

Moroccan Journal of Algebra and Geometry with Applications
Supported by Sidi Mohamed Ben Abdellah University, Fez, Morocco

Volume 2, Issue 1 (2023), pp 108-123

Title:

π-dual Baer Modules and π-dual Baer Rings

Author(s):

Derya Keskin Tütüncü & Rachid Tribak

Supported by Sidi Mohamed Ben Abdellah University, Fez, Morocco

π -dual Baer Modules and π -dual Baer Rings

Derya Keskin Tütüncü¹ and Rachid Tribak²

- ¹ Department of Mathematics, Hacettepe University, 06800 Beytepe, Ankara, Turkey e-mail: keskin@hacettepe.edu.tr
- ² Centre Régional des Métiers de l'Education et de la Formation (CRMEF-TTH)-Tanger, Avenue My Abdelaziz, Souani, B.P. 3117, Tangier, Morocco e-mail: tribak12@yahoo.com

Communicated by Mohammed Tamekkante (Received 08 November 2022, Revised 12 February 2023, Accepted 20 February 2023)

Abstract. Let R be a ring and let M be an R-module with $S = \operatorname{End}_R(M)$. A submodule N of M is said to be *projection invariant* in M (denoted $N \leq_p M$) if $eN \subseteq N$ for all $e = e^2 \in S$. We call M π -dual Baer, if for each $N \leq_p M$ there exists $e^2 = e \in S$ such that $\{f \in S \mid f(M) \subseteq N\} = eS$. A characterization of π -dual Baer modules is provided. We show that the class of π -dual Baer modules lies strictly between the classes of dual Baer modules and quasi-dual Baer modules. It is also shown that in general, the class of π -dual Baer modules is neither closed under direct sums nor closed under direct summands. The structure of π -dual Baer modules over Dedekind domains is completely determined. We conclude the paper by studying right π -dual Baer rings. We call a ring R right π -dual Baer if the right R-module R is right R-dual Baer. A characterization of this class of rings is provided. We also investigate the transfer between a base ring R and many of its extensions (for example, full matrix rings over R or R[x] or R[[x]]). In addition, we characterize the 2-by-2 generalized triangular right R-dual Baer matrix rings.

Key Words: dual Baer module; quasi-dual Baer module; π -dual Baer module; endomorphism rings; projection invariant submodule.

2010 MSC: Primary 16D10, 16S50; Secondary 16D80.

Dedicated to the memory of Professor Muhammad Zafrullah

1 Introduction

Throughout this paper R will always be an associative ring with unity and any module will be a unital right R-module unless stated otherwise. Let M be an R-module. By $\mathbf{S} = \operatorname{End}_R(M)$ and \mathbf{I}_M , we denote the endomorphism ring of the module M and the subring of \mathbf{S} generated by the idempotents of \mathbf{S} , respectively. For a ring R, we use $\mathbf{I}(R)$ to denote the subring of R generated by idempotents. The notations $N \subseteq M$, $N \leq M$ and $N \leq_d M$ mean that N is a subset of M, N is a submodule of M and N is a direct summand of M, respectively. Let $N \leq M$. Then N is called a *fully invariant* submodule of M (denoted $N \unlhd M$) if $f(N) \subseteq N$ for all $f \in \mathbf{S}$, and N is called a *projection invariant* submodule of M (denoted $N \unlhd_p M$) if $e(N) \subseteq N$ for all $e^2 = e \in \mathbf{S}$. Note that every fully invariant submodule is projection invariant and the projection invariant submodules of a module M form a complete sublattice of the lattice of submodules of M. One may observe that if N is fully (projection) invariant in M, then there exists a ring homomorphism $\alpha: \mathbf{S} \to \operatorname{End}_R(N)$ ($\beta: \mathbf{I}_M \to \mathbf{I}_N$) defined by $\alpha(h) = h|_N$ ($\beta(h) = h|_N$) for all $h \in \mathbf{S}$ ($h \in \mathbf{I}_M$) (see \mathbb{Z}). Note that a right ideal I of a ring R is called *projection invariant* in R (denoted $I_R \unlhd_p R_R$) if $eI \subseteq I$ for all $e^2 = e \in R$. Moreover, fully invariant right ideals of R coincide with two-sided ideals of R.

The notions of Baer modules and quasi-Baer modules were introduced in 2004 (see $\boxed{16}$). In 2010 (see $\boxed{13}$), Keskin Tütüncü and Tribak dualized the notion of Baer modules. A module M is said to be

dual Baer if for every submodule N of M, there exists an idempotent $e \in S$ such that $\{f \in S \mid f(M) \subseteq N\}$ of S will be denoted by $D_S(N)$. For a subset X in S and a submodule N of M, let X(N) denote the submodule $\sum_{f \in X} f(N)$ of M. Note that a module M is dual Baer if and only if for every subset A of S, A(M) is a direct summand of M if and only if for every right ideal A of S, A(M) is a direct summand of M (see [13], Theorem 2.1]). In 2013 (see [3]), Amouzegar and Talebi introduced the notion of quasi-dual Baer modules by dualizing the notion of quasi-Baer modules. A module M is said to be *quasi-dual Baer* if for every fully invariant submodule N of M, there exists an idempotent $e \in S$ such that $D_S(N) = eS$. In [18], the authors continued the study of quasi-dual Baer modules. They showed that a module M is quasi-dual Baer if and only if for every left ideal I of S, I(M) is a direct summand of M (see [18], Proposition 2.4]).

In 2020 (see $[\![\mathcal{I}\!]\!]$), Birkenmeier, Kara and Tercan introduced the notion of π -endo Baer (π -e.Baer for short) modules. According to $[\![\mathcal{I}\!]\!]$, Definition 3.3], a module M is called π -e.Baer, if for each $\emptyset \neq X \subseteq M$ such that $j(X) \subseteq X$ for all $j^2 = j \in \mathbf{S}$ there exists $e^2 = e \in \mathbf{S}$ such that $l_{\mathbf{S}}(X) = \{s \in \mathbf{S} \mid s(X) = 0\} = \mathbf{S}e$. By $[\![\mathcal{I}\!]\!]$, Lemma 3.4], a module M is π -e.Baer if and only if for each $N \leq_p M$, there exists $f^2 = f \in \mathbf{S}$ such that $l_{\mathbf{S}}(N) = \mathbf{S}f$ if and only if for each $\mathbf{S}Y \leq_p \mathbf{S}$, there exists $e^2 = e \in \mathbf{S}$ such that $\bigcap_{g \in Y} \operatorname{Ker} g = eM$. Later in 2021, this notion was dualized by Kara (see $[\![12]\!]$) by introducing the following definition.

Definition 1.1. A module M is called *dual* π -endo Baer, if for each $N \leq_p M$, there exists $e^2 = e \in S$ such that $D_S(N) = eS$.

Note that in $\boxed{4}$ and $\boxed{7}$, the authors used the terminology *endomorphism Baer* module, denoted briefly by e-Baer, for the Baer modules defined by Rizvi and Roman in $\boxed{16}$. The rings R for which the right R-module R_R is π -e.Baer were studied in 2018 (see $\boxed{6}$). It was shown in $\boxed{6}$, Proposition 2.1] that the π -e.Baer property is left-right symmetric for any ring R. Then (right) π -e.Baer rings were called π -Baer rings in $\boxed{6}$, Definition 2.2].

Motivated by all these research works ([3], [7], [12] and [13]), we continue to study dual π -endo Baer modules, but under the name π -dual Baer modules in this paper. We also study π -dual Baer rings. A ring R is said to be right (left) π -dual Baer if the right (left) R-module R_R (R) is π -dual Baer. The aim of this paper is to show that some results of π -e.Baer modules and π -Baer rings have corresponding duals for π -dual Baer modules and right π -dual Baer rings. In addition, we will obtain the π -dual Baer analogues of certain results appearing in [6] or in [18].

Section 2 is devoted to the study of some basic properties of π -dual Baer modules. We provide some equivalent formulations of being a π -dual Baer module (Theorem 2.4). We show that for an indecomposable \mathbb{Z} -module M, M is dual Baer if and only if M is π -dual Baer if and only if M is quasidual Baer if and only if $M \cong \mathbb{Q}$ or $M \cong \mathbb{Z}(p^{\infty})$ or $M \cong \mathbb{Z}/p\mathbb{Z}$, where p is a prime number (Proposition 2.12). We construct some examples showing that the π -dual Baer condition is strictly between the dual Baer and quasi-dual Baer conditions (Example 2.14).

In Section 3, we investigate direct sums and direct summands of π -dual Baer modules. We first provide examples showing that, in general, the π -dual Baer condition is neither preserved under direct sums nor preserved under direct summands (Examples 3.1] and 3.5). Then we prove that any projection invariant direct summand of a π -dual Baer module inherits the property (Theorem 3.6). It is also shown that if a module $M = \bigoplus_{i \in I} M_i$ such that $M_i \leq_p M$ for all $i \in I$, then M is π -dual Baer if and only if M_i is π -dual Baer for all $i \in I$ (Theorem 3.8). We conclude this section by describing the structure of π -dual Baer modules over Dedekind domains (Theorem 3.15).

In Section 4, we deal with right π -dual Baer rings. We show that the class of right π -dual Baer rings lies strictly between the classes of dual Baer rings and quasi-dual Baer rings (Remark 4.14). We provide a characterization of right π -dual Baer rings (Theorem 4.15). In addition, we study the transfer of the right π -dual Baer property between a base ring R and several extensions. For example, full matrix rings over R or R[x] or R[[x]] (see Propositions 4.19 and 4.21). Examples 4.20 and 4.22).

We conclude the paper by characterizing the 2-by-2 generalized triangular right π -dual Baer matrix rings (Theorem [4.24]).

Throughout this paper, by \mathbb{Z} , \mathbb{Q} and $\mathbb{Z}(p^{\infty})$ we denote the ring of integer numbers, ring of rational numbers and the Prüfer p-group, respectively where p is a prime number.

2 Some results on π -dual Baer modules

Definition 2.1. A module M is called π -dual Baer, if for each $N \leq_p M$, there exists $e^2 = e \in \mathbf{S}$ such that $D_{\mathbf{S}}(N) = e\mathbf{S}$.

Example 2.2. (i) Clearly, every semisimple module is π -dual Baer.

- (ii) Let M be an indecomposable module. Then 0 and 1 are the only idempotents of S. This implies that all submodules of M are projection invariant. Therefore M is dual Baer if and only if M is π -dual Baer.
- (iii) Let R be a commutative ring. Using [13], Corollary 2.9], we see that the R-module R is dual Baer if and only if it is π -dual Baer if and only if it is quasi-dual Baer if and only if R is semisimple.

Recall that an idempotent $e \in R$ is called *left semicentral* if xe = exe for all $x \in R$. The set of left semicentral idempotents of R is denoted by $S_l(R)$. We begin with the following lemma which is taken from [12, Lemmas 2.1 and 2.2] and [7, Lemma 3.1(iii)]. This lemma will be used throughout the paper.

Lemma 2.3. *Let* M *be a module with* $S = \operatorname{End}_R(M)$.

- (i) If $N \leq_p M$, then $D_{\mathbf{S}}(N) \leq_p \mathbf{S}_{\mathbf{S}}$.
- (ii) If $I_{\mathbf{S}} \leq_p \mathbf{S}_{\mathbf{S}}$, then $I(M) \leq_p M$.
- (iii) If I is a right ideal of S, then $D_S(I(M))(M) = I(M)$.
- (iv) If $N \leq M$, then $D_{\mathbf{S}}(D_{\mathbf{S}}(N)(M)) = D_{\mathbf{S}}(N)$.
- (v) Let $e = e^2 \in S$. Then $(eM)_R \leq_p M_R$ if and only if $(eM)_R \leq M_R$ if and only if $e \in S_l(S)$.

The following characterization of π -dual Baer modules will be used later to obtain other results in this study.

Theorem 2.4. Let *M* be a module. Then the following are equivalent:

- (i) M is π -dual Baer;
- (ii) For each $I_S \leq_p S_S$, I(M) is a (projection invariant) direct summand of M;
- (iii) For each $N \leq_p M$, there exists a decomposition $M = M_1 \oplus M_2$ with $M_1 \leq N$, $M_1 \leq_p M$ and $\operatorname{Hom}_R(M, N \cap M_2) = 0$;
- (iv) For each $N \leq_p M$, there exists a decomposition $M = M_1 \oplus M_2$ with $M_1 \leq N$, $M_1 \leq M$ and $\operatorname{Hom}_R(M, N \cap M_2) = 0$;
- (v) For each $N \leq_p M$, there exists a decomposition $M = M_1 \oplus M_2$ with $M_1 \leq N$ and $\operatorname{Hom}_R(M, N \cap M_2) = 0$.

Proof. (i) \Leftrightarrow (ii) This follows from [12] Proposition 2.4] and Lemma [2.3(ii).

- (i) \Rightarrow (iii) This implication follows by adapted the proof of [18]. Proposition 2.1((i) \Rightarrow (ii))] and using Lemma [2.3].
 - (iii) \Rightarrow (iv) This follows from Lemma 2.3(v) (see also [I], Proposition 3.1(4)]).
 - $(iv) \Rightarrow (v)$ This is evident.
 - $(v) \Rightarrow (i)$ The proof of this implication is similar to that of [18]. Proposition 2.1((ii) \Rightarrow (i))].

Example 2.5. Let M be a module such that $\operatorname{Hom}_R(M,N)=0$ for every projection invariant proper submodule N of M. Then M is π -dual Baer by Theorem 2.4. For example, the Prüfer p-group $\mathbb{Z}(p^{\infty})$ and the group of rational numbers \mathbb{Q} are π -dual Baer \mathbb{Z} -modules, where p is any prime number.

As applications of Theorem 2.4, we obtain the following corollaries.

Corollary 2.6. Let M be a π -dual Baer module and $N \leq_p M$. Then the following are equivalent:

- (i) $N \leq_d M$;
- (ii) $D_{S}(N)(M) = N$.

Proof. (i) \Rightarrow (ii) Let $\pi: M \to N$ be the projection map and $i: N \to M$ be the inclusion map. Then $i\pi \in D_{\mathbf{S}}(N)$ and $i\pi(M) = N$. Hence $D_{\mathbf{S}}(N)(M) = N$.

(ii) \Rightarrow (i) Since $N \leq_p M$, $D_{\mathbf{S}}(N) \leq_p \mathbf{S}_{\mathbf{S}}$ by Lemma 2.3(i). Applying Theorem 2.4, we get $D_{\mathbf{S}}(N)(M) \leq_d M$. Therefore $N \leq_d M$ by (ii).

Corollary 2.7. Let M be a module such that every projection invariant submodule of M is a direct summand of M. Then M is π -dual Baer.

Proof. Let $I_S \leq_p S_S$. Then by Lemma [2.3](ii), $I(M) \leq_p M$. So, by hypothesis, $I(M) \leq_d M$. From Theorem [2.4], it follows that M is a π -dual Baer module.

Corollary 2.8. Let M be an indecomposable module. Then the following are equivalent:

- (i) M is a π -dual Baer module;
- (ii) For every proper submodule N of M, $\operatorname{Hom}_R(M,N) = 0$.

Proof. Since M is indecomposable, the set of all idempotents of S is $\{0,1\}$. Therefore all submodules of M are projection invariant.

- (i) \Rightarrow (ii) Let *N* be a proper submodule of *M*. By Theorem 2.4, $\operatorname{Hom}_R(M, N) = 0$.
- (ii) \Rightarrow (i) Let $N \leq_p M$ with $N \neq M$. Since $\operatorname{Hom}_R(M,N) = 0$, $\overline{D_S}(N) = 0$ is a direct summand of S_S . If N = M, then $D_S(N) = S$ is again a direct summand of S_S . This completes the proof.

Next, we compare the notions of dual Baer, π -dual Baer and quasi-dual Baer modules. From the definitions of these three notions, we infer the following remark.

Remark 2.9. (see also [12] Theorem 2.6]) It is easily seen that the following implications hold for a module M:

M is a dual Baer module $\Rightarrow M$ is a π -dual Baer module $\Rightarrow M$ is a quasi-dual Baer module.

Next, we provide some sufficient conditions under which these three notions coincide. Recall that a ring *R* is called a *right duo ring* if every right ideal of *R* is a two-sided ideal.

Example 2.10. Let M be a module such that $S = \operatorname{End}_R(M)$ is a right duo ring. By [18], Remark 2.8], M is quasi-dual Baer if and only if M is dual Baer. Therefore from Remark [2.9], it follows that M is dual Baer if and only if M is π -dual Baer if and only if M is quasi-dual Baer.

Proposition 2.11. Let R be a local ring with maximal right ideal m and M = R/m. Assume that $Rad(E(M)) \neq E(M)$. Then the following are equivalent:

- (i) E(M) is a dual Baer R-module;
- (ii) E(M) is a π -dual Baer R-module;
- (iii) E(M) is a quasi-dual Baer R-module;
- (iv) R is a division ring.

Proof. This follows directly from Remark 2.9 and 18. Corollary 2.14.

Proposition 2.12. Let M be an indecomposable Z-module. Then the following are equivalent:

- (i) M is dual Baer;
- (ii) M is π -dual Baer;
- (iii) M is quasi-dual Baer;
- (iv) $M \cong \mathbb{Q}$ or $M \cong \mathbb{Z}(p^{\infty})$ or $M \cong \mathbb{Z}/p\mathbb{Z}$, where p is a prime number.

Proof. This is clear by Remark 2.9 and [18], Corollary 3.7].

Combining Remark 2.9 and [18] Corollary 3.9], we obtain the following proposition.

Proposition 2.13. Let M be a nonzero module over a commutative perfect ring R. Then the following conditions are equivalent:

- (i) M is dual Baer;
- (ii) M is π -dual Baer;
- (iii) M is quasi-dual Baer;
- (iv) M is a semisimple module.

Next, we present some examples to show that the class of π -dual Baer modules lies properly between the class of dual Baer modules and that of quasi-dual Baer modules (see Remark [2.9]).

Example 2.14. (i) Let S be a simple ring and let ${}_SN_S$ be an S-S-bimodule. Consider the generalized matrix ring $R = \begin{bmatrix} S & N \\ N & S \end{bmatrix}$ and the right R-module $M = N \oplus S$. Assume that S is a domain that is not a division ring. We know from [15, p. 1278] that $\operatorname{End}_R(M) \cong S$ (as rings). Then $\operatorname{End}_R(M)$ is a domain and hence M is indecomposable. Therefore all submodules of M are projection invariant. By [18, Example 2.9(ii)], M is a quasi-dual Baer module which is not dual Baer. This implies that M is a quasi-dual Baer module which is not π -dual Baer by [12, Proposition 2.8(ii)].

(ii) Let R be a ring which is a finite product of simple rings such that R is not semisimple. Then R_R is a quasi-dual Baer module by [18]. Proposition 2.10]. Let F be a free R-module with a finite rank n > 1. Using [3], Theorem 2.7], we conclude that F is a quasi-dual Baer module. Thus F is π -dual Baer by the proof of [12]. Corollary 2.9]. On the other hand, the module F is not dual Baer, since otherwise R will be semisimple by [13]. Corollaries 2.5 and 2.9].

In the following result, we characterize the class of rings R for which every finitely cogenerated right R-module is π -dual Baer.

Proposition 2.15. The following conditions are equivalent for a ring R:

- (i) Every finitely cogenerated right R-module is π -dual Baer;
- (ii) Every finitely cogenerated right R-module is quasi-dual Baer;
- (iii) R is a right V-ring.

Proof. (i) \Rightarrow (ii) This is clear.

(ii) \Rightarrow (iii) Assume that R has a simple right R-module S which is not injective. Then $E(S) \neq S$. Let $M = A \oplus B$ be a right R-module such that $A \cong S$ and $B \cong E(S)$. Let $S_1 = \operatorname{Soc}(B)$. Clearly, $S_1 \cong S$. Note that $N = \operatorname{Soc}(M) = A \oplus S_1$ is an essential submodule of M that is fully invariant in M. By [18] Proposition 2.1], there exists a decomposition $M = M_1 \oplus M_2$ with $M_1 \subseteq N$ and $\operatorname{Hom}_R(M, N \cap M_2) = 0$. Since $N \neq M$, we have $M_2 \neq 0$ and hence $N \cap M_2 \neq 0$. Therefore $N \cap M_2$ contains a simple submodule S_2 with $S_2 \cong S \cong A$. It follows that $\operatorname{Hom}_R(M, N \cap M_2) \neq 0$, a contradiction. This proves that R is a right V-ring.

(iii) \Rightarrow (i) This follows from the fact every finitely cogenerated right module over a right V-ring is semisimple.

3 Direct sums and direct summands of π -dual Baer modules

A direct sum of π -dual Baer modules may not be π -dual Baer as we see in the following example. Another example is provided in [12] Example 2.13].

Example 3.1. Let L be a simple R-module such that the injective hull of L has no maximal submodules. It is shown in [18], Example 2.17] that the module $M = E(L) \oplus L$ is not quasi-dual Baer. Thus M is not π -dual Baer (see Remark [2.9]). Now let R be a discrete valuation ring with maximal ideal m and quotient field K. It is well known that $K/R \cong E(R/m)$. Therefore the R-module $(K/R) \oplus (R/m)$ is not π -dual Baer. On the other hand, note that both K/R and R/m are π -dual Baer by [13], Theorem 3.4].

Next, we deal with a special case of direct sums of π -dual Baer modules. First, we include the following lemma which will be useful to our work in this paper.

Lemma 3.2. [7] Lemma 3.1]

- (i) Let $X_R \leq N_R \leq M$. Then $X \leq_p N \leq_p M$ implies that $X \leq_p M$.
- (ii) Let $M = \bigoplus_{i \in I} M_i$ and $X_R \leq_p M_R$. Then $X = \bigoplus_{i \in I} (X \cap M_i)$ and $X \cap M_i \leq_p M_i$ for all $i \in I$.

Theorem 3.3. Let M be a π -dual Baer module. Then every direct sum of copies of M is a π -dual Baer module.

Proof. Let $N = \bigoplus_{i \in I} M_i$ such that $M_i \cong M$ for all $i \in I$. Let $X \unlhd_p N$. By Lemma 3.2(ii), we have $X = \bigoplus_{i \in I} (X \cap M_i)$ and $X \cap M_i \unlhd_p M_i$ for all $i \in I$. Fix $i \in I$. Since M_i is π -dual Baer, there exists a decomposition $M_i = K_i \oplus L_i$ with $K_i \subseteq X \cap M_i$ and $\operatorname{Hom}_R(M_i, X \cap L_i) = 0$ by Theorem 2.4. Put $K = \bigoplus_{i \in I} K_i$ and $L = \bigoplus_{i \in I} L_i$. Clearly, $M = K \oplus L$ and $K \subseteq X$. Moreover, we have $X \cap L = \bigoplus_{i \in I} (X \cap L_i)$. Now assume that $\operatorname{Hom}_R(M, X \cap L) \neq 0$. Then there exist $i, j \in I$ such that $\operatorname{Hom}_R(M_i, X \cap L_j) \neq 0$. But $M_j \cong M_i$. So $\operatorname{Hom}_R(M_j, X \cap L_j) \neq 0$, a contradiction. Hence $\operatorname{Hom}_R(M, X \cap L) = 0$. Applying again Theorem 2.4, it follows that N is a π -dual Baer module. □

The following corollary is an immediate consequence of Theorem 3.3.

Corollary 3.4. Let R be a ring such that R_R is a right π -dual Baer R-module. Then all free right R-modules are π -dual Baer.

Note that both the class of dual Baer modules and the class of quasi-dual Baer modules are closed under direct summands (see [13], Corollary 2.5] and [18], Corollary 2.5]). However, the following example illustrates that being π -dual Baer is not preserved by taking direct summands.

Example 3.5. Let R be a simple ring which is a domain but not a division ring. From [18, Proposition 2.10], we infer that R_R is a quasi-dual Baer R-module. On the other hand, R_R is not a π -dual Baer module by [12, Proposition 2.8(ii)] and [13, Corollary 2.9]. Now consider a free right R-module $F_R = \bigoplus_{i=1}^n R_i$ for some integer n > 1, where $R_i \cong R$ for all $1 \le i \le n$. Note that F is quasi-dual Baer by [3]. Theorem 2.7]. Then F is π -dual Baer by [12, Corollary 2.9].

As an application of Theorem 2.4, we can improve and generalize Proposition 2.11 of 12 as follows. The proof and the techniques used are different from those of 12. Proposition 2.11.

Theorem 3.6. Let $M = M_1 \oplus M_2$ be a π -dual Baer module for some submodules M_1 and M_2 of M. If $M_1 \leq_p M$, then M_1 and M_2 are π -dual Baer.

Proof. Let us first prove that M_1 is π -dual Baer. Take $N_1 \unlhd_p M_1$. Then $N_1 \unlhd_p M$ by Lemma [3.2](i). Since M is π -dual Baer, there exists a decomposition $M = K_1 \oplus K_2$ with $K_1 \le N_1$ and $\operatorname{Hom}_R(M, N_1 \cap K_2) = 0$ (see Theorem [2.4]). By modularity, we have $M_1 = K_1 \oplus (K_2 \cap M_1)$. Moreover, $N_1 \cap (K_2 \cap M_1) = N_1 \cap K_2$. It is clear that $\operatorname{Hom}_R(M_1, N_1 \cap K_2) = 0$. Using Theorem [2.4], we deduce that M_1 is π -dual Baer. To show that M_2 is π -dual Baer, take $N_2 \unlhd_p M_2$. Then $N = M_1 \oplus N_2 \unlhd_p M$ by [5]. Lemma 4.13]. So there exist submodules K and L of M such that $M = K \oplus L$, $K \subseteq N$, $K \unlhd_p M$ and $\operatorname{Hom}_R(M, N \cap L) = 0$ (see Theorem [2.4]). Note that $K = (K \cap M_1) \oplus (K \cap M_2)$ by Lemma [3.2](ii). Hence $M = (K \cap M_1) \oplus (K \cap M_2) \oplus L$ and so $M_2 = (K \cap M_2) \oplus [((K \cap M_1) \oplus L) \cap M_2]$. In addition, it is clear that $K \cap M_2 = K \cap N_2 \subseteq N_2$ as $K \subseteq N$. Thus $N_2 = (K \cap N_2) \oplus [((K \cap M_1) \oplus L) \cap N_2]$. Moreover, since $M = (K \cap M_1) \oplus (K \cap N_2) \oplus L$, it follows that $N = (K \cap M_1) \oplus (K \cap N_2) \oplus (N \cap L)$ by modularity. Therefore $N_2 = (K \cap N_2) \oplus [((K \cap M_1) \oplus (N \cap L)) \cap N_2]$. Note that $((K \cap M_1) \oplus (N \cap L)) \cap N_2 \subseteq ((K \cap M_1) \oplus L) \cap N_2$. Then $((K \cap M_1) \oplus (N \cap L)) \cap N_2 = ((K \cap M_1) \oplus L) \cap N_2$. Now assume that $\operatorname{Hom}_R(M_2, N_2 \cap [((K \cap M_1) \oplus L) \cap M_2)]) \neq 0$ and let $f : M_2 \to ((K \cap M_1) \oplus (N \cap L)) \cap N_2$ be a nonzero homomorphism. Let $\pi : (K \cap M_1) \oplus (N \cap L) \to N \cap L$ be the projection map. It is easy to check that $0 \neq \pi f \in \operatorname{Hom}_R(M_2, N \cap L)$. This contradicts the fact that $\operatorname{Hom}_R(M, N \cap L) = 0$. From Theorem [2.4], we infer that M_2 is a π -dual Baer module.

Proposition 3.7. Let $M = M_1 \oplus M_2$ for some submodules M_1 and M_2 of M. If M is a π -dual Baer module with $\mathbf{I}_{M_1} = \operatorname{End}_R(M_1)$, then M_1 is π -dual Baer.

Proof. By Remark 2.9, M is quasi-dual Baer. So M_1 is quasi-dual Baer by 18, Corollary 2.5. Therefore M_1 is π -dual Baer by 12, Proposition 2.8(iv).

Combining [12], Theorem 2.14] and Lemma [2.3](v), we obtain the following theorem. By using Theorem [2.4], we next provide another proof of this result.

Theorem 3.8. Let $M = \bigoplus_{i \in I} M_i$, where $M_i \leq_p M$ for all $i \in I$. Then M is π -dual Baer if and only if M_i is π -dual Baer for all $i \in I$.

Proof. Assume that M is π -dual Baer. By Theorem 3.6, each M_i ($i \in I$) is π -dual Baer. Conversely, assume that each M_i is π -dual Baer. By Lemma 2.3(v), $M_i \unlhd M$ for all $i \in I$. So, $\operatorname{Hom}_R(M_i, M_j) = 0$ for all $i \neq j \in I$. Let $N \unlhd_p M$. Thus $N = \bigoplus_{i \in I} (N \cap M_i)$ and $N \cap M_i \unlhd_p M_i$ for all $i \in I$ by Lemma 3.2(ii). Fix $i \in I$. By Theorem 2.4, there exists a decomposition $M_i = K_i \oplus L_i$ with $K_i \subseteq N \cap M_i$ and $\operatorname{Hom}_R(M_i, N \cap L_i) = 0$. Set $K = \bigoplus_{i \in I} K_i$ and $L = \bigoplus_{i \in I} L_i$. Clearly, $M = K \oplus L$ and $K \subseteq N$. Moreover, it is easy to see that $N \cap L = \bigoplus_{i \in I} (N \cap L_i)$. Combining the facts that $\operatorname{Hom}_R(M_i, M_j) = 0$ for all $i \neq j \in I$ and $\operatorname{Hom}_R(M_i, N \cap L_i) = 0$ for all $i \in I$, we conclude that $\operatorname{Hom}_R(M, N \cap L) = 0$. Using Theorem 2.4, it follows that M is π -dual Baer.

Let M be a module. The radical of M will be denoted by Rad(M). Note that Rad(M) is a fully invariant submodule of M by [2], Proposition 9.14]. Clearly, if M is semisimple, then Rad(M) = 0.

Corollary 3.9. Let an R-module $M = M_1 \oplus M_2$ be a direct sum of submodules M_1 and M_2 such that $Rad(M_1) = M_1$, M_2 is semisimple. If M is π -dual Baer, then M_1 is π -dual Baer. The converse holds when $Hom_R(M_2, M_1) = 0$.

Proof. Note that $Rad(M) = Rad(M_1) \oplus Rad(M_2) = M_1 \leq M$.

- (\Rightarrow) This follows by Theorem 3.6.
- (\Leftarrow) Since Hom_R(M_2 , M_1) = 0, M_2 ≤ M. Now the result follows from Theorem 3.8.

For the proof of the implication (i) \Rightarrow (ii) in the following proposition, we mainly follow the proof of [18], Proposition 2.15((i) \Rightarrow (ii))].

Proposition 3.10. Let an R-module $M = M_1 \oplus M_2$ be a direct sum of submodules M_1 and M_2 such that $Rad(M_1) = M_1$ and M_2 is semisimple. Then the following are equivalent:

- (i) M is π -dual Baer;
- (ii) M_1 is π -dual Baer and $I(M_2) \cap M_1 \subseteq I(M_1)$ for all $I_S \leq_p S_S$.

Proof. (i) ⇒ (ii) By Corollary 3.9, M_1 is π -dual Baer. Now we will prove that $I(M_2) \cap M_1 \subseteq I(M_1)$ for all $I_S \unlhd_p S_S$. Let $I_S \unlhd_p S_S$. By Lemma 2.3(ii), $I(M_1) + I(M_2) = I(M) \unlhd_p M$. Hence $I(M) = (I(M) \cap M_1) \oplus (I(M) \cap M_2)$ by Lemma 3.2(ii). As $M_1 \unlhd M$, we have $I(M_1) \subseteq M_1$. By modularity, $M_1 \cap I(M) = M_1 \cap (I(M_1) + I(M_2)) = I(M_1) + (M_1 \cap I(M_2))$. Since $M_1 \cap I(M_2)$ is semisimple, there exists a semisimple submodule N of $M_1 \cap I(M_2)$ such that $I(M_1) + (M_1 \cap I(M_2)) = I(M_1) \oplus N$. Therefore $I(M) = (I(M) \cap M_1) \oplus I(M) \cap M_2 = I(M_1) \oplus N \oplus (I(M) \cap M_2)$. Now by Theorem 2.4, $I(M) = I(M_1) \oplus N \oplus (I(M) \cap M_2) \subseteq_d M$. Thus $N \subseteq_d M_1$ and so Rad($N \subseteq N \cap R$ ad($N \subseteq N \cap R$). On the other hand, we have Rad($N \subseteq N \cap R$) is semisimple. Therefore $N \subseteq N$. This implies that $I(M_1) + (M_1 \cap I(M_2)) = I(M_1)$. Consequently, $I(M_2) \cap M_1 \subseteq I(M_1)$.

(ii) \Rightarrow (i) Let $N \leq_p M$. Then $N = (N \cap M_1) \oplus (N \cap M_2)$ and $N \cap M_1 \leq_p M_1$ (see Lemma 3.2(ii)). Since M_1 is π -dual Baer, there exist submodules K_1 and L_1 of M_1 such that $M_1 = K_1 \oplus L_1$, $K_1 \subseteq N \cap M_1$ and $\operatorname{Hom}_R(M_1, N \cap L_1) = 0$ (see Theorem 2.4). Since M_2 is semisimple, there exists a submodule $L_2 \leq M_2$ such that $M_2 = (N \cap M_2) \oplus L_2$. Put $K = K_1 \oplus (N \cap M_2)$ and $L = L_1 \oplus L_2$. Then $M = K \oplus L$ with $K \subseteq N$. It is easily seen that $N \cap L = (N \cap L_1) \oplus (N \cap L_2)$. But $N \cap L_2 = 0$, so $N \cap L = N \cap L_1$. Applying Theorem 2.4, it remains to prove that $\operatorname{Hom}_R(M, N \cap L_1) = 0$. Let $f \in \operatorname{Hom}_R(M, N \cap L_1)$ and consider the ideal $I = \mathbf{S}f\mathbf{S}$ of \mathbf{S} . By (ii), $I(M_2) \cap M_1 \subseteq I(M_1)$. Note that $f(M_1) = 0$ as $\operatorname{Hom}_R(M_1, N \cap L_1) = 0$. Since $M_1 \subseteq M$, we have $I(M_1) = 0$. Therefore $I(M_2) \cap M_1 = 0$ and hence $f(M_2) \cap M_1 = f(M_2) = 0$. It follows that f = 0, as desired.

Next, we provide a characterization of π -dual Baer modules over a commutative semilocal ring. But first we need a lemma.

Lemma 3.11. Let M be a π -dual Baer module over a commutative ring R. Then Ma is a direct summand of M for any ideal a of R.

Proof. This follows from Remark 2.9 and [18, Proposition 3.3].

Proposition 3.12. Let M be a nonzero module over a commutative semilocal ring R. Then the following are equivalent:

(i) M is π -dual Baer;

(ii) $M = M_1 \oplus M_2$ is a direct sum of submodules M_1 and M_2 such that $Rad(M_1) = M_1$ is π -dual Baer and M_2 is semisimple, and $I(M_2) \cap M_1 \subseteq I(M_1)$ for every $I_S \leq_p S_S$.

Proof. (i) \Rightarrow (ii) By Lemma 3.11 and the proof of [18], Theorem 3.8], the module M has a decomposition $M = M_1 \oplus M_2$ such that $Rad(M_1) = M_1$ and M_2 is semisimple. The result now follows from Proposition 3.10.

 $(ii) \Rightarrow (i)$ This is clear by Proposition 3.10.

In the remainder of this section we assume that R is a Dedekind domain with quotient field Q such that $Q \neq R$. Let M be an R-module. The set $T(M) = \{x \in M \mid xr = 0 \text{ for some nonzero } r \in R\}$ is a submodule of M which is called the *torsion submodule* of M. The module M is said to be *torsion* (resp., *torsion-free*) if T(M) = M (resp., T(M) = 0). Let \mathbb{P} denote the set of all nonzero prime ideals of R. For any $0 \neq p \in \mathbb{P}$, let $T_p(M)$ denote the set $\{x \in M \mid p^n x = 0 \text{ for some integer } n \geq 0\}$ which is called the p-primary component of M. The module M is called p-primary if $T_p(M) = M$. It is well known that if M is a torsion R-module, then M is a direct sum of its p-primary components. The p-primary component of the torsion R-module Q/R will be denoted by $R(p^\infty)$.

Next, we aim to describe the structure of quasi-dual Baer modules and π -dual Baer modules over Dedekind domains. First, we prove the following needed lemmas.

Lemma 3.13. Let M be a nonzero torsion-free R-module. If M is quasi-dual Baer, then M is an injective module.

Proof. Assume that M is quasi-dual Baer and let $0 \neq s \in R$. By [18], Proposition 3.3], there exists a submodule K of M such that $M = sM \oplus K$. Hence sK = 0. Therefore K = 0 since M is torsion-free. Thus M = sM. Hence M is a divisible R-module. By [17], Proposition 2.7], it follows that M is injective.

Lemma 3.14. Let M be a torsion R-module. Assume that M is quasi-dual Baer. Then $M = E \oplus F$ is a direct sum of an injective submodule E and a semisimple submodule F.

Proof. By [18] Corollary 2.5], every primary component $T_{\rho}(M)$ is quasi-dual Baer. Note that every direct sum of injective R-modules is injective since R is a noetherian ring. So without loss of generality we can assume that $M = T_{\rho}(M)$ for some nonzero prime ideal ρ of R. Since $\rho M \leq M$, there exists a decomposition $M = M_1 \oplus M_2$ with $M_1 \subseteq \rho M$ and $Hom_R(M,\rho M \cap M_2) = 0$ (see [18] Proposition 2.1]). Then $\rho M = M_1 \oplus (\rho M \cap M_2)$ by modularity. Moreover, we have $\rho M = \rho M_1 \oplus \rho M_2$. Therefore $\rho M_1 = M_1$ and $\rho M \cap M_2 = \rho M_2$. Thus $Hom_R(M_2,\rho M_2) = 0$. This implies that $rM_2 = 0$ for all $r \in \rho$, that is, $\rho M_2 = 0$. Hence M_2 is a semisimple module. Moreover, we have $M_1 = \rho M = Rad(M)$ and $M = \rho M \oplus M_2$. It follows that $\rho M = \rho(\rho M)$. This yields Rad(M) = Rad(Rad(M)). Since R is a Dedekind domain, we see that $Rad(M) = M_1$ is injective. This completes the proof.

For an R-module M, we will denote the sum of all divisible (injective) submodules of M by d(M). It is well known that d(M) is an injective fully invariant submodule of M. It is shown in [11]. Theorem 7] that every injective R-module is a direct sum of copies of Q and $R(p^{\infty})$ for various nonzero prime ideals p. An R-module M is said to be *reduced* if M has no divisible submodules (that is d(M) = 0).

Theorem 3.15. Let R be a Dedekind domain with quotient field Q such that $Q \neq R$. Then the following assertions are equivalent for an R-module M:

- (i) *M* is dual Baer;
- (ii) M is π -dual Baer;
- (iii) *M* is quasi-dual Baer;

(iv) M is a direct sum of copies of Q, $(R(\mathfrak{p}_i^{\infty}))_{i\in I}$ and $(R/\mathfrak{q})_{j\in J}$, where $(\mathfrak{p}_i)_{i\in I}$ and $(\mathfrak{q})_{j\in J}$ are nonzero prime ideals of R with $\mathfrak{p}_i \neq \mathfrak{q}_j$ for every couple $(i,j) \in I \times J$.

Proof. (i) \Rightarrow (ii) \Rightarrow (iii) See Remark 2.9.

(iii) \Rightarrow (iv) Since d(M) is injective, it follows that $M = d(M) \oplus L$ for some reduced submodule L of M. Note that d(M) and L are quasi-dual Baer by [18] Corollary 2.5]. Since $T(L) \unlhd L$, there exists a decomposition $L = N \oplus K$ with $N \subseteq T(L)$ and $\operatorname{Hom}_R(L, T(L) \cap K) = 0$ (see [18] Proposition 2.1]). But $T(L) \cap K = T(K)$. Then $\operatorname{Hom}_R(L, T(K)) = 0$. Now assume that $T(K) \neq 0$. Then K has a direct summand K_0 which is isomorphic to R/\mathfrak{p}^n for some nonzero prime ideal \mathfrak{p} of R and some positive integer n (see [11], Theorem 9]). Since $K_0 \subseteq T(K)$, we have $\operatorname{Hom}_R(K, T(K)) \neq 0$. Hence $\operatorname{Hom}_R(L, T(K)) \neq 0$, a contradiction. Therefore T(K) = 0 and so T(L) = N. Using again [18], Corollary 2.5], we infer that N and K are quasi-dual Baer. Now taking into account Lemmas [3.13] and [3.14], we conclude that K = 0 and N = L is semisimple. Note that d(M) is a direct sum of copies of Q and $R(\mathfrak{p}^{\infty})$ for various nonzero prime ideals \mathfrak{p} . Moreover, for each nonzero prime ideal \mathfrak{p} of R, the R-module $R(\mathfrak{p}^{\infty}) \oplus R/\mathfrak{p}$ is not quasi-dual Baer by [18]. Example 2.17]. Now (iv) follows from the fact that the class of quasi-dual Baer modules is closed under direct summands (see [18], Corollary 2.5]).

 $(iv) \Rightarrow (i)$ This follows from [13], Theorem 3.4].

4 π -dual Baer Rings

We will call a ring R a right π -dual Baer (resp., right dual Baer) ring if the right R-module R_R is π -dual Baer (resp., dual Baer). Following [18], a ring R is called a right quasi-dual Baer ring if the right R-module R_R is a quasi-dual Baer module. Left π -dual Baer rings, left dual Baer rings and left quasi-dual Baer rings are defined similarly. It was shown in [13], Corollary 2.9] and [18], Corollary 2.11] that dual Baer and quasi-dual Baer properties are left-right symmetric for any ring R. Moreover, the dual Baer rings are exactly the semisimple rings and the class of quasi-dual Baer rings is precisely the class of finite product of simple rings. This implies that a commutative ring R is (right) π -dual Baer if and only if R is semisimple. We begin by characterizing right π -dual Baer rings in some special cases.

Recall that a ring *R* is called *Abelian* if every idempotent of *R* is central.

Remark 4.1. (i) Let R be an Abelian ring. By [12] Proposition 2.8(iii)], we infer that R is a right π -dual Baer ring if and only if R is a left π -dual Baer ring if and only if R is a semisimple ring.

(ii) Let R be a ring with I(R) = R. Combining [12, Proposition 2.8(iv)] with [18, Proposition 2.10], we conclude that R is a right π -dual Baer ring if and only if R is a left π -dual Baer ring if and only if R is a quasi-dual Baer ring if and only if R is a finite product of simple rings.

Recall that a ring R is called *projection invariant Baer* (or π -Baer) if for each $RY \leq_p RR$, there exists $c^2 = c \in R$ such that $r_R(Y) = \{r \in R \mid Yr = 0\} = cR$ (see [6], Definition 2.2]). It is proven in [6] that π -Baer condition for a ring is left-right symmetric. Therefore R is π -Baer if and only if for each $Y_R \leq_p R_R$, there exists $c^2 = c \in R$ such that $l_R(Y) = \{r \in R \mid rY = 0\} = Rc$.

Next, we compare the class of right π -dual Baer rings and that of π -Baer rings.

Remark 4.2. From [12], Proposition 3.1], it follows that every right or left π -dual Baer ring R is a π -Baer ring.

Remark 4.3. It was shown in [6] Corollary 2.2(ii)] that if R is a π -Baer ring and S is a subring of R with $\mathbf{I}(R) \subseteq S$, then S is π -Baer. The analogue of this fact is not true, in general, for right π -dual Baer rings. To see this, consider the ring $\mathbb Q$ which is (right) π -dual Baer. However, since the subring $\mathbb Z$ of $\mathbb Q$ is not semisimple, the ring $\mathbb Z$ is not (right) π -dual Baer even if $\mathbf{I}(\mathbb Q) = \mathbb Z$ (see Remark 4.1(i)).

Note that a ring R is a domain if and only if it is π -Baer and 0 and 1 are its only idempotents. In the following example, we present some rings which are π -Baer, but not right π -dual Baer.

Example 4.4. Let R be a π -Baer ring such that R is not semisimple and the right R-module R_R is indecomposable. Then R cannot be right π -dual Baer by Remark [4.1](i). Explicit examples are:

- (i) Let R be the free ring $\mathbb{Z} < x, y >$. Since R is a domain, R is a π -Baer ring (see [6, Example 2.1]). On the other hand, the ring R is not semisimple.
- (ii) Let A be a prime ring such that $Z(A_A) \neq 0$, $Z(A_A) \neq A$ and A_A is a uniform module (see specific examples in [8], Example 4.3]). Thus A is not a domain and $\{0,1\}$ is the set of all idempotent elements of A. Therefore A is not a π -Baer ring. Now let $R = \mathbf{Mat}_n(A)$ be the n-by-n full matrix ring over A for some integer n > 1. It is well known that $\mathbf{I}(R) = R$. Moreover, by [6], Example 2.2], R is a π -Baer ring. On the other hand, suppose that the ring R is right π -dual Baer. Then R is quasi-dual Baer (see Remark $\{4.1\}$ (ii)). Hence A is also quasi-dual Baer (see Proposition $\{4.23\}$ below). Using $\{18\}$ Proposition 2.10], we deduce that A is a simple ring since A_A is indecomposable. This contradicts the fact that $Z(A_A) \neq 0$ and $Z(A_A) \neq A$. This proves that R is not a right π -dual Baer ring.

Lemma 4.5. Let e be a central idempotent in a ring R. Then eR is π -dual Baer as a right R-module if and only if eR is π -dual Baer as a right eR-module.

Proof. This follows directly from Theorem 2.4.

Proposition 4.6. Assume that R is a right π -dual Baer ring and let $e^2 = e \in R$. If $eR \leq_p R_R$, then e and 1 - e are central idempotents. Moreover, eR = eRe and (1 - e)R = (1 - e)R(1 - e) are right π -dual Baer rings.

Proof. Note that R is quasi-dual Baer. Thus R is a semiprime ring by the proof of [18]. Proposition 2.10((iii) ⇒ (iv))]. Since $eR \leq_p R_R$, eR is a two-sided ideal of R by Lemma [2.3](v). Now using [10], Lemma 3.1], it follows that e is central. So 1-e is also central. The last assertion follows directly by applying Theorem [3.6] and Lemma [4.5].

Proposition 4.7. For a ring R, the following are equivalent:

- (i) R is a right π -dual Baer ring;
- (ii) Every projection invariant right ideal of R is a direct summand of R_R ;
- (iii) Every projection invariant right ideal of R is a two-sided ideal of R and R is a quasi-dual Baer ring.

Proof. Given $a \in R$, let $\varphi_a : R \to R$ be the R-endomorphism of R_R defined by $\varphi_a(x) = ax$ for all $x \in R$.

- (i) \Rightarrow (ii) Let $I_R \leq_p R_R$. Define the set $\mathcal{I} = \{\varphi_a : a \in I\}$. It is not hard to see that \mathcal{I} is a right ideal of $\mathbf{S} = \operatorname{End}_R(R_R)$. Moreover, $\mathcal{I}_{\mathbf{S}} \leq_p \mathbf{S}_{\mathbf{S}}$. To see this, let $e^2 = e \in \mathbf{S}$. Then $e = \varphi_{e(1)}$ and e(1) is an idempotent in R. Hence $e(1)I \subseteq I$. Now let $\varphi_b \in \mathcal{I}$, where $b \in I$. Then $\varphi_{e(1)}\varphi_b = \varphi_{e(1)b} \in \mathcal{I}$. Therefore $e\mathcal{I} \subseteq \mathcal{I}$. It follows that $\mathcal{I}_{\mathbf{S}} \leq_p \mathbf{S}_{\mathbf{S}}$. Now by Theorem $\mathbf{Z}_{\mathbf{S}} = \mathbf{Z}_{a \in I} \varphi_a(R) = \mathbf{Z}_{a \in I} \varphi_a(R) = \mathbf{Z}_{a \in I} \varphi_a(R)$.
- (ii) \Rightarrow (iii) Note that every two-sided ideal of R is a direct summand of R_R . Thus R is a quasi-dual Baer ring by [18]. Proposition 2.10]. Let $I_R \leq_p R_R$. By (ii), $I \leq_d R_R$. Hence there exists an idempotent $e \in R$ such that I = eR. By Lemma [2.3](v), I is fully invariant in R_R and hence I is a two-sided ideal of R
- (iii) \Rightarrow (i) Let $I_R \leq_p R_R$. By (iii), I is a two-sided ideal of R. Therefore $I \leq_d R_R$ by [18], Proposition 2.10]. Hence R is a right π -dual Baer ring by Corollary [2.7].

Proposition 4.8. Let $\{R_i : i \in I\}$ be a family of rings. Then the direct product $R = \prod_{i \in I} R_i$ is a right π -dual Baer ring if and only if the indexing set I is finite and each R_i is right π -dual Baer.

Proof. Using Theorem 3.8 and Lemma 4.5, we are reduced to proving that if R is right π -dual Baer, then I is a finite set. Suppose that R is right π -dual Baer. Assume that I is not finite. Note that $A = \bigoplus_{i \in I} R_i$ is a two-sided ideal of the ring R. Hence the right ideal A is a direct summand of R_R by Proposition 4.7. Therefore $R_R = A \oplus X$ for some proper right ideal X of R. This is impossible. It follows that I is a finite set.

To obtain another characterization of right π -dual Baer rings, we introduce the following type of rings which is a stronger form of simple rings.

Definition 4.9. A ring R is said to be a *right* (*left*) π -simple ring if 0 and R are the only projection invariant right (left) ideals in R.

It is clear that any right π -simple ring is a simple ring which is right π -dual Baer.

Lemma 4.10. Let R be a simple ring. Then the following conditions are equivalent:

- (i) R is a right π -dual Baer ring;
- (ii) R is a right π -simple ring.

Proof. (i) \Rightarrow (ii) Let $I_R \leq_p R_R$. By Proposition 4.7, I is a two-sided ideal of R. Since R is a simple ring, it follows that I = 0 or I = R.

 $(ii) \Rightarrow (i)$ This is immediate.

In the next example, we exhibit some right π -simple rings.

Example 4.11. Let R be a simple ring such that I(R) = R. Then R is a right and left π -dual Baer ring by Remark $\boxed{4.1}$ (ii). Therefore R is a right and left π -simple ring by Lemma $\boxed{4.10}$. For example, if R' is a simple ring and n > 1 is a positive integer, then $\mathbf{Mat}_n(R')$ is a simple ring by $\boxed{14}$. Theorem 3.1]. Moreover, we have $I(\mathbf{Mat}_n(R')) = \mathbf{Mat}_n(R')$. It follows that $\mathbf{Mat}_n(R')$ is a right and left π -simple ring.

Proposition 4.12. Let R be a right π -simple ring. Then either R is a division ring or R has a non-trivial idempotent element.

Proof. Assume that R has no idempotent element except 0 and 1. Then clearly every right ideal of R is projection invariant. Since R is right π -simple, it follows that R is a division ring.

Next, we present some simple rings which are not right π -simple.

Example 4.13. Let R be a simple ring that is not a division ring which has no idempotent element except 0 and 1. Then R is not a right π -simple ring by Proposition 4.12. As explicit examples, we can take:

- (a) Weyl algebras, $A_n(F)$, over a field F of characteristic zero (see [14, Corollary 3.17]), or
- (b) the Zalesskii-Neroslavskii example (see, for example [9, Example 14.17]).

Remark 4.14. By Remark 2.9, the following implications hold for any ring *R*:

R is a (right) dual Baer ring \Rightarrow *R* is a right π -dual Baer ring \Rightarrow *R* is a (right) quasi-dual Baer ring. The following examples show that these implications are not reversible, in general:

- (i) Let R be a simple ring which is not semisimple (see [14]) and let n > 1 be a positive integer. Then $\mathbf{Mat}_n(R)$ is a right π -dual Baer ring by Lemma [4.10] and Example [4.11]. Let e be the matrix unit E_{11} in $\mathbf{Mat}_n(R)$. Then the rings $e\mathbf{Mat}_n(R)e$ and R are isomorphic (see [14], Example 21.14]). Now using [14]. Corollary 21.13], we see that the ring $\mathbf{Mat}_n(R)$ is not semisimple. Hence $\mathbf{Mat}_n(R)$ is not a (right) dual Baer ring by [13], Corollary 2.9].
- (ii) Using [18], Proposition 2.10] and Lemma [4.10], it follows easily that the rings given in Example [4.13](a)-(b) are quasi-dual Baer, but not right π -dual Baer.

Theorem 4.15. For a ring *R*, the following are equivalent:

- (i) R is a right π -dual Baer ring;
- (ii) R is a finite product of right π -simple rings.

Proof. (i) \Rightarrow (ii) Assume that R is a right π -dual Baer ring. Then R is a (right) quasi-dual Baer ring by Remark [4.14]. By [18], Proposition 2.10], there exist nonzero two-sided ideals R_1, \ldots, R_n of R for some positive integer n such that $R = R_1 \oplus \cdots \oplus R_n$ and each R_i ($1 \le i \le n$) is a simple ring. By [2], Proposition 7.6], there exist pairwise orthogonal central idempotents $e_1, \ldots, e_n \in R$ with $1 = e_1 + \cdots + e_n$, and $R_i = e_i R$ for every $i = 1, \ldots, n$. From Proposition [4.6], it follows that each R_i ($1 \le i \le n$) is a right π -dual Baer ring. Now using Lemma [4.10], we infer that each R_i ($1 \le i \le n$) is a right π -simple ring.

(ii) \Rightarrow (i) This follows from Proposition 4.8 and Lemma 4.10.

Remark 4.16. It would be desirable to investigate if the property of being a π -dual Baer ring is left-right symmetric but we have not been able to do this. Note that from Theorem 4.15, it follows that the π -dual Baer ring property is left-right symmetric if and only if so is the π -simple ring property.

Let *R* be a ring. For each $A \subseteq R$, the right annihilator of *A* in *R* is

$$r_R(A) = \{r \in R \mid ar = 0 \text{ for all } a \in A\}.$$

In the next proposition, we provide a necessary condition for a ring to be right π -simple.

Proposition 4.17. Let R be a right π -simple ring. Then for every nonzero projection invariant left ideal I of R, we have $r_R(I) = 0$.

Proof. Note that R is a right π -dual Baer ring by Theorem 4.15. Then R is a π -Baer ring by Remark 4.2. Let $0 \neq_R I \leq_p RR$. Then $r_R(I) \leq_p RR$ by [6], Lemma 2.1]. Since R is right π -simple, we have $r_R(I) = 0$ or $r_R(I) = R$. But $I \neq 0$. So $r_R(I) = 0$.

Proposition 4.18. Let R be a ring with $Soc(R_R)$ essential in R_R . Then the following are equivalent:

- (i) R is a dual Baer ring;
- (ii) R is a right π -dual Baer ring;
- (iii) R is a quasi-dual Baer ring;
- (iv) R is a semisimple ring.

Proof. (i) \Rightarrow (ii) \Rightarrow (iii) are clear by Remark 4.14.

(iii) \Rightarrow (iv) Note that $Soc(R_R)$ is a two-sided ideal of R. Then $Soc(R_R)$ is a direct summand right ideal of R by [18]. Proposition 2.10]. Hence $R = Soc(R_R)$ since $Soc(R_R)$ is essential in R_R .

 $(iv) \Rightarrow (i) \text{ is clear.}$

Next, we investigate the transfer of the right π -dual Baer condition between a base ring R and several extensions. We begin with R[x] and R[[x]].

Proposition 4.19. *Let* R *be a ring satisfying one of the following conditions:*

- (i) R[x] is a right π -dual Baer ring;
- (ii) R[[x]] is a right π -dual Baer ring.

Then R is a right π -dual Baer ring.

Proof. (i) Suppose that R[x] is a right π-dual Baer ring and let I be a projection invariant right ideal of R. By [6] Lemma 4.1(iv)], I[x] is a projection invariant right ideal of R[x]. This implies that I[x] = e(x)R[x] for some idempotent $e(x) = e_0 + e_1x + \cdots + e_nx^n \in R[x]$ (see Proposition 4.7). Let us show that $I = e_0R$. Since $e(x) \in I[x]$, we have $e_0 \in I$ and so $e_0R \subseteq I$. Now let $a \in I$. Therefore $a \in I[x] = e(x)R[x]$. Hence a = e(x)f(x) for some $f(x) = f_0 + f_1x + \cdots + f_mx^m \in R[x]$. It follows that $a = e_0f_0 \in e_0R$. This proves that $I = e_0R$. Therefore R is a right π-dual Baer ring by Proposition 4.7. (ii) This follows by the same method as in (i).

The next example shows that polynomial extensions of right π -dual Baer rings need not be right π -dual Baer.

Example 4.20. Let F be a field. Clearly, F is a right π -dual Baer ring. On the other hand, it is well known that both F[x] and F[[x]] are integral domains, but they are not semisimple. From Remark [4.1(i), it follows that neither R[x] nor R[[x]] is right π -dual Baer.

We conclude this paper by investigating when full or generalized triangular matrix rings are right π -dual Baer.

Proposition 4.21. Let R be a quasi-dual Baer ring (in particular if R is a right π -dual Baer ring). Then $\mathbf{Mat}_n(R)$ is a right and left π -dual Baer ring for every positive integer n > 1.

Proof. By [18], Proposition 2.10], there exists a positive integer t such that $R = \prod_{i=1}^t R_i$ is a finite product of simple rings R_i $(1 \le i \le t)$. Let n > 1 be a positive integer. Note that $A = \mathbf{Mat}_n(R) \cong \prod_{i=1}^t \mathbf{Mat}_n(R_i)$ (as rings). By [14], Theorem 3.1], each $\mathbf{Mat}_n(R_i)$ $(1 \le i \le t)$ is a simple ring. Since $\mathbf{I}(A) = A$, it follows from Remark [4.1](ii) that A a right and left π -dual Baer ring.

The next example illustrates the fact that the right π -dual Baer property is not Morita invariant.

Example 4.22. It is well known that for any ring R and any positive integer m, the rings R and $\mathbf{Mat}_m(R)$ are Morita equivalent (see [2] Corollary 22.6]). Let R be a simple ring which is not right π -simple (see Example 4.13). Then R is not right π -dual Baer by Lemma 4.10. On the other hand, for every positive integer n > 1, $\mathbf{Mat}_n(R)$ is a right π -dual Baer ring by Proposition 4.21.

Proposition 4.21 and Example 4.22 should be compared with the following proposition.

Proposition 4.23. Let R be a ring. Then the following statements are equivalent:

- (i) R is a quasi-dual Baer ring;
- (ii) $\mathbf{Mat}_n(R)$ is a quasi-dual Baer ring for every positive integer n;
- (iii) $\mathbf{Mat}_n(R)$ is a quasi-dual Baer ring for some positive integer n > 1.

Proof. (i) \Rightarrow (ii) This follows from Remark 4.14 and Proposition 4.21.

- $(ii) \Rightarrow (iii)$ This is immediate.
- (iii) \Rightarrow (i) Let n > 1 be a positive integer such that $A = \mathbf{Mat}_n(R)$ is a quasi-dual Baer ring. Then A is a semiprime ring (see the proof of [18], Proposition 2.10]). Let e be the matrix unit E_{11} in A. Clearly, e is an idempotent in A. Moreover, $eAe = \{aE_{11} \mid a \in R\}$ and R are isomorphic rings (see [14], Example 21.14]). Let us show that eAe is a quasi-dual Baer ring. Take a two-sided ideal U of eAe. Then AUA is a two-sided ideal of A. Thus AUA is a direct summand of A_A by [18], Proposition 2.10]. This implies that AUA = fA for some $f^2 = f \in A$. Since A is a semiprime ring, it follows from [10], Lemma 3.1] that f is a central idempotent in A. Now [14], Theorem 21.11(2)] gives that U = e(AUA)e. Therefore U = e(fA)e. Hence $U = e^2(fAe) = efe(eAe)$ as f is central. Moreover, it is clear that efe is an idempotent in the ring eAe. It follows that U is a direct summand of eAe_{eAe} . Consequently, eAe is a quasi-dual Baer ring by [18], Proposition 2.10].

Next, we characterize right π -dual Baer 2-by-2 generalized triangular matrix rings.

Theorem 4.24. Let $T = \begin{bmatrix} R & M \\ 0 & S \end{bmatrix}$ denote a 2-by-2 generalized upper triangular matrix ring where R and S are rings and M is an (R,S)-bimodule. Then the following statements are equivalent:

- (i) T is a right π -dual Baer ring;
- (ii) R and S right π -dual Baer rings and M = 0.

Proof. (i) \Rightarrow (ii) It is well known that $\operatorname{Rad}(T) = \begin{bmatrix} \operatorname{Rad}(R) & M \\ 0 & \operatorname{Rad}(S) \end{bmatrix}$ is a two-sided ideal of T and hence it is a direct summand of T_T by Proposition 4.7. But $\operatorname{Rad}(T)$ is small in T_T . Then $\begin{bmatrix} \operatorname{Rad}(R) & M \\ 0 & \operatorname{Rad}(S) \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$. This yields M = 0. It follows that $T = \begin{bmatrix} R & 0 \\ 0 & S \end{bmatrix} \cong R \times S$ (as rings). Now from Proposition 4.8, we infer that R and S are right π -dual Baer rings.

Remark 4.25. From the previous theorem, it follows that for any nonzero ring R, the 2-by-2 upper triangular matrix ring over R is never a right π -dual Baer ring.

References

- [1] C. Abdioğlu, M. T. Koşan and S. Şahinkaya, On modules for which all submodules are projection invariant and the lifting condition, Southeast Asian Bulletin of Mathematics 34 (2010), 807–818.
- [2] F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Springer, New York, 1974.
- [3] T. Amouzegar and Y. Talebi, On quasi-dual Baer modules, TWMS J. Pure Appl. Math. 4 (2013), 78–86.
- [4] G. F. Birkenmeier and R. L. LeBlanc, s.Baer and s.Rickart modules, J. Algebra Appl. 14 (2015), (08):1550131.
- [5] G. F. Birkenmeier, A. Tercan and C. C. Yücel, The extending condition relative to sets of submodules, Comm. Algebra 42(2) (2014), 764–778.
- [6] G. F. Birkenmeier, Y. Kara and A. Tercan, π -Baer rings, J. Algebra Appl. 16(11) (2018), 1850029 (19 pages).
- [7] G. F. Birkenmeier, Y. Kara and A. Tercan, π -endo Baer modules, Comm. Algebra 48(3) (2020), 1132–1149.
- [8] K. A. Brown, The singular ideals of group rings, Q. J. Math. 28(1) (1977), 41–60.
- [9] A. W. Chatters and C. R. Hajarnavis, Rings with Chain Conditions, Research notes in Mathematics, vol. 44, Pitman Publishing Inc., London, 1980.
- [10] K. R. Goodearl, Von Neumann Regular Rings, Pitman, London, 1979.
- [11] I. Kaplansky, Modules over Dedekind rings and valuation rings, Trans. Amer. Math. Soc. 72 (1952), 327–340.

- [12] Y. Kara, On dual π -endo Baer modules, Malaya J. Mat. 9(2) (2021), 39–45.
- [13] D. Keskin Tütüncü and R. Tribak, On dual Baer modules, Glasg. Math. J. 52(2) (2010), 261–269.
- [14] T. Y. Lam, A First Course in Noncommutative Rings, 2nd edn, Springer, New York, 2001.
- [15] C. Lomp, A counterexample for problem on quasi-Baer modules, Taiwanese Journal of Mathematics 21(6) (2017), 1277–1281.
- [16] S. T. Rizvi and C. S. Roman, Baer and quasi-Baer modules, Comm. Algebra 32(1) (2004), 103–123.
- [17] D. W. Sharpe, P. Vámos, Injective Modules, Cambridge University Press, Cambridge, 1972.
- [18] R. Tribak, Y. Talebi and M. Hosseinpour, Quasi-dual Baer modules, Arab. J. Math. 10 (2021), 497–504.