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Abstract. Let G be a group with identity e and R a G-graded commutative ring with 1 , 0. In this paper we introduce the

concept of the graded (m,n)-closed ideals and graded weakly (m,n)-closed ideals. A graded proper ideal I of R is called a

graded (m,n)-closed (resp. graded weakly (m,n)-closed) ideal if whenever am ∈ I (resp. 0 , am ∈ I) for a ∈ h(R), then an ∈ I .

Many results are given, in particular we investigate the graded (weakly) (m,n)-closed ideals in the direct product R1 ×R2

of G-graded rings R1,R2 and in the trivial extension R(+)M of a G-graded ring R by a graded R-module M.
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1 Introduction

We recall some basic properties of graded rings and modules used in the sequel. Let G be a multi-
plicative group with identity e. A ring R is called to be G-graded ring (or graded ring) if there exist
additive subgroups Rg of R indexed by the elements g ∈ G such that R =

⊕
g∈GRg and RgRh ⊆ Rgh for

all g,h ∈ G. If the inclusion is equality, then the ring R is called strongly graded. The elements of Rg

are called homogeneous of degree g and Re is a subring of R and 1 ∈ Re. For x ∈ R, x can be written
uniquely as x =

∑
g∈G xg where xg is the component of x in Rg . Also, we write h(R) = ∪g∈GRg . If r ∈ Rg

is unit, then r−1 ∈ Rg−1 . A G-graded ring R =
⊕

g∈GRg is called a crossed product if Rg contains a

unit for every g ∈ G. Note that a G-crossed product R =
⊕

g∈GRg is a strongly graded ring. Let R be

a G-graded ring and I an ideal of R. Then I is called G-graded ideal if I =
⊕

g∈G(I ∩Rg ) =
⊕

g∈G Ig ,

that is, if x ∈ I and x =
∑

g∈G xg , then xg ∈ I for all g ∈ G. If R =
⊕

g∈GRg and R′ =
⊕

g∈GR′g are two
G-graded rings, then a ring homomorphism f : R→ R′ with f (1R) = 1R′ is called a gr-homomorphism
if f (Rg ) ⊆ R′g for all g ∈ G. Let R =

⊕
g∈GRg be a G-graded ring and I a G-graded ideal of R. Then the

quotient ring R/I is also G-graded ring. Indeed, R/I =
⊕

g∈G(R/I)g where (R/I)g = {x+ I : x ∈ Rg }.
Let R be a G-graded ring and S ⊆ h(R) a multiplicatively closed subset of R. The the ring of

fractions RS is a G-graded ring which is called the gr-ring of fractions. Indeed, RS =
⊕

g∈G(RS )g
where

(RS )g = {r
s

: r ∈ R, s ∈ S and g = (degs)−1(degr)}.
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Consider the ring gr-homomorphism f : R→ RS defined by f (r) = r
1 . For any graded ideal I of R,

the ideal of RS generated by f (I) is denoted by IS . Similar to non-graded case one can prove that

IS = {r
s
∈ RS : r ∈ I, s ∈ S}.

A proper graded ideal I of R is said to be graded prime if whenever a,b ∈ h(R) such that ab ∈ I,
then either a ∈ I or b ∈ I.

A graded R-module is an R-module M such that M =
⊕

g∈GMg where Mg is an additive subgroup
of M and for every g,h ∈ G we have RgMh ⊆Mgh. Since ReMh ⊆Mh we see that Mh is an Re-submodule
of M. The elements of h(M) = ∪g∈GMg are called the homogeneous elements of M. A nonzero
element m ∈ Mg is said to be a homogeneous element of degree g. Every m ∈ M can be uniquely
represented as a sum m =

∑
g∈Gmg with a finitely many nonzero mg ∈ Mg . The nonzero elements

mg in this sum are called the homogeneous components of m. An R-submodule N of M is said to
be a graded submodule if for every n ∈ N all its homogeneous components are also in N , that is,
N =

⊕
g∈G(N ∩Mg ). If I =

⊕
g∈G Ig is a graded ideal of R, then Ig is an Re-module for every g ∈ G.

Let R be a G-graded ring. The graded radical of a graded ideal I , denoted by Gr(I) is the set of all x ∈ R
such that for each g ∈ G there exists ng > 0 with xg

ng ∈ I . Note that, if r is a homogeneous element,
then r ∈Gr(I) if and only if rn ∈ I for some positive integer n. In particular we denote N (R) = Gr{0}.

In this article, we define and study graded (weakly) (m,n)-closed ideals of a graded ring for positive
integers m and n.

A proper graded ideal I of a graded ring R is said to be a graded (m,n)-closed ideal (resp. graded
weakly (m,n)-closed) ideal of R if whenever a ∈ R with am ∈ I (resp. 0 , am ∈ I), then an ∈ I . Besides
other useful results we also investigate graded (weakly) (m,n)-closed ideals in the direct product
(R1 ×R2) of graded rings R1,R2 (Theorems 3.12, 4.10, 4.12) and in the trivial extension (R(+)M) of a
graded ring R by a graded R-module M (Theorems 3.14, 3.16, 4.13).

We assume throughout this article that all rings are commutative with 1 , 0, all R-modules are
unitary. For such a ring R, let Nil(R) be its ideal of nilpotent, U (R) its set of units and h(R) its set
of homogeneous elements. Note that every proper graded ideal is graded (weakly) (m,n)-closed for
m ≤ n, so throughout we also assume that m > n.

2 Generalized purity of modules

3 Graded (m,n)-closed ideals

In this section, we present few properties of graded (m,n)-closed ideals and investigate graded (m,n)-
closed ideals in direct product (R1×R2) of G-graded rings R1,R2 and in the trivial extension (R(+)M)
of G-graded ring R by graded R-module M. For the sake of completeness, we begin with the defini-
tions of (m,n)-closed and graded (m,n)-closed ideals.

Definition 3.1. [4] A proper ideal I of a ring R is said to be (m,n)-closed if whenever am ∈ I for a ∈ R,
then an ∈ I .

Definition 3.2. A proper graded ideal I of a G-graded ring R is said to be graded (m,n)-closed if
whenever am ∈ I for a ∈ h(R), then an ∈ I .

Example 3.3. Consider R = Z[i] and G = Z2. Then R is a G-graded by R0 = Z and R1 = iZ. Let
I = 2R. Then I is not (2,1)-closed ideal of R because (1 + i)2 = 2i ∈ I and (1 + i) < I . Similarly, J = 4R is
not (4,3)-closed ideal since (1 + i)4 = −4 ∈ J , but (1 + i)3 = 2i −2 < J . However it is easy to check that I
and J are graded (2,1)-closed and graded (4,3)-closed ideals of R, respectively.
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Proposition 3.4. Let R be a G-graded ring. If I is a graded (m,n)-closed ideal of R, then Ie is an (m,n)-
closed ideal of Re.

Proof. Let a ∈ Re with am ∈ Ie. We know that Re ⊂ h(R) and Ie ⊂ I . Therefore a ∈ h(R) and am ∈ I . Since
I is a graded (m,n)-closed ideal of R, we conclude that an ∈ I . Thus an ∈ I ∩Re = Ie. Hence Ie is an
(m,n)-closed ideal of Re, as we desired.

Let R be a graded ring and I a graded ideal of R. Then the following lemma says that for every
a ∈ h(R) the quotient (I : a) := {x ∈ R : ax ∈ I} is a graded ideal of R.

Lemma 3.5. Let R be a G-graded ring, I a graded ideal of R and a ∈ h(R). Then (I : a) is graded ideal of R.

Proof. Let r ∈ (I : a) for some r ∈ R, then ra ∈ I . Since R is graded ring,

r =
∑
g∈G

rg where rg ∈ Rg

and therefore ∑
g∈G

rga =

∑
g∈G

rg

a = ra ∈ I

.
As I is a graded ideal, rga ∈ I for all g ∈ G. Hence rg ∈ (I : a) for all g ∈ G. Thus (I : a) is a graded

ideal of R, as we desired.

Recall that an element a in a ring R is called idempotent if a2 = a. The following is one of the main
results of this section.

Theorem 3.6. Let R be a G-graded ring, I a graded (m,n)-closed ideal of R and a ∈ h(R). If a is idempotent
and a < I , then (I : a) is a graded (m,n)-closed ideal of R.

Proof. From the lemma 3.5, (I : a) is a graded ideal of R. Now, suppose that r ∈ h(R) such that
rm ∈ (I : a). Since a is idempotent, we have (ra)m = rmam = rma ∈ I . The fact that a, r ∈ h(R) implies
that there exists g and h in G such that r ∈ Rg and a ∈ Rh. Therefore, ra ∈ RgRh ⊂ Rgh ⊂ h(R) and
(ra)m ∈ I . Since I is a graded (m,n)-closed ideal of R, we conclude that rnan = rna ∈ I . Thus rn ∈ (I : a)
and hence (I : a) is a graded (m,n)-closed ideal of R, as we desired.

The next theorem is a graded analog of (m,n)-closed ideals ([4, Theorem 2.6]).

Theorem 3.7. Let R be a G-graded ring, I a graded (m,2)-closed ideal of R and J a graded ideal of R.

(1) If Jm ⊆ I , then for every g ∈ G, 2Jg2 ⊆ I .

(2) Suppose that 2 ∈U (R). If Jm ⊆ I , then for every g ∈ G, Jg2 ⊆ I .

Proof. (1) Let g ∈ G and xg , yg ∈ Jg . Then xmg , y
m
g , (xg + yg )m ∈ I . Since I is a graded (m,2)-closed ideal

of R, it follows that x2
g , y

2
g , (xg + yg )2 ∈ I . Hence 2xgyg ∈ I and thus 2J2

g ⊂ I , as we desired.
(2) follows directly from (1).

The next theorem is the graded (m,n)-closed analog for well-known localization results about
prime, radical, n-absorbing ([2, Theorem 4.1]) and (m,n)-closed ideals ([4, Theorem 2.8]).
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Theorem 3.8. Let R be a G-graded ring, I a graded (m,n)-closed ideal of R and S ⊆ h(R) a multiplicatively
closed subset of R such that S ∩ I = ∅. Then,

(1) IS is a graded (m,n)-closed ideal of RS .

(2) If n = 2, 2 ∈ S and Jm ⊆ IS for a graded ideal J of RS , then for every g ∈ G, Jg2 ⊆ IS .

Proof. (1) Let (r/s)m ∈ IS for some r/s ∈ h(RS ). Then rm/sm = b/t for some b ∈ I ∩h(R) and t ∈ S. Hence
there exists s′ ∈ S such that s′trm = s′bsm ∈ I , and thus (s′tr)m ∈ I . Since I is a graded (m,n) closed ideal
and s′tr ∈ Rdeg(s′)deg(t)deg(r) ⊆ h(R), we conclude that (s′tr)n ∈ I and thus (r/s)n = s′ntnrn/s′ntnsn ∈ IS .
Hence IS is a graded (m,n)-closed ideal of RS .

(2) Suppose that Jm ⊆ IS for some graded ideal J of RS . Since 2 ∈ S, then 2 ∈ U (RS ) and thus, by
Theorem 3.7(2), for every g ∈ G, Jg2 ⊆ IS .

Corollary 3.9. Let R be a G-graded ring and I a proper graded ideal of R. Then I is a graded (m,n)-closed
ideal of R if and only if IS(P ) is a graded (m,n)-closed ideal of RS(P ) where S(P ) = h(R)∩ R \ P for every
prime (or maximal) ideal of R containing I .

Proof. (⇒) This follows from Theorem 3.8(1). (⇐) Let P be a prime ideal of R with I ⊆ P and denote
h(R)∩R \ P , a multiplicatively closed subset of R, by S. Let us suppose that xm ∈ I for some x ∈ h(R)
and consider J = (I : xn) = {r ∈ R : rxn ∈ I}. Then (x1 )m ∈ IS , therefore (x1 )n ∈ IS , since IS is graded
(m,n)-closed ideal of RS . Thus sxn ∈ I for some s ∈ S and henceforth J * P . Also, note that J * Q
for every prime ideal Q of R with I * Q. Hence J = R and consequently xn ∈ I . Thus I is a graded
(m,n)-closed ideal, as we desired.

The next theorem is a graded analog for [4, Theorem 2.10].

Theorem 3.10. Let R and T be two G-graded rings and f : R→ T a homogeneous homomorphism.

(1) If J is a graded (m,n)-closed ideal of T , then f −1(J) is a graded (m,n)-closed ideal of R.

(2) If f (Rg ) = Tg for all g ∈ G, and I is a graded (m,n)-closed ideal of R containing Kerf , then f (I) is a
graded (m,n)-closed ideal of T .

Proof. (1) Firstly, note that f −1(J) is a graded ideal of R. Indeed, we know that f −1(J) is an ideal of R.
Now, let x =

∑
g∈G xg ∈ f −1(J) where xg ∈ Rg for all g ∈ G. Then f (x) =

∑
g∈G f (xg ) ∈ J where f (xg ) ∈ Tg

because f is a homogeneous homomorphism. Since J is a graded ideal of T , therefore f (xg ) ∈ J and
hence xg ∈ f −1(J), as asserted. Now, let us suppose that xm ∈ f −1(J) for some x ∈ h(R), then f (x) ∈ h(T ),
as f is homogeneous, and (f (x))m ∈ J . Since J is a graded (m,n)-closed ideal of T , therefore (f (x))n ∈ J .
Thus xn ∈ f −1(J) and hence f −1(J) is a graded (m,n)-closed ideal of R, as we desired.

(2) It is clear that f is surjective and f (I) is a graded ideal of T . Now, let ym ∈ f (I) for some y ∈ h(T ),
then there exists g ∈ G with y ∈ Tg = f (Rg ). So, there exists x ∈ Rg such that ym = (f (x))m ∈ f (I). As
Ker(f ) ⊆ I we have xm ∈ I . Since I is graded (m,n)-closed ideal, therefore xn ∈ I . Thus yn ∈ f (I) and
hence f (I) is a graded (m,n)-closed ideal of T , as we desired.
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Corollary 3.11. The following assertions are equivalent.

(1) Let R ⊆ T be an extension of G-graded rings. If J is a graded (m,n)-closed ideal of T , then R∩ J is a
graded (m,n)-closed ideal of R.

(2) Let I ⊆ J be proper graded ideals of R. Then J/I is a graded (m,n)-closed ideal of R/I if and only if J
is a graded (m,n)-closed ideal of R.

If R1 and R2 are two G-graded rings, then R1 ×R2 is a G-graded ring by (R1 ×R2)g = (R1)g × (R2)g .
Recall that an ideal of R1 × R2 has the form I1 × I2 for ideals I1 of R1 and I2 of R2. The following
theorem determines when an ideal of R1 ×R2 is graded (m,n)-closed.

Theorem 3.12. Let R = R1 ×R2, where R1 and R2 are G-graded rings, and J a proper graded ideal of R.
Then the following statements are equivalent.

(1) J is a graded (m,n)-closed ideal of R.

(2) J = I1 ×R2, R1 × I2 or I1 × I2 for graded (m,n)-closed ideals I1 of R1 and I2 of R2.

Proof. (1) ⇒ (2). Assume that J = I1 × I2 is a graded (m,n)-closed ideal of R. Due to symmetry, it
suffices to prove that if I1 , R1, then I1 is graded (m,n)-closed of R1. For this purpose, assume that
I1 , R1, then for every a ∈ h(R1) with am ∈ I1 we have (a,0)m ∈ J . Since (a,0) ∈ h(R) and J is a graded
(m,n)-closed ideal of R, we have (a,0)n ∈ J . Thus an ∈ I1 and hence I1 is a graded (m,n)-closed ideal of
R1, as we desired.

(2)⇒ (1). Assume that J = I1×I2 for graded (m,n)-closed ideals I1 of R1 and I2 of R2. Let (a,b) ∈ h(R)
such that (a,b)m = (am,bm) ∈ J . Then am ∈ I1 and bm ∈ I2. Since a ∈ h(R1) and b ∈ h(R2), therefore
an ∈ I1 and bn ∈ I2. Thus (a,b)n ∈ J and hence J is a graded (m,n)-closed ideal of R. The proofs of
other two cases are similar.

Remark 3.13. The above Theorem 3.12 is also a consequence of the Theorem 3.10. Indeed, (1)⇒ (2) is
follows by Theorem 3.10(1) and (2)⇒ (1) follows by Theorem 3.10(2).

Let R be a ring and M be an R-module. Then the ring R(+)M with coordinate-wise addition and
multiplication given by (r1,m1)(r2,m2) = (r1r2, r1m2 + r2m1) is a ring with unity (1,0) (even R-algebra)
called idealization of M or the trivial extension of R by M. Note that R naturally embeds into R(+)M
by r 7→ (r,0). If N is a submodule of M, then 0(+)N is an ideal of R(+)M and 0(+)M is a nilpotent
ideal of R(+)M of index 2. It is well known that I(+)N is an ideal of R(+)M if and only if I is an ideal
of R and N is a submodule of M such that IM ⊆N , cf. [1, Theorem, 3.1].

Let G be an Abelian group. Suppose that R =
⊕

g∈GRg be a G-graded ring and M =
⊕

g∈GMg a

G-graded R-module. Then R(+)M is a G-graded ring with (R(+)M)g = Rg

⊕
Mg for every g ∈ G cf.

[7, Proposition 3.1] and [5, Proposition 2]. Consequently, h(R(+)M) = {(a,x);a ∈ h(R),x ∈ h(M)}.

Theorem 3.14. Let R be a G-graded ring, I a proper graded ideal of R, M a G- graded R-module and N a
graded submodule of M such that IM ⊆N .
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(1) If I is a graded (m,n)-closed ideal of R, then J := I(+)N is a graded (m,n+ 1)-closed ideal of R(+)M.

(2) I is a graded (m,n)-closed ideal of R if and only if I(+)M is a graded (m,n)-closed ideal of R(+)M.

Proof. (1) Since I is a graded ideal, by [7, Proposition 3.1] and [5, Proposition 2], J is a graded ideal
of R(+)M. Now suppose that I is a graded (m,n)-closed ideal of R. Let x = (a,c) ∈ h(R(+)M) such that
xm = (am,mam−1c) ∈ J . Since I is a graded (m,n)-closed ideal of R, a ∈ h(R) and IM ⊆ N , we conclude
that (an+1, (n+ 1)anc) = xn+1 ∈ J . Thus J is a graded (m,n+ 1)-closed ideal of R(+)M.

(2) Since I is a graded ideal, by [7, Proposition 3.1] and [5, Proposition 2], I(+)M is a graded ideal
of R(+)M. Now assume that I is a graded (m,n)-closed ideal of R. Let (a,x)m = (am,mam−1x) ∈ I(+)M
for some (a,x) ∈ h(R(+)M). Then a ∈ h(R) and am ∈ I . Since I is a graded (m,n)-closed ideal of R,
we have an ∈ I . Hence (a,x)n = (an,nan−1x) ∈ I(+)M. Thus I(+)M is a graded (m,n)-closed ideal of
R(+)M. Conversely assume that I(+)M is a graded (m,n)-closed ideal of R(+)M. Let am ∈ I for some
a ∈ h(R), then (a,0) ∈ h(R(+)M) and (a,0)m ∈ I(+)M. Since I(+)M is a graded (m,n)-closed ideal of
R(+)M, therefore (an,0) = (a,0)n ∈ I(+)M. Thus an ∈ I and hence I is a graded (m,n) closed ideal of R.

Lemma 3.15. Let R be a G-graded ring and M a G-graded R-module. Suppose that I is a graded (m,n)-
closed ideal of R and N a graded submodule of M such that IM ⊆ N . Let x = (a,c) ∈ h(R(+)M) for some
a ∈ h(R) and c ∈ h(M). Then xm ∈ I(+)N if and only if am ∈ I .

Proof. From the proof above of the Theorem 3.14(1), I(+)N is a graded ideal of R(+)M. Suppose that
x = (a,c) ∈ h(R(+)M) with xm ∈ I(+)N , then clearly am ∈ I . Conversely assume that am ∈ I . Since I is
a graded (m,n)-closed ideal of R and a ∈ h(R), therefore an ∈ I and hence am−1 ∈ I (as n < m). Then
mam−1c ∈ IM ⊆N . Consequently, xm ∈ I(+)N , as desired.

The following theorem characterizes the graded (m,n)-closed ideals of trivial ring extension R(+)M.

Theorem 3.16. Let R be a G-graded ring andM a G-graded R-module. Suppose that I is a graded ideal of
R and N a graded submodule of M such that IM ⊆N . Then the following assertions are equivalent.

(1) I(+)N is a graded (m,n)-closed ideal of R(+)M.

(2) I is a graded (m,n)-closed ideal of R and whenever am ∈ I for some a ∈ h(R) implies nan−1Mg ⊆N for
some g ∈ G.

Proof. (1)⇒ (2). Suppose that I(+)N is a graded (m,n)-closed ideal of R(+)M. Then it is clear that I
is a graded (m,n)-closed ideal of R. Assume that am ∈ I for some a ∈ Rg and some g ∈ G. Let x = (a,c)
for some c ∈ Mg . It is clear that x ∈ h(R(+)M). As I is graded (m,n)-closed ideal of R and am ∈ I ,
therefore by Lemma 3.15, we have xm = (am,mam−1c) ∈ I(+)N . Also, since I(+)N is a graded (m,n)-
closed ideal of R(+)M, it follows that xn = (an,nan−1c) ∈ I(+)N . Hence nan−1c ∈ N for every c ∈Mg .
Thus nan−1Mg ⊆N , as we desired.

(2)⇒ (1). Let xm = (a,c)m = (am,mam−1c) ∈ I(+)N for some x = (a,c) ∈ h(R(+)M). Since am ∈ I, a ∈
h(R) and I is a graded (m,n)-closed ideal of R, we conclude that an ∈ I . On the other hand there exists
g ∈ G such that c ∈Mg and by assumption nan−1Mg ⊆N . Thus xn = (an,nan−1c) ∈ I(+)N . Hence I(+)N
is a graded (m,n)-closed ideal of R(+)M, as we desired.
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4 Graded weakly (m,n)-closed ideal

In this section, we give some basic properties of graded weakly (m,n)-closed ideals and investigate
graded weakly (m,n)-closed ideals in direct product R1 ×R2 of G-graded rings R1,R2 and in trivial
extension R(+)M of a G-graded ring R by a G-graded R-module M. For the sake of completeness, we
begin with the definitions of weakly (m,n)-closed and graded weakly (m,n)-closed ideals.

Definition 4.1. A proper ideal I of a ring R is said to be weakly (m,n)-closed if whenever 0 , am ∈ I
for a ∈ R, then an ∈ I .

Definition 4.2. A proper graded ideal I of a G-graded ring R is said to be graded weakly (m,n)-closed
if whenever 0 , am ∈ I for a ∈ h(R), then an ∈ I .

Note that a graded (m,n)-closed ideal is always graded weakly (m,n)-closed ideal, the converse
need not hold. The following example illustrates this fact.

Example 4.3. Consider R = M2(K) (the ring of all 2 × 2 matrices with entries from a field K and

G = Z4). Then R is G-graded by R0 =
(
K 0
0 K

)
, R2 =

(
0 K
K 0

)
, R1 = R3 = 0.

Consider I =
{(

0 0
0 0

)}
, then I is graded weakly (2,1)-closed ideal of R. However I is not a graded

(2,1)-closed ideal, since A =
(

0 1
0 0

)
∈ R2 ⊆ h(R) with A2 =

(
0 0
0 0

)
∈ I but A < I.

Proposition 4.4. If I is a graded weakly (m,n)-closed ideal of a G-graded ring R, then Ie is a weakly
(m,n)-closed ideal of Re.

Proof. Let a ∈ Re such that 0 , am ∈ Ie. Since Re ⊆ h(R), Ie ⊆ I and I is a graded weakly (m,n)-closed
ideal of R, it follows that an ∈ I and then an ∈ I ∩Re = Ie. Hence Ie is a weakly (m,n)-closed ideal of
Re, as we desired.

An (m,n)-unbreakable-zero element was defined in [3] for weakly (m,n)-closed ideals, here we
define it again in graded setup. It will be helpful for studying graded weakly (m,n)-closed ideals that
are not graded (m,n)-closed.

Definition 4.5. Let R be a G-graded ring and I a graded weakly (m,n)-closed ideal of R. Then a ∈ h(R)
is an (m,n)-unbreakable-zero element of I if am = 0 and an < I .

Thus A graded weakly (m,n)-closed ideal I has an (m,n)-unbreakable-zero element if and only if I
is not graded (m,n)-closed.

The following theorem is a graded analog of weakly (m,n)-closed ([3, Theorem 2.5]) and weakly
semiprime ideals ([6, Theorem 2.3]).

Theorem 4.6. Let R be a G-graded ring and I a graded weakly (m,n)-closed ideal of R. If a ∈ h(R) is an
(m,n)-unbreakable-zero element of I , then there exists g ∈ G such that for every y ∈ Ig , (a+ y)m = 0.

Proof. Assume that a ∈ h(R) is an (m,n)-unbreakable-zero element of I . Then there exists g ∈ G such
that a ∈ Rg . Now, let y ∈ Ig . Then a+ y ∈ Rg and

(a+ y)m = am +
m∑
k=1

(
m
k

)
am−kyk = 0 +

m∑
k=1

(
m
k

)
am−kyk ∈ Ig ⊂ I.
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However (a+y)n < I , because an < I . Thus (a+y)m = 0, since I is a graded weakly (m,n)-closed ideal
of R, as we desired.

The next theorem is a graded analogue of [3, Theorem 2.6], it also extends [6, Theorem, 2.4].

Theorem 4.7. Let R be a G-crossed product and I a graded weakly (m,n)-closed ideal of R. Then either I
is a graded (m,n)-closed ideal of R or Ie ⊆Nil(Re).

Proof. Assume that I is not a graded (m,n)-closed ideal of R. Then I has an (m,n)-unbreakable-zero
element, that is, there exists a ∈ h(R) such that am = 0 and an < I . Let g ∈ G such that a ∈ Rg and
let x ∈ Ie. As R is a crossed product, there exists u a unit element in Rg−1 such that b = au ∈ Re and
bm = 0. Thus,

(b+ x)m = bm +
m∑
k=1

(
m
k

)
bm−kxk = 0 +

m∑
k=1

(
m
k

)
bm−kxk ∈ Ie ⊆ I.

If (b + x)m , 0, then, since I is a graded weakly (m,n)-closed ideal of R and b + x ∈ Re, we obtain
(x + b)n ∈ Ie ⊆ I . Consequently, bn = anun ∈ I and (as u is unit) an ∈ I , a contradiction. Hence
(x + b)m = 0, that is, x + b ∈ Nil(Re). Thus x = (x + b) − b ∈ Nil(Re) and henceforth Ie ⊆ Nil(Re), as we
desired.

The next two theorems are the analogue of the results for graded (m,n)-closed ideals in Theo-
rem 3.8 and Theorem 3.10, respectively. Their proofs are similar, and thus will be omitted.

Theorem 4.8. Let R be a G-graded ring, I a graded weakly (m,n)-closed ideal of R and S ⊆ h(R) a multi-
plicatively closed subset of R such that S ∩ I = ∅. Then IS is a graded weakly (m,n)-closed ideal of RS .

Theorem 4.9. Let R and T be two G-graded rings and f : R→ T a homogeneous homomorphism.

(1) If f is injective and J is a graded weakly (m,n)-closed ideal of T , then f −1(J) is a graded weakly (m,n)-
closed ideal of R. In particular, if R is a graded subring of T and J a graded weakly (m,n)-closed ideal
of T , then R∩ J is a graded weakly (m,n)-closed ideal of R.

(2) If f (Rg ) = Tg for all g ∈ G and J is a graded weakly (m,n)-closed ideal of R containing Kerf , then
f (J) is a graded weakly (m,n)-closed ideal of T . In particular, if I is a graded weakly (m,n)-closed
ideal of R such that I ⊆ J , then J/I is a graded weakly (m,n)-closed ideal of R/J if and only if J is a
graded weakly (m,n)-closed ideal of R.

In the next two theorems, we determine when an ideal of R1 ×R2 is graded weakly (m,n)-closed
but not graded (m,n)-closed.

Theorem 4.10. Let R1 and R2 be G-graded rings such that R2 is G-crossed product and I1 a graded ideal
of R1. Then the following statements are equivalent.

(1) I1 ×R2 is a graded weakly (m,n)-closed ideal of R1 ×R2.
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(2) I1 is a graded (m,n)-closed ideal of R1.

(3) I1 ×R2 is a graded (m,n)-closed ideal of R1 ×R2.

A similar result holds for R1 × I2 when I2 is a graded ideal of R2.

Proof. (1) ⇒ (2) Let a ∈ (R1)g . Since R2 is G-crossed product, choose a unit u ∈ (R2)g . Then note
that (a,u) ∈ (R1)g × (R2)g ⊆ h(R1 × R2) and 0 , (a,u)m = (am,um) ∈ I1 × R2. Since I1 × R2 is a graded
weakly (m,n)-closed ideal of R, we have (a,u)n = (an,un) ∈ I1 ×R2. Hence an ∈ I1, and I1 is a graded
(m,n)-closed ideal of R1, as we desired.

(2)⇒ (3) follows from Theorem 3.12.
(3)⇒ (1) is clear by definition.

Remark 4.11. The analog of (1) ⇒ (2) of Theorem 3.12 is clearly holds for graded weakly (m,n)-
closed ideals by Theorem 4.9(2), but the above theorem shows that the analog of (2)⇒ (1) does not
hold for weakly (m,n)-closed ideals. For instance, if we take I1 is a graded weakly (m,n)-closed ideal
but not graded (m,n)-closed, then by above theorem I1×R2 is not a graded weakly (m,n)-closed ideal
of R1 ×R2.

Theorem 4.12. Let R = R1 ×R2, where R1 and R2 are G-crossed products and J be a proper graded ideal
of R. Then the following statements are equivalent.

(1) J is a graded weakly (m,n)-closed ideal of R that is not graded (m,n)-closed.

(2) J = I1 × I2 for proper graded ideals I1 of R1 and I2 of R2 such that either

(a) I1 is a graded weakly (m,n)-closed ideal of R1 that is not graded (m,n)-closed, ym = 0 whenever
ym ∈ I2 for y ∈ h(R2) and if 0 , xm ∈ I1 for some x ∈ h(R1), then I2 is a graded (m,n)-closed
ideal of R2, or

(b) I2 is a graded weakly (m,n)-closed ideal of R2 that is not graded (m,n)-closed, ym = 0 whenever
ym ∈ I1 for y ∈ h(R1) and if 0 , xm ∈ I2 for some x ∈ h(R2), then I1 is a graded (m,n)-closed
ideal of R1.

Proof. (1)⇒ (2). Since J is not a graded (m,n)-closed ideal of R, by combining Theorem 4.10 with
Remark 4.11(b), we have J = I1 × I2, where I1 is a graded weakly (m,n)-closed ideal of R1 and I2 is a
graded weakly (m,n)-closed ideal of R2 and at least one of them is not graded (m,n)-closed. Assume
that I1 is a graded weakly (m,n)-closed ideal of R1 that is not graded (m,n)-closed. Thus I1 has a
(m,n)-unbreakable-zero element a ∈ h(R1). Assume that ym ∈ I2 for some y ∈ h(R2). Now, assume that
a ∈ (R1)g and y ∈ (R2)h. Since R2 is G-crossed product, choose a unit u ∈ (R2)gh−1 and (a,uy)m ∈ J and
(a,uy) ∈ h(R), we have (a,uy)m = (0,0). Hence ym = 0. Now, assume that 0 , xm ∈ I1 for some x ∈ h(R1).
Let y ∈ h(R2) with ym ∈ I2. Assume that x ∈ (R1)g and y ∈ (R2)h. Since R2 is G-crossed product, choose
a unit u ∈ (R2)gh−1 . Then (0,0) , (x,uy)m ∈ J . The fact that J is a graded weakly (m,n)-closed ideal of
R gives (uy)n ∈ I2. Since u is unit, yn ∈ I2. Hence I2 is a graded (m,n)-closed ideal of R2. In a similar
way, if I2 is a graded weakly (m,n)-closed ideal of R2 that is not graded (m,n)-closed, then ym = 0
whenever ym ∈ I1 for y ∈ h(R1) and if 0 , xm ∈ I2 for some x ∈ h(R2), then I1 is a graded (m,n)-closed
ideal of R1.

(2)⇒ (1). Due to symmetry, it suffices to prove (2)(a)⇒ (1).
Suppose that I1 is a graded weakly (m,n)-closed ideal of R1 that is not graded (m,n)-closed, ym = 0

whenever ym ∈ I2 for y ∈ h(R2), and if 0 , xm ∈ I1 for some x ∈ h(R1), then I2 is a graded (m,n)-closed
ideal of R2. Let a ∈ h(R1) a (m,n)−unbreakable-zero element of I1, since (a,0) ∈ h(R) we have (a,0) is
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an (m,n)-unbreakable-zero element of J . Thus J is not a graded (m,n)-closed ideal of R. Now assume
for some (x,y) ∈ h(R) that (0,0) , (x,y)m ∈ J . So, by assumption, ym = 0, therefore xm , 0 and then I2
is a graded (m,n)-closed ideal of R2. Hence xn ∈ I1 and yn ∈ I2 and consequently (x,y)n ∈ J . Thus J is
a graded weakly (m,n)-closed ideal of R.

We conclude this section by considering when certain ideals of the graded trivial extension R(+)M
are graded weakly (m,n)-closed ideals but not graded (m,n)-closed.

Theorem 4.13. Let R be a G-graded ring, M a G-graded R module and I a graded ideal of R. Then the
following statements are equivalent.

(1) I(+)M is a graded weakly (m,n)-closed ideal of R(+)M that is not graded (m,n)-closed.

(2) I is a graded weakly (m,n)-closed ideal of R that is not graded (m,n)-closed and for every (m,n)-
unbreakable-zero element a of I , we have m(am−1Mg ) = 0 for some g ∈ G.

Proof. (1)⇒ (2). Let J = I(+)M. Assume that 0 , am ∈ I for some a ∈ h(R). Then (a,0) ∈ h(R(+)M)
and (0,0) , (a,0)m ∈ J . Hence (a,0)n = (an,0) ∈ J , as a consequence an ∈ I . Thus I is a graded weakly
(m,n)-closed ideal of R, that is, by Theorem 3.14(2), not graded (m,n)-closed. Now, let a ∈ h(R) be
an (m,n)-unbreakable-zero element of I . So, there exists g ∈ G with a ∈ Rg , let x ∈ Mg . We have
(a,x) ∈ h(R(+)M) and (a,x)m = (am,mam−1x) ∈ J . Since an < I , we have (am,mam−1x) = (0,0). Thus
m(am−1Mg ) = 0, as we desired.

(2)⇒ (1). Firstly, by Theorem 3.14, it is clear that J is not a graded (m,n)-closed ideal of R(+)M.
Now, in order to prove that I(+)M is a graded weakly (m,n)-closed ideal of R(+)M, assume that
(0,0) , (a,x)m = (am,mam−1x) ∈ J = I(+)M for some (a,x) ∈ h(R(+)M). Then a ∈ h(R) and am ∈ I . If
am , 0, then by assumption, an ∈ I and therefore (a,x)n = (an,nan−1x) ∈ J . If am = 0 and an < I , then
a is an (m,n)-unbreakable-zero element of I . On the other hand, there exists g ∈ G such that a ∈ Rg

and x ∈Mg . By assumption we have mam−1x = 0 and hence (a,x)m = (0,0), which is not the case. We
conclude that J is a graded weakly (m,n)-closed ideal of R(+)M.
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