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Abstract. Let I and J be two ideals in a commutative ring R. The ideal I is called J-prime (resp., J-semiprime) if a,b ∈ J
(resp., a ∈ J) and ab ∈ I (resp., a2 ∈ I) imply a ∈ I or b ∈ I (resp., a ∈ I). Whenever J * I and I is a J-prime (resp., J-

semiprime) ideal, the ideal I is said to be a relative prime (resp., semiprime) ideal, and moreover, the ideal J is a p (resp.,

sp)-factor of I . The class of relative semiprime ideals includes relative z-ideals in any commutative ring and all non-

essential ideals in reduced commutative rings. In this article, first we characterize some properties of these two classes

of ideals in any commutative ring. Next, we apply the theory of relative prime (resp., semiprime)-ideals in the ring of

continuous functions.
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0. Introduction

Throughout this paper, R denotes a commutative ring with identity, and the ideals may be improper.
A ring R is reduced if it has no non-zero nilpotent element. A ring R is regular if for each a ∈ R
there exists b ∈ R such that a = a2b. We denote by Min(I) the set of all prime ideals minimal over
the ideal I . It is well-known that if P is a prime ideal in a ring R, then P ∈Min(I) if and only if for
each a ∈ P , there exists c < P and n ∈ N such that (ac)n ∈ I . An ideal I of a commutative ring R is
semiprime if I equals to the intersection of all prime ideals over it, i.e., I =

⋂
P ∈Min(I) P . It follows

that I =
√
I = {x ∈ R : xn ∈ I , for some n ∈N}, i.e., I is a radical ideal. The radical of the zero-ideal,

i.e., the intersection of all prime ideals of the ring R is called the nilradical of R. For each element a
in a ring R, the intersection of all maximal ideals in R containing a is denoted by Ma, and an ideal I
in R is called a z-ideal if Ma ⊆ I , for all a ∈ I . It is easy to see that an ideal I is a z-ideal if and only if
whenever b ∈ R, a ∈ I , andMb ⊆Ma, then b ∈ I . Intersection of all z-ideals containing I is the smallest
z-ideal containing I and is denoted by Iz , see [12, 13, 15, 16, 19, 20]. A generalization of the class
of z-ideals is the class of relative z-ideals. Let I and J be two ideals of a ring R. The ideal I is called
a zJ-ideal if Ma ∩ J ⊆ I , for each a ∈ I . Whenever I 6) J and I is a zJ-ideal, then I is called a relative
z-ideal. An ideal I is a zJ-ideal if and only if Iz ∩ J ⊆ I . We refer the reader to [1] and [7] for more
details about relative z-ideals.

In this paper, C(X) (C∗(X)) is the ring of all (bounded) real-valued continuous functions on a
completely regular Hausdorfff space X. The set f −1{0} called the zero-set of f and denoted by Z(f ).
Any set that is a zero-set of some function in C(X) is called a zero-set in X. The space βX is known
as the Stone-C̆ech compactification of X. It is characterized as that compactification of X in which
X is C∗-embedded as a dense subspace. The space υX is the real compactification of X, if X is C-
embedded in this space as a dense subspace. For a completely regular Hausdorff space X, we have
X ⊆ υX ⊆ βX. For any p ∈ βX, Op (resp., Mp) is the set of all f ∈ C(X) for which p ∈ intβX clβX Z(f )
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(resp., p ∈ clβX Z(f )). Also, for A ⊆ βX, OA (resp., MA) is the intersection of all Op(resp., Mp) where
p ∈ A, and whenever A ⊆ X, we denote it by OA (resp., MA).

The paper consists of three sections. The first section is about an investigation of relative prime
(resp., semiprime)-ideals. The characterization of relative z-ideals and the fact that every z-ideal is a
semiprime ideal motivate us to introduce relative prime (resp., semiprime) ideals. If we consider an
ideal J , then we observe that every ideal containing J is a J-prime (resp., semiprime) ideal. So they
are trivial J-prime (resp., semiprime) ideals. For an ideal I 6) J , we apply the definition of prime and
semiprime ideal, respectively, restricted to an ideal J . As we mentioned in the abstract, if I 6) J and it
is J-prime (semiprime), then we say I is a relative prime (semiprime). We observe that every relative
z-ideal is a relative semiprime ideal. We also have seen that every non-essential ideal in a reduced
ring is a relative semiprime ideal. For an ideal J of R with J * J(R), it is proved that every proper
semiprime ideal in J is a semiprime ideal in R if and only if J is a semiprime ideal in R. A semiprime
ideal I of R need not be relative prime. We show that a semiprime ideal I is relative prime if and
only if there is an irredundant ideal with respect to I . We observe that for any ring R, every ideal is
relative semiprime if and only if R is a regular ring. The largest p (resp., sp)-factor of an ideal I of a
ring R also is characterized.

In the second section we use the topological properties of Zariski topology on the sets Max(R)
(resp., Min(R)). We have seen that the zero-ideal in any ring R is relative prime if and only if the
space Min(R) has an isolated point if and only if there is a non-zero element a ∈ R such that Ann(a)
is a prime ideal. For a subset A of Min(R), it is proved that OA =

⋂
P ∈A P is a relative prime ideal if

and only if A is not a perfect subset of Min(R).
Section 3 applies these concepts in the ring of continuous functions. For a Tychonoff space X, we

prove that for every ideal J of C(X), the sum of every two J-prime ideals is a J-prime ideal if and only
if the sum of every two z-ideals in J is a z-ideal in J if and only if X is an F-space. For a subset A of
βX, we have shown that the ideal MA is relative prime if and only if A is not a perfect subset of βX
if and only if every prime ideal of C(X)/MA is essential. We conclude this section by showing that
the ideal Cψ(X) is not a relative prime ideal in C(X).

1 Relative semiprime (resp., prime) ideals

We begin with the following definitions.

Definition 1.1. Let I and J be two ideals of R. The ideal I is a J-semiprime ideal, if a ∈ J and a2 ∈ I
imply a ∈ I . Whenever I 6) J and I is a J-semiprime ideal, we say that I is a relative semiprime ideal
and J is called a sp-factor of I .

Definition 1.2. Let I and J be two ideals of R. The ideal I is called a J-prime ideal, if a,b ∈ J and ab ∈ I
imply a ∈ I or b ∈ I . Whenever I 6) J and I is a J-prime, then we say that I is a relative prime ideal and
J is called a p-factor of I .

The next proposition introduces two classes of relative semiprime ideals in any ring and in reduced
rings, respectively. We recall that a nonzero ideal I in a ring R is called essential if it intersects
every nonzero ideal nontrivially. It is well known that an ideal I in a commutative reduced ring R
is an essential ideal if and only if Ann(I) = 0, see McConnel and Robson [18] for some properties
of essential ideals in general rings, and see also Azarpanah [3, 4], Ghirati and Taherifar [10] and
Taherifar [21, 22] for topological characterization of these ideals in C(X) and in reduced rings.

Proposition 1.3. The following statements hold.

1. Every relative z-ideal is a relative semiprime ideal.
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2. Let I be a non-essential ideal in a reduced ring R. Then I is a relative semiprime ideal.

Proof. (1) Let I be a relative z-ideal. There exists an ideal J of R such that I is a zJ-ideal and I 6) J .
Suppose that a ∈ J and a2 ∈ I . Then we have a ∈Ma ∩ J = Ma2 ∩ J ⊆ I . Thus I is a relative semiprime
ideal.

(2) Put J = Ann(I). Now let a ∈ J and a2 ∈ I . Then a3 = 0. Therefore a = 0 ∈ I . This implies that I is
a J-semiprime ideal. On the other hand J * I . Thus I is a relative semiprime ideal

Clearly every semiprime (resp., prime) ideal in J is a J-semiprime (resp., J-prime) ideal in R.
However there are many J-semiprime (resp., J-prime) ideals in R which are not semiprime (resp.,
prime) ideal in J . We also note that if P is a prime non z-ideal, then for any ideal J , where P 6) J , P is
a J-semiprime (resp., J-prime) ideal and hence is a relative semiprime (resp., prime) ideal. But P is
not a relative z-ideal, by [1, Lemma 2.1].

Part (3) of the following lemma shows that whenever I is a relative semiprime (resp., relative
prime) ideal, then there exists an ideal K containing I properly such that I is a K-semiprime (resp.,
K-prime) ideal.

Lemma 1.4. Let I , J and K be ideals in a ring R. The following statements hold.

1. If I ⊆ J ⊆ K , I is a J-semiprime ideal and J is a K-semiprime ideal, then I is a K-semiprime ideal.

2. If I is a J-semiprime (J-prime) ideal and K ⊆ J , then I is a K-semiprime (K-prime) ideal.

3. The ideal I is a J-semiprime (resp., J-prime) ideal if and only if I is I+J-semiprime (resp., I+J-prime)
ideal.

4. The ideal I is a J-semiprime (resp., J-prime) ideal if and only if I ∩ J is a J-semiprime (resp., J-prime)
ideal.

5. If J is a semiprime ideal, then I is a J-semiprime ideal if and only if I ∩ J is a semiprime ideal.

6. The ideal I∩J is both J-semiprime (resp., J-prime) ideal and I-semiprime (resp., I-prime) ideal if and
only if I is J-semiprime (resp., J-prime) ideal and J is I-semiprime (resp., I-prime)ideal.

7. If M is a maximal ideal, then I ∩M is a semiprime ideal if and only if I is a semiprime ideal.

Proof. The proof the statements (1), (2), (4) and (6) are trivial and we left them to the reader. For
part (3), suppose that a1, a2 ∈ I , b1,b2 ∈ J and (a1 + b1)(a2 + b2) ∈ I . Then b1b2 ∈ I . By hypothesis,
this implies that b1 ∈ I or b2 ∈ I and hence (a1 + b1) ∈ I or (a2 + b2) ∈ I . The converse follows from
statement (2). Next, we show the statement (5). Let I be a J-semiprime ideal. Then by (4), I ∩ J ⊆ J
is a J-semiprime ideal, and so by (1), it is a semiprime ideal. The converse is evident. Now for the
statement (7), if I ⊆M, then I = I ∩M is a semiprime ideal. Otherwise, I *M, and so by (5), I is a
M-semiprime ideal and hence the statement (3) implies that I is a I +M = R-semiprime ideal. The
converse of the statement holds trivially.

The following proposition which characterizes relative semiprime (resp., prime) ideals element
wise, also helps us to construct a relative semiprime (resp., prime) ideal.

Proposition 1.5. An ideal I of a ring R is relative semiprime (resp., prime) ideal if and only if there exists
an a ∈ R \ I such that I is an Ra-semiprime (resp., prime) ideal.

Proof. If I is a relative semiprime (resp., prime) ideal, then by Lemma 1.4, I is a J-semiprime (resp.,
prime) ideal for some ideal J with I ⊂ J . Now it is enough to take a ∈ J \I . For the reverse implication,
assume that there is an a ∈ R\ I such that I is a Ra-semiprime (resp., prime) ideal. Consider the ideal
J = Ra. Clearly I is a J-semiprime (resp., prime) ideal and hence a relative semiprime (resp., prime)
ideal, for J * I .
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The subsequent lemmas which are easy to prove are needed in the upcomming results.

Lemma 1.6. Let R be a ring and let I and J be two ideals of R. Moreover, let (Iα : α ∈ S) and (Jα : α ∈ S)
be two families of ideals of R.

1. If Iα is a Jα-semiprime ideal of R, for each α ∈ S , then the ideal
⋂
α∈S Iα is

⋂
α∈S Jα-semiprime ideal.

2. If I is a Jα-semiprime (Jα-prime) ideal of R, for each α ∈ S, then I is a
⋂
α∈S Jα-semiprime (resp.,

prime) ideal.

3. If Iα is a J-semiprime ideal, for each α ∈ S, then the ideal
⋂
α∈S Iα is a J-semiprime ideal.

4. If I ⊆ J is a J-semiprime ideal of R and J is a semiprime ideal of R, then I is a semiprime ideal of R.

By the following result, we observe that in any reduced ring, the zero ideal (0) is a relative semiprime
ideal.

Lemma 1.7. Let R be a ring and let I and J be two ideals of R. The following statements are equivalent.

1. There exists a semiprime ideal K containing I such that K ∩ J ⊆ I .

2. The ideal I is a J-semiprime ideal.

3.
√
I ∩ J ⊆ I (

√
I ∩ J = I ∩ J).

Corollary 1.8. Let R be a ring and Let J be an ideal of R. Then an ideal K of J is semiprime in J if and only
if K = P ∩ J , for some semiprime ideal P of R

Proof. If K is semiprime in J , then K is a J-semiprime ideal of R and hence by Lemma 1.7, K =
√
K∩J ,

so we are done. The converse of the statement holds trivially.

The following result shows that a relative semiprime ideal need not be a semiprime ideal. More
precisely, whenever the ideal J is a non-semiprime ideal which is not included in the Jacobson radical
of R, then there exists a proper J-semiprime ideal I in J such that I is not a semiprime ideal of R.

Proposition 1.9. Let R be a ring and let J be an ideal of R such that J * J(R). Every proper semiprime ideal
in J is a semiprime ideal in R if and only if J is a semiprime ideal in R.

Proof. Suppose that every proper semiprime ideal in J is a semiprime ideal inR and J is not semiprime
in R. Since J * J(R), there exists a maximal ideal M 6) J in R. This implies the ideal I = M ∩ J is a
J-semiprime ideal in J . Note that since J is not semiprime, then it is not M-semiprime (if J is M-
semiprime, then it is a J +M = R-semiprime, a contradiction). Therefore we have an f ∈M such that
f 2 ∈ J but f < J . Thus f 2 ∈ I but f < I , i.e., I is not a semiprime ideal of R. So we obtain a semiprime
ideal of J which is not semiprime in R, a contradiction. Conversely, let I be a proper semiprime ideal
in J . Corollary 1.8 implies that there is a semiprime ideal P of R such that I = P ∩ J , and hence by our
hypothesis, I is a semiprime ideal of R.

A relative prime ideal need not be a prime ideal. For, suppose that P and Q are two distant prime
ideals which are not comparable, then P ∩Q is a P -prime ideal and hence a relative prime ideal, but
is not a prime ideal. Also, a relative semiprime ideal need not be a semiprime ideal. To see this,
consider a maximal ideal M and a non-semiprime ideal Q *M. Then I = Q ∩M is a Q-semiprime
ideal and so a relative semiprime ideal which is not semiprime. Since Q is not M-semiprime (if Q
is M-semiprime, then it is Q +M = R-semiprime, a contradiction), so there exists f ∈ M such that
f 2 ∈Q but f <Q. This shows that f 2 ∈ I and f < I .
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Lemma 1.10. Let R be a ring, and let I and J be two ideals of R.

1. If I is a (non-trivial) J-prime ideal, then there is a (unique) P ∈Min(I) such that P ∩ J ⊆ I .

2. If |Min(I)| > 1 and there is a (unique) P ∈Min(I) such that P ∩ J ⊆ I , then I is a (non-trivial) J-prime
ideal.

Proof. (1) Suppose that I is a non-trivial J-prime ideal. Note that J * I , I ∩ (J \ I) = ∅ and J \ I is a
multiplicative closed subset. So there is a prime ideal P containing I such that P ∩ (J \ I) = ∅. Thus
P ∩ J ⊆ I . Now let Q ∈ Min(I) and Q ∩ J ⊆ I . Then we have P ∩ J ⊆ Q. But J * Q (if J ⊆ Q, then
J = J ∩Q ⊆ I , a contradiction). This implies that P =Q, by minimality of P .

(2) First we have J * I . For J ⊆ I implies that J ∩Q ⊆ I for each Q ∈Min(I) (this minimal prime
exists, by hypothesis), which is a contradiction, by uniqueness of P . Now assume that a,b ∈ J and
ab ∈ I . Then ab ∈ P , so a ∈ P ∩ J ⊆ I or b ∈ P ∩ J ⊆ I . Thus I is a non-trivial J-prime ideal.

If R is a Noetherian ring, then every semiprime ideal is the intersection of a finite number of prime
ideals and so by Lemma 1.10, it is a relative prime ideal. We need the following corollary which is
also a consequence of [17, Lemma 2] and [13, 5.1].

Corollary 1.11. [20, Lemma 1.3] Let J be an ideal of a ring R. Then an ideal K of J is a (proper) prime
ideal in J if and only if K = P ∩ J for some (unique) prime ideal P of R containing K .

Proof. If K is a (proper) prime ideal in J , then K is a (non-trivial) J-prime ideal and hence by Lemma
1.10, there is a (unique) prime ideal P containing K such that K = P ∩ J . Conversely, it is obvious.

Remark 1.12. A counterpart for part (1) of Lemma 1.4 does not hold for relative prime ideals. In
other words, we may have I ⊂ J is J-prime and J ⊂ K is K-prime, but I is not K-prime. For let M1,M2
and M3 be three distant maximal ideals in R, and I =M1 ∩M2 ∩M3. Using Corollary 1.11, the ideal
I is a J-prime ideal, where J =M2 ∩M3 and J is a K-prime ideal, where K =M3. However, evidently,
the ideal I is not a K-prime ideal.

We remind the reader that if I is a semiprime ideal of a ring R, and P ∈Min(I) is an ideal such that
I ,

⋂
Q,P ∈Min(I)Q, then the ideal P is called irredundant with respect to I (see [2]).

Proposition 1.13. Let R be a ring and let I be a semiprime ideal of R. Then I is relative prime if and only
if there is an irredundant ideal with respect to I .

Proof. Let I be a relative prime ideal. Then there is a non-zero ideal J * I such that I is J-prime.
By Lemma 1.10, there exists a unique P ∈ Min(I) such that P ∩ J ⊆ I . This implies that for each
Q , P ∈ Min(I), we have J ⊆ Q and hence J ⊆

⋂
Q,P ∈Min(I)Q. Thus I ,

⋂
Q,P ∈Min(I)Q. So we are

thorough. Conversely, suppose that P is an irredundant ideal with respect to I . It is enough to take
J =

⋂
Q,P ∈Min(I)Q. Then J * I and P ∩ J = I . So by Lemma 1.10, I is a J-prime ideal and hence a

relative prime ideal.

Lemma 1.14. The zero ideal in any ring R is relative prime if and only if R has a non-essential minimal
prime ideal.

Proof. By hypothesis, there is a non-zero ideal J such that (0) is J-prime. By Lemma 1.10, there is
a unique P ∈ Min((0)) and so P ∈ Min(R) such that P ∩ J = 0. This implies that P is a non-essential
minimal prime ideal. The converse implication holds trivially.

It is well known that every ideal of R is a rez-ideal if and only if R is a regular ring if and only
if every ideal of R is a z-ideal, see [1, Proposition 3.7] and [16, Theorem 1.2]. This motivates us to
consider the following question: When is every ideal of R a relative semiprime ideal? We will answer
this question in the next result (i.e., Proposition 1.16). To achieve this goal, we need the following
lemma.
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Lemma 1.15. Let R be a ring and let I be an ideal of R. Moreover, let the set of sp (resp., p)-factors of the
ideal I be nonempty. Then the set of sp (resp., p)-factors of the ideal I has a maximal element containing I .

Proof. Let C be a chain of sp (resp., p)-factors of the ideal I . Clearly, we can observe that K =
⋃
J∈C J

is a sp (resp., p)-factor for I . The ideal K must be a sp (resp., p)-factor for I . Applying Zorn’s Lemma,
the set of sp (resp., p)-factors of the ideal I has a maximal element.

Proposition 1.16. For any ring R, the following statements are equivalent.

1. Every ideal of R is a relative semiprime ideal.

2. Every ideal of R is a semiprime ideal.

3. The ring R is regular.

4. Every ideal of R is a relative z-ideal.

Proof. First we show that (1) implies (2). Assume that I is an ideal of R. Then, by our hypothesis, it
is a relative semiprime ideal and therefore a maximal sp-factor J of I exists, by Lemma 1.15. If J is a
proper ideal, then by part (3) of Lemma 1.4, there exists an ideal K ⊃ J such that J is a K-semiprime
ideal. Therefore, I is a K-semiprime ideal, by Lemma 1.6, which contradicts the maximality of J .
Thus J = R, and so (2) is proved. Next suppose that (2) holds. We prove that the statement (3) holds.
Consider a ∈ R. The ideal (a2) is a semiprime ideal and a2 ∈ (a2). Thus a ∈ (a2). This implies that
a = ka2, for some k ∈ R, and so R is a regular ring. The statement (3) implies the statement (4), by [1,
Proposition 3.7]. Suppose that the statement (4) holds. Then every ideal of R is a relative semiprime
ideal, and hence the statement (1) holds.

Let R be a ring, I be an ideal of R and a ∈ R. We recall that the ideal [I : a] is defined as follows:

[I : a] = {x ∈ R : xa ∈ I}.

Proposition 1.17. Let R be a ring and let I be an ideal of R. The following statements hold.

1. If the largest p-factor of I exists, then it is equal to the set

Lp = {a ∈ R : [I : a] is prime}.

2. If the largest sp-factor of I exists, then it is equal to the set

Lsp = {a ∈ R : [I : a2] is semiprime}.

Proof. (1) Let K be the largest p-factor of I . First we show that the set Lp = {a ∈ R : [I : a] is prime}
is an ideal. It is easily seen that, for a ∈ R, [I : a] is prime if and only if I is Ra-prime. Now let
a,b ∈ Lp. Then I is Ra and Rb-prime, respectively. This implies R(a+ b) ⊆ Ra+Rb ⊆ K . By part (1) of
Lemma 1.4, the ideal I is R(a + b)-prime, i.e., [I : (a + b)] is prime, so a + b ∈ Lp. If r ∈ R and x ∈ Lp,
then R(rx) ⊆ Rx implies I is R(rx)-prime, and hence rx ∈ Lp. Next suppose that a,b ∈ Lp and ab ∈ I .
We have a,b ∈ Ra+Rb ⊆ K . Thus I is (Ra+Rb)-prime. This fact together with the assumption ab ∈ I
imply a ∈ I or b ∈ I . Hence I is Lp-prime. Finally, assume that x ∈ K . Then I is Rx-prime, by part (1)
of Lemma 1.4. Thus [I : x] is prime, i.e., x ∈ Lp. Therefore K ⊆ Lp, and hence K = Lp.

(2) It is easy to see that I is Ra-semiprime if and only if [I : a2] is semiprime. Now similar to the
proof of part (1), we can see that Lsp is the largest sp-factor of I .
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Proposition 1.18. Let I be a semiprime ideal of R.

1. The largest p-factor of I exists if and only if there is a unique irredundant ideal with respect to I .

2. If the largest p-factor of I exists, then it is a semiprime ideal.

Proof. (1) Suppose that Lp is the largest p-factor of I . By Proposition 1.13, there is an irredundant
P ∈Min(I). For each Q , P ∈Min(I) we have Lp ⊆Q. But

⋂
Q,P ∈Min(I)Q is a p-factor for I , by Lemma

1.10. Therefore Lp=
⋂
Q,P ∈Min(I)Q. Now let P1 ∈Min(I) be another irredundant ideal. Then by similar

reason Lp =
⋂
Q,P1∈Min(I)Q. This implies that

⋂
Q,P ∈Min(I)Q ⊆ P , a contradiction. Conversely, let

P ∈ Min(I) be a unique irredundant. Then it is easy to see that J =
⋂
Q,P ∈Min(I)Q is the largest p-

factor for I .
(2) If Lp exists, then by (1), there is a unique irredundant prime ideal P with respect to I . Now it

is easy to see that Lp=
⋂
Q,P ∈Min(I)Q, and so it is a semiprime ideal.

The following result shows that for a maximal idealM, M-prime ideals are exactly prime ideals in
R and prime ideals in M.

Proposition 1.19. Let I be an ideal of a ring R and M be a maximal ideal of it. Then the following
statements are equivalent.

1. The ideal I is M-prime

2. The ideal I is prime in R or I = P ∩M, for some prime ideal P of R.

Proof. Clearly (2) implies (1). Now let (1) holds. If I ⊆ M, then I = P ∩M for some prime ideal P
of R, by Lemma 1.11. Otherwise, I is I +M = R-prime, i.e., I is prime, by Lemma 1.4. Thus (2) is
proved.

It is well known that if I is an ideal of an ideal J in a ring R and I is semiprime, then I is an ideal
of R. By using this fact we have the following result. The reader is refereed to [14], to see rings for
which the sum of two semiprime ideals is a semiprime ideal.

Proposition 1.20. Let R be a ring with the sum of every two semiprime ideals in it is a semiprime ideal
(e.g., C(X)) and J be an ideal of R. Then the following statements are equivalent.

1. The sum of every two J-semiprime ideals is a J-semiprime ideal.

2. The sum of every two semiprime ideals of J is a semiprim ideal in J .

3. For any two semiprime ideals P and Q of R, (P +Q)∩ J = P ∩ J +Q∩ J .

Proof. Every semiprime ideal of J is a J-semiprime ideal in R, by the comment before to this propo-
sition. Thus (1) implies (2). Now let (2) holds. We prove the statement (3). Consider two semiprime
ideals P ,Q in R. By Corollary 1.8, P ∩ J and Q∩ J are two semiprime ideals in J and by hypothesis,
P ∩ J +Q ∩ J is a semiprime ideal in J . Suppose that a = a1 + a2 ∈ (P +Q)∩ J . Then a2 = aa1 + aa2 ∈
P∩J+Q∩J . Thus a ∈ P∩J+Q∩J , i.e., (P +Q)∩J ⊆ P∩J+Q∩J . On the other hand, P∩J+Q∩J ⊆ (P +Q)∩J .
Hence (3) is proved. Now we show that (3) implies (1). Let I and K be two J-semiprime ideals. By
Lemma 1.7, there are semiprime ideals P and Q such that P ∩ J ⊆ I and Q∩ J ⊆ K . So, by hypothesis,
P ∩ J +Q∩ J = (P +Q)∩ J ⊆ I +K , where P +Q is a semiprime ideal containing I +K . Now by Lemma
1.7, I +K is a J-semiprime ideal.

Proposition 1.21. Let R be a ring with the sum of every two prime ideals in it is a prime ideal (e.g., C(X))
and J be an ideal of R. Then the following statements are equivalent.
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1. The sum of every two J-prime ideals is a J-prime ideal.

2. The sum of every two prime ideals of J is a prime ideal in J .

3. For any two prime ideals P and Q of R, (P +Q)∩ J = P ∩ J +Q∩ J .

Proof. The proof is similar to that of Proposition 1.20.

A ring R is said to be arithmetical if for every three ideals I , J and K in R, we have I ∩ (J +K) =
I ∩ J + I ∩K . Now using Proposition 1.20 and Proposition 1.21, whenever R is an arithmetical ring in
which the sum of every two prime ideals is a prime ideal, then for each ideal J of R, the sum of every
two J-semiprime (resp., prime)-ideals is a J-semiprime (resp., prime)-ideal.

2 Relative prime ideals and Zariski topology

Let Min(R) be the set of minimal prime ideals of R and V (a) = {P ∈ Min(R) : a ∈ P }. Then B =
{Min(R) \V (a) : a ∈ R} forms a base for open sets in Min(R). Equipped with this topology, the space
Min(R) is zero-dimensional and Hausdorff. This topology is known as the Zariski topology. For A ⊆ R,
we use V (A) to denote the set of all P ∈Min(R) where A ⊆ P . For a subset H of Min(R) we denote by
clH (resp., intH) the closure points of H (resp., the interior points of H) in Min(R).

Proposition 2.1. For any ring R, the following statements are equivalent.

1. The ideal (0) is relative prime.

2. The space Min(R) has an isolated point.

3. There is an a , 0 ∈ R such that Ann(a) is a prime ideal.

Proof. Suppose the statement (1) holds. We show the statement (2). By Lemma 1.14, there is a non-
essential minimal prime ideal P ∈ Min(R). By [21, Lemma 3.1], intV (P ) = int{P } , ∅. Therefore {P }
is an isolated point in Min(R). Now let (2) holds. So there is an isolated point {P } in Min(R). By [21,
Lemma 3.1], the ideal P is non-essential and so there is a non-zero ideal J such that P ∩ J = 0. Thus
(1) is proved. Finally we prove the equivalency of (1) and (3). Let the ideal (0) be relative prime. By
Proposition 1.5, there exists a , 0 ∈ R such that (0) is Ra-prime. We show Ann(a) is a prime ideal. Let
xy ∈ Ann(a). Then xaya = 0. Thus xa = 0 or ya = 0. This shows that x ∈ Ann(a) or y ∈ Ann(a), i.e.,
Ann(a) is a prime ideal. Now let (3) holds, x = ra,y = sa ∈ Ra and xy = 0. Then rsa2 = 0 and hence
rsa = 0. This implies that rs ∈ Ann(a). By hypothesis, r ∈ Ann(a) or s ∈ Ann(a), i.e., x = 0 or y = 0.
Therefore (0) is Ra-prime. Hence (0) is a relative prime ideal.

We use Max(R) as the set of all maximal ideals of R. For a ∈ R, let M(a) = {M ∈Max(R) : a ∈M}. It
is easy to see that for any ring R, the set {D(a) : a ∈ R}, (where D(a) = Max(R) \M(a)) forms a basis of
open sets in Max(R). This topology is called the Zariski topology. For A ⊆ R, we useM(A) to denote
the set of all N ∈Max(R) where A ⊆ N . For a subset H of Max(R) we denote by clH (resp., intH) the
closure points of H (resp., the interior points of H) in Max(R), see [9] and [11].

Let A be a subset of Max(R), then MA = {a ∈ R : A ⊆M(a)} is an ideal of R (see [10]). It is clear that
MA =

⋂
M∈AM andM(MA) = clA. It is easy to see that MA ⊆MB if and only if clB ⊆ clA, where A and

B are subsets of Max(R). We also note that J(R/MA) =
⋂
M∈clAM/MA = (0). Recall from [9] that a ring

R is a pm-ring if every prime ideal is contained in a unique maximal ideal.
It is well known that if X is a dense subspace of a T1 space Y (i.e., for every y ∈ Y , {y} is closed),

then I(X) = I(Y ) (i.e., the set of isolated points of X and T are the same).

Theorem 2.2. Let R be a pm-ring and A ⊆Max(R). The following are equivalent.
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1. The set A is perfect with the subspace topology.

2. Every prime ideal of R/MA is essential, i.,e., Soc(R/MA) = (0).

3. Every maximal ideal of R/MA is essential, i.,e., Socm (R/MA) = (0).

4. The ideal MA is not a relative prime ideal.

Proof. Using Theorem 4.1 in [23], the statements (1), (2) and (3) are equivalent. By Lemma 1.14, the
staetments (2) and (4) are equivalent.

For a subset A of Min(R), suppose that OA = {a ∈ R : A ⊆ V (a)}. Then it is easy to see that OA is
an ideal of R, V (OA) = clA and OA =

⋂
P ∈A P . We also can see that OA ⊆ OB if and only if clB ⊆ clA,

whenever A,B ⊆Min(R).

Theorem 2.3. Let R be a ring and let A be a subset of Min(R). The following are equivalent.

1. The set A is a perfect subset of Min(R).

2. Every prime ideal of R/OA is essential.

3. The ideal OA is not a relative prime ideal.

Proof. Let (1) holds we show that (2) holds. Suppose that P /OA is a non-essential prime ideal in
R/OA. Then there is a non zero ideal J/OA such that P /OA ∩ J/OA = (0). This shows that P ∩ J = OA.
Thus V (P )∪V (J) = V (OA). If V (P ) ⊆ V (J), then V (J) = clA, and hence J ⊆ OA, a contradiction. Thus
V (P ) = {P } < V (J) and hence {P } ∪V (J) = clA. This say that {P } is an isolated point in clA and so is an
isolated point in A, it contradicts that A is perfect. By Lemma 1.14, (3) and (2) are equivalent. The
proof of (2)⇒ (1) is similar to that of (3)⇒ (1) in Theorem 2.2.

3 Relative semiprime (resp., prime) ideals in C(X)

In this section, we examine the results obtained in the previous sections in rings of continuous func-
tions and in some special ideals of it. We are going to get some topological connections by studying
this special ring.

Proposition 3.1. Let X be a Tychonoff space and let f ∈ C(X). The following statements hold.

1. The principal ideal (f ) in C(X) is relative prime if and only if the zero-set Z(f ) contains an isolated
point.

2. Every principal ideal in C(X) is relative prime if and only if X is an almost P -space with a dense
subset of isolated points.

3. The principal ideal (f ) in C(X) is relative semiprime if and only if intXZ(f ) is non-empty.

4. Every principal ideal in C(X) is relative semiprime if and only if the space X is an almost P -space.

Proof. (1) If the ideal (f ) is relative prime, then by Lemma 1.14, the factor ring C(X)/(f ) has a non-
essential minimal prime ideal. Now by [5, Theorem 4.2], Z(f ) contains an isolated point. The reverse
implication is a consequence of [5, Theorem 4.2] and Lemma 1.14.

(2) From Lemma 1.14, every principal ideal in C(X) is relative prime if and only if every factor
ring of C(X) modulo a principal ideal contains a nonessential minimal prime ideal. Now using [5,
Corollary 4.7], the implication holds.
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(3) Let the principal ideal (f ) is relative semiprime. Then there exists an ideal J ⊃ (f ) such that√
(f )∩J ⊆ (f ). On the other hand

√
(f ) = Pf . Thus (f ) is a relative z◦-ideal and hence a relative z-ideal,

so by [7, Example 2.3], intZ(f ) , ∅. Conversely, suppose that intZ(f ) , ∅. Then Ann(f ) , 0, i.e., (f ) is
a non-essential ideal. Now by Proposition 1.3, (f ) is a relative semiprime ideal.

The statement (4) follows from the statement (3).

Proposition 3.2. Let X be a Tychonoff space. The following statements are equivalent.

1. The zero ideal (0) in C(X) is a relative prime ideal.

2. The space X has an isolated point.

Proof. (1) implies (2). For, if the ideal (0) is relative prime in C(X), then there is a non-essential prime
ideal P in C(X), by Proposition 2.1. Now by [3, Corollary 3.3], there is an isolated point x ∈ X such
that P =Mx. Suppose that (2) holds. If x ∈ X is an isolated point, then by [3, Corollary 3.3], the ideal
Mx =Ox is a non-essential minimal prime ideal in C(X), and so by Proposition 2.1, the statement (1)
is deduced.

Previous corollary together with Proposition 1.18, imply that the largest p-factor of the ideal (0) in
C(X) exists if and only if X has a unique isolated point. It is well known that the ideal O

p
is a z-ideal

and hence is an intersection of minimal prime ideals over O
p

and hence an intersection of minimal
prime ideals in C(X). Now by Proposition 1.13, we obtain the following result.

Proposition 3.3. Let X be a Tychonoff space and let p ∈ βX. The following are equivalent.

1. The ideal O
p

is relative prime.

2. There is an irredundant ideal P ∈Min(C(X)) with respect to O
p
.

Proposition 3.4. Let X be a Tychonoff space and let I , 0 be a semiprime ideal in C(X). The following
statements are equivalent.

1. The ideal I is a prime ideal.

2. The ideal I is M
p
-prime for each p ∈ βX.

3. The ideal I is P -prime for each prime ideal P .

4. The ideal I is P -prime for each minimal prime ideal P .

5. The ideal I is O
p
-prime for each p ∈ βX.

Proof. The implications (1)⇒ (2)⇒ (3)⇒ (4)⇒ (5) are obvious. Now we suppose that (5) holds, I
is not prime and p ∈ βX. Then, there is Q ∈Min(I) such that Q∩Op ⊆ I . But I is not a prime ideal,
so there exists an ideal Q′ , Q ∈Min(I). Therefore O

p ⊆ Q′. This implies that Q′ ⊆Mp
, i.e., I ⊆Mp

.
Thus I ⊆

⋂
p∈βXM

p
= 0, a contradiction.

To find the proof of the following result see Birkhouff [8].

Lemma 3.5. Let R be a lattice ordered ring and let I, J and K be absolutely convex ideals of R. Then
I ∩ (J +K) = I ∩ J + I ∩K .
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It is well known that the sum of every two semiprime ideals of C(X) is a semiprime ideal, see [19,
Lemma 5.1]. Now, if J is an absolutely convex ideal in C(X), then by Lemma 3.5 and Proposition
1.20 (resp., Proposition 1.21), the sum of two semiprime (resp., prime)-ideals in J is a semiprime
(resp., prime )-ideal. However, the next result shows that if X is not an F-space, then there exists
an ideal J of C(X) such that the sum of two J-semiprime ideals is not a J-semiprime ideal. Recall
that a topological space X is an F-space if every ideal of C(X) is an absolutely convex ideal, see [12,
Theorem 14.25].

Let f ∈ J and let J be an ideal of C(X). We denote by M
J

f the intersection of all maximal ideals in J
containing f .

Lemma 3.6. Let X be a Tychonoff space and let J be an ideal of C(X).

1. For each f ∈ J , M J

f =Mf ∩ J .

2. If I is a z-ideal of J , then I = Iz ∩ J .

Proof. (1) By [20, Corollary 3.6], every maximal ideal in J is of the form M ∩ J , where M 6) J . Thus
M

J

f =
⋂
f ∈M 6)JM ∩ J = (

⋂
f ∈MM)∩ J =Mf ∩ J .

(2) I is a z-ideal in J , so I is semiprime in J and hence is an ideal of C(X). By [6, Proposition 1.2],
we have

I =
∑
f ∈I

M
J

f =
∑
f ∈I

(Mf ∩ J) = (
∑
f ∈I

Mf )∩ J = Iz ∩ J.

Corollary 3.7. Let X be a Tychonoff space. The following statements are equivalent.

1. For every ideal J of C(X), the sum of every two J-semiprime ideals is a J-semiprime ideal.

2. For every ideal J of C(X), the sum of every two z-ideals in J is a z-ideal in J .

3. The space X is an F-space.

Proof. (1)⇒ (2) Let J be an ideal of C(X) and I,K be two z-ideals in J . By Lemma 3.6, I = Iz ∩ J and
K = Kz ∩ J . By Proposition 1.20, I +K = (Iz +Kz)∩ J = (I +K)z ∩ J . This implies I +K as a z-ideal in J ,
by Lemma 3.6.

(2) ⇒ (3) Let J be an ideal of C(X) and I,K be two z-ideals in C(X). Then I ∩ J + K ∩ J is a z-
ideal in J . Now let f ∈ (I + K) ∩ J . Then f = f1 + f2, where f1 ∈ I , f2 ∈ K and f1, f2 ∈ J . Therefore
f 2 = f f1 +f f2 ∈ I∩J+K∩J . So f ∈M J

f =M
J

f 2 ⊆ I∩J+K∩J . On the other hand, I∩J+K∩J ⊆ (I+K)∩J .
Hence by [7, Proposition 3.1], the sum of every two zJ-ideals is a zJ-deal, for each ideal J of C(X).
Thus by [7, Theorem 3.4], X is an F-space.

(3)⇒ (1) If X is an F-space, then every ideal J of C(X) is an absolutely convex ideal, and hence by
Lemma 3.5 and Theorem 1.20, the sum of two J-semiprime ideals is a J-semiprime ideal.

Recall that a space X is a P -space if every zero set (Gδ-set) in X is open or if every prime ideal in
C(X) is a z-ideal, see [12, 4J]. In Proposition 1.3, we have seen that every relative z-ideal is a relative
semiprime ideal. However, the next result shows that whenever X is not a P -space, there exists a
relative semiprime ideal in C(X) which is not a relative z-ideal.

Proposition 3.8. Let X be a Tychonoff space. The following statements are equivalent.

1. Every ideal of C(X) is a relative semiprime ideal.

2. The space X is a P -space.
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3. Every relative semiprime ideal of C(X) is a relative z-ideal.

4. Every relative prime ideal of C(X) is a relative z-ideal.

5. The sum of every two relative semiprime ideals is a relative z-ideal.

6. The sum of every two relative prime ideals is a relative z-ideal.

Proof. By Proposition 1.16 and this fact that C(X) is a regular ring if and only if X is a P -space (see
[12, 4.J]), (1) implies (2). Clearly (2) implies (3) and (3) implies (4). Now suppose that (4) holds
and P is a prime ideal of C(X). Then P is a relative z-ideal and hence is a z-ideal, by [1, Lemma
2.1]. Therefore X is a P -space, so (1) is done. If X is a P -space, then every ideal of C(X) is a relative
z-ideal, so (2) implies (5) and trivially (5) implies (6). Finally, assume that (6) holds and X is not a
P -space. Then there exists a prime ideal P which is not a z-ideal, and hence by [7, Example 2.3] (i.e.,
every non-essential ideal in C(X) is a relative z-ideal), it is an essential ideal. Let M and M ′ be two
maximal ideals not containing P such that M +M ′ = C(X). Then P ∩M and P ∩M ′ are two non-zero
ideals. Moreover they are proper subsets of P . This implies that they are relative prime ideals. Now
by Lemma 3.5, we have P ∩M + P ∩M ′ = P ∩ (M +M ′) = P . So by hypothesis, P is a relative z-ideal
and hence it must be a z-ideal, a contradiction.

The intersection of all essential maximal ideals in a ring R is denoted by Socmax(R), see [23].

Theorem 3.9. Let X be a Tychonoff space and let A ⊆ βX. The following are equivalent.

1. The set A is perfect with respect to the subspace topology.

2. Every maximal ideal of C(X)/MA is essential, i.,e., Socmax
(
C(X)/MA

)
equals to the zero ideal.

3. Every prime ideal of C(X)/MA is essential, i.,e., Socmax
(
C(X)/MA

)
equals to the zero ideal.

4. The ideal MA is not a relative prime ideal.

Proof. We prove that (1) and (3) are equivalent. First, let (1) holds and P /MA is a non-essential ideal.
Then P ⊆ Mx for some x ∈ clβXA and there is a non-zero ideal J/MA such that P /MA ∩ J/MA = 0.
Hence P ∩ J = MA, therefore we have, {x} ∪θ(J) = θ(P )∪θ(J) = θ(P ∩ J) = θ(MA) = clβXA. If x ∈ θ(J),
then θ(J) = clβXA, and thus J ⊆ MA, this is a contradiction. Therefore {x} ∪ θ(J) = clβXA, where
x < θ(J). This shows that x is an isolated point in the space clβXA and so is an isolated point in A (for,
A is dense in clβXA), a contradiction. Now let (3) holds and x is an isolated point in the space A. Then
x is an isolated point in clβXA and clβXA = {x} ∪B, where B is a closed subset of clβXA and hence of
βX. Consider the maximal ideal Mx/MA and the ideal MB/MA. It is clear that Mx/MA∩MB/MA = 0.
On the other hand MB/MA is a non-zero ideal (if MB/MA = 0, then B = clβXA, a contradiction). This
shows that Mx/MA is a non-essential prime ideal, this is a contradiction.

For a topological space Y , let I(Y ) denotes the set of its isolated points, and let: Y 0 = Y , Y ′ =
Y \ I(Y ). For any ordinal η, let Y η+1 = (Y η)′ and if η is a limit ordinal, let

Y η =
⋂
α<η

Y α .

The spaces Y η are called Cantor-Bendixson derivatives of Y . Let CB(Y ) denotes the smallest ordinal α
for which Y α = Y α+1. This is the CB-index of a space Y . Now the above theorem implies next result.

Proposition 3.10. Let X be a Tychonoff space. The following are equivalent.
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1. CB(βX) ≤ 1.

2. Socmax(C(X)) is not a relative prime ideal.

3. Every maximal ideal in the factor ring C(X)/ Socmax(C(X)) is essential.

4. Every prime ideal in the factor ring C(X)/ Socmax(C(X)) is essential.

The following result is Corollary 9.6 in [12].

Lemma 3.11. No point in βX \X is a Gδ-point of βX.

The following lemma needs for the next result. This is obvious, see [12].

Lemma 3.12. For every point p ∈ βX\υX, there exists a zero-setZ ∈ Z[βX] such that p ∈ Z andZ∩υX = ∅.

We recall that Cψ(X) = {f ∈ C(X) : clX(X \Z(f )) is pseudocompact } is an ideal of C(X). It is well
known that Cψ(X) = MβX\υX and hence it is a semiprime ideal. However, the next result shows that
this ideal never is a relative prime ideal.

Proposition 3.13. The ideal Cψ(X) is not a relative prime ideal.

Proof. Suppose that Cψ(X) = MβX\υX is a relative prime ideal. Then by Theorem 3.9, βX \ υX is not
a perfect subset of βX. So there exists an isolated point p in the subspace βX \υX of βX. Thus there
exists an open set Vp ⊆ βX such that p ∈ Vp and Vp ∩ (βX \ υX) = {p}. By Lemma 3.12, there exists a
zero-set Z ∈ Z[βX] such that p ∈ Z ⊆ βX \ υX. Therefore, Vp ∩ Z = {p}. This shows that {p} is a Gδ
point in βX, a contradiction, by Lemma 3.11.
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