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0. Introduction

All rings considered in this article are commutative with identity. Recall from [7] that, an ideal I of
R is said radically of finite type if

√
I =
√
J for some finitely generated subideal J of I . A geometric

interpretation of this notion is the fact that I is radically of finite type if and only if Spec(R) \V (I) is
a quasi-compact open subset of Spec(R) with respect to the Zariski topology. If I is radically of finite
type, the arithmetical rank of I is defined as the minimum number r of elements a1, . . . , ar ∈ R such
that √

(a1, . . . , ar ) =
√
I.

We denote it by ara(I). If I is not radically of finite type we put ara(I) = ∞. Since the zero ideal is
generated by the empty set, by convention ara(I) = 0 if and only if

√
I =

√
(0). Recall that, a com-

mutative ring R has Noetherian spectrum if Spec(R) is a Noetherian topological space with respect
to the Zariski topology. In [7], the author has proven that R has Noetherian spectrum if and only if
every ideal of R is radically of finite type if and only if every prime ideal is radically of finite type.
A special case of commutative rings with Noetherian spectrum are radically principal rings that is
commutative rings such that for every ideal I , ara(I) ≤ 1, for more details see [1].

Let A,B,C be commutative rings, and let f : A→ C, g : B→ C be ring morphisms. Then there exist
a commutative ring T and two morphisms of rings g ′ : T → A and f ′ : T → B such that g ◦ f ′ = f ◦ g ′
with the following property: given any ring R and any two ring morphisms h : R→ A and l : R→ B
such that f ◦ h = g ◦ l, there exists a unique morphism s : R→ T such that h = g ′ ◦ s and l = f ′ ◦ s.

R
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��
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T is called the fiber product of A and B over C, denoted A ×C B. It is unique up to isomorphism.
A simple description of A ×C B as a subring of the direct product A ×B is given by A ×C B = {(a,b) ∈
A × B | f (a) = g(b)}. Let C′ = f (A) ∩ g(B) , A′ = f −1(C′), B′ = g−1(C′). Then A′ ,B′ ,C′ are subrings
of A,B,C respectively and there is a canonical isomorphism between A ×C B and A′ ×C′ B′, for more
details see [5]. As a particular case, if f : A→ B is a morphism of rings and J is an ideal of B, the
amalgamation of A with B along J with respect to f denoted A ./f J , is the fiber product A× B

J
B. It is

easy to see that A ./f J = {(a,f (a) + j) | a ∈ A,j ∈ J}.
In this paper, we study the arithmetical rank of prime ideals of the fiber product, in particular, we

give a characterization for the fiber product to have Noetherian spectrum.

1 Prime ideals in the fiber product

Let f : A→ C, g : B→ C, and set C′ = f (A)∩ g(B), A′ = f −1(C′), B′ = g−1(C′). Then A×C B = A′ ×C′ B′.
If f and g are surjective then A′ = A, B′ = B and C′ = C. By T we mean the fiber product of A and B
along C that is T = A×C B. For P ∈ Spec(A′) denote P = {(a,b) ∈ T |a ∈ P }, also for Q ∈ Spec(B′) denote
Q = {(a,b) ∈ T | b ∈Q}. Finally, denote If = {(a,0) |a ∈ Kerf } and Ig = {(0,b) |b ∈ Kerg}.

Remark 1.1. 1. It is clear that If and Ig are ideals of T and If Ig = 0.

2. If a ∈ A′ then there exists b ∈ B′ such that (a,b) ∈ T .

3. If b ∈ B′ then there exists a ∈ A′ such that (a,b) ∈ T .

In the following result we determine all prime ideals of the fiber product.

Proposition 1.2. With the above notations we have.

1. P and Q are prime ideals of T , where P ∈ Spec(A′) and Q ∈ Spec(B′).

2. Spec(T ) = {P |P ∈ Spec(A′)} ∪ {Q |Q ∈ Spec(B′)}.

Proof. 1. P is clearly an ideal of T . Let (a,b), (a′ ,b′) ∈ T with (a,b)(a′ ,b′) ∈ P , then (aa′ ,bb′) ∈ P , so
aa′ ∈ P . Since P ∈ Spec(A′), we have a ∈ P or a′ ∈ P , so that (a,b) ∈ P or (a′ ,b′) ∈ P . Hence P is
prime ideal of T . By a same argument Q is a prime ideal of T .

2. Let J be a prime ideal of T . Note that If Ig = {(0,0)} ⊆ J . Since J is a prime ideal of T , we have
If ⊆ J or Ig ⊆ J .
First case: If Ig ⊆ J . Set P = {a ∈ A′ |(a,b) ∈ J for some b ∈ B′}. P is clearly an ideal of A′. Let
aa′ ∈ P with a,a′ ∈ A′, then (aa′ , c) ∈ J for some c ∈ B′. We have (a,b), (a′ ,b′) ∈ T for some b,b′ ∈ B′.
Since f (a) = g(b) and f (a′) = g(b′) and f (aa′) = g(c), we have

g(bb′ − c) = g(bb′)− g(c) = g(b)g(b′)− g(c) = f (a)f (a′)− g(c)

= f (aa′)− g(c) = 0.

So (0,bb′ − c) ∈ Ig ⊆ J . Therefore, (aa′ ,bb′) = (aa′ , c) + (0,bb′ − c) ∈ J . Thus (a,b)(a′ ,b′) ∈ J . Since
J is a prime ideal of T , we have (a,b) ∈ J or (a′ ,b′) ∈ J , so that a ∈ P or a′ ∈ P . It follows that
P is a prime ideal of A′. Next, we show that J = P . It is clear that J ⊆ P because if (a,b) ∈ J ,
then a ∈ P , so (a,b) ∈ P . Let (a,b) ∈ P , that is a ∈ P . Then (a,b′) ∈ J for some b′ ∈ B′. Now,
(a,b) = (a,b′) + (0,b − b′) and (0,b − b′) ∈ Ig , so that (a,b) ∈ J . It follows that P = J .
Second case : If ⊆Q. Consider the ideal Q = {b ∈ B′ |(a,b) ∈ J for some a ∈ A′}. As in the previous
case and by the same argument, Q is a prime ideal of B′ and Q = J .
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2 Arithmetical rank in the fiber product

Definition 2.1. Let R be a commutative ring and I be an ideal of R.

1. The ideal I is radically finite it there exists a finitely generated subideal J of I such that
√
I =
√
J .

2. If I is radically of finite type the arithmetical rank of I is defined as the minimum number r of
elements a1, . . . , ar ∈ R such that

√
(a1, . . . , ar ) =

√
I . We denote it by ara(I).

Remark 2.2. 1. Every finitely generated ideal is radically finite.

2. Let R = Z[Xk , k ∈N]/J where J = (XiXk , i, k ∈N) is the ideal generated by all monomials XiXk .
Let I = (2,xk , k ∈N) the ideal generated by 2 and all xk = Xk . Then I is not finitely generated
but radically finite since

√
I =

√
(2). Moreover, ara(I) = 1.

Theorem 2.3. 1. If P is a prime ideal of A′ then ara(P ) ≤ ara(P ) + ara(Kerg).

2. If Q is a prime ideal of B′ then ara(Q) ≤ ara(Q) + ara(Kerf ).

Proof. 1. If one of the ideals P or Kerg is not radically finite then by definition ara(P )+ara(Kerg) =
∞ and in this case the inequality holds.
Assume that ara(P ) = n ∈ N and ara(Kerg) = m ∈ N . Let p1, . . . ,pn ∈ P , b1, . . . , bm ∈ Kerg such
that P =

√
(p1, . . . ,pn) and

√
Kerg =

√
(b1, . . . , bm). For each pk ∈ P ⊆ A′, there exists qk ∈ B′ such

that f (pk) = g(qk), that is (pk ,qk) ∈ T . We show that P =
√

((0,b1), . . . , (0,bm), (p1,q1), . . . , (pn,qn)).
First, it is easy to see that√

((0,b1), . . . , (0,bm), (p1,q1), . . . , (pn,qn)) ⊆
√
P = P .

Let z = (a,b) ∈ P , so that a ∈ P . Then aN =
n∑
k=1

αkpk for some N ∈N and αk ∈ A′. For 1 ≤ k ≤ n,

let βk ∈ B′ such that f (αk) = g(βk) that is (αk ,βk) ∈ T . Then

zN = (aN ,bN ) = (0,bN −
n∑
k=1

βkqk) +
n∑
k=1

(αk ,βk)(pk ,qk).

Note that

g(bN −
n∑
k=1

βkqk) = g(bN )−
n∑
k=1

g(βk)g(qk)

= f (aN )−
n∑
k=1

f (αk)f (pk)

= f (aN −
n∑
k=1

αkpk) = 0.

That is bN −
∑n
k=1βkqk ∈ Kerg ⊆

√
Kerg. There exists l ∈N such that (bN −

∑n
k=1βkqk)

l =
∑m
i=1 cibi

with ci ∈ B′. For each ci , fix λi ∈ A′ such that (λi , ci) ∈ T . Then

(0, (bN −
n∑
k=1

βkqk))
l = (0, (bN −

n∑
k=1

βkqk)
l) =

m∑
i=1

(λi , ci)(0,bi).
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It follows that (0,bN −
∑n
k=1βkqk) ∈

√
(0,b1), . . . , (0,bm), therefore

(0,bN −
n∑
k=1

βkqk) ∈
√

(0,b1), . . . , (0,bm), (p1,q1), . . . , (pn,qn).

Since
n∑
k=1

(αk ,βk)(pk ,qk) ∈
√

(0,b1), . . . , (0,bm), (p1,q1), . . . , (pn,qn), it follows that

zN ∈
√

((0,b1), . . . , (0,bm), (p1,q1), . . . , (pn,qn)).

Thus
z ∈

√
((0,b1), . . . , (0,bm), (p1,q1), . . . , (pn,qn)).

Consequently, P =
√

((0,b1), . . . , (0,bm), (p1,q1), . . . , (pn,qn)).

2. By the same argument.

Remark 2.4. If Kerg is nilpotent, then ara(P ) ≤ ara(P ). Similarly, ara(Q) ≤ ara(Q) if Kerf is nilpotent.

As a consequence, we have the following corollary which is a characterization for the fiber product
to have Noetherian spectrum.

Corollary 2.5. A×C B has Noetherian spectrum if and only if so are A′ and B′.

Proof. Assume that T has Noetherian spectrum. Consider the rings morphism ψ : T → A′ defined by
(a,b) 7→ a, we have Kerψ = Ig . It is clear, from the definition, that ψ is a surjective map .Therefore,
T

Kerψ
=
T
Ig
� A′. Since T has Noetherian spectrum, so is A′. Considering the rings morphism T → B′

defined by (a,b) 7→ b, its kernel is the ideal If . It follows that B′ has Noetherian spectrum by the fact

that
T
If
� B′.

Conversely, assume that A′ and B′ are rings with Noetherian spectrum. The ring T has Noetherian
spectrum if every prime ideal of T is radically finite. Let J be a prime ideal of T , then J = P for some
P ∈ Spec(A′) or J = Q for some Q ∈ Spec(B′). Since A′ and B′ have Noetherian spectrum. In the first
case by the previous theorem we have ara(J) ≤ ara(P ) + ara(Kerg), so ara(J) is finite since ara(P ) and
ara(Kerg) are finite, and in the second case, we have ara(J) ≤ ara(Q) + ara(Kerf ) is finite. Therefore T
is a ring with Noetherian spectrum.

Recall from [1], that a commutative ring R is radically principal if for every ideal I of R,
√
I =
√
J

for some principal ideal J of R if and only if for every prime ideal P of R, P =
√
J for some principal

subideal J of P .

Corollary 2.6. 1. If T is a radically principal ring then A′ and B′ are radically principal rings.

2. If A′ and B′ are radically principal rings, then for every J ∈ Spec(T ),

ara(J) ≤ 1 + max(ara(Kerf ),ara(Kerg)) ≤ 2.

Proof. 1. This follows from [1, Proposition 2.6] and the fact that
T
Ig
� A′ and

T
If
� B′.
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2. If A′ and B′ are radically principal rings then ara(P ) ≤ 1 and ara(Q) ≤ 1, where P ∈ Spec(A′) and
Q ∈ Spec(B′). Thus, for every J ∈ Spec(T ), we have ara(J) ≤ 1+ara(Kerf ) or ara(J) ≤ 1+ara(Kerg).
Therefore, ara(J) ≤ 1 + max(ara(Kerf ),ara(Kerg)) ≤ 2.

Corollary 2.7. If A′ and B′ are radically principal rings and Kerf and Kerg are two nilpotent ideals then
T is a radically principal ring.

Proof. If Kerf and Kerg are two nilpotent ideals.Then
√

Kerf =
√

0 and
√

Kerg =
√

0, that is ara(Kerf ) =
0 and ara(Kerg) = 0. By the previous corollary it follows that for every J ∈ Spec(T ) we have ara(J) ≤ 1.
Therefore T is a radically principal ring.

Theorem 2.8. Let f : A→ B be a ring homomorphism and J be an ideal of B. Then

1. If A ./f J is a radically principal ring then A and f (A) + J are radically principal rings.

2. Let J and f −1(J) be two nilpotent ideals. If A and f (A)+ J are radically principal rings then A ./f J is
a radically principal rings.

Proof. In fact, A ./f J is the fiber product A × B
J
B, where π : B → B

J is the canonical projection and

f̂ = π ◦ f :

A ./f J := A× B
J
B

pB

��

pA // A

f̂
��

B π // B
J

we have C′ = f̂ (A)∩π(B) =
f (A) + J

J
∩ B
J

=
f (A) + J

J
and A′ = f̂ −1(C′) = f̂ −1(

f (A) + J
J

) = f −1(f (A) + J)

Clearly Kerπ = J and Kerf̂ = f −1(J). We show that A = A′ and B′ = f (A) + J .
By definition A′ is a subring of A.
Now, let x ∈ A, then f (x) ∈ f (A) + J , so x ∈ A′. It follows that A = A′.

B′ = π−1(C′) = π−1(
f (A) + J

J
) = f (A) + J .

1. If A ./f J = T is a radically principal ring. By Corollary2.6 we have A = A′ and f (A) + J = B′ are
radically principal rings.

2. If A = A′ and f (A) + J = B′ are radically principal rings, since J = Kerπ and f −1(J) = Kerf̂ are
two nilpotent ideals, then by Corollary 2.7, A ./f J = T is a radically principal ring.

Theorem 2.9. Let f : A→ B be a ring homomorphism and J be an ideal of B. Then A ./f J has Noetherian
spectrum if and only if A and f (A) + J have Noetherian spectrum .

Proof. The theorem follows directly from Corollary 2.5 where A = A′ and f (A) + J = B′ and A ./f J =
T .
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3 Arithmetical rank in trivial ring extension

Let R be a commutative ring and M be an R module. The trivial ring extension of R by M is the ring
R ∝M whose underline group is R×M and multiplication given by (a,m)(b,n) = (ab,an+ bm).

Lemma 3.1. Let R be a commutative ring and M be an R-module. Let
(a1,m1), . . . , (ar ,mr ) ∈ R ∝M. Then

1.
√

((a1,m1), . . . , (ar ,mr )) =
√

((a1,0), . . . , (ar ,0)).

2.
√

((a1,m1), . . . , (ar ,mr )) =
√

(a1, . . . , ar ) ∝M.

Proof. 1. For 1 ≤ k ≤ r, we have (ak ,mk) = (ak ,0)+(0,mk). Since (0,mk)2 = 0, (0,mk) ∈
√

((a1,0), . . . , (ar ,0)),
therefore
(ak ,mk) ∈

√
((a1,0), . . . , (ar ,0)). Thus√

((a1,m1), . . . , (ar ,mr )) ⊆
√

((a1,0), . . . , (ar ,0)).

Conversely, for 1 ≤ k ≤ r, (ak ,0) = (ak ,mk)−(0,mk), since (0,mk)2 = 0, we have (0,mk) ∈
√

((a1,m1), . . . , (ar ,mr )).
Therefore (ak ,0) = (ak ,mk)− (0,mk) ∈

√
((a1,m1), . . . , (ar ,mr )). It follows that√

((a1,m1), . . . , (ar ,mr )) =
√

((a1,0), . . . , (ar ,0)).

2. Let (a,m) ∈
√

((a1,m1), . . . , (ar ,mr )) =
√

((a1,0), . . . , (ar ,0)). Then (a,m)N =
r∑
k=1

(αk ,m
′
k)(ak ,0) =

r∑
k=1

(αkak , akm
′
k)

for someN ∈N and (αk ,m′k) ∈ R ∝M. It follows that aN =
r∑
k=1

αkak , so that a ∈
√

(a1, . . . , ar ). Thus

(a,m) ∈
√

(a1, . . . , ar ) ∝M. Conversely, let (a,m) ∈
√

(a1, . . . , ar ) ∝M. We see that a ∈
√

(a1, . . . , ar ),

so aN =
r∑
k=1

αkak for some N ∈N and αk ∈ R. Now, write

(a,m)N = (aN ,NaN−1m) =
r∑
k=1

(αk ,0)(ak ,0) + (0,NaN−1m).

Since (0,NaN−1m)2 = 0, it follows that (0,NaN−1m) ∈
√

((a1,0), . . . , (ar ,0)). Thus (a,m)N ∈
√

((a1,0), . . . , (ar ,0)).
Therefore (a,m) ∈

√
((a1,0), . . . , (ar ,0)).

Theorem 3.2. Let R be a commutative ring and M be an R-module. Let J be an ideal of R ∝ M. Then
J is radically finite if and only if so is J0, where J0 = {a ∈ R |(a,m) ∈ J for some m ∈ M}. In this case
ara(J) = ara(J0).

Proof. Assume that J is radically finite and set r = ara(J). From the definition, we have√
J =

√
(a1,m1), . . . , (ar ,mr )

for some (ak ,mk) ∈ J . By the previous Lemma, we have
√
J =

√
(a1,0), . . . , (ar ,0) =

√
(a1, . . . , ar ) ∝M. By

definition, each ak ∈ J0, so
√

(a1, . . . , ar ) ⊆
√
J0. Let a ∈ J0, then (a,m) ∈ J for some m ∈M. Since (a,m) ∈

√
J , (a,m)N =

r∑
k=1

(αk ,m
′
k)(ak ,0) for some N ∈ N and (αk ,m′k) ∈ R ∝ M, it follows that aN =

r∑
k=1

αkak ,
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thus a ∈
√

(a1, . . . , ar ). As a consequence
√
J0 =

√
(a1, . . . , ar ) and J0 is radically finite. In particular

ara(J0) ≤ r = ara(J).
Assume that J0 is radically finite and set s = ara(J0). From the definition

√
J0 =

√
(a1, . . . , as) for

some ak ∈ R. For each ak ∈ J0, there exists mk ∈ M such that (ak ,mk) ∈ J . By the previous Lemma,
we have

√
(a1,m1), . . . , (as,ms) =

√
J0 ∝ M. Clearly,

√
(a1,m1), . . . , (as,ms) ⊆

√
J . If (a,m) ∈

√
J then it is

easy to see that aN ∈ J0 for some N ∈ N, so that (a,m) ∈
√
J0 ∝ M, therefore

√
J ⊆
√
J0 ∝ M. Thus√

J =
√
J0 ∝M =

√
(a1,m1), . . . , (as,ms). It follows that J is radically finite and ara(J) ≤ s = ara(J0).

Corollary 3.3. Let R be a commutative ring and M be an R−module .

1. R ∝M has Noetherian spectrum if and only if R has Noetherian spectrum.

2. R ∝M is a radically principal ring if and only if R is a radically principal ring.

Proof. 1. If R ∝ M has Noetherian spectrum and I is an ideal of R, then the ideal J = I ∝ M is
radically finite, so I is radically finite since J0 = I . If R has Noetherian spectrum and J is an
ideal of R ∝M then J is radically finite since J0 is radically finite.

2. If R ∝M is radically principal then so is R = R∝M
0∝M . If R is radically principal and J is any ideal

of R ∝M then ara(J) = ara(J0) ≤ 1, therefore J is radically principal.
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