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Abstract. Working in the upper half-plane model of plane hyperbolic geometry, we give a new proof that if « < <y are
positive real numbers such that a +  + y < i, then there exists a hyperbolic triangle whose three (interior) angles have
radian measures a,  and y, respectively. Seeking yet another proof of this realization theorem produces a new identity
involving the sines and cosines of the angles of any triangle in hyperbolic or Euclidean geometry. The only prerequisites
assumed here are some topics in analytic geometry and trigonometry that are typically covered in a precalculus course
and some basic facts from a first course on differential calculus. Thus, much of this paper could be used as enrichment
material for a precalculus course or a calculus course, while all of this paper could to used to enrich a course on the classical
geometries that features the upper half-plane model.
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1 Introduction

The discovery of non-Euclidean geometry, specifically that of plane hyperbolic geometry by Bolyai
and Lobachevsky independently nearly 200 years ago, was important for many reasons. Perhaps the
most important of those was the subsequent development of a deeper interest in the foundations of
mathematics, in particular, in its axiomatic nature. For plane Euclidean geometry, several sets of
axioms were developed, each sharing the goal of justifying all the planar geometric conclusions in
Euclid’s Elements. All those sets of axioms were equivalent, as it was shown that plane Euclidean
geometry is categorical, in the sense that all of its models are isomorphic. Historically, the greatest
interest has been placed in an equivalent of one of Euclid’s postulates that most readers probably first
learned as (Playfair’s version of the) “parallel postulate.” For centuries, workers had sought to deter-
mine whether an equivalent of that postulate was implied by the rest of Euclid’s postulates for plane
geometry. After removing that kind of postulate from plane Euclidean geometry, Bolyai used the re-
maining geometric postulates of Euclid to create what he called “absolute geometry.” Subsequently,
as our understanding of the universe progressed, that name has changed to “neutral geometry.” It
is known that, up to isomorphism, there are only two kinds of neutral geometry, namely, plane Eu-
clidean geometry and plane hyperbolic geometry, and that each of these geometries is categorical.
The above information is developed in a leisurely and lucid manner (in approximately 400 pages) in
[2]. Our interest here is in both of these very different kinds of neutral geometry. As explained below,
Section 2 will give a new, accessible proof of the realization theorem for plane hyperbolic geometry,
while Section 3 will give a trigonometric identity that holds for the angles of any triangle in either
Euclidean or hyperbolic geometry.

The reader is surely familiar with studying (plane) Euclidean geometry via the use of analytic
geometry and trigonometry in the Euclidean plane IR?. As in [4], our study here of (plane) hyperbolic
geometry will focus on the upper half-plane model of plane hyperbolic geometry. The introduction
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to [4] summarized the salient features of that model and gave some relevant references. For the
readers’ convenience, the next paragraph summarizes some of that background material. (For the
sake of completeness in regard to history, we should probably add the following two comments here.
In the interest of brevity, the first sentence of this Introduction has compressed the very long history
of other individuals whose work contributed to the emergence of hyperbolic geometry. Also, the
logical consistency of plane hyperbolic geometry with the existence of IR as a complete ordered field
was essentially established by Beltrami who, in 1868, published two papers which served to provide
the first model for hyperbolic plane geometry.)

From now on, most mentions of hyperbolic geometry in this paper will refer to the upper half-
plane model of plane hyperbolic geometry. As is well known (cf. [7, Proposition 1], [11, Theorem
4.2.1]), a “line" in hyperbolic geometry is of one of two types: a so-called “straight geodesic," which is
the intersection of the upper half-plane (of IR?) with a vertical (Euclidean) line; or a so-called “bowed
geodesic," which is the intersection of the upper half-plane with a (Euclidean) circle whose center
is on the x-axis. By definition, the (radian) measure of a hyperbolic angle / formed at a point of
intersection of two hyperbolic “lines" F and G is the measure of the corresponding Euclidean angle
formed by the corresponding (Euclidean) tangential half-lines to 7 and G. An unambiguous 12-step
algorithm to measure any such angle can be found in [4, Corollary 2.13]. (An essentially equivalent
methodology was given by Millman and Parker earlier in 8]].) In particular, the measurement of an-
gles in hyperbolic geometry (whose “sides" are portions of straight or bowed geodesics) comes down
to measuring the angles formed at the intersection of a (Euclidean) line with slope m; with either a
(Euclidean) line with slope m; or a (Euclidean) vertical line. Formulas to accomplish that, in turn,
were given in [3, Theorem 2.2], which was restated as [4, Lemma 2.6]. In this paper, we will use only
the part of that result dealing with an angle formed at a point where a straight geodesic intersects
a bowed geodesic. For the readers’ convenience, that fragment of [3, Theorem 2.2] is restated as
Lemma below. For the most part, our interest here will be in angles whose (radian) measure is
strictly between 0 and 7t because of their usefulness in studying triangles. As in [4]], any “angle" un-
der consideration here, regardless of whether its study involves a related (Euclidean or hyperbolic)
triangle, will be viewed as a directed angle, that is, as an angle which arises via a counterclockwise ro-
tation from a designated initial side to a designated terminal side. For more about the time-honored
role of (directed) angles in the teaching of geometry and trigonometry, see [4, Remarks 2.4 (a) and
2.11 (a)].

Properties involving possible parallelism do not give the only way to distinguish between the two
types of neutral geometry, that is, Euclidean and hyperbolic. The following celebrated results also
provide a way to determine which of these options holds for a given neutral geometry &. Let «, f and
y be the (radian) measures of the three (interior) angles of a triangle A of &. By a result essentially
due to Saccheri and Lagrange (cf. [6, Theorem 4.4], [L1, Theorem 10.1.1]), a+p+y < m; if a+p+y =7,
then & is Euclidean (for the contrapositive, namely that if & is hyperbolic then a + f+ ¥ <, cf. [6]
Theorem 6.1], [11, Theorem 7.2.1]); and if @ + f + ¥ < 1, then & is hyperbolic (since it is a classical
fact that if & is Euclidean, then a + g+ y = m). Also, we recommend reading [6, page 99] as to the
logical status of using 7 or its equivalent of 180° in the above role, along with its references to [2]
and [9].

The results that were recalled in the last paragraph include the following information. If a, g and
y are the (radian) measures of the three (interior) angles of a triangle in a plane Euclidean geometry
(resp., a plane hyperbolic geometry), then a + g+ y = 7 (resp., then a +  + < 7). In the spirit of
obtaining “realizability" results, one can turn matters around and ask the following two questions.
First: if & is a plane Euclidean geometry and «a,  and y are positive real numbers such that a+f+y =
7, does there exist a triangle in & whose three (interior) angles have respective measures a,  and
y? Second: if & is a plane hyperbolic geometry and «, § and y are positive real numbers such that
a+ p+y <m, does there exist a triangle in & whose three (interior) angles have respective measures
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a, p and y? The first of these questions is easily answered in the affirmative — in fact, it could likely
be answered by most high school students — essentially because of the “homogeneous" nature of
the Euclidean plane. This “homogeneity" is related to Euclid’s (and Stahl’s) propensity for viewing
“congruence" of geometric figures as a property that can be proven by using superposition, rather
than as an undefined primitive term that must be subjected to appropriate axioms. As can be seen by
comparing a number of modern textbooks on geometry — for instance, compare [1]] with [9]], [10] and
[11]] - this kind of homogeneity/superposition can play the same kind of role as the SAS (“Side-Angle-
Side") axiom in a modern set of axioms for neutral geometry. It is perhaps unfortunate that the upper
half-plane model of hyperbolic geometry seems, at first glance, to be far from “homogeneous” in any
intuitive sense. Indeed, the open neighborhoods (relative to the hyperbolic metric) “near" two given
points in the upper half-plane may not “look alike", especially if the given points have different y-
coordinates. (This is due to the hyperbolic metric essentially replacing the Euclidean differentials dx
and dy with (dx)/y and (dy)/y, respectively: cf. [11}, pages 53-54 and 58].) Nevertheless, the answer to
the second question is also affirmative, and as one would expect, the proof of that titular realizability
result for the hyperbolic case is much harder than the corresponding “child’s play" proof for the
Euclidean case. Since that realizability result for hyperbolic geometry is already known and Section
2 is devoted to a new proof of it, we will devote Remark[2.7](d) to addressing the appropriateness and
the timeliness of any such new proof, by giving a frank assessment of the proofs of it which appear
in [10] and in [11].

In view of the perceived deficiencies in the proofs of the hyperbolic realization theorem that were
given in [10] and in [11]], we devote Section 2 to an accessible, natural, complete and relatively short
proof of the hyperbolic realization theorem. Instead of merely proving the existence of a suitable
hyperbolic triangle, Corollary[2.6|completes our construction of a hyperbolic triangle A whose interior
angles have the preassigned measures (namely, the three positive real numbers whose sum is less
than 7t). Any such triangle A is determined up to congruence, as “Angle-Angle-Angle" is a congruence
criterion in hyperbolic geometry: cf. [6, Theorem 6.2], [11, Theorem 7.2.3]. However, Corollary
(c) shows that the A which we construct is actually unique with respect to certain additional
properties. Most of the technical details for our constructive proof in Corollary (a) are first
gathered together as Theorem [2.5] Background material on the cosh and sinh functions will be given
as needed in Section 2. The statements of the three classical laws of hyperbolic trigonometry that
are used in this paper are collected in Lemma Of these, only the law that has no Euclidean
counterpart will be used in Section 2.

As noted above, hyperbolic geometry is decidedly non-Euclidean, inasmuch as the hyperbolically
open neighborhoods “near" two given points in the upper half-plane do not “look alike" if the given
points have significantly different y-coordinates. Nevertheless, the main result in Section 3 (Corol-
lary|[3.8) is an identity that holds for the sines and cosines of the angles of any triangle in hyperbolic
or Euclidean geometry. While our proof of this identity depends on the above-mentioned realiza-
tion theorem, the closing remark of this paper raises the question whether one can find a new direct
proof of that identity which does not use any geometric results. Any such direct proof, when coupled
with the reasoning in the earlier part of Section 3, would lead to yet another proof of the realization
theorem. Remark [3.9]also raises several other open questions and states some related partial results.

In closing, we wish to repeat something from the final two sentences of the abstract: any interested
readers are encouraged to use portions of this paper to enrich courses ranging from precalculus to
models-based courses on the classical geometries.

2 A new proof of the realization theorem

It will be useful to begin with the following result.
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Proposition 2.1. Let A, pand v be three (not necessarily distinct) positive real numbers such that A+u+v <
7. Then
cos(A)cos(p) + cos(v) > sin(A)sin(p),

with equality if and only if A+ p+v = 1. It follows that

cos(A)cos(p)+ cos(v)

= 4,

sin(A)sin(p)
with equality if and only if A+ p+v =m.

Proof. Since the hypotheses ensure that sin(A) > 0 and sin(y) > 0, it will suffice to prove the first
assertion (as the “ It follows that" assertion would then be an immediate consequence). To that end,
fix A and p, and note that 0 < v <7 — A — y. Define a function f : (0,71 — A - u] — R by

_ cos(A)cos(p)+ cos(x)

flx):=

sin(A)sin(p)

As f'(x) = —sin(x)/(sin(]) sin(u)) < 0 for all x such that 0 < x < t—A—p, it follows from the Mean Value
Theorem that f is a strictly decreasing function. Thus, since f is continuous and cos(A)cos(u)+1 >0
ensures that f(0) > 0, it will suffice to prove that

_ cos(A)cos(p)+cos(mt— A —p)

L= Jlim  fe)=fm=2-p) sin(A)sin(y)

satisfies L = 1 or, equivalently, that cos(A)cos(u)+cos(t—A—pu) = sin(A)sin(p). In fact, since cos(rr) = -1
and sin(7) = 0, it follows from the standard identities for expanding cos(u +v) (cf. [5, page 332]) that

cos(m—A—p)=cos(rm—(A+p)) =—cos(A+p) =

—cos(A)cos(u) +sin(A)sin(p). Hence, cos(A)cos(p) + cos(rt — A — p) = sin(A)sin(u), thus completing the
proof. O]

Before applying Proposition we pause to recall the definitions and basic properties of the
hyperbolic cosine function (denoted by cosh) and the hyperbolic sine function (denoted by sinh). By
definition. . .

X, -
ere and sinh(x) = ¢

forall xeR.

cosh(x) =

Observe the identity sinh?(x) = cosh?(x)— 1. Thus, for all a > 0, the (Cartesian) graph given, for t € R,
by the parametric equations x = acosh(t) and y = asinh(t) is the rectangular hyperbola x2/a?-y?/b* =
1. This circumstance is, according to a common belief, the reason that the word “hyperbolic" appears
in the names of the functions cosh and sinh and in the name “hyperbolic geometry."

Observe also that cosh and sinh are each differentiable (hence continuous) functions, with cosh’ =
sinh and sinh’ = cosh. Also, by using the facts that the range of the exponential function is (0, o),
t+t! > 2 forall t >0, cosh(0) = 1 and lim,_,., cosh(x) = oo, one gets via the Intermediate Value
Theorem that the range of cosh is [1,00). In particular, sinh’(x) > 0 for all x € R. Thus, by the Mean
Value Theorem, sinh is a strictly increasing function. Similarly, by also using the facts that e* > ¢™*
for all x > 0, sinh(0) = 0 and lim,_,,,sinh(x) = co, one gets via the Intermediate Value Theorem
that the range of sinh|jg o, is [0,00) and that cosh,(x) > 0 for all x > 0. Thus, by the Mean Value
Theorem, the restriction of cosh to the domain [0, o) is a strictly increasing function. Consequently,
the assignment d +— cosh(d) sets up a one-to-one correspondence between [0, c0) and [1,0). Remark
2.7|(a) will present a formula for the assignment that induces the inverse one-to-one correspondence.



On a realization theorem in plane hyperbolic geometry 365

Corollary 2.2. Let A, yand v be three (not necessarily distinct) positive real numbers such that A+u+v < 1.
Then there exists a unique d > 0 such that

cos(A)cos(p) + cos(v)

sin(A)sin(p) = cosh(d).

Proof. By the second (“It follows that") assertion in Proposition the left-hand side of the dis-
played equation is in (1,00). Therefore, by the last comment before the statement of the present
result, there exists exactly one d € (0,00) that satisfies the displayed equation. The proof is com-
plete. O

The functions cosh and sinh are involved in some classical laws of “hyperbolic trigonometry". For
reference purposes, the statements of those laws are collected in the next result. Lemma (a) is
known as the Hyperbolic Law of Cosines (we will abbreviate that name as HLC); and Lemma
(b) is known as the Hyperbolic Law of Sines (we will abbreviate that to HLS). There is no customary
name for Lemma (c), as it has no Euclidean counterpart. While all three parts of Lemma 2.3 will
be used in Section 3, only its part (c) will be used in Section 2.

Lemma 2.3. Let A = AABC be a hyperbolic triangle; let o, p and y be the (radian) measures of the
(interior) angles of A at the vertices A, B and C, respectively; and let a, b and c be the hyperbolic lengths of
the (straight or bowed geodesic) sides of A that are opposite the vertices A, B and C, respectively. Then:

(a) (HLC : cf. [11, Theorem 8.3.2 (i)], [6} formula (13), page 337])

_ cosh(b)cosh(c) — cosh(a) _ cosh(c)cosh(a) - cosh(b)
cos(@) = sinh(b)sinh(c) reos(p) = sinh(c)sinh(a)

_ cosh(a)cosh(b) - cosh(c)
and cos(y) = sinh(a)sinh(b)

(b) (HLS : cf. [IL1} Theorem 8.3.2 (iii)], [16, formula (14), page 337])

sin() _ sin(B) _ sin(y)
sinh(a) sinh(b) sinh(c)’

(c) (Cf. [11} Theorem 8.3.2 (ii)], [6, formula (15), page 337])

_cos(B)cos(y) +cos(a) _ cos(y)cos(a)+cos(p)
cosh(a) = sin(pB)sin(y) rcosh(b) = sin(y)sin(a)

_ cos(a)cos(B) +cos(y)
and cosh(c) = sin(a)sin(p)

Next, for reference purposes, we restate part of one of our results from an earlier paper.

Lemma 2.4. ([13| Theorem 2.2]) Let Ly and L, be two intersecting non-perpendicular lines in the Euclidean
plane such that Ly is vertical and L, has slope m. If m > 0, then the (radian measures of the) two acute
angles formed by Ly and L; at their point of intersection are each given by % —tan™!(m), and the (radian
measures of the) two obtuse angles formed by Ly and L, at their point of intersection are each given by
Z +tan~'(m). If m < 0, then the (radian measures of the) two acute angles formed by Ly and L, at their
point of intersection are each given by % + tan~'(m), and the (radian measures of the) two obtuse angles
formed by Ly and L, at their point of intersection are each given by % —tan™! (m).
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We will continue to work in the upper half-plane model of plane hyperbolic geometry, but it will
be convenient to fix the following riding hypotheses and notation from this point on until the end
of the proof of Theorem|[2.5] Let 0 < a < <y in R such that a + +y < m. Using Corollary[2.2} there
exists a uniquely determined positive real number ¢ such that

cos(a)cos(B) + cos(y)
sin(a)sin(p)

cosh(c) =

Consider the points A(0,1) and B(0,¢e); observe that A # B since ¢ # 0. Using [4, Corollary 2.2],
construct (uniquely determined) bowed geodesics G and H which pass through A and B, respectively,
such that the slope of the tangent line to G at A is m; := cot(a) (> 0) and the slope of the tangent line
to H at B is m, := —cot(p) (< 0). Observe that G = H (since A # B). Let C denote the (unique) point of
intersection of G and H. Let A denote the hyperbolic triangle AABC. Let y* be the radian measure of
the (interior) angle /BCA of A.

The main technical facts about the above data are given in the next result. For the sake of brevity,
we will let Q; denote the first quadrant of R%.

Theorem 2.5. Given the above riding hypotheses and notation (a, 8, ¥, ¢, A, B, C, G, H, my, m,, A,
y*and Q), then:
(a) The hyperbolic distance from A to Bis c.
(b) Cisin Q.
(c) The (radian) measure of the (interior) angle < CABin A is a.
(d) The (radian) measure of the (interior) angle < ABC in A is f.
(e) cos(y*) = cos(y).
(f) sin(y") = sin(y).
(g) ¥* = y; that is, the (radian) measure of the (interior) angle < BCA in A is y.

Proof. (a) By [11} Theorem 2.1 and Proposition 4.1.3], the hyperbolic distance from A(0, 1) to B(0, )
is the hyperbolic length of the straight geodesic going from A to B, namely, In(e“/1) = ¢, as asserted.

(b) By [4, Theorem 2.2], a Cartesian equation for G is x>~2m;x+y? = 1 and a Cartesian equation for
H is x*—2mye‘x+y? = e%. To find the x-coordinate of the point of intersection C of G and H, subtract
one of these equations from the other and then solve the resulting linear equation for x, getting

e* -1
X 2(m; —mye)’
Note that e?° — 1 > 0 since 2c > 0. Thus, C is in Q; if and only if m; —m,e° > 0. This latter condition
does hold because of our construction of m; and m;. Indeed, since 0 < @ < < 7©/2, we have m; :=
cot(ar) > 0 and m; := —cot(p) < 0, whence m; >0 > mye® and my —mje® > 0, as desired.

(c) Let £ be the (Euclidean) tangential half-line to G at A that emanates from A and goes toward C.
As the slope of L is my = cot(a) > 0 and C is in Q; by (b), it follows that £ points into Q; (rather than
into the second quadrant). (The last assertion will likely seem intuitively clear to many readers; for
a formal way to identify £, see the final assertion of [4, Lemma 2.12 (b)].) Therefore, the (interior)
angle /CAB of A is an acute angle. It remains to show that the (radian) measure of this acute angle
is a. By the first assertion in Lemma that measure is

7/2 —tan"!(m;) = /2 — tan~! (cot(a)) = 77/2 — tan"! (tan(/2 — ).
Since 0 < a < 71t/2, the displayed expression simplifies to

/22— (/2-a)=a,
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as asserted.

(d) We can adapt the proof of (c) by making some small, but important, changes. For the sake
of completeness, we provide the details. Let L be the (Euclidean) tangential half-line to H at B that
emanates from B and goes toward C. As the slope of L is m; = —cot(f) < 0 and C is in Q by (b), it
follows that L points into Q; (rather than into the second quadrant), and so the (interior) angle /ZABC
of A is an acute angle. It remains to show that the (radian) measure of this acute angle is . By the
second set of assertions in Lemma that measure is

70/2 +tan"! (m,) = 70/2 + tan ™! (—cot(p)) =m/2 - tan™! (cot(B)),

where the last step held because tan~! is an odd function. By using a cofunction identity, we can
simplify the last displayed expression to 7t/2 — tan~!(tan(7t/2 — §)). This, in turn, can be simplified,
by adapting the reasoning in the final sentence of the proof of (c), to f, as asserted.

(e) Consider g := (cos(a)cos(p) + cos(y))/(sin(a)sin(p)). By the choice of ¢, we have that cosh(c) =
q. However, by applying the law of hyperbolic trigonometry in Lemma (c) to the data in the
hyperbolic triangle A, we also have, thanks to (a), (c) and (d), that

_ cos(a)cos(p) + cos(y”)
cosh(c) = sin(a)sin(p)

Hence,
cos(a)cos(B) + cos(y*)

sin(a)sin(p)

. __ cos(a)cos(B)+cos(y)
=cosh(c)=¢q = sin(a)sin(p)

It follows that cos(y*) = cos(y), as asserted.
(f) If 0 < 0 < 7, then sin(0) = \/1 — cos?(0). Applying this principle by taking O to be first y* and
then y, we conclude, with the help of (e), that

sin(y”*) = \/1 —cos?(y*) = \/1 —cos?(y) =sin(y),

as asserted.
(g) The assertion follows immediately by combining (e) and (f). The proof is complete. O

We can now complete our proof of the hyperbolic realization theorem. As Corollary is the
main result of Section 2, its statement does not presuppose the riding hypotheses and notation that
were in effect for Theorem

Corollary 2.6. Let o < § <y be three (not necessarily distinct) positive real numbers such that a ++y <
7. Then:

(a) There exists a hyperbolic triangle A = AABC (in the upper half-plane model) such that the (radian)
measure of the (interior) angle of A with vertex A (resp., with vertex B; resp., with vertex C) is a (resp., f3;
resp., ¥). The following is one way to construct a hyperbolic triangle A with these properties. Take c to be
the uniquely determined positive real number such that

_cos(a)cos(p) +cos(y)
cosh(c) = sin(a)sin(p) ’

put my := cot(a) and m, := —cot(p); take A to be the point (0,1) and take B to be the point (0,e°); let
G (resp., M) be the (bowed) geodesic with Cartesian equation x* — 2mx +y> = 1 (resp., with Cartesian
equation x> — 2mye‘x +y? = e*°); and take C to be the (unique) intersection point of G and H.

(b) The hyperbolic triangle A that was constructed in (a) is unique up to congruence.

(c) The hyperbolic triangle A that was constructed in (a) is unique with respect to being a hyperbolic

367
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triangle A = AABC having all four of the following properties:

(i) The (radian) measure of the (interior) angle of A with vertex A (resp., with vertex B; resp., with
vertex C) is a (resp., B; resp., y);

(ii) A is the point (0,1);

(iii) B lies above A on the y-axis of the Euclidean (half-)plane;

(iv) C is in the first quadrant of the Euclidean (half-)plane.

Proof. (a) It suffices to combine the proof of part (b) of Theorem with the statements of parts (c),
(d) and (g) of Theorem 2.5

(b) This assertion is known, as the AAA (the Angle-Angle-Angle) property is a congruence cri-
terion in plane hyperbolic geometry (cf. [6, Theorem 6.2], [11, Theorem 7.2.3]). Part (b) is being
included here in order to motivate, and to stand in contrast to, part (c).

(c) It follows from the running hypotheses and notation which were in effect for Theorem [2.5]that
the hyperbolic triangle that was constructed in (a) has the properties (ii) and (iii). Moreover, by the
proof of (a), that triangle has property (i); and that triangle has property (iv) by Theorem (b).

Conversely, suppose that A = AABC is a hyperbolic triangle having all four of the properties (i)-
(iv). By (ii) and (iii), B has Cartesian coordinates (0, k) for some k > 1. Hence, by [11, Theorem 2.1
and Proposition 4.1.3], the hyperbolic distance from A(0, 1) to B(0, k) is the hyperbolic length of the
straight geodesic going from A to B, namely, In(k/1) = In(k). We claim that this hyperbolic distance
is c. Applying the law of hyperbolic trigonometry in Lemma (c) to the hyperbolic triangle A and
using property (i), we get

_ cos(a)cos(p)+cos(y)

cosh(In(k)) = sin(a)sin(g) '

and so cosh(In(k)) = cosh(c). By the final comment prior to the statement of Corollary this proves
the above claim that In(k) = c. Hence k = ¢, and so B does indeed have Cartesian coordinates (0, ).
It remains only to prove that C is the intersection point of the bowed geodesics G and ‘H whose
Cartesian equations were given in the statement of (a).

Let us proceed in this paragraph by suitably adapting the proof of Theorem (c). Let & be the
(bowed) geodesic passing though A and C. Let £ be the (Euclidean) tangential half-line to & at A that
emanates from A and goes toward C. Observe the following three facts: the bound vector u from
A to B points vertically upward; C is in the first quadrant, by (iv); and by (i), £ makes an (acute)
angle with u that has radian measure a. It follows that £ points into Q; (rather than into the second
quadrant) and that £ (as a Euclidean ray of a Euclidean line) is neither vertical nor horizontal. Let m
denote the slope of £. We have that m = 0. In fact, m > 0 (since the angle between £ and u is acute).
Therefore, by the first assertion in Lemma

a = 1/2 —tan" (m),

and so tan~!(m) = /2 — a. Thus, m = tan(tan™!(m)) = tan(n/2 — a) = cot(a). Hence, the slope of the
tangent line to & at A is the same as the slope of the tangent line to G at A (namely, cot(a)). Therefore,
by the uniqueness assertion in [4, Corollary 2.2], & =G.

Let us proceed in this paragraph by suitably adapting the reasoning in the preceding paragraph.
For the sake of completeness, we provide the details. Let f) be the (bowed) geodesic passing though
Band C. Let L be the (Euclidean) tangential half-line to £ at B that emanates from B and goes toward
C. Observe the following three facts: the bound vector v from B to A points vertically downward (in
fact, v = —u); C is in the first quadrant, by (iv); and by (i), L makes an (acute) angle with v that has
radian measure f. It follows that L points into Q; (rather than into the second quadrant) and that L
(as a Euclidean ray of a Euclidean line) is neither vertical nor horizontal. Let m* denote the slope of
L. We have that m* = 0. In fact, m* < 0 (since the angle between L and v is acute). Therefore, by the
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second set of assertions in Lemma 2.4
p=1/2+ tan~! (m),
and so tan~!(m) = f - 7/2. Thus,
m = tan(tan"! (m)) = tan(p — n/2) = —tan(n/2 — p) = —cot(p).

Hence, the slope of the tangent line to ) at B is the same as the slope of the tangent line to H at B
(namely, —cot(p)). Therefore, by the uniqueness assertion in [4, Corollary 2.2], § = H. Consequently,
C, which is the intersection point of & and §, is also the intersection point of G and H. The proof is
complete. O

Remark 2.7. (a) The “constructive" aspect of our proof of Corollary [2.6](which was mentioned in the
statements of each of the three parts of that result) depended, in part, on the following fact: for each
r > 1, there exists a unique d > 0 such that cosh(d) = r, with d = 0 if and only if r = 1. Indeed, the
“construction” of ¢ leading up to the proof of Theorem depended on this fact. For the sake of
completeness, we next establish an explicit formula for 4 in terms of r, namely,

d=1In(r+Vr2-1).

It seems interesting that a proof of the just-displayed formula does not explicitly require calculus.
For a proof, note that one is solving for d such that (e? + ¢ 4)/2 = r or, equivalently, such that
e —2re? +1 = 0. Another equivalent, thanks to the quadratic formula, is that

el =rxVr2-1.
It may appear at first glance that there are two viable candidates for 4, namely,
di:=In(r-Vr2—-1) and d, :=In(r + Vr2 -1).

However, if ¥ > 1, the candidate d; is extraneous. (In detail, if r > 1, then: (r - 1)2 < r?2 -1, whence
r—1<Vr2-1, whence (0 <) r— Vr2—1 < 1, whence d; <1In(1) = 0.) Thus, for all r > 1, the unique
d > 0 such that cosh(d) = r is given by

d=(dy=)In(r+Vr2-1).

(b) The construction in Corollary[2.6](a) admits a number of analogues, and the uniqueness result
in Corollary (c) can be generalized in several ways. Perhaps the most straightforward of these
analogues or generalizations concerns the actual construction of A in Corollary[2.6|(a). This involves
the condition that the vertex C is in the first quadrant. Granted, that conclusion was established in
Theorem (b). But if one changes the construction in Theorem by requiring that the slope of
the tangent line to G at A is —cot(a) (< 0) and the slope of the tangent line to H at B is cot() (> 0),
then for this new construction, its vertex called C is in the second quadrant. With the help of Lemma
one can show this and eventually conclude that the newly constructed hyperbolic triangle also
satisfies the conclusion of Corollary (a). As Corollary (b) predicts, the two versions of A are
congruent. For a class that has the appropriate background, this congruence is most easily estab-
lished by appealing to [11, Theorem 4.4.1 (b)], as each of these versions of A can be obtained from
the other version by (the rigid hyperbolic motion of) reflecting through the y-axis.

As for generalizations of Corollary (c): at the cost of more cumbersome calculations in such
assertions of uniqueness, the condition (ii) in Corollary (c) could be generalized by taking A
to be any point (xy, 7o) in the upper half-plane (that is, with x; € IR and y; > 0), as the statements
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of [4, Theorem 2.1 and Proposition 2.3] are strong enough to handle such data; condition (iii) in
Corollary (c) could be generalized by taking B to be any point in the upper half-plane that is
below A(xg,v¢) (on the line x = x(), with essentially no additional effort, since the downward-pointing
straight geodesic half-line emanating from (xy, y¢) gives just as good a “ruler" as the upward-pointing
counterpart did in Theorem and Corollary (and, as we have already seen, Lemma can
handle both upward- and downward-pointing straight geodesic half-lines); and, as we saw in the
preceding paragraph, condition (iv) in Corollary[2.6](c) could be generalized by taking C to be in the
second quadrant of the Euclidean (half-)plane.

(c) In the Introduction, we promised that Section 2 would include “an accessible, natural, complete
and relatively short proof of the hyperbolic realization theorem." The reader can decide whether the
proof of Corollary (a) and the path that we took to arrive there can fairly be described as ac-
cessible, complete and relatively short. (Perhaps, some of what we say in (d) will affect the reader’s
decision, as such matters may be viewed as being comparative in nature.) We will be content here
to explain why we believe that our proof/path deserve(s) to be considered “natural." In particular,
we would argue that the triangle A constructed and studied in Theorem [2.5/and Corollary [2.6](a) is
natural and the conclusion that it has the asserted properties seems to have a sense of inevitability.
Indeed, once one has read parts (a), (c) and (d) of Theorem [2.5] that reader knows that if there exists
a triangle A* = AABC” that satisfies the conclusion of the (hyperbolic) realizability theorem, then A
must also work, the point being that A is congruent to A" (so, the radian measures of corresponding
angles agree) because ASA (“Angle-Side-Angle") is a criterion for congruence of triangles in any neu-
tral geometry (cf. [11} Proposition 26, page 243]). Thus, once one has read parts (a), (c) and (d) of
Theorem the reader who is already aware that the realizability theorem is a known result can
conclude that our triangle A definitely does have the properties asserted in Corollary (a), even
though the reader may not yet have finished reading the proof of parts (e), (f) and (g) of Theorem [2.5]
or started reading the proof of Corollary [2.6](a). As many students and researchers know, the first
proof of a result is often the most difficult to obtain and may not be the clearest proof of the result,
since the first-time prover has to overcome a psychological burden of doubt, whereas someone seek-
ing a proof of a known result can relax to some extent, facing much less of a worrisome burden of
doubt, in the same way that homework is often less stressful than actual research.

(d) To close the section, we next give the promised frank assessment of the proofs of the realizabil-
ity theorem that appeared in [10] and in [11]]. We will also address what we see as the appropriateness
and the timeliness of providing a new proof of this result.

For a period of more than 20 years, my colleagues and I taught a senior-level undergraduate course
on the classical geometries to mathematics majors (most of whom intended to become high school
mathematics teachers). In working with the upper half-plane model, nearly all of those students
(and their teachers) preferred to use clear, natural and accessible Euclidean methods instead of what
they/we perceived as contrived formulas that were difficult to memorize. As a result, most of the in-
structors developed methods that were distinct from those of the textbook (though, of course, their
methods gave answers that agreed with the answers resulting from use of the textbook’s methods).
This was particularly the case for formulas dealing with hyperbolic distance (especially, hyperbolic
length along a bowed geodesic) and the measure of angles. In regard to the latter, I was moved to
write the following in [4, Remark 2.16 (e)]: “We believe that Stahl’s proof calculating the measures
of [certain data from [4, Example 2.15]] is slightly less accessible to most undergraduate classes than
the approach given above in Example 2.15." Stahl’s methodology for measuring angles that was met
with such dissatisfaction at the University of Tennessee had appeared in [10, Proposition 6.2] (and,
as discussed in the next paragraph, was reproduced with no essentially no changes in [11]]). That
methodology was used frequently in Stahl’s proof of the hyperbolic realization theorem in the first
edition of his textbook [10, Theorem 6.7]. That fact may explain why many of my colleagues and stu-
dents disliked that proof. Perhaps we were not outliers in having such an opinion, for (as discussed
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in the next paragraph) the second edition of Stahl’s textbook featured a completely different proof of
that theorem. With the passage of many years since I last looked at that first edition, I must admit
that a recent re-reading of the proof of the realization theorem in the first edition indicated to me
that the proof is likely correct. However, I still find that proof to be poorly organized, unmotivated
and fraught with contrived methodology. As Stahl is no longer alive to defend his work, let me offer
the following counterpoint to my criticism. A comparison of the proof of [10, Theorem 6.7] with the
proofs of Theorem and Corollary (a) (as given above) shows that Stahl (in his first edition)
and I (here) have each done constructive proofs, not merely existence proofs. However, significant dif-
ferences remain between Stahl’s approach/result and mine, including the uniqueness result in our
Corollary[2.6](c) and its generalizations in (b) above. In (c), I explained why I believe that the triangle
constructed and studied in the above proofs of Theorem [2.5]and Corollary [2.6|(a) is natural and that
the conclusion in Corollary (a) has a sense of inevitability. By way of contrast, I also believe, on
re-reading [10] recently, that Stahl’s proof meanders with a poor sense of direction, but I may be too
close to this matter to be as unbiased as I would like. If a reader comes to the conclusion that my
proof in Section 2 is probably the result of a subconscious catalytic process that transpired over a
period of many years beginning with my initial reading of [10], I would not object. I believe that the
proof in Section 3 is much less susceptible to any such charge. In any case, we can hopefully agree
that it is healthy to consider whether/when a later proof of a known result deserves to be called new
or better.

Another proof of the hyperbolic realization theorem was given in the second edition of Stahl’s
textbook L1, Theorem 6.1.4]. Although this proof is superficially attractive, I have concluded that it
is somewhat lacking in rigor, for the following reason. This proof uses what Stahl calls “a continuous
function” [11} page 83] (namely, the function determined by the assignment b — y(b) on [11, pages
82-83]) and then invokes the Intermediate Value Theorem for continuous functions. A number of my
colleagues and students share my opinion that the definition of this function should have been made
more precise in [11] and that the technically demanding details establishing its continuity should
not have been left to the reader in [11]]. I would add that the proof of |11}, Theorem 6.1.4] also makes
frequent use of [L1, Proposition 6.1.1], which is essentially the same as [10}, Proposition 6.2] (whose
features that my colleagues, students and I found to be inconvenient were discussed in the preceding
paragraph).

It seems natural to ask why an esteemed and experienced author like Stahl would decide to replace
a constructive proof in a first edition with an intuitively pleasant existence proof (whose details are
reportedly unpleasant) in a second edition. Sadly, Stahl is no longer alive to answer this question,
but one of the three comments that he made under the heading “New to the Second Edition" in the
Preface to [11] was the following [11}, page viii]: “The calculational proof of the determination of the
triangle by its angles alone has been replaced by a synthetic argument." In my experience, the op-
posite of “synthetic" is usually called “analytic," and so I will suppose that by “calculational,” Stahl
meant “analytic." During my masters-level research on geometry in 1964-65 (and in my earlier stud-
ies of philosophy and logic), I gathered that mathematicians had formed a consensus on what the
words “analytic" and “synthetic" meant in regard to methods of proof in geometry. Part of that re-
search involved reading an earlier edition of Moise’s text [9]], as well as [2]. Roughly speaking, I had
concluded that reasoning from axioms with minimal calculation could be considered “synthetic,"
while proofs involving calculations with coordinates were typically considered “analytic." (The situ-
ation is, admittedly, a bit blurred in regard to the use of real numbers. Surely, they are implicit in
Euclid’s Elements, thanks to the contributions of Eudoxus. Moreover, in the spirit of Birkhoff’s work
in the early 20" century, American authors such as Moise could be viewed as doing a “synthetic"
approach to the foundations of geometry (as a modernization of Hilbert’s Grunglagen der Geometrie),
while still using “ruler axioms" with supporting calculations. At the same time, far fewer calcula-
tions or uses of real numbers appeared in contemporaneous European “synthetic" modernizations of
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the Grundlagen such as [2)].) However, I formed the distinct impression that any study that worked
within models, rather than directly with the axioms of the underlying geometric theory, was defi-
nitely to be considered “analytic."” With that interpretation, both of Stahl’s proofs of the realizability
theorem would be considered “analytic" (as would our proof of Corollary2.6). My understanding of
the analytic/synthetic dichotomy was reinforced in 1966-67 during my doctoral studies by my work
grading homework for a class on the classical geometries. It seems clear from the above quotation
from [11]] that Stahl was using the words “calculational” and “synthetic" with meanings that differ
significantly from what I had discerned from my masters-level research on geometry and my subse-
quent grading activities as a doctoral student. While my masters and doctoral studies occurred at
two different universities and my understanding of the meaning of “analytic" and “synthetic" has not
changed significantly as a result of my subsequent employment at, and visits to, several other uni-
versities, it is certain that none of us could hope (or want?) to visit “most" centers of mathematical
activity. So, I cannot conclude with any plausibility that my understanding of those terms is “right"
and Stahl’s was “wrong". But I can, and do, conclude that I did not find the above quotation from [11]]
to be enlightening. In particular, that quotation has not helped me to find an answer to the question
that was raised at the beginning of this paragraph. And I would maintain that one cannot convert a
“calculational" model-based proof into a “synthetic" proof just by omitting the details of some nec-
essary calculations! Closing with a more conciliatory tone, I do hope that this paragraph can serve as
a plea that when one is explaining choices that were made as to the writing of certain mathematics,
one should guard against using unexplained, emotive, interpretive words whose meaning may be
lost on some earnest readers whose mathematical background is different from the author’s.

3 Anidentity in neutral geometry

As explained in Remark (c), once we knew that the hyperbolic realization theorem was a known
result, we could somewhat relax after reading the proof of parts (a)-(d) of Theorem for the
following reason. The triangle A that was being studied in Section 2 was certain to satisfy the desired
conclusions in parts (e)-(g) of Theorem and in Corollary (a) because A was congruent to a
triangle that was known to satisfy those conclusions. Indeed, that moment of “relaxation” occurred
when one noticed that the data from both triangles matched up according to the “ASA” congruence
criterion. This section investigates whether yet another proof of the hyperbolic realization theorem
is possible if one studies another triangle (which will also be denoted by A) whose data match up
with the above-mentioned triangle according to the “SAS” congruence criterion. In fact, the first
part of Section 3 will recount the initial results of this project, as we began the work on it with
the “SAS" criterion in mind, in view of the basic role that this congruence criterion has played in
many approaches to the axiomatic foundations of plane hyperbolic geometry (and, more generally,
of neutral geometry). It will turn out that this section’s A also has the expected radian measures for
its interior angles, but that conclusion will not be reached as easily as the corresponding conclusion
transpired in the proofs of Theorem[2.5]and Corollary[2.6|(a) in Section 2. In fact, to reach the desired
conclusions in this section, I will need to use Corollary 2.6(a)! This unexpected turn of events will
produce an unexpected dividend, namely, what is apparently a new identity for neutral geometry, in
Corollary Before presenting this (to the author, surprising) chain of developments, we will set
up some riding notation and hypotheses and give an easy Euclidean observation.

It will be convenient to fix the following riding hypotheses and notation from this point on until
the end of the proof of Corollary[3.2} Let 0 <a < <y in R such that @ + f + y < 7. Put

o cos(ar)cos(y) + cos(p)

=Vu?2-1,
sin(a)sin(y) v "
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. cos(a)cos(B) + cos(y)

sin(a)sin(p) » 2= Voi-1,

N :=uz—-wvcos(a) and D := \/(uv —wzcos(a))?—1.

Of course, each of u, w, v, z, N and D is a function of (at least some of) a, § and y. Although the above
notation has suppressed these functional relationships in the interest of simplifying notation, we
trust that the reader will find such suppressions to be harmless. Also, let the equation N = D cos(p)
be denoted by (). When (+) holds, we will say that «, g and y satisfy the equation (+). Our reasons for
introducing the above notation will become apparent as one reads the rest of Section 3.

Proposition 3.1. Given the above riding hypotheses and notation, suppose, in addition, that a ++y = 1.
Thenu=1,w=0,v=1,2z=0, N=0and D =0. Hence, N = Dcos(pB); that is, a, p and y satisfy the
equation (*).

Proof. It will suffice to prove that u =1 and v = 1, as the remaining assertions will then follow easily.
Therefore, as a +  + y = m, it will suffice to prove the following: if 8, ¢ and ¢ are positive real
numbers such that 6 + ¢ + 1 = 1, then

cos(0)cos(g) + cos(¢) = sin(0)sin(¢p) = 0

To that end, using the facts that cos(r) = —1 and sin(n) = 0, along with the standard expansions for
the cosine of a difference or a sum (as in [5, page 332]), we have

cos(1) = cos(mt — (6 + ¢)) = cos(7t) cos(6 + @) + sin(m)sin(O + @) =

—(cos(0 + ¢)) = —(cos(O) cos(@) —sin(O)sin(¢)) =

sin(0)sin(¢) — cos(0)cos(@). The desired equation follows at once. Finally, since 6 and ¢ are each
strictly between 0 and 7, both sin(6) and sin(¢) are nonzero (in fact, positive) real numbers, so
sin(0)sin(¢) = 0. The proof is complete. O

Note that another way to prove that # = 1 and v = 1 in the context of Proposition is to apply
the final conclusion of Proposition

A classic result in Euclidean geometry states that the sum of the radian measures of the three inte-
rior angles of any triangle (in Euclidean geometry) is 7. Therefore, Proposition[3.1]has the following
application to Euclidean geometry.

Corollary 3.2. Let A be any triangle in Euclidean geometry and let a < B <y be the radian measures of
the three interior angles of A. Then N = D cos(B); in other words, a, p and y satisfy the equation ().

To obtain the (much harder) analogue of Corollary for plane hyperbolic geometry, we will
need to strengthen the riding hypotheses that were in effect earlier in this section. From this point
on until the end of the proof of Corollary[3.7] we fix the following riding hypotheses and notation:
let 0 < a < B <y in Rsuch that a +  + y < 1; let the symbols u, w, v, z, N, D and the equation (*) be
defined in terms of «, f and y exactly as they were prior to the statement of Proposition and, as
in Section 2, let Q; denote the first quadrant.

In order to study the properties of a suitable hyperbolic triangle, we now proceed to add the
information in this paragraph to the riding hypotheses and notation that will be in effect until
the end of the proof of Corollary[3.7} Using Corollary[2.2} there exist uniquely determined positive
real numbers b and c such that

_ cos(y)cos(a) +cos(B) _ cos(a)cos(p) +cos(y)

cosh(b) = sin(y)sin(a) and cosh(c) = sin(a)sin(B)
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Then by using Remark (a), one can easily obtain formulas for b and ¢ in terms of @,  and y.
Consider the points A(0,1) and B(0,e°); observe that A # B since ¢ # 0. Using [4, Corollary 2.2],
construct a (uniquely determined) bowed geodesic G which passes through A such that the slope of
the tangent line to G at A is my := cot(a) (> 0). Let C denote the point on G such that C lies in Q; and
the hyperbolic distance from A to C (that is, the hyperbolic length along the bowed geodesic G from
A to C) is b. (Note that C is uniquely determined because of the “ruler" property of the hyperbolic
half-line that is induced by G, emanates from A and points into Q;.) Let A denote the hyperbolic
triangle AABC. By Theorem (c), the radian measure of the interior angle of A with vertex A is
a. Let p* (resp., y*) be the radian measure of the interior angle of A with vertex B (resp., vertex C);
and let a" be the hyperbolic length of the side BC of A, that is, of the “hyperbolic line segment" of the
bowed geodesic connecting B to C. (WARNING: You may not assume at this time that this A is the
same as the hyperbolic triangle that was denoted by A in Section 2; these two hyperbolic triangles
are indeed the same, but that is a fact which can only be proved, as a consequence of AAA being a
congruence criterion in plane hyperbolic geometry, after we have proved Theorem 3.6](a). Moreover,
while it is clear that the symbols A, B, m; and G which were defined earlier in this paragraph have the
same meanings as their counterparts did in Section 2 (in regard to the triangle that was denoted by
A in Section 2), you may not assume at this time that this “same meaning" conclusion applies to any
of the other relevant data, such as C.) The main technical facts about the above data will be obtained
in the results[3.3H3.5]

We can now begin to explain why some of the above notation was introduced. It is clear that

u = cosh(b) and v = cosh(c). Thus, in view of the identity sinh(t) = w/coshz(t) —1 for all t > 0, we also
have that w = sinh(b) and z = sinh(c). Also, by Remark [2.7](a),

b=In(u+Vu?2-1)=In(u+w) and ¢ =In(v+ Vv? -1) = In(v + 2).

These observations suggest that it will be pragmatic to make the following definition.

It will be convenient to say that we know a certain real number r (resp., a certain point P in R?)
that is of interest if the value of r (resp., if the x- and y-coordinates of P) could be obtained via a
formula (resp., via formulas) for r (resp., for those coordinates) stated in terms of the assumed values
of the riding data a, p and y. Thus, we already know each of u, w, v, z, N, D, b and c. The next result
tells us some more in regard to what we know about the ambient hyperbolic triangle A.

Proposition 3.3. Given the above riding hypotheses and notation, then:
(a) We know (in the sense of the above definition) each of the following: b, ¢, A, B, a*, p* and y”~.
(b) p=p"ifand only if y = y*.
Proof. (a) By the last two paragraphs that preceded the statement of this result, we know b and c.
Thus, by definition, we know A(0,1) and B(0, e‘). We turn next to 4%, * and y".
By the hyperbolic law of cosines (HLC) in Lemma (a), we have
_ cosh(b)cosh(c) — cosh(a®)
cosa) = = hb)sinh()
By viewing this display as a linear equation in the “unknown" cosh(a*) and then solving that equation,
it follows (bearing in mind that we already know b and c) that we know cosh(a*). So, it follows from

Remark [2.7| (a) that we know a*. It also follows that we know 1/cosh2(a*) —1 = sinh(a*), and so we

also know sin(a)/sinh(a”). Therefore, by the hyperbolic law of sines (HLS) in Lemma (b), we also
know sin(p*)/sinh(b) and sin(y*)/sinh(c). As we also know b and ¢, it follows that we know sin(f")
and sin(y”). Therefore, we know the right-hand side in the next display (which is provided by the
HLC):
., _ cosh(a®)cosh(c) —cosh(b)
cos(p’) = sinh(a*)sinh(c) ’
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It follows that we know cos(f*) and, hence, we know cos™!(cos(f*)) = B* (where the last step held
because 0 < * < m). It remains only to prove that we know y*. That, in turn, can be shown by
tweaking the preceding reasoning, as follows. Use the HLC to get

« _ cosh(a*)cosh(b) - cosh(c)
oSy’ = —inh(a)sinh(6) "

observe that we know the right-hand side of this display, whence we know cos(y*), and conclude that
we know cos™!(cos(y*)) = ¥* (where the last step held because 0 < y* < 7).

(b) We will show that if g = %, then y = y~, leaving the (similar) proof of the converse to the
reader. Using the defining property of cosh(c), the law of hyperbolic trigonometry in Lemma [2.3|(c)
and the assumption that g = *, we get

cos(a)cos(B) + cos(y)
sin(a)sin(B)

= cosh(c) =

cos(a)cos(B*) +cos(y*)  cos(a)cos(p)+cos(y”)
sin(a)sin(p*) - sin(a)sin(p)

It follows that cos(a)cos(f) + cos(y) = cos(a)cos(p) + cos(y*), whence cos(y) = cos(y*), whence y = y*
(since cos (o] is a one-to-one function). The proof is complete. O

Part (b) of Proposition will be put to significant use below. On the other hand, the proof of
Proposition (a) gave us renewed contact with the laws of hyperbolic trigonometry from Lemma
Reformulations of one of those laws, the HLC, will see repeated use in the proof of Theorem 3.4}
which will establish what is perhaps the most important equation in Section 3.

Recall that N and D are certain real numbers that are defined in terms of the riding hypotheses
and notation.

Theorem 3.4. Given the above riding hypotheses and notation, we have N/D = cos(f*), and hence,
N = Dcos(%).

Proof. By the HLC, we get

_cosh(a*)cosh(c) — cosh(b)

M cos(p’) = sinh(a*)sinh(c) and

_ cosh(b)cosh(c) — cosh(a®)
2) cos(a) = sinh(b)sinh(c)

Solving (2) for cosh(a*) and substituting the result into (1), we get that cos(f”) =

(cosh(b) cosh(c) — cos(a)sinh(b)sinh(c)) cosh(c) — cosh(b)

(3) sinh(a*)sinh(c)

Using the identity sinh?(t) = cosh?(t) — 1, we can rewrite (3) as

cosh(b)(cosh?(c) — 1) — cos(a) sinh(b) sinh(c)) cosh(c) B
sinh(a*)sinh(c)

cosh(b)sinh?(c) — cos(a) sinh(b) sinh(c) cosh(c)

(4) sinh(a*)sinh(c)
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Since ¢ > 0, we have cosh(c) > 1, and so sinh(c) # 0. Hence, we can factor sinh(c)/sinh(c) out of the
last display. This gives

«, _ cosh(b)sinh(c) — cos(a)sinh(b)cosh(c)
(5) cos(f) = sinh(a*) ’

As noted prior to Proposition u = cosh(b), v = cosh(c), w = sinh(b) and z = sinh(c). Hence, (5)
gives
uz—cos(a)wv N

sinh(a*)  sinh(a*)’
Therefore, it will suffice to prove that sinh(a*) = D. As sinh(a*) > 0, an equivalent task is to prove that
sinh?(a*) = D?; equivalently, that cosh?(a*) = D + 1. Thus, as cosh(a*) > 1, it will suffice to prove that
cosh(a*) = VD2 + 1, that is, that

(6) cos(p”) =

(7) cosh(a’) = |uv —cos(a)wz| or, equivalently,

(8) cosh(a®) =|cosh(b)cosh(c)— cos(a)sinh(b)sinh(c)|.

By (2), cosh(a®) = cosh(b) cosh(c) — cos(a)sinh(b) sinh(c). Therefore, since cosh(a*) > 0, the equation in
(8) follows. The proof is complete. O

Recall that (+) denotes the equation N = D cos(f). The next result characterizes when this equation
holds.

Corollary 3.5. Given the above riding hypotheses and notation (involving a, p, ¥, N, D, A = AABC and
B%), then the following conditions are equivalent:

(1) The (radian) measure of the (interior) angle of A that has vertex A (resp., vertex B; resp., vertex C) is
«a (resp., p; resp., ¥);

(2) p*=p;

(3) cos(B) = N/D;

(4) N = Dcos(p);

(5) a, p and y satisfy the equation (»).

Proof. By Theorem cos(f*) = N/D, and so f* = cos™'(N/D) (since 0 < B* < 7). It follows that
D # 0. Therefore, (3) & (4). On the other hand, (3) is equivalent to cos™!(N/D) = g (since 0 < § < 7).
Thus, (3) & (2). Also, the equivalence (4) & (5) is immediate from the definition underlying (5).
Thus, as (1) = (2) trivially, it remains only to prove that (2) = (1).

By Theorem (c), the radian measure of the interior angle of A that has vertex A is «; and, by
Proposition [3.3](b), p* = B if and only if y* = y. Consequently, (2) = (1). The proof is complete. [

The next result shows that, as expected, the interior angles of the ambient triangle A have the
desired radian measures. However, one should not view Theorem [3.6](a) as this paper’s second proof
of the hyperbolic realizability theorem, since the proof of Theorem (a) will use Corollary 2.6

Theorem 3.6. Let a < f < y be three (not necessarily distinct) positive real numbers such that a +f +
y <m. Then:
(a) Take b and ¢ to be the uniquely determined positive real numbers such that

cosh(b) = COS(ZBSF;SQJSS(& and cosh(c) 05 cos(B) + cos(y)

sin(a)sin(p)

Take A to be the point (0,1); take B to be the point (0, e); put m; := cot(a); let G denote the (bowed)
geodesic that has the Cartesian equation x> — 2m;x + y? = 1; and let C be the point on G such that
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C lies in the first quadrant and the hyperbolic distance from A to C is b. Consider the hyperbolic
triangle A = AABC (in the upper half-plane model). Then the (radian) measure of the (interior) angle
of A with vertex A (resp., with vertex B; resp., with vertex C) is a (resp., f8; resp., ¥).

(b) a, B and y satisfy the equation (x).

Proof. (a) The hyperbolic realizability theorem is a known result. (We have already noted published
proofs of it in [[L0, Theorem 6.7] and [11, Theorem 6.1.4], and a new proof of it was given in Corollary
2.6|(a).) Let A, = AA,B,C, denote the hyperbolic triangle that was studied in Corollary (a). Recall
from that result that the (radian) measure of the (interior) angle of A, with vertex A, (resp., vertex
B,; resp., vertex C,) is a (resp., B; resp., ¥). Next, note that A = A, and B = B,. Also, by [4, Corollary
2.2], the sides AC and A.C, (of A and A,, respectively) are subsets of the same bowed geodesic G.
Moreover, C is in the first quadrant, by the above construction; and C, is also in the first quadrant,
by Theorem (b). Therefore, with the understanding that an angle is defined as the union of two
half-lines that each emanate from the same point (namely, the vertex of the angle), we can conclude
that the angles /BAC and /B,A.C, (of A and A,, respectively) are the same angle, hence are congruent
to one another and necessarily have the same (radian) measure, which must be «. In addition, since
the sides AB and A,B, (of A and A,, respectively) are the same side, they must be congruent and also
have the same hyperbolic length. That common hyperbolic distance (from A to B; equivalently, from
A, to B,) is ¢, by Theorem[2.5](a).

We will use the SAS congruence criterion to show that the ambient triangle A is congruent to A,,
with vertex A (resp., vertex B; resp., vertex C) corresponding to vertex A, (resp., vertex B,; resp., ver-
tex C,). In view of what we have already shown, the desired congruence of hyperbolic triangles will
hold if we show that the sides AC and A,C, (of A and A,, respectively) are congruent or, equivalently,
that the hyperbolic distance from A to C is the same as the hyperbolic distance from A, to C,. By the
above construction, the hyperbolic distance from A to C is b. Let b, denote the hyperbolic distance
from A, to C,. By applying the law of hyperbolic trigonometry in Lemma|2.3|(c) to A,, we have

coshi(b,) = cos(y)cos(a) + cos(p)

sin(y)sin(a)

Thus cosh(b) = cosh(b,). Hence, b = b, since, as we saw earlier, cosh|g ) is a one-to-one function. It
now follows from the SAS congruence criterion that the hyperbolic triangles A and A, are congruent.
Hence, the angles /ABC and /A,B.C, are congruent, since they are corresponding angles in this
congruence. Of course, congruent angles must have the same radian measure. Denoting the radian
measure of an angle / by m(z), we therefore have that

f = m(£A.B.C.) = m(/ABC) = "

Consequently, since g = 7, it follows from Proposition|3.3|(b) that the radian measure of the interior
angle /BCA of A is y. This completes the proof of (a).

(b) As the proof of (a) established that § = %, an application of the implication (2) = (5) from
Corollary [3.5|completes the proof. O]

A classic result in plane hyperbolic geometry states that the sum of the radian measures of the
three interior angles of any triangle (in plane hyperbolic geometry) is less than 7 (cf. [11, Theorem
7.2.1], but also see 6, Theorems 6.1 and 10.1]). Therefore, the riding hypotheses on «, g and y apply
to these radian measures, and so Theorem (b) has the following application to plane hyperbolic
geometry.

Corollary 3.7. Let a < < y be the radian measures of the three interior angles of some hyperbolic
triangle in (the upper half-plane model of) plane hyperbolic geometry.Then, using the riding notation, we
have cos(B) = N/D, and so «, p and y satisfy the equation (+); that is N = D cos(p).

377
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We can now present, as our final result, the titular identity in neutral geometry.

Corollary 3.8. Let a < p <y be the radian measures of the three interior angles of some triangle in some
neutral geometry. Then, using the above notation for N and D that was introduced above (although we are
not assuming that a+f+y < 1 here), we have that a, p and y satisfy the equation (+); that is N = D cos(p).
This identity can be rewritten more explicitly by expressing N and D as

N:=uz-wvcos(a) and D := \/(uv —wzcos(a))? -1,

where

L cos(a) cos y)+cos(ﬁ), . \/uz——l,

(
sin(a)sin(y)

_costa)cos(p) +eos(y)
sin(a)sin(p) - '

Proof. The given triangle is in either plane Euclidean geometry or (up to isomorphism, the upper
half-plane model of) plane hyperbolic geometry. In the former (resp., latter) context, the conclusion
was established in Corollary [3.2] (resp., Corollary 3.7). O]

We close by collecting some open questions and some partial results.

Remark 3.9. (a) The first paragraph of this section mentioned that the methodology for this project’s
initial attempt to find a new proof of the hyperbolic realization theorem had used the SAS congruence
criterion. In fact, we only considered using the ASA congruence criterion (instead of SAS) for that
purpose, a decision that led to the development of what is here called Section 2, after obtaining
(what is here called) Corollary but failing to find a direct proof of Theorem That failure
was described above as being part of what we view as a “surprising chain of developments." That
surprise was due, in part, to what I perceive to be a preference for the use of SAS instead of ASA
in various axiomatic presentations of plane hyperbolic or neutral geometry. In this regard, I would
like to raise the following questions. If one replaces SAS with ASA in a list of axioms for plane
hyperbolic (resp., neutral) geometry, must every model of the resulting set of axioms be isomorphic
to plane hyperbolic (resp., neutral) geometry? In other words, does ASA imply SAS in the presence
of other reasonable axioms? A fruitful way to start working on these questions may be to consider
their analogue for plane Euclidean geometry. I must admit that, although I find these questions
interesting, time constraints have not permitted me to pursue them, but I do hope that some reader(s)
will find them interesting.

(b) In (a), I mentioned that this project’s initial attempt reached an impasse after I had proved
Corollary as I subsequently failed to find a direct proof of Theorem (“direct" in the sense
that it could use Corollary 3.5]if necessary but it would not use the hyperbolic realizability theorem).
So, in June 2021, I reached out to a small list of contacts and asked them to see if they could find
a proof of (what we are here calling) the equation cos(f) = N/D without the use of non-Euclidean
geometry (where N and D are as defined above, in terms of positive real numbers a < < y such
that @ + f+ 9 < ). As none of those contacts had responded after a period of 12 months, I decided to
write and submit this paper in its present form. At this time, I would like to raise the same question
for this paper’s readers. It is evident that an affirmative answer to this question could be combined
with Corollary [3.5/to produce yet another proof of the hyperbolic realizability theorem.

Since June 2021, I have made two kinds of observations (it may not be appropriate to call them
“progress") about the above question. The details of these observations are not being given here for
reasons of space, but I hope that the following summary of these observations will be of help to any
interested readers. For the first observation, it is helpful to let x; := sin(a), x; := sin(p), x5 := sin(y),
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Y1 :=cos(a), v, := cos(p) and p3 := cos(y). I have shown that under the above assumptions, N can be
written as an explicit quotient whose numerator is an explicit function of y;, y, and y3 and whose
denominator is x%x2x3; the same conclusion holds for D in place of N; and hence that N/D is an
explicit function of y;, v, and p3. (Given that the goal is to find a direct proof that N/D = v,, this may
be a step in the right direction.) Here is the second observation: I can replace the equation cos(f) =
N/D (under the above assumptions) with the equation N2 = cos?()D?. This observation may be of
help for the following two reasons: the expression for D? should be easier to manipulate than the
expression for D because the former does not feature the symbol “/7="; and similar reasoning may
reduce the problem to showing that a certain polynomial identity holds for the six variables sin(«),
cos(a), sin(p), cos(p), sin(y) and cos(y), in which case some computer software may be of help in
resolving the question.

(c) In closing, we wish to raise the question of finding companions for Theorem [3.6/and Corollaries
[3.7}3.8. In particular, can one devise an essentially different way to find other apparently nontrivial
identities that hold for the radian measures of all three interior angles of all triangles in all neutral
geometries?
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