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Abstract. Given a field k of characteristic p , 0. Let K/k be a finite purely inseparable field extension of j-th exponent

ej . Recall that K is modular over k if and only if for any n ∈N, Kp
n

and k are linearly disjoint over Kp
n ∩ k. This notion,

which plays a central role in the development of the Galois theory relating to purely inseparable extensions, was used by

M.E. Sweedler to characterize purely inseparable extensions of bounded exponent which were tensor products of simple

extensions. Since then, many authors have studied various properties of modular field extensions, including the existence

of modular closures. Similarly, K/k is said to be s-quasi-modular if for all i ∈ {1, . . . , es}, Kp
i

and k are Kp
i ∩ k linearly

disjoint. Motivated by R. Rasala’s work, We characterize the notion of s-quasi modularity and we then a method which

makes it possible to build the s-quasi modular closure of K/k. In particular, if s = n, we find the Rasala result.

Key Words: Purely inseparable extension, modular extension, s-quasi-modular.
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0. Introduction

Given a finite purely inseparable extension K/k. The notion of modularity, defined by M.E. Sweedler
in the 60s, is to the purely inseparable theory what normal is to the separable theory. In particular,
Sweedler has shown in ([14], p. 4031) that K is modular over k if and only if K can be written as
the tensor product of simple extensions of k. The author then showed that any purely inseparable
field extension K/k has an unique minimal modular closure, and that the intersection of modular
extensions is again modular (for more information see also W.C. Waterhouse [15]). In the same vein,
R. Rasala provides in a simple way a method for building the minimal modular closure using the
structure equations adopted by G. Pickert. This paper grew out of an attempt to find an analogue
to this result for s-quasi-modular closures. So our first aim in this paper is to give, as in the case of
modularity, necessary and sufficient conditions for K/k to be s-quasi modular (cf. Theorem 2.7 and
Theorem 2.9).

Now let B = {α1, . . . ,αn} be a canonically ordered r-basis (Rasala uses in [11] the term normal
generating sequence) of K/k and es the s-th exponent of K/k (however we will often use the usual
notation os(K/k) to designate the s-th exponent of K/k). Let i be a positive integer < ej . By virtue

of ([3], Proposition 9), {αp
ej−i

1 , . . . ,α
pej−i

j } is a canonically ordered r-basis of k(αp
ej−i

1 , . . . ,α
pej−i

j )/k, and its
list of exponents is (e1 − (ej − i), . . . , ej − (ej − i)), and so there exist unique constants Cε ∈ k checking

αj
pej = (αjp

ej−i
)
pi

=
∑
ε∈Λj

Cj,ε(α1, . . . ,αj−1)p
iε, where Λj = {(s1, . . . , sj−1) such that 0 ≤ s1 < pe1−ej , . . . ,0 ≤

sj−1 < p
ej−1−ej }.

Definition 0.1. The pi-root of Cj,ε will be called the i-coefficients of αj relative to k(α1, . . . ,αj−1) and,
if there is no confusion, we simply say the i-coefficients of αj .
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By convention, if i ≥ ej , the i-coefficients of αj will have the meaning of ej-coefficients of αj .
We also agree (if there is no confusion) to call the set of es-coefficients of αi , for i = 1, . . . ,n, by
the set of es-coefficients of K/k which we denote in the sequel by A1. Now consider the exten-
sion S1(K/k) of K obtained by adjoining A1 to K . More precisely, S1(K/k) = K(A1) = k(α1, . . . ,αs−1,

((Cj,ε)
p−es )ε∈(⋃Λj )j≤s , ((Cj,ε)

p−ej )ε∈(⋃Λj )j>s ). Since K ⊆ S1(K/k) and the exponent of k(A1) over k does not
exceed es, therefore os(K/k) = es ≤ os(S1(K/k)/k) ≤ o1(k(A1)/k) ≤ es, and consequently os(S1(K/k)/k) =
es. Let m1 be the largest integer such that om1

(S1(K/k)/k) = es. According to the r-basis completion
algorithm ([3], Proposition 8), there exist α1

s , . . . ,α
1
n1

elements of A1 such that {α1, . . . ,αs−1,α
1
s , . . . ,α

1
n1
}

(which will be denoted by B1) be a canonically ordered r-basis of S1(K/k). In particular, k(α1, . . . ,αs−1,
α1
s , . . . ,α

1
m1

) ' k(α1, . . . ,αs−1) ⊗k k(α1
s ) ⊗k . . . ⊗k k(α1

m1
). If m1 = n1, we take S2(K/k) = S1(K/k), other-

wise, let A2 be the set of em1+1-coefficients relative to B1. Now consider the extension S2(K/k) of
S1(K/k) obtained by adjoining A2 to S1(K/k). Also, there exist α2

m1+1, . . . ,α
2
n2

elements of A2 such that
{α1, . . . ,αs−1,α

1
s , . . . ,α

1
m1
,α2
m1+1, . . . , α

2
n2
} (denoted by B2) is a canonically ordered r-basis of S2(K/k)/k

checking:

1. om1+1(S2(K/k)/k) = om1+1(S1(K/k)/k).

2. k(α1, . . . ,αs−1,α
1
s , . . . ,α

1
m1
,α2
m1+1, . . . ,α

2
m2

) ' k(α1, . . . ,αs−1)⊗kk(α1
s )⊗k . . .⊗kk(α1

m1
)⊗k k(α2

m1+1)⊗k . . .⊗k
k(α2

m2
), where m2 is the largest integer such that om2

(S2(K/k)/k) equal to om1+1(S2(K/k)/k).

Inductively, we obtain a tower of fields Sr(K/k) = S1(Sr−1/k) obtained by adjoiningAr (set of (mr−1+
1)-coefficients) to Sr−1(K/k) if mr−1 , nr−1 and, Sr(K/k) = Sr−1(K/k) otherwise. One fact we obtain
is that the tower stabilizes after a finite number of steps. Indeed, there also exists αrmr−1+1, . . . ,α

r
nr

elements of Ar such that {α1, . . . ,αs−1,α
1
s , . . . ,α

1
m1
, . . . , αrmr−1+1, . . . ,α

r
nr } (denoted by Br ) is a canonically

ordered r-basis of Sr(K/k)/k checking:

1. omr−1+1(Sr(K/k)/k) = omr−1+1(Sr(K/k)/k).

2. k(α1, . . . ,αs−1,α
1
s , . . . ,α

1
m1
,α2
m1+1, . . . ,α

2
m2
. . . ,αrmr−1+1, . . . ,α

r
mr

) ' k(α1, . . . ,αs−1)⊗kk(α1
s )⊗k . . .⊗kk(α1

m1
)⊗k

. . .⊗kk(αrmr
), wheremr is the largest integer such that omr

(Sr(K/k)/k) equal to omr−1+1(Sr−1(K/k)/k).

Since om1
(S1(K/k)/k) ≥ om2

(S2(K/k)/k) ≥ . . . ≥ omr
(Sr(K/k)/k), the sequence (omi

(Si(K/k)/k)) will sta-
tionary starting at j, and therefore the sequence (Si(K/k))i will also stationary at j, i.e, Sj(K/k) =
Sj+1(K/k). It is the purpose of this note to prove the following:

Theorem 0.2 (Main theorem). The field Sj(K/k) at which the tower stabilizes is the unique minimal
extension of K such that Sj(K/k) is s-quasi-modular over k.

The rest of this paper is organized as follows. In the next section, we review some basic termi-
nologies and results concerning finite purely inseparable extensions, we begin to study the degree
of irrationality and exponents related to a finite purely inseparable extension, then we shed light
on modular extensions. In the third section, we introduce the notion of s-quasi modularity which
is a natural generalization of modularity and we prove some results characterizing this notion. This
section which is the heart of this work prepares the way to the proof of our main result. Examples
are presented illustrating the application of the results obtained.

Throughout this paper k always designates a field of characteristic p > 0, Ω an algebraic closure
of k, and all fields under consideration will be purely inseparable extensions of a common ground
field k, they are to be viewed as contained in Ω. If K is such a field, Kp

n
denotes the field of all pn-th

powers of elements from K .
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1 Definitions and preliminary results

1.1 Irrationality degree

Definition 1.1. Let K/k be a purely inseparable extension. A minimal set of generators of K over
k, which we prefer to call a minimal r-generator of K/k, is a subset G of K such that K = k(G) and
G′ ⊂ G implies k(G′) ⊂ k(G) where G denotes proper inclusion.

It is well known that if K/k is a finite purely inseparable extension of k, the minimum number of
generators of K/k is r, the exponent determined by the degree [K : k(Kp)] = pr (cf [8], Theorem 6).

Definition 1.2. A relative p-basis (or simply r-basis) of K over k is a minimal set of generators of K
over (Kp). A relatively p-independent (or r-independent) subset B of K/k is a subset B of K such that
B is a minimal r-generator of k(Kp)(B)/k(Kp), i.e, for all proper sub-sets B′ of B, k(Kp,B′) ⊂ k(Kp,B).

These concepts are introduced in [12]. Recall that K is said to have an exponent (or, to be of
bounded exponent) over k if there exists e ∈ N such that Kp

e ⊆ k, and the smallest integer that
satisfies this relation will be called the exponent (or height) of K/k. Paul T. Rygg [13] showed that if
K/k has a finite exponent, then there exist minimal r-generators of K over k and any two such sets
have the same cardinal number. This result for the case of exponent e = 1 is given by MacLane ([8],
Theorem 12).

Moreover, as in linear algebra, the r-dependence in K/k(Kp) is a dependence relation (cf. [7],
Lemma 6.1), and consequently, according to (cf. [7], Theorem 1.3) we have:

1. Every extension K/k has an r-basis, and any two r-bases of K/k have the same cardinality.

2. Any relatively r-independent set of K/k can be extended to an r-basis of K/k.

3. Any generator G of K/k(Kp) contains an r-basis of K/k.

Pickert ([10], p. 881) has shown that if K is a finite inseparable extension of k and G is a minimal
r-generators of K over k, then G is r-independent of K/k. More generally, it is shown by Paul T. Rygg
[13] that if K/k has an exponent, a subset B of K is an r-basis of K/k if and only if B is a minimal
r-generator of K/k. However, a minimal r-generator may not exist in the general case (cf. [9], Lemma
1.16, Proposition 1.23). In this note, unless otherwise stated, we assume that K is a finite purely
inseparable extension of k.

Let us denote in the sequel by di(K/k) = |B|, where B is a minimal r-generator of K/k, the irrational-
ity degree of K/k. Similarly, di(k/kp) will designate the imperfection degree of k, and it is denoted by
di(k).

We will often use the following theorem.

Theorem 1.3 ([5], Theorem 2.7). For any family k ⊆ L ⊆ L′ ⊆ K of purely inseparable extensions, we
have di(L′/L) ≤ di(K/k).

without losing any generality, a similar result for a more general field extension is given in ([5],
Theorem 2.7). Now let K1 and K2 be intermediate fields of K/k, we immediately check that if B1
and B2 are two r-bases, respectively of K1/k and K2/k, then B1 and B1 ∪ B2 are two r-generators,
respectively of K1(K2)/K2 and K1(K2)/k. Furthermore, di(K1(K2)/K2) ≤ di(K1/k) and di(K1(K2)/k) ≤
di(K1/k) + di(K2/k). More precisely, we get the following result.

Proposition 1.4 ([2] ). If K1/k and K2/k are k-linearly disjoint, we then have:

(i) B1 ∪B2 is an r-basis of K1(K2)/k.
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(ii) B1 is an r-basis of K1(K2)/K2.

We will also need the following result which is a well-known consequence of the transitivity of
linear disjointness.

Proposition 1.5 ([6], p. 35, Lemma 2.5.3). If K1/k and K2/k are k-linearly disjoint, then for every
subfields L1 and L2 of K1/k and K2/k respectively, L2(K1) and L1(K2) are k(L1,L2)-linearly disjoint. In
particular, L2(K1)∩L1(K2) = k(L1,L2).

Corollary 1.6. For any subset G of K2 such that K1(K2) = K1(G), we have K2 = k(G). In particular, if G is
a linear basis of K1(K2) over K1, then G is also a linear basis of K2 over k.

Proposition 1.7. Let L be a subfield of K over k andM a subset of k such thatM is an r-basis of k(Kp)/Kp.
Then di(K/k) = di(k/kp(M)). In particular, di(L/k) = di(K/k) if and only if k(Lp) and Kp are Lp-linearly
disjoint.

Proof. Let G be a subset of k such thatM∪G is a p-basis of k. By virtue of [9, p. 14, Proposition 1.22],
for each positive integer n, K(Mp−n) ' k(Mp−n)⊗k K , so di(K(Mp−n)/k(Mp−n)) = di(K/k). Furthermore,
kp
−n ' k(Mp−n)⊗k k(Gp

−n
), it follows that di(kp

−n
/k(Mp−n)) = di(k(Gp

−n
)/k) = |G|. In particular,

|G| = di(kp
−1
/k(Mp−1

)) ≤ di(kp
−1

(K)/k(Mp−1
)), (cf. Theorem 0.2).

Since K ⊆ kp−n0 , where n0 is the exponent of K/k, and kp
−1

(K) = K(Mp−1
) ⊆ K(Mp−n0 ), so

di(kp
−1

(K)/k(Mp−1
)) = di(K(Mp−n0 )/k(Mp−n0 )) ≤ di(kp

−n0 /k(Mp−n0 )) = |G|.

Therefore di(K/k) = di(k/kp(M)) = |G|.

The previous result extends to finite type extensions. It links the invariant of inseparability to the
degree of irrationality ([4]).

1.2 Exponents of a finite purely inseparable extension

In this paragraph, we will us some basic definitions and notations as it is mentioned in [3]. Consider
an element x of K , recall that the least positive integer e such that xp

e ∈ k is called the exponent of
x over k, and is denoted by o(x/k). Clearly, the maximum of the set of exponents of elements of K
is the exponent of K over k, that is, the smallest integer e such that Kp

e ⊆ k, which will be denoted
throughout this paper by o1(K/k). An r-basis B = {a1, a2, . . . , an} ofK/k is said to be canonically ordered
if for j = 1,2, . . . ,n, we have o(aj /k(a1, a2, . . . , aj−1)) = o1(K/k(a1, a2, . . . , aj−1)).

Lemma 1.8 ([2], Lemma 1.3). The integer o(aj /k(a1, . . . , aj−1)) thus defined satisfies

o(aj /k(a1, . . . , aj−1)) = inf{m ∈N| di(k(Kp
m

)/k) ≤ j − 1}.

We immediately deduce the structure theorem, one of the fundamental theorems which makes
it possible to introduce, by means of exponents, the structure equations of a purely inseparable
extension discovered for the first time by Picker [10] in 1949, and can be stated as follows: If K/k
is finite purely inseparable of multiplicity (irrationality degree) m, then there is an ordering of the
generators, namely a1, . . . , am, that the following conditions hold for i = 1, . . . ,m:

1. ai qi ∈ k(a1
qi , . . . , ai−1

qi ), where qi = pei and ei > 0.

2. aip
−1
< k(a1, . . . , ai−1).
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3. e1 ≥ e2 ≥ . . . ≥ em.

Conversely, if K/k is generated by the m elements a1, . . . , am satisfying the first two conditions above,
then the exponents e1 . . . , em are invariants of the extension. In particular, the structure equations
have the following form: ai qi =

∑
α∈Ii

ai,αa
qiα. Here Ii is a suitable multi-index set and ai,α ∈ k.

Definition 1.9. The invariant defined by oi(K/k) = o(ai/k(a1, . . . , ai−1)) if 1 ≤ i ≤ n and oi(K/k) = 0 if
i > n is called the i-th exponent of K/k.

Also as a consequence of Lemma 1.8 and Theorem 1.3, we get the following proposition which
will be used repeatedly.

Proposition 1.10. For any intermediate field L of K/k, oi(L/k) ≤ oi(K/k).

In a more exact way, the structure theorem can be seen as follows.

Proposition 1.11. ([3], Proposition 9), Let {α1, . . . ,αn} be a canonically ordered r-basis of K/k and ej the
j-th exponent of K/k. Then we have:

• k(Kp
ej

) = k(αp
ej

1 , . . . ,α
pej

j−1).

• Let Λj = {(i1, . . . , ij−1) such that 0 ≤ i1 < pe1−ej , . . . , 0 ≤ ij−1 < p
ej−1−ej }. Then {(α1, . . . ,αj−1)p

ej ξ

such

that ξ ∈Λj} is a linear basis of k(Kp
ej

) over k.

• Let s be a positive integer ≤ e1 and j the largest integer such that ej > s. Then {αp
s

1 , . . . ,α
ps

j } is a

canonically ordered r-basis of k(Kp
s
)/k, and its list of exponents is (e1 − s, . . . , ej − s).

The next proposition is needed in the proof of the main result.

Proposition 1.12. Given an intermediate field of K/k. Let es be the s-th exponent of K/k, 1 ≤ s ≤ n. The
following assertions are equivalent:

1. For each i ∈ {0, . . . , es − 1}, di(k(Fp
i
)/k) = di(k(Kp

i
)/k).

2. For each i ∈ {0, . . . , es − 1}, k(Fp
i+1

) and kp(Kp
i+1

) are kp(Fp
i+1

) linearly disjoint.

3. For each i ∈ {0, . . . , es − 1}, k(Fp
i+1

) and Kp
i+1

are Fp
i+1

linearly disjoint.

4. k(Fp
es ) and Kp

es are Fp
es linearly disjoint.

Proof. Taking into account Proposition 1.7 and Proposition 1.5, the assertions (1) and (2) are equiv-
alent. It suffices to show that (2)⇒ (3)⇔ (4)⇒ (2). Suppose that (2) holds. The proof is done by
induction on i. It is clear that the result (3) is valid for i = 0 (cf. Proposition 1.5). If k(Fp

j
) and Kp

j
are

Fp
j

linearly disjoint for each j ∈ {0, . . . , i} where i is a positive integer < es − 1, which is equivalent to
kp(Fp

j+1
) and Kp

j+1
are Fp

j+1
linearly disjoint. But as k(Fp

j+1
) and kp(Kp

j+1
) are kp(Fp

j+1
) linearly disjoint

(by (2)), therefore by transitivity of linear disjointness k(Fp
j+1

) and Kp
j+1

are Fp
j+1

linearly disjoint,
whence (3) follows by induction. The condition (4) results immediately from (3). Conversely, sup-
pose that k(Fp

es ) and Kp
es are Fp

es linearly disjoint. It follows that for each i ∈ {0, . . . , es −1}, kpes−i (Fpes )

and Kp
es are Fp

es linearly disjoint which is equivalent to (kp
es−i (Fp

es ))
pi−es

and (Kp
es )
pi−es

are (Fp
es )
pi−es

linearly disjoint. This leads to k(Fp
i
) and Kp

i
are Fp

i
linearly disjoint for every i ∈ {0, . . . , es − 1}. Fur-

thermore, if for each i ∈ {0, . . . , es − 1}, k(Fp
i+1

) and Kp
i+1

are Fp
i+1

linearly disjoint, so in particular
k(Fp

i+1
) and kp(Kp

i+1
) are kp(Fp

i+1
) linearly disjoint.
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1.3 Modular extension

A subset B ofK which we will prefer called a modular r-basis (M. Weisfeld used the term sub-basis see
[16, p. 435]) of K over k if and only if it fulfills the following conditions: B∩ k = ∅, K = k(B), and, for
any finite subset {b1, . . . , bt} of B, the canonical homomorphism of the tensor product k(b1)⊗k . . .⊗kk(bt)
into K is a monomorphism. This is equivalent, by [9, p. 14, Definition 1.21], to for every finite subset

{b1, . . . , bt} of B, [k(b1, . . . , bt) : k] =
t∏
i=1

[k(bi) : k], that is, k(b1, . . . , bt) is a tensor product over k of the

simple extensions k(b1), . . . , k(bt). Sweedler showed in [14, p. 403, Theorem 1] that if K over k has a
finite exponent, then K is modular over k, i.e. for all (positif) integer n, Kp

n
and k are k∩Kpn-linearly

disjoint, if and only if K can be written as the tensor product of simple extensions of k, that is, K/k
has a modular r-basis.

Let ej be the j-th exponent of a finite purely inseparable extension K/k and let {α1, . . . ,αn} be a
canonically ordered r-basis of K/k, so for all 1 < j ≤ n, there are unique constants Cε ∈ k such as
αj
pej =

∑
ε inΛj

Cε(α1, . . . ,αj−1)ejε, where Λj = {(i1, . . . , ij−1) |0 ≤ i1 < pe1−ej , . . . ,0 ≤ ij−1 < p
ej−1−ej }.

Proposition 1.13 (Modularity criterion). The following properties are equivalent:

1. K/k is modular.

2. For every canonically ordered r-basis {α1, . . . ,αn} of K/k, the Cε ∈ k ∩Kp
ej for all 1 < j ≤ n.

3. There exists a canonically ordered r-basis {α1, . . . ,αn} of K/k such that the Cε ∈ k ∩ Kp
ej for all

1 < j ≤ n.

Example 1.14. Let k0 be a perfect field of characteristic p , 0, k = Q(X,Y ,Z) the field of rational
fractions in indeterminates X,Y ,Z, and K = k(α1,α2) where α1 = Xp

−2
and α2 = Xp

−2
Y p

−1
+Zp

−1
. We

check immediately that:

• o1(K/k) = 2 et o2(K/k) = 1,

• α
p
2 = Yαp1 +Z.

If K/k is modular, according to the modularity criterion, we will have Y ∈ k∩Kp and Z ∈ k∩Kp, and
therefore Y p

−1
and Zp

−1 ∈ K . Hence k(Xp
−2
,Y p

−1
,Zp

−1
) ⊂ K , and consequently

di(k(Xp
−2
,Y p

−1
,Zp

−1
)/k) = 3 < di(K/k) = 2, contradiction.

2 s-quasi modular extension

Definition 2.1. Let K/k be a finite purely inseparable extension of irrationality degree n and expo-
nents es. Let s belong to {1, . . . ,n}, K/k is called s-quasi-modular if for each i = 1, . . . , es, Kp

i
and k are

k ∩Kpi linearly disjoint.

Let F be an intermediate field of K/k. taking into account ([9], Proposition 3.3), it is equivalent to
say that:

• There exists an intermediate field J of K/k such that K ' J⊗kF, J/k is modular and in particular,
K/F is modular.
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• There exists a canonically ordered r-basis {α1, . . . ,αe} of K/F such that αip
mi ∈ (Kp

i ∩ k)(Kip
i
)

where mi = oi(K/F) and Ki = F
pmi

(α1
pmi , . . . ,αi−1

pmi ), i = 1, . . . ,m1.

Lemma 2.2. If K/k is s-quasi-modular, there exists a canonically ordered r-basis {α1, . . . , αn} of K/k such
that K ' k(α1, . . . ,αs−1)⊗k k(αs)⊗k . . .⊗k k(αn)

Proof. Let {α1, . . . ,αn} be a canonically ordered r-basis of K/k. If ei designates the i-th exponent of
K/k, then k(Kp

ei ) = k(α1
pei , . . . ,αi−1

pei ). Since Kp
ei and k are k ∩Kpei linearly disjoint for i = 1, . . . , es,

then Kp
ei and k(α1

pei , . . . ,αi−1
pei ) are (k ∩Kpei )(α1

pei , . . . ,αi−1
pei ) linearly disjoint, and therefore Kp

ei =
Kp

ei ∩ k(Kp
ei ) = (k ∩Kpei )(α1

pei , . . . ,αi−1
pei ), and consequently the result holds from ([9], Proposition

3.3).

By construction, we have:

Lemma 2.3. S1(K/k) is the unique minimal extension of K containing the es-coefficients of α1, . . . ,αn.

Proof. Immediate.

The following proposition characterizes the notion of s-quasi-modularity by relating it to the mod-
ularity, in which case we have the tools to test the modularity of an extension.

Proposition 2.4. If kp
−es ∩K/k is modular and oi(kp

−es ∩K/k) = oi(K/k) = ei for all i ∈ {s, . . . ,n}, then K/k
is s-quasi-modular.

Proof. To simplify the writing, we set F = kp
−es ∩ K . As oi(F/k) = oi(K/k) = ei for all i ∈ {s, . . . ,n},

according to Lemma 1.8, di(k(Fp
i
)/k) = di(k(Kp

i
)/k) for all i ∈ {0, . . . , es − 1}, and consequently, for all

i ∈ {0, . . . , es}, k(Fp
i
) and Kp

i
are Fp

i
linearly disjoint by virtue of Proposition 1.12. On the other hand,

since F/k is modular then Fp
i

and k are k ∩ Fpi linearly disjoint for all (positive) integer i, so this
property holds in particular for every i ∈ {0, . . . , es}. By transitivity of linear disjointness, we have Kp

i

and k are k ∩ Fpi linearly disjoint for all i ∈ {0, . . . , es}, notably Kp
i

and k are k ∩Kpi linearly disjoint
for all i ∈ {0, . . . , es}, which implies that K/k est s-quasi-modular.

Here is an example of an s-quasi-modular extension that is not modular.

Example 2.5. Let k0 be a perfect field of characteristic p , 0 and X,Y ,Z independent indeterminates
over k0. Let k = k0(X,Y ,Z) and K = k(m1,m2,m3), where m1 = Xp

−3
, m2 = Xp

−3
Y p

−2
+Zp

−2
and m3 =

Y p
−1

. We check that

kp−1 ∩K = k(Xp
−1
,Y p

−1
,Zp

−1
)

' k(Xp
−1

)⊗k k(Y p
−1

)⊗k k(Zp
−1

).

Clearly kp−1 ∩K/k is modular, by the previous proposition K/k is 1-quasi-modular. But K/k is not
modular, indeed if K/k is modular, from the structure equations we get:

m2
p2

= YXp
−1

+Z

= Ym1
p2

+Z

with Y and Z belong to k. By virtue of the modularity criterion, we have Y ,Z ∈ k ∩ Kp2
, and thus

Y p
−2
,Zp

−2 ∈ K . It follows that k(Xp
−2
,Y p

−2
,Zp

−2
) ⊆ K , according to Proposition 1.10,

2 = o3(k(Xp
−2
,Y p

−2
,Zp

−2
)/k) ≤ o3(K/k) = 1,

it’s a contradiction, and therefore K/k is not modular.
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Remark 2.6. The converse of the previous proposition is also true (we can use the proof of the fol-
lowing theorem).

Now giving us as in the case of modularity, by means of the structural equations, a necessary and
sufficient condition for K/k to be s-quasi-modular.

Theorem 2.7. K/k is s-quasi-modular if and only if K contains the es-coefficients relative to a canon-
ically ordered r-basis of K/k.

Proof. Let {α1, . . . ,αn} be a canonically ordered r-basis of K/k and ei = oi(K/k). By Proposition 1.11,
there exist unique constants Ci,ε ∈ k such that

αi
pei = (αi

pei−es )
pes

=
∑
ε∈Λi

Ci,ε(α1, . . . ,αi−1)p
esε,

for i ∈ {1, . . . , s − 1} (respectively αip
ei =

∑
ε∈Λi

Ci,ε(α1, . . . ,αi−1)p
ei ε, for i ∈ {s, . . . ,n}) where Λi is a suitable

multi-index set. As {(α1, . . . ,αi−1)p
esε}ε∈Λi

is linearly independent over k, in particular, it is remains
also linearly independent over k ∩ Kpes . We complete this system to a linear basis G of Kp

es over
k ∩Kpes . As Kp

es and k are k ∩Kpes linearly disjoint, then G is also a linear basis of k(Kp
es ) over k. By

identification, the Ci,ε belong to k ∩Kpes , or again the (Ci,ε)
p−es belong to kp

−es ∩K . In the same way,
we show that the ei-coefficient of αi , for i = s, . . . ,n, belong to K .

Conversely, taking into account Proposition 2.4, it suffices to show that kp
−es ∩K/k is modular and

for each i ∈ {s, . . . ,n}, oi(kp
−es ∩ K/k) = ei . To do this, we will first construct by reverse induction a

sequence Ls−1 ⊇ . . . ⊇ L1 checking:

1. Lj decomposes as follows: Lj = k(α1, . . . ,αj )⊗k k(λj+1)⊗k . . .⊗k k(λn).

2. for each r = j + 1, . . . , s, or(Lj /k) = os(K/k) and for each r = s+ 1, . . . ,n, or(Lj /k) = or(K/k).

According to Lemma 1.8, there exists a canonically ordered r-basis {α1, . . . ,αn} of K/k such that
K ' k(α1, . . . ,αs−1) ⊗k k(αs) ⊗k . . . ⊗k k(αn), therefore for j = s − 1, Lj = K is suitable, withαi = λi
for i = s, . . . ,n. Suppose that Li is constructed, so Li has the form Li = k(α1, . . . ,αi) ⊗k k(λi+1) ⊗k
. . . ⊗k k(λn). Now let’s put Li−1 = k(α1, . . . ,αi−1,αi

pei−es ) ⊗ k(λi+1) ⊗k . . . ⊗k k(λn). From this we ob-
tain structure equations of the form αi

pei = (αip
ei−es )

pes
=

∑
ε∈Λ

Cε(α1, . . . ,αi−1)p
esε, where Λ is a suit-

able multi-index set. As the es-coefficients belong to K , i.e, the (Cε)
p−es belong to K , hence αip

ei−es ∈
k(α1, . . . ,αi−1,λi+1, . . .λn, ((Cε)

p−es )ε∈Λ)which we denote by L. Since Li−1 ⊆ L ⊆ K , then

n = di(Li−1/k) ≤ di(L/k) ≤ di(K/k) = n Theorem 1.3,

and consequently di(L/k) = n. Also, since {α1, . . . ,αn} is an r-basis of K/k, then {α1, . . . ,αi−1,αs, . . . ,
αn} which coincides with {α1, . . . ,αi−1,λs, . . . ,λn} is r-independent in L/k. However, if there exists
j ∈ {i + 1, . . . , s − 1} such that λj ∈ k(Lp)(α1, . . . ,αi−1,λi+1, . . . ,λj−1,λj+1, . . . ,λn), as

Li−1 = k(α1, . . . ,αi−1,αi
pei−es )⊗ k(λi+1)⊗k . . .⊗k k(λn),

we would have es = o(λj /k(α1, . . . ,αi−1, λi+1, . . . , λj−1,λj+1, . . . ,λn)) ≤ o1(k(α1, . . . ,αi−1,λi+1, . . . , λj−1,λj+1,

. . . ,λn)(((Cε)
p−es+1

)ε∈Λ)/k(α1, . . . ,αi−1, λi+1, . . . ,λj−1,λj+1, . . . ,λn)) ≤ es−1, contradiction. We deduce that
{α1, . . . ,αi−1,λi+1, . . . ,λn} is r-independent in L/k. So there exists ε ∈Λ such that {α1, . . . ,αi−1,λi+1, . . . ,λn,Cε

p−es }
is an r-basis of L/k. Let λi = Cε

p−es . As Li−1 ⊆ L, then es = oi(Li−1/k) ≤ oi(L/k) ≤ o1(L/k(α1, . . . ,
αi−1)) ≤ es, and consequently Li−1 = L = k(α1, . . . , αi−1,λi , . . . ,λn) ' k(α1, . . . ,αi−1)⊗k k(λi)⊗k . . .k k(λn),
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since oj(L/k) = oj(Li−1/k) for every j ∈ {1, . . . ,n}. Whence by induction, there exist λ2, . . . ,λn such that
L1 ' k(α1)⊗k k(λ2)⊗k . . .⊗k k(λn). Since the first s exponents of kp

−es ∩K over k are ≥ es and the other
exponents do not exceed those of K/k, it follows that kp

−es ∩K ' k(α1
pe1−es )⊗k k(λ2)⊗k . . .⊗k k(λn), and

hence K/k is s-quasi-modular.

The previous theorem can be rephrased easily into the following property:

Theorem 2.8. The statements below are equivalent.

1. K/k is s-quasi-modular.

2. For every canonically ordered r-basis {α1, . . . ,αn} of K/k, for all 1 < j ≤ n,

αj
pej ∈ k ∩Kp

εj
(α1

pej , . . . ,αj
pej−1

),whereεj = ej ifs ≤ j andεj = es if j ≤ s.

3. There exists a canonically ordered r-basis {α1, . . . ,αn} of K/k, for all 1 < j ≤ n,

αj
pej ∈ k ∩Kp

εj
(α1

pej , . . . ,αj
pej−1

),whereεj = ej ifs ≤ j andεj = es if j ≤ s.

2.1 Main Result (s-quasi-modular closure Theorem)

Proof. (Proof of Main theorem) By construction the es-coefficients relative to {α1, . . . ,αs−1,α
1
s , . . . ,α

1
m1
,

. . . , α
j
mj−1+1, . . . ,α

j
mj
} (namely mj = nj ) belong to Sj(K/k), hence Sj(K/k) is s-quasi modular. If L is an

extension of K such that L is s-quasi-modular over k, By application repeat from Lemma 2.2, we
immediately verify that the Si(K/k) are included in L.

As an immediate consequence, we have:

Theorem 2.9 (s-quasi-modular closure Theorem). There exists an unique minimal field F, F ⊇ K ,
such that:

1. F/k is s-quasi-modular.

2. oi(K/k) = oi(F/k) for each i ∈ {1, . . . , s}.

3. F/k is finite.

Proof. By construction, Sj(K/k) satisfies all the conditions of the above Proposition.

Definition 2.10. The unique minimal extension of K which is s-quasi-modular over k will be called
the s-quasi modular closure of K/k.

It is clear that if Fs designates the s-quasi-modular closure of K/k, we obtain a tower of fields
F1 ⊇ . . . ⊇ Fn with F1 is the modular closure of K/k.

We now construct K/k such that the unique minimal extension of K which is s-quasi-modular over
k is not elementary over k, i.e, the s-quasi-modular closure of K/k does not coincide with the modular
closure of K/k.

Example 2.11. Let k0 be a perfect field of characteristic p , 0 and let x,y,z, t1, t2, t3 be algebraically
independent over k0. Let k = k0(x,y,z, t1, t2, t3) andK = k(m1,m2,m3), wherem1 = xp

−4
,m2 = t1p

−1
xp
−4

+
yp
−3

and m3 = Zp
−2
xp
−3

+ t2p
−1
Zp

−2
+ t3p−1.
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Clearly (m1,m2,m3) is a canonically ordered r-basis ofK/k such that o1(K/k) = o(m1/k) = 4, o2(K/k) =
o(m2/k(m1)) = 3 and o3(K/k) = o(m3/k(m1,m2)) = 2. We also check that

m3
p2

= Zm1
p3

+ t2
pZ + t3

p

(m2
p)p

2
= t1

p2
(m1

p)p
2

+ y,

so, by construction, we have S1(K/k) = k(m1,m2,m3, t1, y
p−2
,Zp

−2
, t2

p−1
Zp

−2
+ t3p−1). As t1, yp

−2 ∈ K
(namely yp

−2
= m2

p − t1m1
p), then K = k(m1,m2,β,γ), where β = Zp

−2
and γ = t2p

−1
Zp

−2
+ t3p−1. Sim-

ilarly we have (m1,m2,β,γ) is an r-basis of S1(K/k) and (4,3,2,1) is the list of exponents of S1(K/k).
As γp = t2β

p + t3, βp
2
, so S2(K/k) = k(m1,m2,β, t2

p−1
, t3

p−1
). Using the structure equations again, we

get S2(K/k) = S3(K/k) and therefore S2(K/k) is the s-quasi modular closure of K/k, but S2(K/k) is not
modular. In effect, it is clear that the system (1,m1

p3
) is linearly independent over k, so in particular it

is linearly independent over k∩S2(K/k)p
3
. We extend this system to a linear basis B of S2(K/k)p

3
over

k∩S2(K/k)p
3
. If S2(K)/k is modular, S2(K)p

3
and k are k∩S2(K)p

3
-linearly disjoint, and consequently

B is also a linear basis of k(S2(K)p
3
) over S2(K)p

3
. Since m2

p3
= t1

p2
m1

p3
+ y with t1p

2
, y belong to k

and m2
p3

is written uniquely as a sum of elements of B, then by identification we will have t1p
2
, y ∈

k ∩ S2(K)p
3
, and thus t1p

−1
, yp

−3 ∈ S2(K). It follows that L = k(Xp
−2
,Y p

−2
,Zp

−2
, t1

p−1
, t2

p−1
, t3

p−1
) ⊆ S2(K),

as a result 6 = di(L/k) ≤ di(S2(K)/k) = 5, it’s a contradiction, and therefore S2(K)/k is not modular.
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