer. By Lemma v), M; <M for all i € I. So, Homg(M;, M;) = 0
foralli#jel. Let N, M. Thus N = @;¢;(N N M;) and N N M; 9, M; for all i € [ by Lemma
ii). Fix i € I. By Theorem there exists a decomposition M; = K; & L; with K; € N N M; and
Hompz(M;;,NNL;)=0. Set K =®;¢;K; and L = ®;¢;L;. Clearly, M = K@L and K C N. Moreover, it
is easy to see that N N L = @;cr(N NL;). Combining the facts that Homg(M;,M;) = 0 forall i = j €]
and Hompg(M;,N NL;) = 0 for all i € I, we conclude that Homg(M,N N L) = 0. Using Theorem [2.4} it
follows that M is 7t-dual Baer. O
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Let M be a module. The radical of M will be denoted by Rad(M). Note that Rad(M) is a fully
invariant submodule of M by [2] Proposition 9.14]. Clearly, if M is semisimple, then Rad(M) = 0.

Corollary 3.9. Let an R-module M = M, @ M, be a direct sum of submodules M, and M, such that
Rad(M;) = My, M, is semisimple. If M is t-dual Baer, then My is 1t-dual Baer. The converse holds when
HomR(Mz,Ml) =0.

Proof. Note that Rad(M) =Rad(M;)@®Rad(M,) = M; <M.
(=) This follows by Theorem 3.6
(<) Since Homg(M,, M;) = 0, M, <M. Now the result follows from Theorem [3.8 O

For the proof of the implication (i) = (ii) in the following proposition, we mainly follow the proof
of [18] Proposition 2.15((i) = (ii))].

Proposition 3.10. Let an R-module M = M, & M, be a direct sum of submodules My and M, such that
Rad(M;) = My and M, is semisimple. Then the following are equivalent:

(i) M is 7t-dual Baer;
(ii) My is -dual Baer and I1(Mp) N My C I(My) for all Is <, Ss.

Proof. (i) = (ii) By Corollary M, is mt-dual Baer. Now we will prove that I(M,) N M; C I(M;)
for all Is <, Ss. Let Is <9, Sg. By Lemma ii), [(My) + (M) = I(M) <, M. Hence I(M) = (I(M)N
M;)® (I(M)N M,;) by Lemma ii). As My <M, we have I(M;) € M;. By modularity, M; N I(M) =
MiN(I(M;)+I1(M;)) =1(M;)+(M;NI(M,)). Since My NI(M;) is semisimple, there exists a semisimple
submodule N of M;NI(M,) such that I(M;)+(M;NI(M,)) = I(M;)®N. Therefore (M) = (I(M)NM;)®
(I(M)NM;) =I(M;)®N & (I(M) N M,). Now by Theorem[2.4}, (M) =I(M;)®N & (I(M)NM,) <; M.
Thus N <; M; and so Rad(N) = NNRad(M;) = N NM; = N. On the other hand, we have Rad(N) =0
since N is semisimple. Therefore N = 0. This implies that I(M;)+(M;NI(M,)) = I(M;). Consequently,
I(M)N My CI(My).

(ii) = (i) Let N 9, M. Then N = (N N M;)® (N NM;) and N N M; <, M; (see Lemma ii)). Since
M is t-dual Baer, there exist submodules K; and L; of M; such that M; =K;®L;, K{ C NNM; and
Hompg(M;,N NL;) =0 (see Theorem[2.4). Since M, is semisimple, there exists a submodule L, < M,
such that M, = (NNM,)®L,. Put K =Ky®&(NNMjy)and L=L;®L,. Then M = K& L with K C N. Itis
easily seen that NNL = (NNL;)®(NNL;y). But NNL, =0,so NNL=NNL;. Applying Theorem it
remains to prove that Homg(M,NNL;)=0. Let f € Homg(M,N NL;) and consider the ideal I =SfS
of S. By (ii), I(M,) "My € I(M;). Note that f(M;) = 0 as Homg(M;,N NLy) =0. Since M; <M, we
have I(M;) = 0. Therefore I(M;) N M; = 0 and hence f(M,)NM; = f(M;) = 0. It follows that f =0,
as desired. O

Next, we provide a characterization of m-dual Baer modules over a commutative semilocal ring.
But first we need a lemma.

Lemma 3.11. Let M be a rt-dual Baer module over a commutative ring R. Then Ma is a direct summand
of M for any ideal a of R.

Proof. This follows from Remark [2.9]and [I8, Proposition 3.3]. O

Proposition 3.12. Let M be a nonzero module over a commutative semilocal ring R. Then the following
are equivalent:

(i) M is t-dual Baer;
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(ii) M = M; @ M, is a direct sum of submodules My and M, such that Rad(M;) = M; is rt-dual Baer
and M, is semisimple, and 1(My) N My C I(M;) for every Is <, Sg.

Proof. (i) = (ii) By Lemma and the proof of [18, Theorem 3.8], the module M has a decompo-
sition M = M; & M, such that Rad(M;) = M; and M, is semisimple. The result now follows from

Proposition [3.10}
(ii) = (i) This is clear by Proposition O

In the remainder of this section we assume that R is a Dedekind domain with quotient field Q
such that Q # R. Let M be an R-module. The set T(M) = {x € M | xr = 0 for some nonzero r € R} is
a submodule of M which is called the torsion submodule of M. The module M is said to be torsion
(resp., torsion-free) if T(M) = M (resp., T(M) = 0). Let IP denote the set of all nonzero prime ideals of
R. For any 0 # p € IP, let T,(M) denote the set {x € M | p"x = 0 for some integer n > 0} which is called
the p-primary component of M. The module M is called p-primary if T,(M) = M. It is well known
that if M is a torsion R-module, then M is a direct sum of its p-primary components. The p-primary
component of the torsion R-module Q/R will be denoted by R(p*).

Next, we aim to describe the structure of quasi-dual Baer modules and 7t-dual Baer modules over
Dedekind domains. First, we prove the following needed lemmas.

Lemma 3.13. Let M be a nonzero torsion-free R-module. If M is quasi-dual Baer, then M is an injective
module.

Proof. Assume that M is quasi-dual Baer and let 0 # s € R. By [L8, Proposition 3.3], there exists
a submodule K of M such that M = sM @ K. Hence sK = 0. Therefore K = 0 since M is torsion-
free. Thus M = sM. Hence M is a divisible R-module. By [17, Proposition 2.7], it follows that M is
injective. O

Lemma 3.14. Let M be a torsion R-module. Assume that M is quasi-dual Baer. Then M = E®F is a direct
sum of an injective submodule E and a semisimple submodule F.

Proof. By [18] Corollary 2.5], every primary component T,(M) is quasi-dual Baer. Note that every
direct sum of injective R-modules is injective since R is a noetherian ring. So without loss of gen-
erality we can assume that M = T,(M) for some nonzero prime ideal p of R. Since pM <M, there
exists a decomposition M = M; @ M, with M; C pM and Homg(M, pM NM,) = 0 (see [L8] Proposition
2.1]). Then pM = M; & (pM N M;) by modularity. Moreover, we have pM = pM; & pM,. Therefore
pM; = My and pM N M, = pM,. Thus Homg(M,,pM,) = 0. This implies that rM, = 0 for all r € p,
that is, pM, = 0. Hence M, is a semisimple module. Moreover, we have M; = pM = Rad(M) and
M = pM @& M,. It follows that pM = p(pM). This yields Rad(M) = Rad(Rad(M)). Since R is a Dedekind
domain, we see that Rad(M) = M is injective. This completes the proof. O

For an R-module M, we will denote the sum of all divisible (injective) submodules of M by d(M).
It is well known that d(M) is an injective fully invariant submodule of M. It is shown in [11, Theorem
7] that every injective R-module is a direct sum of copies of Q and R(p®) for various nonzero prime
ideals p. An R-module M is said to be reduced if M has no divisible submodules (that is d(M) = 0).

Theorem 3.15. Let R be a Dedekind domain with quotient field Q such that Q # R. Then the follow-
ing assertions are equivalent for an R-module M:

(i) M is dual Baer;
(ii) M is mt-dual Baer;

(iii) M is quasi-dual Baer;
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iv) M is a direct sum of copies of Q, (R(p$°));c; and (R/q)ic;, where (p;);e; and (g);c; are nonzero
p i jel jel
prime ideals of R with p; # g; for every couple (i,j) € I x].

Proof. (i) = (ii) = (iii) See Remark

(iii) = (iv) Since d(M) is injective, it follows that M = d(M) & L for some reduced submodule L of
M. Note that d(M) and L are quasi-dual Baer by [18, Corollary 2.5]. Since T(L) < L, there exists a
decomposition L = N @ K with N C T(L) and Homg(L, T(L) N K) = 0 (see [18], Proposition 2.1]). But
T(L)NK = T(K). Then Homg(L, T(K)) = 0. Now assume that T(K) # 0. Then K has a direct summand
Ky which is isomorphic to R/p” for some nonzero prime ideal p of R and some positive integer n
(see [11, Theorem 9]). Since Ky C T(K), we have Homg(K, T(K)) = 0. Hence Homg(L, T(K)) = 0, a
contradiction. Therefore T(K) = 0 and so T(L) = N. Using again [18], Corollary 2.5], we infer that
N and K are quasi-dual Baer. Now taking into account Lemmas and we conclude that
K =0and N =L is semisimple. Note that d(M) is a direct sum of copies of Q and R(p*) for various
nonzero prime ideals p. Moreover, for each nonzero prime ideal p of R, the R-module R(p™)® R/p is
not quasi-dual Baer by [18, Example 2.17]. Now (iv) follows from the fact that the class of quasi-dual
Baer modules is closed under direct summands (see [18], Corollary 2.5]).

(iv) = (i) This follows from [13} Theorem 3.4]. O

4 m-dual Baer Rings

We will call a ring R a right t-dual Baer (resp., right dual Baer) ring if the right R-module Ry is nt-
dual Baer (resp., dual Baer). Following [18], a ring R is called a right quasi-dual Baer ring if the right
R-module Ry is a quasi-dual Baer module. Left t-dual Baer rings, left dual Baer rings and left quasi-
dual Baer rings are defined similarly. It was shown in [13} Corollary 2.9] and [18} Corollary 2.11]
that dual Baer and quasi-dual Baer properties are left-right symmetric for any ring R. Moreover, the
dual Baer rings are exactly the semisimple rings and the class of quasi-dual Baer rings is precisely the
class of finite product of simple rings. This implies that a commutative ring R is (right) -dual Baer
if and only if R is semisimple. We begin by characterizing right r-dual Baer rings in some special
cases.
Recall that a ring R is called Abelian if every idempotent of R is central.

Remark 4.1. (i) Let R be an Abelian ring. By [12, Proposition 2.8(iii)], we infer that R is a right 7-dual
Baer ring if and only if R is a left 7-dual Baer ring if and only if R is a semisimple ring.

(ii) Let R be a ring with I(R) = R. Combining [12}, Proposition 2.8(iv)] with [18, Proposition 2.10],
we conclude that R is a right 7t-dual Baer ring if and only if R is a left t-dual Baer ring if and only if
R is a quasi-dual Baer ring if and only if R is a finite product of simple rings.

Recall that a ring R is called projection invariant Baer (or r-Baer) if for each gY 9, gR, there exists
c? =ceRsuchthat rg(Y) = {r € R| Yr = 0} = cR (see [6, Definition 2.2]). It is proven in [[6] that 7t-Baer
condition for a ring is left-right symmetric. Therefore R is 7t-Baer if and only if for each Yr <, Rp,
there exists ¢> = ¢ € R such that Ix(Y)={r e R|rY = 0} = Rc.

Next, we compare the class of right t-dual Baer rings and that of 7-Baer rings.

Remark 4.2. From [12, Proposition 3.1], it follows that every right or left 7-dual Baer ring R is a
1t-Baer ring.

Remark 4.3. It was shown in [6, Corollary 2.2(ii)] that if R is a -Baer ring and S is a subring of R
with I(R) C S, then S is 7t-Baer. The analogue of this fact is not true, in general, for right 7-dual Baer
rings. To see this, consider the ring Q which is (right) t-dual Baer. However, since the subring Z of
Q is not semisimple, the ring Z is not (right) t-dual Baer even if I(Q) = Z (see Remark i)).
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Note that a ring R is a domain if and only if it is -Baer and 0 and 1 are its only idempotents. In
the following example, we present some rings which are 7-Baer, but not right 7-dual Baer.

Example 4.4. Let R be a w-Baer ring such that R is not semisimple and the right R-module Ry is
indecomposable. Then R cannot be right 7t-dual Baer by Remark [4.1{i). Explicit examples are:

(i) Let R be the free ring Z < x,p >. Since R is a domain, R is a 7t-Baer ring (see [6, Example 2.1]).
On the other hand, the ring R is not semisimple.

(ii) Let A be a prime ring such that Z(A4) # 0, Z(A4) # A and A4 is a uniform module (see specific
examples in 8, Example 4.3]). Thus A is not a domain and {0, 1} is the set of all idempotent elements
of A. Therefore A is not a -Baer ring. Now let R = Mat, (A) be the n-by-n full matrix ring over A
for some integer n > 1. It is well known that I(R) = R. Moreover, by [6, Example 2.2], R is a 7t-Baer
ring. On the other hand, suppose that the ring R is right t-dual Baer. Then R is quasi-dual Baer (see
Remark [4.1ii)). Hence A is also quasi-dual Baer (see Proposition [4.23|below). Using [18} Proposition
2.10], we deduce that A is a simple ring since A, is indecomposable. This contradicts the fact that
Z(Ap)=0and Z(Ay) = A. This proves that R is not a right rt-dual Baer ring.

Lemma 4.5. Let e be a central idempotent in a ring R. Then eR is t-dual Baer as a right R-module if and
only if eR is t-dual Baer as a right eR-module.

Proof. This follows directly from Theorem |2.4 O]

Proposition 4.6. Assume that R is a right -dual Baer ring and let ¢* = e € R. If eR <y Rp, then e and
1 —e are central idempotents. Moreover, eR = eRe and (1 —e)R = (1 —e)R(1 —e) are right mt-dual Baer rings.

Proof. Note that R is quasi-dual Baer. Thus R is a semiprime ring by the proof of [18] Proposition
2.10((iii) = (iv))]. Since eR <, Rg, eR is a two-sided ideal of R by Lemma V). Now using [10}
Lemma 3.1], it follows that e is central. So 1 —e is also central. The last assertion follows directly by
applying Theorem [3.6/and Lemma [4.5 O

Proposition 4.7. For a ring R, the following are equivalent:
(i) Ris a right t-dual Baer ring;
(ii) Ewvery projection invariant right ideal of R is a direct summand of Rg;
(iii) Ewvery projection invariant right ideal of R is a two-sided ideal of R and R is a quasi-dual Baer ring.

Proof. Given a € R, let ¢, : R — R be the R-endomorphism of Ry defined by ¢,(x) = ax for all x € R.

(i) = (ii) Let Ir <y Rg. Define the set 7 = {¢, : a € I}. It is not hard to see that 7 is a right ideal of
S = Endg(RR). Moreover, Zg 4, Ss. To see this, let e?=e€S. Thene= @¢(1) and e(1) is an idempotent
in R. Hence e(1)I C I. Now let ¢, € Z, where b € I. Then @, 1)@, = @1y € L. Therefore eZ C 7. It
follows that Zg <, Ss. Now by Theorem 2.4} Z(Rg) = ¥ se; Pa(R) = L g aR = I <4 Rg.

(ii) = (iii) Note that every two-sided ideal of R is a direct summand of Rg. Thus R is a quasi-dual
Baer ring by [18} Proposition 2.10]. Let I <, Rg. By (ii), I <4 Rg. Hence there exists an idempotent
e € R such that I = eR. By Lemma v), I is fully invariant in R and hence I is a two-sided ideal of
R.

(iii) = (i) Let Ig 9, Rg. By (iii), I is a two-sided ideal of R. Therefore I <; Ry by [L8} Proposition
2.10]. Hence R is a right r-dual Baer ring by Corollary[2.7] O

Proposition 4.8. Let {R; : i € I} be a family of rings. Then the direct product R =[];¢; R; is a right 1t-dual
Baer ring if and only if the indexing set I is finite and each R; is right t-dual Baer.
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Proof. Using Theorem [3.8/and Lemma we are reduced to proving that if R is right t-dual Baer,
then I is a finite set. Suppose that R is right -dual Baer. Assume that I is not finite. Note that
A = ®;¢R; is a two-sided ideal of the ring R. Hence the right ideal A is a direct summand of Ry by
Proposition Therefore Rg = A® X for some proper right ideal X of R. This is impossible. It
follows that I is a finite set. O

To obtain another characterization of right w-dual Baer rings, we introduce the following type of
rings which is a stronger form of simple rings.

Definition 4.9. A ring R is said to be a right (left) -simple ring if 0 and R are the only projection
invariant right (left) ideals in R.

It is clear that any right 7t-simple ring is a simple ring which is right 7t-dual Baer.
Lemma 4.10. Let R be a simple ring. Then the following conditions are equivalent:

(i) Ris a right t-dual Baer ring;

(ii) R is a right t-simple ring.

Proof. (i) = (ii) Let Iz 9, Rg. By Proposition I is a two-sided ideal of R. Since R is a simple ring,
it follows that I =0 or I = R.
(ii) = (i) This is immediate. O

In the next example, we exhibit some right t-simple rings.

Example 4.11. Let R be a simple ring such that I(R) = R. Then R is a right and left =-dual Baer ring
by Remark [4.1[ii). Therefore R is a right and left 7-simple ring by Lemma [4.10] For example, if R’
is a simple ring and n > 1 is a positive integer, then Mat,(R’) is a simple ring by [14, Theorem 3.1].
Moreover, we have I(Mat, (R")) = Mat,(R’). It follows that Mat,(R’) is a right and left 7-simple ring.

Proposition 4.12. Let R be a right t-simple ring. Then either R is a division ring or R has a non-trivial
idempotent element.

Proof. Assume that R has no idempotent element except 0 and 1. Then clearly every right ideal of R
is projection invariant. Since R is right wt-simple, it follows that R is a division ring. O]

Next, we present some simple rings which are not right w-simple.

Example 4.13. Let R be a simple ring that is not a division ring which has no idempotent element
except 0 and 1. Then R is not a right 7t-simple ring by Proposition As explicit examples, we can
take:

(a) Weyl algebras, A, (F), over a field F of characteristic zero (see [14, Corollary 3.17]), or

(b) the Zalesskii-Neroslavskii example (see, for example [9, Example 14.17]).

Remark 4.14. By Remark 2.9} the following implications hold for any ring R:

Ris a (right) dual Baer ring = R is a right -dual Baer ring = R is a (right) quasi-dual Baer ring.

The following examples show that these implications are not reversible, in general:

(i) Let R be a simple ring which is not semisimple (see [[14]) and let n > 1 be a positive integer. Then
Mat,(R) is a right 7-dual Baer ring by Lemma[4.10/and Example[4.11] Let e be the matrix unit Ej; in
Mat,(R). Then the rings eMat, (R)e and R are isomorphic (see [14, Example 21.14]). Now using [14),
Corollary 21.13], we see that the ring Mat,(R) is not semisimple. Hence Mat, (R) is not a (right) dual
Baer ring by [13] Corollary 2.9].

(ii) Using [18) Proposition 2.10] and Lemma[4.10} it follows easily that the rings given in Example
a)—(b) are quasi-dual Baer, but not right t-dual Baer.
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Theorem 4.15. For a ring R, the following are equivalent:
(i) Ris aright r-dual Baer ring;
(ii) Ris a finite product of right 7-simple rings.

Proof. (i) = (ii) Assume that R is a right t-dual Baer ring. Then R is a (right) quasi-dual Baer ring by
Remark By [[18} Proposition 2.10], there exist nonzero two-sided ideals Ry, ..., R, of R for some
positive integer n such that R=R;®---®R,, and each R; (1 <i < n) is a simple ring. By [2, Proposition
7.6], there exist pairwise orthogonal central idempotents e, ..., e, € R with 1 = ¢; +--- + ¢, and
R;=e;Rforeveryi=1,...,n From Proposition it follows that each R; (1 <i < n) is a right 7-dual
Baer ring. Now using Lemma [4.10} we infer that each R; (1 <i < n) is a right 7-simple ring.

(ii) = (i) This follows from Propositionand Lemmal4.10 O

Remark 4.16. It would be desirable to investigate if the property of being a 7-dual Baer ring is left-
right symmetric but we have not been able to do this. Note that from Theorem it follows that
the m-dual Baer ring property is left-right symmetric if and only if so is the 7-simple ring property.

Let R be a ring. For each A C R, the right annihilator of A in Ris
rr(A)={reR|ar=0forall aec A}.
In the next proposition, we provide a necessary condition for a ring to be right m-simple.

Proposition 4.17. Let R be a right w-simple ring. Then for every nonzero projection invariant left ideal 1
of R, we have rg(I) = 0.

Proof. Note that R is a right t-dual Baer ring by Theorem Then R is a t-Baer ring by Remark
Let 0 # rI <, gR. Then rg(I) <, Rg by [6, Lemma 2.1]. Since R is right 7-simple, we have rg(I) = 0
or rr(I) = R. But I #0. So rg(I) = 0. O

Proposition 4.18. Let R be a ring with Soc(Rg) essential in Rg. Then the following are equivalent:
(i) Ris a dual Baer ring;
(ii) R is a right t-dual Baer ring;
(iii) R is a quasi-dual Baer ring;
(iv) R is a semisimple ring.

Proof. (i) = (ii) = (iii) are clear by Remark

(iii) = (iv) Note that Soc(RR) is a two-sided ideal of R. Then Soc(Rg) is a direct summand right
ideal of R by [[18} Proposition 2.10]. Hence R = Soc(Ry) since Soc(Ry) is essential in Rg.

(iv) = (i) is clear. O

Next, we investigate the transfer of the right w-dual Baer condition between a base ring R and
several extensions. We begin with R[x] and R[[x]].

Proposition 4.19. Let R be a ring satisfying one of the following conditions:
(i) R[x]is a right t-dual Baer ring;
(ii) R[[x]] is a right t-dual Baer ring.

Then R is a right 1t-dual Baer ring.
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Proof. (i) Suppose that R[x] is a right 7t-dual Baer ring and let I be a projection invariant right ideal
of R. By [6l Lemma 4.1(iv)], I[x] is a projection invariant right ideal of R[x]. This implies that
I[x] = e(x)R[x] for some idempotent e(x) = eg + e;x + -+ + €,x" € R[x] (see Proposition [4.7). Let us
show that I = eyR. Since e(x) € I[x], we have ey € I and so ¢gR C I. Now let a € I. Therefore
a € I[x] = e(x)R[x]. Hence a = e(x)f(x) for some f(x) = fo+ fix +--- + f,,x" € R[x]. It follows that
a = e fy € egR. This proves that I = ¢gR. Therefore R is a right 7z-dual Baer ring by Proposition [4.7]
(ii) This follows by the same method as in (i). O

The next example shows that polynomial extensions of right w-dual Baer rings need not be right
ri-dual Baer.

Example 4.20. Let F be a field. Clearly, F is a right 7t-dual Baer ring. On the other hand, it is well
known that both F[x] and F[[x]] are integral domains, but they are not semisimple. From Remark
[4.1]i), it follows that neither R[x] nor R[[x]] is right 7-dual Baer.

We conclude this paper by investigating when full or generalized triangular matrix rings are right
nt-dual Baer.

Proposition 4.21. Let R be a quasi-dual Baer ring (in particular if R is a right m-dual Baer ring). Then
Mat, (R) is a right and left 7t-dual Baer ring for every positive integer n > 1.

Proof. By [18] Proposition 2.10], there exists a positive integer t such that R = []i_; R; is a finite
product of simple rings R; (1 <i <t). Let n > 1 be a positive integer. Note that A = Mat,(R) =
[1:_, Mat,(R;) (as rings). By [14, Theorem 3.1], each Mat,(R;) (1 < i < t) is a simple ring. Since
I(A) = A, it follows from Remark [4.1]ii) that A a right and left 7t-dual Baer ring. O

The next example illustrates the fact that the right t-dual Baer property is not Morita invariant.

Example 4.22. It is well known that for any ring R and any positive integer m, the rings R and
Mat,,(R) are Morita equivalent (see [2, Corollary 22.6]). Let R be a simple ring which is not right
nt-simple (see Example |4.13). Then R is not right 7-dual Baer by Lemma On the other hand,
for every positive integer n > 1, Mat,(R) is a right 7t-dual Baer ring by Proposition [4.21]

Proposition [4.21]and Example [4.22|should be compared with the following proposition.
Proposition 4.23. Let R be a ring. Then the following statements are equivalent:
(i) Ris a quasi-dual Baer ring;
(ii) Mat,(R) is a quasi-dual Baer ring for every positive integer n;
(iii) Mat,(R) is a quasi-dual Baer ring for some positive integer n > 1.

Proof. (i) = (ii) This follows from Remarkand Proposition

(ii) = (iii) This is immediate.

(iii) = (i) Let n > 1 be a positive integer such that A = Mat,,(R) is a quasi-dual Baer ring. Then
A is a semiprime ring (see the proof of [18, Proposition 2.10]). Let e be the matrix unit Eq; in A.
Clearly, e is an idempotent in A. Moreover, eAe = {aE;; | a € R} and R are isomorphic rings (see [14,
Example 21.14]). Let us show that eAe is a quasi-dual Baer ring. Take a two-sided ideal U of eAe.
Then AUA is a two-sided ideal of A. Thus AUA is a direct summand of A, by [18] Proposition 2.10].
This implies that AUA = fA for some f2 = f € A. Since A is a semiprime ring, it follows from [[10,
Lemma 3.1] that f is a central idempotent in A. Now [14, Theorem 21.11(2)] gives that U = e(AUA)e.
Therefore U = e(fA)e. Hence U = e?(f Ae) = efe(eAe) as f is central. Moreover, it is clear that efe is
an idempotent in the ring eAe. It follows that U is a direct summand of eAe,4.. Consequently, eAe is
a quasi-dual Baer ring by [18, Proposition 2.10]. O
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Next, we characterize right -dual Baer 2-by-2 generalized triangular matrix rings.

Theorem 4.24. Let T = [R denote a 2-by-2 generalized upper triangular matrix ring where R

M

0 S

and S are rings and M is an (R, S)-bimodule. Then the following statements are equivalent:
(i) T is a right rt-dual Baer ring;

(ii) R and S right rr-dual Baer rings and M = 0.

Proof. (i) = (ii) It is well known that Rad(T) = Rac(l)(R) Rad(S)] is a two-sided ideal of T and hence
it is a direct summand of Ty by PropositionE But Rad(T) is small in Tr. Then [Rac(l)(R) Ra](\i/I(S) =

0 0] o (R 0
[0 O]’ This yields M = 0. It follows that T = 0 s
we infer that R and S are right 7t-dual Baer rings.
(ii) = (i) This follows by using again Proposition [4.8] ]

] =~ Rx S (as rings). Now from Proposition

Remark 4.25. From the previous theorem, it follows that for any nonzero ring R, the 2-by-2 upper
triangular matrix ring over R is never a right rt-dual Baer ring.
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