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0. Introduction

All rings considered in this article are commutative with identity. Recall from [7] that, an ideal I of
R is said radically of finite type if VI = v/ for some finitely generated subideal J of I. A geometric
interpretation of this notion is the fact that I is radically of finite type if and only if Spec(R)\ V(I) is
a quasi-compact open subset of Spec(R) with respect to the Zariski topology. If I is radically of finite
type, the arithmetical rank of I is defined as the minimum number r of elements ay,...,a, € R such

that
V(aq,...,a,) = VI.

We denote it by ara(I). If I is not radically of finite type we put ara(I) = co. Since the zero ideal is
generated by the empty set, by convention ara(I) = 0 if and only if VI = \/@ Recall that, a com-
mutative ring R has Noetherian spectrum if Spec(R) is a Noetherian topological space with respect
to the Zariski topology. In [7]], the author has proven that R has Noetherian spectrum if and only if
every ideal of R is radically of finite type if and only if every prime ideal is radically of finite type.
A special case of commutative rings with Noetherian spectrum are radically principal rings that is
commutative rings such that for every ideal I, ara(I) < 1, for more details see [1]].

Let A, B, C be commutative rings, and let f : A — C, g : B — C be ring morphisms. Then there exist
a commutative ring T and two morphisms of rings ¢': T — Aand f': T — Bsuchthat gof'=fog’
with the following property: given any ring R and any two ring morphisms h: R > Aand [ : R — B
such that f o h = g o, there exists a unique morphism s: R — T such that h=g¢’osand [ = f’os.
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T is called the fiber product of A and B over C, denoted A x¢ B. It is unique up to isomorphism.
A simple description of A x¢ B as a subring of the direct product A x B is given by A x¢c B = {(a,b) €
AxB| f(a) = g(b)}). Let C' = f(A)ng(B), A’ = f71(C’), B = g7'(C’). Then A’,B’,C’ are subrings
of A, B, C respectively and there is a canonical isomorphism between A xc B and A" x¢ B’, for more
details see [5]]. As a particular case, if f : A — B is a morphism of rings and J is an ideal of B, the
amalgamation of A with B along J with respect to f denoted A >/ J, is the fiber product A Xz B. Itis

easy to see that A/ ] ={(a,f(a)+j)|acA,je]).
In this paper, we study the arithmetical rank of prime ideals of the fiber product, in particular, we
give a characterization for the fiber product to have Noetherian spectrum.

1 Prime ideals in the fiber product

Let f:A—C,g:B—C,andset C'= f(A)ng(B), A’= f~(C’), B’ =g~ '(C’). Then AxcB=A"x¢ B
If f and g are surjective then A’= A, B’= B and C’ = C. By T we mean the fiber product of A and B
along C thatis T = A x¢ B. For P € Spec(A’) denote P = {(a,b) € T|a € P}, also for Q € Spec(B’) denote
Q={(a,b) € T|beQ}. Finally, denote Iy = {(a,0) |a € Kerf} and I, = {(0, ) |b € Kerg}.

Remark 1.1. 1. Itis clear that I and I, are ideals of T and I;I, = 0.

2. If a € A’ then there exists b € B’ such that (a,b) e T.

3. If b € B’ then there exists a € A’ such that (a,b) € T.

In the following result we determine all prime ideals of the fiber product.
Proposition 1.2. With the above notations we have.

1. Pand Q are prime ideals of T, where P € Spec(A’) and Q € Spec(B’).

2. Spec(T) = {P |P € Spec(A’)} U {Q |Q € Spec(B’)}.

Proof. 1. Pis clearly an ideal of T. Let (a,b),(a’,b’) € T with (a,b)(a, b') e P, then (aa’,bb’) € ﬁLso
aa’ € P. Since P € Spec(A’), we have a € P or a’ € P, so that (a,b) € P or (a’,b’) € P. Hence P is
prime ideal of T. By a same argument Q is a prime ideal of T.

2. Let ] be a prime ideal of T. Note that I¢I, = {(0,0)} CJ. Since ] is a prime ideal of T, we have
If CJor Ig cJ.
First case: If [, C]J. Set P = {a € A" |(a,b) € ] for some b € B’}. P is clearly an ideal of A’. Let
aa’ € Pwith a,a’ € A’, then (aa’,c) € ] for some c € B". We have (a,b),(a’,b’) € T for some b,b’ € B’.
Since f(a)=g(b) and f(a’) = g(b") and f(aa’) = g(c), we have

g(bb’—c) = g(bb")—g(c)=g(b)g(b’) - glc) = f(a)f (a’) - g(c)
= f(aa’)-g(c)=0.

So (0,bb” —c) € I, C ]. Therefore, (aa’,bb’) = (aa’,c) +(0,bb" —c) € J. Thus (a,b)(a’,b’) € ]. Since
J is a prime ideal of T, we have (a,b) € ] or (a’,b") € J, so that a € P or a’ € P. It follows that
P is a prime ideal of A’. Next, we show that | = P. It is clear that ] C P because if (a,b) € J,
then a € P, so (a,b) € P. Let (a,b) € P, that is a € P. Then (a,b’) € ] for some b’ € B". Now,
(a,b)=(a,b")+(0,b-b’) and (0,b - b’) € I, so that (a,b) € ]. It follows that P=].
Second case : Iy C Q. Consider the ideal Q ={b € B"|(a,b) € ] for some a € A’}. As in the previous
case and by the same argument, Q is a prime ideal of B’ and Q =].

O
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2 Arithmetical rank in the fiber product

Definition 2.1. Let R be a commutative ring and I be an ideal of R.
1. Theideal I is radically finite it there exists a finitely generated subideal J of I such that VI = +/].

2. If I is radically of finite type the arithmetical rank of I is defined as the minimum number r of
elements ay,...,a, € R such that \/(ay,...,a,) = VI. We denote it by ara(I).

Remark 2.2. 1. Every finitely generated ideal is radically finite.

2. Let R=Z[Xy, k € N)/] where ] = (X;Xy, i,k € N)is the ideal generated by all monomials X;Xj.
Let I = (2,x;,k € IN) the ideal generated by 2 and all x; = Xj. Then I is not finitely generated
but radically finite since VI = /(2). Moreover, ara(I) = 1.

Theorem 2.3. 1. If P is a prime ideal of A’ then ara(P) < ara(P) + ara(Kerg).
2. If Q is a prime ideal of B’ then ara(Q) < ara(Q) +ara(Kerf).

Proof. 1. If one of the ideals P or Kerg is not radically finite then by definition ara(P)+ara(Kerg) =
oo and in this case the inequality holds.
Assume that ara(P) = n € N and ara(Kerg) =m € N . Let py,...,p, € P, by,...,b,, € Kerg such

that P = +/(p1,...,p,) and Kerg = /(by,...,b,,;). For each py € P C A’, there exists g € B’ such

that f(py) = g(qx), that is (px, i) € T. We show that P = /((0,b1),..., (0, by), (p1, q1)s - (P 40)).
First, it is easy to see that

V(0,51 (0,b,), (1, 41) - (P dn) S VP =P

n
Let z = (a,b) € P, so that a € P. Then a" = Zakpk forsome N e Nand o, € A”. For1 <k <mn,
k=1
let B € B" such that f(ay) = g(Bx) thatis (ay, fx) € T. Then

2N =@, M) = (06N =) Brai)+ ) (aw B (P de):
k=1 k=1

Note that

n

g =) i) = g(bN>—Z (Br)2(x)
k=1

n

Zf ax)f (pk)
= f(ﬂN—ZakPk)=0
=1

That is bN - Y !_, Brax € Kerg C v/Kerg. There exists | € N such that (5N =Y 7_ Brgr)' = X7, ¢;b;
with ¢; € B”. For each ¢;, fix A; € A’ such that (A;,¢;) € T. Then

m

(0,0 =) Beae)) = (0,6N =) prar)) =) (Ai,ci)(0,by)
k=1 k=1

i=1
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It follows that (0, bN — Y i1 Prax) € \/(O,bl),...,(O, b,,), therefore

(0,0 =) i) € VO.b1), (0.5, (L) (P ).
k=1

n

Since Z(ak, Bi) Pk ax) € V(0,51), -, (0, byn), (P1,91)s - -» (P G), it follows that
k=1

2N e V((0,b1),.,(0,b,), (P1,91)s-- - (Prr 4))-

Thus

ze \/((O, bl),...,(O, bm)f (Pl,%);.--,(Pn,qn))-
Consequenﬂ}’; P= \/((Or by )seees (0,b,), (pll ql)f' ¥ (pnl QH))

2. By the same argument.
O

Remark 2.4. If Kerg is nilpotent, then ara(P) < ara(P). Similarly, ara(Q) < ara(Q) if Kerf is nilpotent.

As a consequence, we have the following corollary which is a characterization for the fiber product
to have Noetherian spectrum.

Corollary 2.5. A x¢ B has Noetherian spectrum if and only if so are A" and B’.

Proof. Assume that T has Noetherian spectrum. Consider the rings morphism ¢ : T — A’ defined by

(a,b) — a, we have Kery = Ig. It is clear, from the definition, that i is a surjective map .Therefore,

T T
Kerd == ’. Since T has Noetherian spectrum, so is A’. Considering the rings morphism T — B’

er
8

defined by (a,b) > b, its kernel is the ideal I;. It follows that B’ has Noetherian spectrum by the fact

T
that — = B’.
T

Conversely, assume that A" and B’ are rings with Noetherian spectrum. The ring T has Noetherian
spectrum if every prime ideal of T is radically finite. Let ] be a prime ideal of T, then J = P for some
P e Spec(A’) or ] = Q for some Q € Spec(B’). Since A’ and B’ have Noetherian spectrum. In the first
case by the previous theorem we have ara(J) < ara(P) + ara(Kerg), so ara(J) is finite since ara(P) and
ara(Kerg) are finite, and in the second case, we have ara(J) < ara(Q) +ara(Kerf) is finite. Therefore T
is a ring with Noetherian spectrum. O]

Recall from [T}, that a commutative ring R is radically principal if for every ideal I of R, VI = /]
for some principal ideal | of R if and only if for every prime ideal P of R, P = /] for some principal
subideal | of P.

Corollary 2.6. 1. If T is a radically principal ring then A" and B’ are radically principal rings.
2. If A’ and B’ are radically principal rings, then for every | € Spec(T),

ara(J) <1+ max(ara(Kerf),ara(Kerg)) < 2.

T T
Proof. 1. This follows from [[I, Proposition 2.6] and the fact that T = A’ and I = B
g f
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2. If A’ and B’ are radically principal rings then ara(P) < 1 and ara(Q) < 1, where P € Spec(A’) and
Q € Spec(B’). Thus, for every | € Spec(T), we have ara(J) < 1+ara(Kerf) or ara(J) < 1+ara(Kerg).
Therefore, ara(J) < 1+ max(ara(Kerf),ara(Kerg)) < 2.

O

Corollary 2.7. If A’ and B’ are radically principal rings and Ker f and Kerg are two nilpotent ideals then
T is a radically principal ring.

Proof. If Ker f and Kerg are two nilpotent ideals.Then /Ker f = V0 and vKerg = V0, that is ara(Kerf) =
0 and ara(Kerg) = 0. By the previous corollary it follows that for every J € Spec(T) we have ara(J) < 1.
Therefore T is a radically principal ring. O

Theorem 2.8. Let f: A — B be a ring homomorphism and | be an ideal of B. Then
1. If Avf | is a radically principal ring then A and f(A) + ] are radically principal rings.

2. Let J and f~(J) be two nilpotent ideals. If A and f(A)+] are radically principal rings then Av<f J is
a radically principal rings.

Proof. In fact, A »</ ] is the fiber product A Xz B, where 7 : B — % is the canonical projection and
f=mof:
A»«f];:Ax?B&A

b

B TT

— A A — —
we have C’ = F{A) N re(B) = L. ])” N ? _ K ])” and A’ = F1(C) = I
Clearly Kerr = J and Kerf = f~!(J). We show that A=A’ and B’ = f(A) +] .
By definition A’ is a subring of A.
Now, let x € A, then f(x) € f(A)+], so x € A. It follows that A = A”.

B =n}C) = n‘l(W) =f(A)+].

fA)+]
]

)= f(A)+])

1. If A>/ J = T is a radically principal ring. By Corollar we have A=A"and f(A)+] =B’ are
radically principal rings.

2. If A= A’ and f(A)+] = B’ are radically principal rings, since ] = Kerr and f~!(J) = Kerf are
two nilpotent ideals, then by Corollary Av»</ J =T is a radically principal ring.

O]

Theorem 2.9. Let f: A — B be a ring homomorphism and | be an ideal of B. Then A v/ ] has Noetherian
spectrum if and only if A and f(A)+] have Noetherian spectrum .

Proof. The theorem follows directly from Corollarywhere A=A"and f(A)+] =B and A | =
T. O
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3 Arithmetical rank in trivial ring extension

Let R be a commutative ring and M be an R module. The trivial ring extension of R by M is the ring
R o« M whose underline group is R x M and multiplication given by (a,m)(b, n) = (ab,an + bm).

Lemma 3.1. Let R be a commutative ring and M be an R-module. Let
(a;,my),...,(a,,m,) € Roc M. Then

1. \/((allml)f-“l(ar; mr)) = \/((al,O),...,(ar,O)).

2. \/((al,ml),...,(ar,m,)) = \/(al,...,ar) o M.

Proof. 1. For1 <k <r,wehave (ay, my) = (ax, 0)+(0, my). Since (0, m;)* = 0, (0, my) € \/((al,O),..., (a,,0)),
therefore
(ax, my) € \/((al,O),...,(a,,O)). Thus

\/((alfml)i ar' C\/ 611, ’ ar,O))

Conversely, for 1 <k <, (ay,0) = (ag, my)—(0, my), since (0, m;)? = 0, we have (0, m;) € \/((al,ml),..., (a,,m,)).
Therefore (ay, 0) = (ay, my) — (0,my) € \/((al,ml), ,(a,,m,)). Tt follows that

V(ay,my),....(a,,m,)) = y/((a1,0),...,(a,, 0)).

r r

2. Let(a,m) € \/((a1,m),..., (a,, m,)) = y/((a1,0),...,(a,,0)). Then (a,m)N = Z(ak, m;)(ag,0) = ) (agay,axmy)
k=1 k=1
.
for some N € N and (ay, m;) € R oc M. It follows that alN = Zakak, sothata e +/(ay,...,a,). Thus

k=1

(a,m) € \/(ay,...,a,) <« M. Conversely, let (a,m) € \/(ay,...,a,) cc M. We see that a € \/(ay,...,a,),
r

soalN = Zakak for some N € IN and «a; € R. Now, write
k=1
.
(a,m)N = @V, NaV"1m) = Z(ak,O)(ak,O) +(0,NaN~"1m).
k=1

Since (0, NaN~1m)? = 0, it follows that (0, Na¥~1m) ¢ \/((al,O),...,(ar, ). Thus (a,m)N € \/ (a1,0),...,(a,,0)).
Therefore (a,m) € \/((al,O),...,(ar,O)).

O

Theorem 3.2. Let R be a commutative ring and M be an R-module. Let | be an ideal of R oc M. Then
J is radically finite if and only if so is ]y, where |y = {a € R |(a,m) € ] for some m € M}. In this case
ara(]) = ara(Jo).

Proof. Assume that ] is radically finite and set r = ara(J). From the definition, we have

\/_ \/ allml arlmr)

for some (ay, my) € J. By the previous Lemma, we have V] = \/(al,O),..., (a,,0) = \/(al,...,ar) o« M. By
definition, each ay € Jy, so +/(ay,...,a,) C VJy. Let a € ], then (a,m) € ] for some m € M. Since (a,m) €
r r

VI, (a,m)N = Z(ak,m,'c)(ak,O) for some N € IN and (ay,m;) € R o« M, it follows that al = Zakﬂk,
k=1
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thus a € +/(ay,...,a,). As a consequence \Jy = +/(ay,...,a,) and ], is radically finite. In particular

ara(Jy) <r =ara(J).

Assume that ] is radically finite and set s = ara(J,). From the definition V], = +/(ay,...,a,) for
some a; € R. For each ay € ], there exists m; € M such that (ay,my) € J. By the previous Lemma,
we have \/(al,ml),...,(as, mg) = \Jo < M. Clearly, \/(al,ml),...,(as, m) C \JJ. If (a,m) € /] then it is
easy to see that aV € J, for some N € IN, so that (a,m) € \/Jy «« M, therefore vJ C VJy «« M. Thus
Vi=VlyxcM = \/(al,ml),...,(as, my). It follows that J is radically finite and ara(J) < s = ara(Jy). O

Corollary 3.3. Let R be a commutative ring and M be an R—module .
1. Roc M has Noetherian spectrum if and only if R has Noetherian spectrum.
2. Roc M is a radically principal ring if and only if R is a radically principal ring.

Proof. 1. If R o« M has Noetherian spectrum and I is an ideal of R, then the ideal ] = o M is
radically finite, so I is radically finite since J; = I. If R has Noetherian spectrum and ] is an
ideal of R «c M then ] is radically finite since ] is radically finite.

2. If R M is radically principal then so is R = %. If R is radically principal and ] is any ideal
of Roc M then ara(J) = ara(Jy) < 1, therefore ] is radically principal.

O]
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