

Moroccan Journal of Algebra and Geometry with Applications Supported by Sidi Mohamed Ben Abdellah University, Fez, Morocco

Volume 1, Issue 2 (2022), pp 392-401

Title :

Graded (m,n)-closed and graded weakly (m,n)-closed ideals

Author(s):

Malik Tusif Ahmed, Mohammed Issoual & Najib Mahdou

Supported by Sidi Mohamed Ben Abdellah University, Fez, Morocco

Graded (m, n)-closed and graded weakly (m, n)-closed ideals

Malik Tusif Ahmed¹, Mohammed Issoual² and Najib Mahdou³

 ¹ Department of Mathematics and Statistics, Hazara University, Mansehra, KPK, Pakistan e-mail: tusif.ahmad92@gmail.com
 ² CRMEF Khmisset, Morocco e-mail: issoual2@yahoo.fr
 ³ Faculty of Science and Technology of Fez, University S.M. Ben Abdellah Fez, Morocco e-mail: mahdou@hotmail.com

Communicated by Ünsal Tekir (Received 29 May 2022, Revised 02 September 2022, Accepted 06 September 2022)

Abstract. Let *G* be a group with identity *e* and *R* a *G*-graded commutative ring with $1 \neq 0$. In this paper we introduce the concept of the graded (m, n)-closed ideals and graded weakly (m, n)-closed ideals. A graded proper ideal *I* of *R* is called a graded (m, n)-closed (resp. graded weakly (m, n)-closed) ideal if whenever $a^m \in I$ (resp. $0 \neq a^m \in I$) for $a \in h(R)$, then $a^n \in I$. Many results are given, in particular we investigate the graded (weakly) (m, n)-closed ideals in the direct product $R_1 \times R_2$ of *G*-graded rings R_1, R_2 and in the trivial extension R(+)M of a *G*-graded ring *R* by a graded *R*-module *M*.

Key Words: *G*-graded rings; Trivial extensions, (m, n)-closed ideals; Graded (m, n)-closed ideals; weakly (m, n)-closed ideals; Graded weakly (m, n)-closed ideals.

2010 MSC: Primary 13A02, Secondary 13A15, 47B47.

Dedicated to the memory of Muhammad Zafrullah

1 Introduction

We recall some basic properties of graded rings and modules used in the sequel. Let *G* be a multiplicative group with identity *e*. A ring *R* is called to be *G*-graded ring (or graded ring) if there exist additive subgroups R_g of *R* indexed by the elements $g \in G$ such that $R = \bigoplus_{g \in G} R_g$ and $R_g R_h \subseteq R_{gh}$ for all $g, h \in G$. If the inclusion is equality, then the ring *R* is called strongly graded. The elements of R_g are called homogeneous of degree *g* and R_e is a subring of *R* and $1 \in R_e$. For $x \in R$, *x* can be written uniquely as $x = \sum_{g \in G} x_g$ where x_g is the component of *x* in R_g . Also, we write $h(R) = \bigcup_{g \in G} R_g$. If $r \in R_g$ is unit, then $r^{-1} \in R_{g^{-1}}$. A *G*-graded ring $R = \bigoplus_{g \in G} R_g$ is called a crossed product if R_g contains a unit for every $g \in G$. Note that a *G*-crossed product $R = \bigoplus_{g \in G} R_g$ is a strongly graded ring. Let *R* be a *G*-graded ring and *I* an ideal of *R*. Then *I* is called *G*-graded ideal if $I = \bigoplus_{g \in G} (I \cap R_g) = \bigoplus_{g \in G} I_g$, that is, if $x \in I$ and $x = \sum_{g \in G} x_g$, then $x_g \in I$ for all $g \in G$. If $R = \bigoplus_{g \in G} R_g$ and $R' = \bigoplus_{g \in G} R'_g$ are two *G*-graded rings, then a ring homomorphism $f : R \to R'$ with $f(1_R) = 1_{R'}$ is called a gr-homomorphism if $f(R_g) \subseteq R'_g$ for all $g \in G$. Let $R = \bigoplus_{g \in G} R_g$ be a *G*-graded ring and *I* a *G*-graded ring and *I* a *G*-graded ring. Indeed, $R/I = \bigoplus_{g \in G} (R/I)_g$ where $(R/I)_g = \{x + I : x \in R_g\}$.

Let *R* be a *G*-graded ring and $S \subseteq h(R)$ a multiplicatively closed subset of *R*. The the ring of fractions R_S is a *G*-graded ring which is called the gr-ring of fractions. Indeed, $R_S = \bigoplus_{g \in G} (R_S)_g$ where

$$(R_S)_g = \{\frac{r}{s} : r \in R, s \in S \text{ and } g = (degs)^{-1}(degr)\}$$

Consider the ring gr-homomorphism $f : R \to R_S$ defined by $f(r) = \frac{r}{1}$. For any graded ideal *I* of *R*, the ideal of R_S generated by f(I) is denoted by I_S . Similar to non-graded case one can prove that

$$I_S = \{\frac{r}{s} \in R_S : r \in I, s \in S\}$$

A proper graded ideal *I* of *R* is said to be graded prime if whenever $a, b \in h(R)$ such that $ab \in I$, then either $a \in I$ or $b \in I$.

A graded *R*-module is an *R*-module *M* such that $M = \bigoplus_{g \in G} M_g$ where M_g is an additive subgroup of *M* and for every $g, h \in G$ we have $R_g M_h \subseteq M_{gh}$. Since $R_e M_h \subseteq M_h$ we see that M_h is an R_e -submodule of *M*. The elements of $h(M) = \bigcup_{g \in G} M_g$ are called the homogeneous elements of *M*. A nonzero element $m \in M_g$ is said to be a homogeneous element of degree *g*. Every $m \in M$ can be uniquely represented as a sum $m = \sum_{g \in G} m_g$ with a finitely many nonzero $m_g \in M_g$. The nonzero elements m_g in this sum are called the homogeneous components of *m*. An *R*-submodule *N* of *M* is said to be a graded submodule if for every $n \in N$ all its homogeneous components are also in *N*, that is, $N = \bigoplus_{g \in G} (N \cap M_g)$. If $I = \bigoplus_{g \in G} I_g$ is a graded ideal of *R*, then I_g is an R_e -module for every $g \in G$. Let *R* be a *G*-graded ring. The graded radical of a graded ideal *I*, denoted by Gr(I) is the set of all $x \in R$ such that for each $g \in G$ there exists $n_g > 0$ with $x_g^{n_g} \in I$. Note that, if *r* is a homogeneous element, then $r \in Gr(I)$ if and only if $r^n \in I$ for some positive integer *n*. In particular we denote $N(R) = Gr\{0\}$.

In this article, we define and study graded (weakly) (*m*, *n*)-closed ideals of a graded ring for positive integers *m* and *n*.

A proper graded ideal *I* of a graded ring *R* is said to be a graded (m, n)-closed ideal (resp. graded weakly (m, n)-closed) ideal of *R* if whenever $a \in R$ with $a^m \in I$ (resp. $0 \neq a^m \in I$), then $a^n \in I$. Besides other useful results we also investigate graded (weakly) (m, n)-closed ideals in the direct product $(R_1 \times R_2)$ of graded rings R_1, R_2 (Theorems 3.12, 4.10, 4.12) and in the trivial extension (R(+)M) of a graded ring *R* by a graded *R*-module *M* (Theorems 3.14, 3.16, 4.13).

We assume throughout this article that all rings are commutative with $1 \neq 0$, all *R*-modules are unitary. For such a ring *R*, let Nil(*R*) be its ideal of nilpotent, U(R) its set of units and h(R) its set of homogeneous elements. Note that every proper graded ideal is graded (weakly) (m, n)-closed for $m \leq n$, so throughout we also assume that m > n.

2 Generalized purity of modules

3 Graded (*m*, *n*)-closed ideals

In this section, we present few properties of graded (m, n)-closed ideals and investigate graded (m, n)closed ideals in direct product $(R_1 \times R_2)$ of *G*-graded rings R_1, R_2 and in the trivial extension (R(+)M)of *G*-graded ring *R* by graded *R*-module *M*. For the sake of completeness, we begin with the definitions of (m, n)-closed and graded (m, n)-closed ideals.

Definition 3.1. [4] A proper ideal *I* of a ring *R* is said to be (m, n)-closed if whenever $a^m \in I$ for $a \in R$, then $a^n \in I$.

Definition 3.2. A proper graded ideal *I* of a *G*-graded ring *R* is said to be graded (m, n)-closed if whenever $a^m \in I$ for $a \in h(R)$, then $a^n \in I$.

Example 3.3. Consider $R = \mathbb{Z}[i]$ and $G = \mathbb{Z}_2$. Then R is a G-graded by $R_0 = \mathbb{Z}$ and $R_1 = i\mathbb{Z}$. Let I = 2R. Then I is not (2,1)-closed ideal of R because $(1+i)^2 = 2i \in I$ and $(1+i) \notin I$. Similarly, J = 4R is not (4,3)-closed ideal since $(1+i)^4 = -4 \in J$, but $(1+i)^3 = 2i - 2 \notin J$. However it is easy to check that I and J are graded (2,1)-closed and graded (4,3)-closed ideals of R, respectively.

Proposition 3.4. Let R be a G-graded ring. If I is a graded (m, n)-closed ideal of R, then I_e is an (m, n)-closed ideal of R_e .

Proof. Let $a \in R_e$ with $a^m \in I_e$. We know that $R_e \subset h(R)$ and $I_e \subset I$. Therefore $a \in h(R)$ and $a^m \in I$. Since I is a graded (m, n)-closed ideal of R, we conclude that $a^n \in I$. Thus $a^n \in I \cap R_e = I_e$. Hence I_e is an (m, n)-closed ideal of R_e , as we desired.

Let *R* be a graded ring and *I* a graded ideal of *R*. Then the following lemma says that for every $a \in h(R)$ the quotient $(I : a) := \{x \in R : ax \in I\}$ is a graded ideal of *R*.

Lemma 3.5. Let *R* be a *G*-graded ring, *I* a graded ideal of *R* and $a \in h(R)$. Then (*I* : *a*) is graded ideal of *R*. Proof. Let $r \in (I : a)$ for some $r \in R$, then $ra \in I$. Since *R* is graded ring,

$$r = \sum_{g \in G} r_g$$
 where $r_g \in R_g$

and therefore

$$\sum_{g \in G} r_g a = \left(\sum_{g \in G} r_g\right) a = ra \in I$$

As *I* is a graded ideal, $r_g a \in I$ for all $g \in G$. Hence $r_g \in (I : a)$ for all $g \in G$. Thus (I : a) is a graded ideal of *R*, as we desired.

Recall that an element *a* in a ring *R* is called idempotent if $a^2 = a$. The following is one of the main results of this section.

Theorem 3.6. Let R be a G-graded ring, I a graded (m, n)-closed ideal of R and $a \in h(R)$. If a is idempotent and $a \notin I$, then (I : a) is a graded (m, n)-closed ideal of R.

Proof. From the lemma 3.5, (I : a) is a graded ideal of R. Now, suppose that $r \in h(R)$ such that $r^m \in (I : a)$. Since a is idempotent, we have $(ra)^m = r^m a^m = r^m a \in I$. The fact that $a, r \in h(R)$ implies that there exists g and h in G such that $r \in R_g$ and $a \in R_h$. Therefore, $ra \in R_g R_h \subset R_{gh} \subset h(R)$ and $(ra)^m \in I$. Since I is a graded (m, n)-closed ideal of R, we conclude that $r^n a^n = r^n a \in I$. Thus $r^n \in (I : a)$ and hence (I : a) is a graded (m, n)-closed ideal of R, as we desired.

The next theorem is a graded analog of (m, n)-closed ideals ([4] Theorem 2.6]).

Theorem 3.7. Let R be a G-graded ring, I a graded (m, 2)-closed ideal of R and J a graded ideal of R.

- (1) If $J^m \subseteq I$, then for every $g \in G$, $2J_g^2 \subseteq I$.
- (2) Suppose that $2 \in U(R)$. If $J^m \subseteq I$, then for every $g \in G$, $J_g^2 \subseteq I$.

Proof. (1) Let *g* ∈ *G* and $x_g, y_g \in J_g$. Then $x_g^m, y_g^m, (x_g + y_g)^m \in I$. Since *I* is a graded (*m*, 2)-closed ideal of *R*, it follows that $x_g^2, y_g^2, (x_g + y_g)^2 \in I$. Hence $2x_gy_g \in I$ and thus $2J_g^2 \subset I$, as we desired. (2) follows directly from (1).

The next theorem is the graded (m, n)-closed analog for well-known localization results about prime, radical, *n*-absorbing ([2, Theorem 4.1]) and (m, n)-closed ideals ([4, Theorem 2.8]).

Theorem 3.8. Let *R* be a *G*-graded ring, *I* a graded (m, n)-closed ideal of *R* and $S \subseteq h(R)$ a multiplicatively closed subset of *R* such that $S \cap I = \emptyset$. Then,

- (1) I_S is a graded (m, n)-closed ideal of R_S .
- (2) If $n = 2, 2 \in S$ and $J^m \subseteq I_S$ for a graded ideal J of R_S , then for every $g \in G$, $J_g^2 \subseteq I_S$.

Proof. (1) Let $(r/s)^m \in I_S$ for some $r/s \in h(R_S)$. Then $r^m/s^m = b/t$ for some $b \in I \cap h(R)$ and $t \in S$. Hence there exists $s' \in S$ such that $s'tr^m = s'bs^m \in I$, and thus $(s'tr)^m \in I$. Since *I* is a graded (m, n) closed ideal and $s'tr \in R_{deg(s')deg(t)deg(r)} \subseteq h(R)$, we conclude that $(s'tr)^n \in I$ and thus $(r/s)^n = s'^n t^n r^n/s'^n t^n s^n \in I_S$. Hence I_S is a graded (m, n)-closed ideal of R_S .

(2) Suppose that $J^m \subseteq I_S$ for some graded ideal J of R_S . Since $2 \in S$, then $2 \in U(R_S)$ and thus, by Theorem 3.7(2), for every $g \in G$, $J_g^2 \subseteq I_S$.

Corollary 3.9. Let R be a G-graded ring and I a proper graded ideal of R. Then I is a graded (m,n)-closed ideal of R if and only if $I_{S(P)}$ is a graded (m,n)-closed ideal of $R_{S(P)}$ where $S(P) = h(R) \cap R \setminus P$ for every prime (or maximal) ideal of R containing I.

Proof. (\Rightarrow) This follows from Theorem 3.8(1). (\Leftarrow) Let *P* be a prime ideal of *R* with $I \subseteq P$ and denote $h(R) \cap R \setminus P$, a multiplicatively closed subset of *R*, by *S*. Let us suppose that $x^m \in I$ for some $x \in h(R)$ and consider $J = (I : x^n) = \{r \in R : rx^n \in I\}$. Then $(\frac{x}{1})^m \in I_S$, therefore $(\frac{x}{1})^n \in I_S$, since I_S is graded (m, n)-closed ideal of R_S . Thus $sx^n \in I$ for some $s \in S$ and henceforth $J \not\subseteq P$. Also, note that $J \not\subseteq Q$ for every prime ideal *Q* of *R* with $I \not\subseteq Q$. Hence J = R and consequently $x^n \in I$. Thus *I* is a graded (m, n)-closed ideal, as we desired.

The next theorem is a graded analog for [4], Theorem 2.10].

Theorem 3.10. Let R and T be two G-graded rings and $f : R \to T$ a homogeneous homomorphism.

- (1) If J is a graded (m, n)-closed ideal of T, then $f^{-1}(J)$ is a graded (m, n)-closed ideal of R.
- (2) If $f(R_g) = T_g$ for all $g \in G$, and I is a graded (m, n)-closed ideal of R containing Kerf, then f(I) is a graded (m, n)-closed ideal of T.

Proof. (1) Firstly, note that $f^{-1}(J)$ is a graded ideal of R. Indeed, we know that $f^{-1}(J)$ is an ideal of R. Now, let $x = \sum_{g \in G} x_g \in f^{-1}(J)$ where $x_g \in R_g$ for all $g \in G$. Then $f(x) = \sum_{g \in G} f(x_g) \in J$ where $f(x_g) \in T_g$ because f is a homogeneous homomorphism. Since J is a graded ideal of T, therefore $f(x_g) \in J$ and hence $x_g \in f^{-1}(J)$, as asserted. Now, let us suppose that $x^m \in f^{-1}(J)$ for some $x \in h(R)$, then $f(x) \in h(T)$, as f is homogeneous, and $(f(x))^m \in J$. Since J is a graded (m, n)-closed ideal of T, therefore $(f(x))^n \in J$. Thus $x^n \in f^{-1}(J)$ and hence $f^{-1}(J)$ is a graded (m, n)-closed ideal of R, as we desired.

(2) It is clear that f is surjective and f(I) is a graded ideal of T. Now, let $y^m \in f(I)$ for some $y \in h(T)$, then there exists $g \in G$ with $y \in T_g = f(R_g)$. So, there exists $x \in R_g$ such that $y^m = (f(x))^m \in f(I)$. As Ker $(f) \subseteq I$ we have $x^m \in I$. Since I is graded (m, n)-closed ideal, therefore $x^n \in I$. Thus $y^n \in f(I)$ and hence f(I) is a graded (m, n)-closed ideal of T, as we desired.

Corollary 3.11. *The following assertions are equivalent.*

- (1) Let $R \subseteq T$ be an extension of G-graded rings. If J is a graded (m,n)-closed ideal of T, then $R \cap J$ is a graded (m,n)-closed ideal of R.
- (2) Let $I \subseteq J$ be proper graded ideals of R. Then J/I is a graded (m, n)-closed ideal of R/I if and only if J is a graded (m, n)-closed ideal of R.

If R_1 and R_2 are two *G*-graded rings, then $R_1 \times R_2$ is a *G*-graded ring by $(R_1 \times R_2)_g = (R_1)_g \times (R_2)_g$. Recall that an ideal of $R_1 \times R_2$ has the form $I_1 \times I_2$ for ideals I_1 of R_1 and I_2 of R_2 . The following theorem determines when an ideal of $R_1 \times R_2$ is graded (m, n)-closed.

Theorem 3.12. Let $R = R_1 \times R_2$, where R_1 and R_2 are G-graded rings, and J a proper graded ideal of R. Then the following statements are equivalent.

- (1) J is a graded (m, n)-closed ideal of R.
- (2) $J = I_1 \times R_2$, $R_1 \times I_2$ or $I_1 \times I_2$ for graded (m, n)-closed ideals I_1 of R_1 and I_2 of R_2 .

Proof. (1) \Rightarrow (2). Assume that $J = I_1 \times I_2$ is a graded (m, n)-closed ideal of R. Due to symmetry, it suffices to prove that if $I_1 \neq R_1$, then I_1 is graded (m, n)-closed of R_1 . For this purpose, assume that $I_1 \neq R_1$, then for every $a \in h(R_1)$ with $a^m \in I_1$ we have $(a, 0)^m \in J$. Since $(a, 0) \in h(R)$ and J is a graded (m, n)-closed ideal of R, we have $(a, 0)^n \in J$. Thus $a^n \in I_1$ and hence I_1 is a graded (m, n)-closed ideal of R_1 , as we desired.

 $(2) \Rightarrow (1)$. Assume that $J = I_1 \times I_2$ for graded (m, n)-closed ideals I_1 of R_1 and I_2 of R_2 . Let $(a, b) \in h(R)$ such that $(a, b)^m = (a^m, b^m) \in J$. Then $a^m \in I_1$ and $b^m \in I_2$. Since $a \in h(R_1)$ and $b \in h(R_2)$, therefore $a^n \in I_1$ and $b^n \in I_2$. Thus $(a, b)^n \in J$ and hence J is a graded (m, n)-closed ideal of R. The proofs of other two cases are similar.

Remark 3.13. The above Theorem 3.12 is also a consequence of the Theorem 3.10. Indeed, $(1) \Rightarrow (2)$ is follows by Theorem 3.10(1) and $(2) \Rightarrow (1)$ follows by Theorem 3.10(2).

Let *R* be a ring and *M* be an *R*-module. Then the ring R(+)M with coordinate-wise addition and multiplication given by $(r_1, m_1)(r_2, m_2) = (r_1r_2, r_1m_2 + r_2m_1)$ is a ring with unity (1, 0) (even *R*-algebra) called idealization of *M* or the trivial extension of *R* by *M*. Note that *R* naturally embeds into R(+)M by $r \mapsto (r, 0)$. If *N* is a submodule of *M*, then 0(+)N is an ideal of R(+)M and 0(+)M is a nilpotent ideal of R(+)M of index 2. It is well known that I(+)N is an ideal of R(+)M if and only if *I* is an ideal of *R* and *N* is a submodule of *M* such that $IM \subseteq N$, cf. [1], Theorem, 3.1].

Let *G* be an Abelian group. Suppose that $R = \bigoplus_{g \in G} R_g$ be a *G*-graded ring and $M = \bigoplus_{g \in G} M_g$ a *G*-graded *R*-module. Then R(+)M is a *G*-graded ring with $(R(+)M)_g = R_g \bigoplus M_g$ for every $g \in G$ cf. [7] Proposition 3.1] and [5] Proposition 2]. Consequently, $h(R(+)M) = \{(a, x); a \in h(R), x \in h(M)\}$.

Theorem 3.14. Let R be a G-graded ring, I a proper graded ideal of R, M a G- graded R-module and N a graded submodule of M such that $IM \subseteq N$.

(1) If I is a graded (m, n)-closed ideal of R, then J := I(+)N is a graded (m, n + 1)-closed ideal of R(+)M.

(2) I is a graded (m, n)-closed ideal of R if and only if I(+)M is a graded (m, n)-closed ideal of R(+)M.

Proof. (1) Since *I* is a graded ideal, by [Z], Proposition 3.1] and [5], Proposition 2], *J* is a graded ideal of R(+)M. Now suppose that *I* is a graded (m, n)-closed ideal of *R*. Let $x = (a, c) \in h(R(+)M)$ such that $x^m = (a^m, ma^{m-1}c) \in J$. Since *I* is a graded (m, n)-closed ideal of *R*, $a \in h(R)$ and $IM \subseteq N$, we conclude that $(a^{n+1}, (n+1)a^nc) = x^{n+1} \in J$. Thus *J* is a graded (m, n+1)-closed ideal of R(+)M.

(2) Since *I* is a graded ideal, by [7], Proposition 3.1] and [5], Proposition 2], I(+)M is a graded ideal of R(+)M. Now assume that *I* is a graded (m, n)-closed ideal of *R*. Let $(a, x)^m = (a^m, ma^{m-1}x) \in I(+)M$ for some $(a, x) \in h(R(+)M)$. Then $a \in h(R)$ and $a^m \in I$. Since *I* is a graded (m, n)-closed ideal of *R*, we have $a^n \in I$. Hence $(a, x)^n = (a^n, na^{n-1}x) \in I(+)M$. Thus I(+)M is a graded (m, n)-closed ideal of *R*(+)*M*. Conversely assume that I(+)M is a graded (m, n)-closed ideal of R(+)M. Let $a^m \in I$ for some $a \in h(R)$, then $(a, 0) \in h(R(+)M)$ and $(a, 0)^m \in I(+)M$. Since I(+)M is a graded (m, n)-closed ideal of R(+)M, therefore $(a^n, 0) = (a, 0)^n \in I(+)M$. Thus $a^n \in I$ and hence *I* is a graded (m, n) closed ideal of *R*.

Lemma 3.15. Let R be a G-graded ring and M a G-graded R-module. Suppose that I is a graded (m, n)closed ideal of R and N a graded submodule of M such that $IM \subseteq N$. Let $x = (a, c) \in h(R(+)M)$ for some $a \in h(R)$ and $c \in h(M)$. Then $x^m \in I(+)N$ if and only if $a^m \in I$.

Proof. From the proof above of the Theorem 3.14(1), I(+)N is a graded ideal of R(+)M. Suppose that $x = (a, c) \in h(R(+)M)$ with $x^m \in I(+)N$, then clearly $a^m \in I$. Conversely assume that $a^m \in I$. Since I is a graded (m, n)-closed ideal of R and $a \in h(R)$, therefore $a^n \in I$ and hence $a^{m-1} \in I$ (as n < m). Then $ma^{m-1}c \in IM \subseteq N$. Consequently, $x^m \in I(+)N$, as desired.

The following theorem characterizes the graded (m, n)-closed ideals of trivial ring extension R(+)M.

Theorem 3.16. Let R be a G-graded ring and M a G-graded R-module. Suppose that I is a graded ideal of R and N a graded submodule of M such that $IM \subseteq N$. Then the following assertions are equivalent.

- (1) I(+)N is a graded (m, n)-closed ideal of R(+)M.
- (2) I is a graded (m, n)-closed ideal of R and whenever $a^m \in I$ for some $a \in h(R)$ implies $na^{n-1}M_g \subseteq N$ for some $g \in G$.

Proof. (1) \Rightarrow (2). Suppose that I(+)N is a graded (m, n)-closed ideal of R(+)M. Then it is clear that I is a graded (m, n)-closed ideal of R. Assume that $a^m \in I$ for some $a \in R_g$ and some $g \in G$. Let x = (a, c) for some $c \in M_g$. It is clear that $x \in h(R(+)M)$. As I is graded (m, n)-closed ideal of R and $a^m \in I$, therefore by Lemma 3.15, we have $x^m = (a^m, ma^{m-1}c) \in I(+)N$. Also, since I(+)N is a graded (m, n)-closed ideal of R(+)M, it follows that $x^n = (a^n, na^{n-1}c) \in I(+)N$. Hence $na^{n-1}c \in N$ for every $c \in M_g$. Thus $na^{n-1}M_g \subseteq N$, as we desired.

 $(2) \Rightarrow (1)$. Let $x^m = (a, c)^m = (a^m, ma^{m-1}c) \in I(+)N$ for some $x = (a, c) \in h(R(+)M)$. Since $a^m \in I$, $a \in h(R)$ and I is a graded (m, n)-closed ideal of R, we conclude that $a^n \in I$. On the other hand there exists $g \in G$ such that $c \in M_g$ and by assumption $na^{n-1}M_g \subseteq N$. Thus $x^n = (a^n, na^{n-1}c) \in I(+)N$. Hence I(+)N is a graded (m, n)-closed ideal of R(+)M, as we desired.

4 Graded weakly (*m*, *n*)-closed ideal

In this section, we give some basic properties of graded weakly (m, n)-closed ideals and investigate graded weakly (m, n)-closed ideals in direct product $R_1 \times R_2$ of *G*-graded rings R_1, R_2 and in trivial extension R(+)M of a *G*-graded ring *R* by a *G*-graded *R*-module *M*. For the sake of completeness, we begin with the definitions of weakly (m, n)-closed and graded weakly (m, n)-closed ideals.

Definition 4.1. A proper ideal *I* of a ring *R* is said to be weakly (m, n)-closed if whenever $0 \neq a^m \in I$ for $a \in R$, then $a^n \in I$.

Definition 4.2. A proper graded ideal *I* of a *G*-graded ring *R* is said to be graded weakly (m, n)-closed if whenever $0 \neq a^m \in I$ for $a \in h(R)$, then $a^n \in I$.

Note that a graded (m, n)-closed ideal is always graded weakly (m, n)-closed ideal, the converse need not hold. The following example illustrates this fact.

Example 4.3. Consider $R = M_2(K)$ (the ring of all 2×2 matrices with entries from a field K and $G = \mathbb{Z}_4$). Then R is G-graded by $R_0 = \begin{pmatrix} K & 0 \\ 0 & K \end{pmatrix}$, $R_2 = \begin{pmatrix} 0 & K \\ K & 0 \end{pmatrix}$, $R_1 = R_3 = 0$.

Consider $I = \left\{ \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \right\}$, then *I* is graded weakly (2, 1)-closed ideal of *R*. However *I* is not a graded (2, 1)-closed ideal, since $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \in R_2 \subseteq h(R)$ with $A^2 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \in I$ but $A \notin I$.

Proposition 4.4. If I is a graded weakly (m, n)-closed ideal of a G-graded ring R, then I_e is a weakly (m, n)-closed ideal of R_e .

Proof. Let $a \in R_e$ such that $0 \neq a^m \in I_e$. Since $R_e \subseteq h(R)$, $I_e \subseteq I$ and I is a graded weakly (m, n)-closed ideal of R, it follows that $a^n \in I$ and then $a^n \in I \cap R_e = I_e$. Hence I_e is a weakly (m, n)-closed ideal of R_e , as we desired.

An (m, n)-unbreakable-zero element was defined in [3] for weakly (m, n)-closed ideals, here we define it again in graded setup. It will be helpful for studying graded weakly (m, n)-closed ideals that are not graded (m, n)-closed.

Definition 4.5. Let *R* be a *G*-graded ring and *I* a graded weakly (m, n)-closed ideal of *R*. Then $a \in h(R)$ is an (m, n)-unbreakable-zero element of *I* if $a^m = 0$ and $a^n \notin I$.

Thus A graded weakly (m, n)-closed ideal *I* has an (m, n)-unbreakable-zero element if and only if *I* is not graded (m, n)-closed.

The following theorem is a graded analog of weakly (m, n)-closed ([3], Theorem 2.5]) and weakly semiprime ideals ([6], Theorem 2.3]).

Theorem 4.6. Let R be a G-graded ring and I a graded weakly (m, n)-closed ideal of R. If $a \in h(R)$ is an (m, n)-unbreakable-zero element of I, then there exists $g \in G$ such that for every $y \in I_g$, $(a + y)^m = 0$.

Proof. Assume that $a \in h(R)$ is an (m, n)-unbreakable-zero element of I. Then there exists $g \in G$ such that $a \in R_g$. Now, let $y \in I_g$. Then $a + y \in R_g$ and

$$(a+y)^m = a^m + \sum_{k=1}^m \binom{m}{k} a^{m-k} y^k = 0 + \sum_{k=1}^m \binom{m}{k} a^{m-k} y^k \in I_g \subset I$$

However $(a+y)^n \notin I$, because $a^n \notin I$. Thus $(a+y)^m = 0$, since *I* is a graded weakly (m, n)-closed ideal of *R*, as we desired.

The next theorem is a graded analogue of [3, Theorem 2.6], it also extends [6, Theorem, 2.4].

Theorem 4.7. Let R be a G-crossed product and I a graded weakly (m, n)-closed ideal of R. Then either I is a graded (m, n)-closed ideal of R or $I_e \subseteq Nil(R_e)$.

Proof. Assume that *I* is not a graded (m, n)-closed ideal of *R*. Then *I* has an (m, n)-unbreakable-zero element, that is, there exists $a \in h(R)$ such that $a^m = 0$ and $a^n \notin I$. Let $g \in G$ such that $a \in R_g$ and let $x \in I_e$. As *R* is a crossed product, there exists *u* a unit element in $R_{g^{-1}}$ such that $b = au \in R_e$ and $b^m = 0$. Thus,

$$(b+x)^m = b^m + \sum_{k=1}^m \binom{m}{k} b^{m-k} x^k = 0 + \sum_{k=1}^m \binom{m}{k} b^{m-k} x^k \in I_e \subseteq I.$$

If $(b + x)^m \neq 0$, then, since *I* is a graded weakly (m, n)-closed ideal of *R* and $b + x \in R_e$, we obtain $(x + b)^n \in I_e \subseteq I$. Consequently, $b^n = a^n u^n \in I$ and (as *u* is unit) $a^n \in I$, a contradiction. Hence $(x + b)^m = 0$, that is, $x + b \in Nil(R_e)$. Thus $x = (x + b) - b \in Nil(R_e)$ and henceforth $I_e \subseteq Nil(R_e)$, as we desired.

_	_

The next two theorems are the analogue of the results for graded (m, n)-closed ideals in Theorem 3.8 and Theorem 3.10, respectively. Their proofs are similar, and thus will be omitted.

Theorem 4.8. Let R be a G-graded ring, I a graded weakly (m, n)-closed ideal of R and $S \subseteq h(R)$ a multiplicatively closed subset of R such that $S \cap I = \emptyset$. Then I_S is a graded weakly (m, n)-closed ideal of R_S .

Theorem 4.9. Let R and T be two G-graded rings and $f : R \rightarrow T$ a homogeneous homomorphism.

- (1) If f is injective and J is a graded weakly (m, n)-closed ideal of T, then $f^{-1}(J)$ is a graded weakly (m, n)-closed ideal of R. In particular, if R is a graded subring of T and J a graded weakly (m, n)-closed ideal of T, then $R \cap J$ is a graded weakly (m, n)-closed ideal of R.
- (2) If $f(R_g) = T_g$ for all $g \in G$ and J is a graded weakly (m,n)-closed ideal of R containing Kerf, then f(J) is a graded weakly (m,n)-closed ideal of T. In particular, if I is a graded weakly (m,n)-closed ideal of R such that $I \subseteq J$, then J/I is a graded weakly (m,n)-closed ideal of R/J if and only if J is a graded weakly (m,n)-closed ideal of R.

In the next two theorems, we determine when an ideal of $R_1 \times R_2$ is graded weakly (m, n)-closed but not graded (m, n)-closed.

Theorem 4.10. Let R_1 and R_2 be G-graded rings such that R_2 is G-crossed product and I_1 a graded ideal of R_1 . Then the following statements are equivalent.

(1) $I_1 \times R_2$ is a graded weakly (m, n)-closed ideal of $R_1 \times R_2$.

- (2) I_1 is a graded (m, n)-closed ideal of R_1 .
- (3) $I_1 \times R_2$ is a graded (m, n)-closed ideal of $R_1 \times R_2$.
- A similar result holds for $R_1 \times I_2$ when I_2 is a graded ideal of R_2 .

Proof. (1) \Rightarrow (2) Let $a \in (R_1)_g$. Since R_2 is *G*-crossed product, choose a unit $u \in (R_2)_g$. Then note that $(a, u) \in (R_1)_g \times (R_2)_g \subseteq h(R_1 \times R_2)$ and $0 \neq (a, u)^m = (a^m, u^m) \in I_1 \times R_2$. Since $I_1 \times R_2$ is a graded weakly (m, n)-closed ideal of R, we have $(a, u)^n = (a^n, u^n) \in I_1 \times R_2$. Hence $a^n \in I_1$, and I_1 is a graded (m, n)-closed ideal of R_1 , as we desired.

 $(2) \Rightarrow (3)$ follows from Theorem 3.12.

 $(3) \Rightarrow (1)$ is clear by definition.

Remark 4.11. The analog of $(1) \Rightarrow (2)$ of Theorem 3.12 is clearly holds for graded weakly (m, n)closed ideals by Theorem 4.9(2), but the above theorem shows that the analog of $(2) \Rightarrow (1)$ does not
hold for weakly (m, n)-closed ideals. For instance, if we take I_1 is a graded weakly (m, n)-closed ideal
but not graded (m, n)-closed, then by above theorem $I_1 \times R_2$ is not a graded weakly (m, n)-closed ideal
of $R_1 \times R_2$.

Theorem 4.12. Let $R = R_1 \times R_2$, where R_1 and R_2 are G-crossed products and J be a proper graded ideal of R. Then the following statements are equivalent.

- (1) J is a graded weakly (m, n)-closed ideal of R that is not graded (m, n)-closed.
- (2) $J = I_1 \times I_2$ for proper graded ideals I_1 of R_1 and I_2 of R_2 such that either
 - (a) I_1 is a graded weakly (m, n)-closed ideal of R_1 that is not graded (m, n)-closed, $y^m = 0$ whenever $y^m \in I_2$ for $y \in h(R_2)$ and if $0 \neq x^m \in I_1$ for some $x \in h(R_1)$, then I_2 is a graded (m, n)-closed ideal of R_2 , or
 - (b) I_2 is a graded weakly (m, n)-closed ideal of R_2 that is not graded (m, n)-closed, $y^m = 0$ whenever $y^m \in I_1$ for $y \in h(R_1)$ and if $0 \neq x^m \in I_2$ for some $x \in h(R_2)$, then I_1 is a graded (m, n)-closed ideal of R_1 .

Proof. (1) \Rightarrow (2). Since *J* is not a graded (m, n)-closed ideal of *R*, by combining Theorem 4.10 with Remark 4.11 (b), we have $J = I_1 \times I_2$, where I_1 is a graded weakly (m, n)-closed ideal of R_1 and I_2 is a graded weakly (m, n)-closed ideal of R_2 and at least one of them is not graded (m, n)-closed. Assume that I_1 is a graded weakly (m, n)-closed ideal of R_1 that is not graded (m, n)-closed. Thus I_1 has a (m, n)-unbreakable-zero element $a \in h(R_1)$. Assume that $y^m \in I_2$ for some $y \in h(R_2)$. Now, assume that $a \in (R_1)_g$ and $y \in (R_2)_h$. Since R_2 is *G*-crossed product, choose a unit $u \in (R_2)_{gh^{-1}}$ and $(a, uy)^m \in J$ and $(a, uy) \in h(R)$, we have $(a, uy)^m = (0, 0)$. Hence $y^m = 0$. Now, assume that $0 \neq x^m \in I_1$ for some $x \in h(R_1)$. Let $y \in h(R_2)$ with $y^m \in I_2$. Assume that $x \in (R_1)_g$ and $y \in (R_2)_h$. Since R is unit, $x \in (R_1)_g$ and $y \in (R_2)_h$. Since R_2 is *G*-crossed product, choose a unit $u \in (R_2)_{gh^{-1}}$. Then $(0, 0) \neq (x, uy)^m \in J$. The fact that *J* is a graded weakly (m, n)-closed ideal of *R* gives $(uy)^n \in I_2$. Since *u* is unit, $y^n \in I_2$. Hence I_2 is a graded (m, n)-closed ideal of R_2 . In a similar way, if I_2 is a graded weakly (m, n)-closed ideal of R_2 that is not graded (m, n)-closed, then $y^m = 0$ whenever $y^m \in I_1$ for $y \in h(R_1)$ and if $0 \neq x^m \in I_2$ for some $x \in h(R_2)$, then I_1 is a graded (m, n)-closed ideal of R_1 .

(2) \Rightarrow (1). Due to symmetry, it suffices to prove (2)(*a*) \Rightarrow (1).

Suppose that I_1 is a graded weakly (m, n)-closed ideal of R_1 that is not graded (m, n)-closed, $y^m = 0$ whenever $y^m \in I_2$ for $y \in h(R_2)$, and if $0 \neq x^m \in I_1$ for some $x \in h(R_1)$, then I_2 is a graded (m, n)-closed ideal of R_2 . Let $a \in h(R_1)$ a (m, n)-unbreakable-zero element of I_1 , since $(a, 0) \in h(R)$ we have (a, 0) is

an (m, n)-unbreakable-zero element of *J*. Thus *J* is not a graded (m, n)-closed ideal of *R*. Now assume for some $(x, y) \in h(R)$ that $(0, 0) \neq (x, y)^m \in J$. So, by assumption, $y^m = 0$, therefore $x^m \neq 0$ and then I_2 is a graded (m, n)-closed ideal of R_2 . Hence $x^n \in I_1$ and $y^n \in I_2$ and consequently $(x, y)^n \in J$. Thus *J* is a graded weakly (m, n)-closed ideal of *R*.

We conclude this section by considering when certain ideals of the graded trivial extension R(+)M are graded weakly (m, n)-closed ideals but not graded (m, n)-closed.

Theorem 4.13. Let R be a G-graded ring, M a G-graded R module and I a graded ideal of R. Then the following statements are equivalent.

- (1) I(+)M is a graded weakly (m, n)-closed ideal of R(+)M that is not graded (m, n)-closed.
- (2) I is a graded weakly (m, n)-closed ideal of R that is not graded (m, n)-closed and for every (m, n)-unbreakable-zero element a of I, we have $m(a^{m-1}M_g) = 0$ for some $g \in G$.

Proof. (1) \Rightarrow (2). Let J = I(+)M. Assume that $0 \neq a^m \in I$ for some $a \in h(R)$. Then $(a, 0) \in h(R(+)M)$ and $(0, 0) \neq (a, 0)^m \in J$. Hence $(a, 0)^n = (a^n, 0) \in J$, as a consequence $a^n \in I$. Thus *I* is a graded weakly (m, n)-closed ideal of *R*, that is, by Theorem 3.14(2), not graded (m, n)-closed. Now, let $a \in h(R)$ be an (m, n)-unbreakable-zero element of *I*. So, there exists $g \in G$ with $a \in R_g$, let $x \in M_g$. We have $(a, x) \in h(R(+)M)$ and $(a, x)^m = (a^m, ma^{m-1}x) \in J$. Since $a^n \notin I$, we have $(a^m, ma^{m-1}x) = (0, 0)$. Thus $m(a^{m-1}M_g) = 0$, as we desired.

 $(2) \Rightarrow (1)$. Firstly, by Theorem 3.14 it is clear that *J* is not a graded (m, n)-closed ideal of R(+)M. Now, in order to prove that I(+)M is a graded weakly (m, n)-closed ideal of R(+)M, assume that $(0,0) \neq (a,x)^m = (a^m, ma^{m-1}x) \in J = I(+)M$ for some $(a,x) \in h(R(+)M)$. Then $a \in h(R)$ and $a^m \in I$. If $a^m \neq 0$, then by assumption, $a^n \in I$ and therefore $(a,x)^n = (a^n, na^{n-1}x) \in J$. If $a^m = 0$ and $a^n \notin I$, then *a* is an (m, n)-unbreakable-zero element of *I*. On the other hand, there exists $g \in G$ such that $a \in R_g$ and $x \in M_g$. By assumption we have $ma^{m-1}x = 0$ and hence $(a, x)^m = (0, 0)$, which is not the case. We conclude that *J* is a graded weakly (m, n)-closed ideal of R(+)M.

References

- [1] D. D. Anderson and M. Winders, Idealisation of a module, J. Comm. Algebra 1 (2009), 3–56.
- [2] D. F. Anderson and A. Badawi, On *n*-absorbing ideals of commutative rings, *Comm. Algebra* 39 (2011), 1646–1672.
- [3] D. F. Anderson, A. Badawi and B. Fahid, Weakly (*m*, *n*)-closed ideals and (*m*, *n*)-von Neumann regular rings, *J. Korean Math. Soc.*, 55 (2018), 1031-1043.
- [4] D. F. Anderson and A. Badawi, On (*m*,*n*)-closed ideals of commutative rings, *J. Algebra Appl.* 16(1) (2017), 1750013.
- [5] A. Assarrar, N. Mahdou, U. Tekir and S. Koç, On graded coherent-like properties in trivial ring extensions, *Bolletino dell Unione Mat. Ital.*, 15 (2022), 437–449.
- [6] A. Badawi, On weakly semiprime ideals of commutative rings, *Beitr. Algebra Geom.* 57 (2016), 589–597.
- [7] R. N. Uregen, U. Tekir, K. P. Shum and S. Koç, On graded 2-absorbing quasi primary ideals, *Southeast Asian Bull. Math.*, 43(4) (2019), 601–613.