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0. Introduction

Cotorsion theory is a hot topic in homological algebra. Validation of the cotorsion theory shows
that classical homological methods can be transferred to many classes of modules. Therefore many
scholars believe that this is a relative homology theory, and Gorenstein homology theory is only a
special form of the relative homology theory. The formation and completion of the cotorsion theory
lies in solving the so-called flat cover conjecture (FCC) in [7] in 2001. The FCC is committed to
Enochs, who has been worked since 1984. Since flatness and injectivity are linked through character
modules, the researchers believe that each module has a flat cover. Finally this conclusion is solved
by proving that the class of flat modules and the class of cotorsion modules form a cotorsion theory.
In this survey article, we introduce the properties of the cotorsion theory and show how to construct
the homology theory for all cotorsion theories.

The class of modules mentioned in this article refers to a full subcategory, which is closed isomor-
phisms, of the R-module category M. We always denote by P the class of projective modules, by I
the class of injective modules, by F the class of flat modules. We also represent by Pn, In and Fn re-
spectively the class of modules whose projective dimension, injective dimension and flat dimension
is at most n.

1 Generalized purity of modules

1.1 Pure exact sequences

A flat module over a ring R is an R-module M such that taking the tensor product over R with M
preserves exact sequences. Below we discuss the converse property.
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Definition 1.1. Let L be a class of modules.

(1) An exact sequence ξ : 0→ A→ B→ C→ 0 is called an L-pure exact sequence if for anyM ∈ L,

M ⊗R ξ : 0 −→M ⊗RA −→M ⊗R B −→M ⊗R C −→ 0

is also an exact sequence.

(2) A submodule A of an R-module B is called an L-pure submodule if the exact sequence 0→
A→ B→ B/A→ 0 is L-pure.

(3) A monomorphism f : A → B is called an L-pure monomorphism if the exact sequence 0 →

A
f
→ B→ Coker(f )→ 0 is L-pure.

(4) When L = M, an L-pure exact sequence is called a pure exact sequence, an L-pure submodule
is called a pure submodule, and an L-pure monomorphism is called a pure monomorphism.

Example 1.2. Let L be any class of modules. Then every split exact sequence and every pure exact
sequence are L-pure.

Lemma 1.3. Let x1, . . . ,xm be a basis of Rm, e1, . . . , en be a basis of Rn, and α : Rm→ Rn be a homomorphism.

Write α(xi) =
n∑
j=1
rijej , rij ∈ R, i = 1, . . . ,m. Let Rm

α→ Rn
β
→ N → 0 be an exact sequence and let B be an

R-module. If in N ⊗R B we have
n∑
j=1

β(ej )⊗ bj = 0, bj ∈ B,

then there exist u1, . . . ,um ∈ B such that bj =
n∑
i=1
rijui , j = 1, . . . ,n.

Proof. Let K = Ker(β). Then K is a submodule of Rn generated by {
n∑
j=1
rijej}mi=1 and 0→ K → Rn

β
→

N → 0 is an exact sequence. Thus K ⊗R B→ F ⊗R B→ N ⊗R B→ 0 is an exact sequence. Hence there
is ui ∈ B, i = 1, . . . ,m, such that

n∑
j=1

ej ⊗ bj =
m∑
i=1

(
n∑
j=1

rijej )⊗ui =
n∑
j=1

ej ⊗ (
m∑
i=1

rijui).

By [22, Exercise 2.7], bj =
n∑
i=1
rijui , j = 1, . . . ,n.

For a finitely presented module N , we can assume that there exist a free module F with its basis
e1, . . . , en and an epimorphism β : F → N . Set K = Ker(β). Then K is finitely generated with its

generating system yi =
n∑
j=1
rijej , i = 1, . . . ,m. Moreover for any module X, like [22, Exercise 3.27], its

character module is denoted by X+ = HomR(X,Q/Z). As in [22, Example 2.1.27], there exists an
evaluation map ρ : X→ X++:

ρ(x)(f ) = f (x), x ∈ X, f ∈ X+.

Theorem 1.4. The following are equivalent for an exact sequence ξ : 0→ A→ B
g
→ C→ 0:
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(1) ξ is a pure exact sequence.

(2) For any finitely presented module N , the induced sequence N ⊗R ξ is exact.

(3) Let aj =
m∑
i=1
rijbi , rij ∈ R, aj ∈ A, bi ∈ B, j = 1, . . . ,n. Then there exist vi ∈ A such that aj =

m∑
i=1
rijvi .

In other words, for any integers m,n, if any system of linear equations

(Smn) :
m∑
i=1

rijxi = aj , rij ∈ R, aj ∈ A,i = 1, . . . , ,n (1.1)

has a solution in B, the equations must have a solution in A.

(4) For any commutative diagram of the form:

0 // K //

σ ��

F
β //

τ��
γ

yy

N //

h��

0

0 // A // B
g // C // 0

where N is a finitely presented module and F is a finitely generated free module, there is a
homomorphism γ : F→ A such that γ |K = σ .

(5) For any finitely presented module N , the induced sequence

HomR(N,ξ) : 0→HomR(N,A)→HomR(N,B)→HomR(N,C)→ 0

is exact.

(6) The induced exact sequence ξ+ : 0→ C+→ B+→ A+→ 0 is split.

Proof. (1)⇒(3) Let F be a free module with its basis e1, . . . , en, K be a submodule of F generated by

{
n∑
j=1
rijej | i = 1, . . . ,m} and N := F/K . Let β : F → N be the natural homomorphism. Then in N ⊗R B,

we have
n∑
j=1

β(ej )⊗ aj =
m∑
i=1

n∑
j=1

β(ej )⊗ rijbi =
m∑
i=1

(
n∑
j=1

rijβ(ej ))⊗ bi = 0.

Since A is a pure submodule of B, we also have, in N ⊗RA,
n∑
j=1
β(ej )⊗aj = 0. By Lemma 1.3, there exist

vi ∈ A, i = 1, . . . ,m, such that aj =
m∑
i=1
rijvi .

(3)⇒(2) Let aj ∈ A such that in N ⊗R B, we have
n∑
j=1
β(ej ) ⊗ aj = 0. Also assume N = F/K . By

Lemma 1.3, there exist bi ∈ B, i = 1, . . . ,m, such that aj =
m∑
i=1
rijbi . By the hypothesis, there exist vi ∈ A,

i = 1, . . . ,n, such that aj =
n∑
i=1
rijvi . Hence in N ⊗RA, we have

n∑
j=1

β(ej )⊗ aj =
m∑
i=1

(
n∑
j=1

rijβ(ej ))⊗ vi = 0.

Therefore N ⊗RA→N ⊗R B is a monomorphism.
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(2)⇒(1) Let M be any R-module. By [22, Theorem 2.6.20], M = lim
−→
{Ni | i ∈ Γ }, where Γ is a

directed set and {Ni | i ∈ Γ } is a direct system of finitely presented modules over Γ . By the hypothesis,
0→ Ni ⊗R A→ Ni ⊗R B→ Ni ⊗R C → 0 is an exact sequence for any i ∈ Γ . By [22, Theorem 2.5.33]
and [22, Theorem 2.5.34], M ⊗R ξ is an exact sequence.

(3)⇒(4) Still let e1, . . . , en be a basis of F and set yi :=
n∑
j=1
rijej for each j = 1, . . . ,m and let K be

generated by {yi}mi=1. Write τ(ej ) = bj and ai = σ (yi). Then ai =
∑
j=1
rijbj . By the hypothesis, there

exist vj ∈ A, j = 1, . . . ,n, such that ai =
n∑
j=1
rijvj , i = 1, . . . ,m. Set γ(ej ) = vj , j = 1, . . . ,n. Then γ(yi) =

γ(
∑
j=1
rijej ) =

∑
j=1
rijvj = ai = σ (yi). Therefore γ |K = σ .

(4)⇒(3) Let aj =
m∑
i=1
rijbi , rij ∈ R, aj ∈ A, bi ∈ B, j = 1, . . . ,n. Let F be a free module with its basis

x1, . . . ,xm, and set zj :=
m∑
i=1
rijxi for each i = 1, . . . ,n and let K be a submodule of F generated by {zj}nj=1,

and N = F/K . Set τ(xi) = bi and σ (zj ) = aj . If cj ∈ R,
n∑
j=1
cjzj = 0, then for any i,

∑
j=1
cjrij = 0. Thus

n∑
j=1
cjaj =

m∑
i=1

n∑
j=1
cjrijbi = 0. Hence σ is a well-defined homomorphism. It is easy to see that σ and τ

give the hypothesis of the commutative diagram. By the hypothesis, there exists a homomorphism

γ : F→ A such that γ |K = σ . Write vi = γ(xi). Then aj = γ(zj ) =
m∑
i=1
rijγ(xi) =

m∑
i=1
rijvi .

(4)⇒(5) Let h ∈HomR(N,C). It is easy to construct conditions given in the commutative diagram.
By [22, Exercise 1.60], there exists a homomorphism h′ : N → B such that h = gh′ = g∗(h′). Therefore
g∗ : HomR(N,B)→HomR(N,C) is an epimorphism.

(5)⇒(4) This follows from [22, Exercise 1.60].
(1)⇒(6) Since ξ is a pure exact sequence, for any module M, (M ⊗R B)+ → (M ⊗R A)+ → 0 is an

exact sequence. Taking M = A+, by [22, Theorem 2.2.16], HomR(A+,B+)→ HomR(A+,A+)→ 0 is an
exact sequence. Since 1A+ ∈HomR(A+,A+), the exact sequence ξ+ is split.

(6)⇒(1) Since ξ+ is a split exact sequence, HomR(M,ξ+) is an exact sequence for any module M.
By [22, Theorem 2.2.16], we get that ξ is a pure exact sequence.

Theorem 1.5. (Bican-Bashir-Enochs) Let M be an R-module and κ be an infinite cardinal number
with κ > |R|.

(1) LetX be a submodule ofM with |X | 6 κ. Then there exists a pure submoduleN ofM containing
X such that |N | 6 κ.

(2) There exists a continuous ascending chain of pure submodules of M

0 =M0 ⊂M1 ⊂M2 ⊂ · · · ⊂Mα ⊂Mα+1 ⊂ · · · ⊂Mτ =M,

such that |Mα+1/Mα | 6 κ.

Proof. (1) Let N0 be a submodule generated by X. Then trivially |N0| 6 κ. Inductively, let i be a
natural number and let a module Ni be given. Let Ni+1 be a submodule of M generated by the
solution xi of a system of linear equations (1.1) (Smn) (where aj ∈ Ni) and Ni . Since |R| 6 κ, we have

|Ni+1| 6 κ. Set N =
∞⋃
i=0
Ni . Then |N | 6 κ, and it follows from Theorem 1.4 that N is a pure submodule

of M with X ⊆N .
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(2) Without loss of generality, we assume that M , 0. Set M0 := 0. By (1), there exists a nonzero
pure submodule M1 of M such that |M1| 6 κ. Again by (1), there exists a nonzero pure submodule
M2/M1 of M/M1 such that |M2/M1| 6 κ. By Exercise 5, M2 is a pure submodule of M. If this goes on,
it is proved by transfinite induction.

Definition 1.6. Let L be a class of modules and let L be an R-module.
(1) L is called an L-injective module if Ext1

R(X,L) = 0 for any X ∈ L.
(2) L is called an L-flat module if TorR1 (L,X) = 0 for any X ∈ L.

Example 1.7. (1) If L denotes the class of finitely generated modules, then an L-injective module
is just injective.

(2) If L denotes the class of finitely presented modules, then an L-injective module is just an FP-
injective module.

Theorem 1.8. Let L be a class of modules. Then a module L is L-injective if and only if any exact
sequence of the form ξ : 0→ L→ B→ C→ 0 is split, where C ∈ L.

Proof. Assume that L is an L-injective module. Since C ∈ L, HomR(ξ,L) is an exact sequence. It
follows from the fact that 1 ∈HomR(L,L) that this exact sequence is split.

Assume that the converse condition is satisfied. For any C ∈ L, by [22, Theorem 3.3.5], Ext1
R(C,L) =

0. Therefore L is L-injective.

1.2 Pure injective modules

Definition 1.9. Let L be a class of modules and let L be an R-module. Then L is called an L-pure
injective module if for any L-pure exact sequence ξ : 0→ A→ B→ C → 0, the induced sequence
HomR(ξ,L) : 0 → HomR(C,L) → HomR(B,L) → HomR(A,L) → 0 is also exact. When L = M, an
L-pure injective module is just a pure injective module.

Example 1.10. Let L be a class of modules.

(1) Since every pure exact sequence is an L-pure exact sequence, every L-pure injective module is
pure injective.

(2) Every injective module isL-pure injective. We denote by PI the class of pure injective modules.
Then I ⊆ PI .

(3) Any direct product of L-pure injective modules is also L-pure injective.

(4) For any A ∈ L, its character module A+ is L-pure injective, and thus A+ is pure injective.

Proof. We only prove (4). Let 0→ X → Y → Z → 0 be an L-pure exact sequence. Then we have the
following commutative diagram:

0 // (A⊗R Z)+ //

��

(A⊗R Y )+ //

��

(A⊗R X)+ //

��

0

0 // HomR(Z,A+) // HomR(Y ,A+) // HomR(X,A+) // 0

By the hypothesis, the top row is exact. By [22, Theorem 2.2.16], three vertical arrows are isomor-
phisms. By [22, Exercise 1.59], the bottom row is exact. Therefore A+ is L-pure injective.

Theorem 1.11. Let L be a class of modules. Then the following are equivalent for a module L:
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(1) L is an L-pure injective module.

(2) Any L-pure exact sequence of the form ξ : 0→ L→M→ C→ 0 is split.

Proof. (1)⇒(2) This follows from the facts that HomR(ξ,L) is an exact sequence and 1L ∈HomR(L,L).
(2)⇒(1) Let 0→ A→ B→ C → 0 be an L-pure exact sequence and let h : A→ L be a homomor-

phism. By [22, Theorem 1.9.19], we have the following commutative diagram with exact rows:

0 // A
f //

h ��

B
g //

β��

C // 0

0 // L α //M
γ // C // 0

Let N be a finitely presented module. Use the functor HomR(N,−) to act on the above commutative
diagram to get the following commutative diagram with exact rows:

0 // HomR(N,A) //

��

HomR(N,B)
g∗ //

��

HomR(N,C) // 0

0 // HomR(N,L) // HomR(N,M)
γ∗ // HomR(N,C)

From the right side of the above diagram, we get that γ∗ is an epimorphism, and thus 0 → L →
M → C → 0 is a pure exact sequence. By hypothesis, there exists a homomorphism σ : M → L such
that σα = 1. Thus τ := σβ : B → L, and τf = σβf = σαh = h. Therefore L is an L-pure injective
module.

Corollary 1.12. Let L be a class of modules and let L be an L-pure injective module. If L is an L-pure
submodule of an injective module, then L is injective.

Corollary 1.13. The following are equivalent for a module L:

(1) L is a pure injective module.

(2) Any pure exact sequence of the form 0→ L→ B→ C→ 0 is split.

(3) The natural homomorphism ρ : L→ L++ is a split monomorphism, that is, L is a direct summand of
L++.

(4) L is a direct summand of some X+.

Let L be a class of modules. Define:

L> = {D ∈M | TorR1 (L,D) = 0 for any L ∈ L},

which is called a Tor-orthocomplement of L. Trivially each D ∈ L> is an L-flat module. Note that,
since we assume that R is a commutative ring, we don’t need to define >L.

Theorem 1.14. Let L be a class of R-modules. Then the following are equivalent for an R-module D:

(1) D is an L-flat module.

(2) D+ is an L-injective module, that is, Ext1
R(A,D+) = 0 for any A ∈ L.

(3) Any exact sequence of the form η : 0→ X→ Y →D→ 0 is L-pure.

(4) If ξ : 0→ X → Y → A→ 0 is an exact sequence with A ∈ L, then the induced sequence ξ ⊗R D
is exact.
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(5) Any L-pure exact sequence of the form η : 0→ X→ F→D→ 0 is L-pure, where F is projective.

(6) Any L-pure exact sequence of the form η : 0→ X→ F→D→ 0 is L-pure, where F is flat.

(7) There exists an L-pure exact sequence η : 0→ K → F→D→ 0, where F is flat.

(8) There exists an L-pure exact sequence η : 0→ K → F→D→ 0, where F is L-flat.

Proof. We only prove (1)⇔(2)⇔(3), and leave the rest to the reader.
(1)⇒(2) By [22, Theorem 3,4,11], for any A,B ∈M, we have the natural isomorphism:

Ext1
R(A,B+) � TorR1 (B,A)+. (1.2)

When A ∈ L and D ∈ L>, we have TorR1 (A,D) = 0. It follows from (1.2) that Ext1
R(A,D+) = 0.

(2)⇒(3) It can be obtained by backward deduction from the isomorphism (1.2).
(1)⇒(3) For any A ∈ L, this follows from the exact sequence

0 = TorR1 (A,D)→ A⊗R X→ A⊗R Y → A⊗RD→ 0.

(3)⇒(1) Let F be a flat module and let η : 0 → X → F → D → 0 be an exact sequence. By the
hypothesis, η is an L-pure exact sequence. Thus A⊗R η is an exact sequence for any module A ∈ L.
Since

0 −→ TorR1 (A,D) −→ A⊗R X −→ A⊗R F −→ A⊗RD −→ 0

is also an exact sequence, TorR1 (A,D) = 0. Therefore D is L-flat.

Corollary 1.15. The following are equivalent for an R-module D:

(1) D is a flat module.

(2) D+ is an injective module.

(3) Any exact sequence of the form 0→ X→ Y →D→ 0 is pure.

(4) Any exact sequence of the form 0→ X→ F→D→ 0 is pure, where F is flat.

Definition 1.16. Let L be a class of modules.

(1) L is said to be closed under extensions if for any exact sequence 0→ A→ B→ C→ 0, A,C ∈ L
imply that B ∈ L.

(2) L is said to be closed under direct sums (resp., direct products) if whenever {Ci} is a family of
modules in L, we have

⊕
i

Ci ∈ L (resp.,
∏
i
Ci ∈ L).

(3) L is said to be closed under direct summands if C1 ⊕C2 ∈ L implies that C1,C2 ∈ L.

(4) L is said to be closed under direct limits if whenever {(Ci ,ϕij ) |, i ∈ Γ } is a direct system, where
Γ is a directed set and Ci ∈ L, we have lim

−→
Ci ∈ L.

(5) L is said to be closed under kernels of epimorphisms if whenever 0→ A→ B→ C → 0 is an
exact sequence, where B,C ∈ L, we have A ∈ L.

(6) L is said to be closed under cokernels of monomorphisms if whenever 0→ A→ B→ C → 0
is an exact sequence, where A,B ∈ L, we have C ∈ L.

Proposition 1.17. Let L be a class of modules.
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(1) If P ⊆ L and L is closed under kernels of epimorphisms, then a module D is an L-flat module if and
only if TorRk (L,D) = 0 for any L ∈ L and any k > 0.

(2) Let F be an L-flat module and X be an L-pure submodule of F. Then F/X is an L-flat module. In
addition, if P ⊆ L and L is closed under kernels of epimorphisms, then X is also an L-flat module.
In particular, let F be a flat module and X be a pure submodule of F. Then F/X and X are both flat
modules.

Proof. Exercise.

Theorem 1.18. Let L be a class of R-modules and let ξ : 0→ A→ B→ C → 0 be an exact sequence.
Then the following are equivalent:

(1) ξ is L-pure.

(2) HomR(ξ,L) is an exact sequence for any L-pure injective module L.

(3) HomR(ξ,M+) is an exact sequence for any M ∈ L.

(4) 0→HomR(M,C+)→HomR(M,B+)→HomR(M,A+)→ 0 is an exact sequence for any M ∈ L.

Proof. (1)⇒(2) Trivial.
(2)⇒(3) By Example 1.10, M+ is L-pure injective. Now the assertion follows from the hypothesis.
(3)⇒(4) For any module X, it follows from [22, Theorem 2.2.16] that there is an isomorphism

HomR(M,X+) � (M ⊗R X)+ �HomR(X,M+).

Therefore the assertion is true.
(4)⇒(1) By [22, Theorem 2.2.16], (M ⊗R ξ)+ is an exact sequence. By [22, Exercise 3.27], M ⊗R ξ is

an exact sequence. Therefore ξ is an L-pure exact sequence.

Corollary 1.19. Let ξ : 0 → A → B → C → 0 be an exact sequence. Then ξ is pure if and only if the
induced sequence HomR(ξ,L) is exact for any pure injective module L..

Theorem 1.20. Let L be a class of R-modules. Then every L-pure injective module is L>-injective.

Proof. Let E be an L-pure injective module. For any L-flat module D, by Theorem 1.14, there is an
L-pure exact sequence ξ : 0→ K → P → D→ 0, where P is a projective module. Since HomR(ξ,E) is
an exact sequence, Ext1

R(D,E) = 0. Therefore E is L>-injective.

Theorem 1.21. Let L be a class of R-modules. Then the following are equivalent for an R-module D:

(1) D is an L-flat module.

(2) Ext1
R(D,U ) = 0 for any L>-injective module U .

(3) Ext1
R(D,V ) = 0 for any L-pure injective module V .

Proof. Exercise.

2 Approximation theory of a class of modules

Approximation theory of module classes is known as a cover and an envelope theory of modules. It
can be traced back to: In 1940, Baer et al. constructed a theory of injective envelopes and in 1960,
Bass construct a projective cover and characterized perfect rings. By good properties of the cover
and the envelope, after giving impetus by Enochs et al., approximation theory of classes of modules
has been already demonstrated important applications in many problem solving.
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2.1 Precovers and covers of modules

Definition 2.1. Let A be a class of modules, M be an R-modules, A ∈ A, and ϕ : A → M be a
homomorphism.

(1) (A,ϕ) is called an A-precover of M if for any A′ ∈ A, the following diagram can be completed
into a commutative diagram,

A′
h

yy
f
��

A
ϕ //M

equivalently HomR(A′ ,A)
ϕ∗→HomR(A′ ,M)→ 0 is an exact sequence for any A′ ∈ A.

(2) Let (A,ϕ) be an A-precover of M. Then (A,ϕ) is called an A-cover of M provided that A′ = A
and f = ϕ imply that h is an automorphism of A.

Theorem 2.2. LetA be a class of modules and let M be an R-module. If anA-cover of M exists, then
A-covers of M are isomorphic, in other words, an A-cover of M is unique up to isomorphism if it
exists.

Proof. Let (A1,ϕ1) and (A2,ϕ2) be A-covers of M. Then there exist a homomorphism f : A1 → A2
such that ϕ2f = ϕ1, and a homomorphism g : A2 → A1 such that ϕ1g = ϕ2. It follows from equal-
ities ϕ1gf = ϕ1 and ϕ2f g = ϕ2 that f g and gf are isomorphisms, which imply that f and g are
isomorphisms.

Theorem 2.3. Let A be a class of modules, M be an R-module, and (A,ϕ) be an A-precover of M. If
P ⊆ A, then ϕ is an epimorphism.

Proof. Let P ∈ P and let f : P →M be an epimorphism. By the definition of precovers, there exists a
homomorphism h : P → A such that ϕh = f . Therefore ϕ is an epimorphism.

Let L be a class of modules. Define:

⊥L = {A ∈M | Ext1
R(A,C) = 0 for any C ∈ L}

and
L⊥ = {B ∈M | Ext1

R(C,B) = 0 for any C ∈ L},

which are called respectively the left orthocomplement and right orthocomplement of L.

The simplest case isL = {R}, at this timeL⊥ = RM, ⊥(L⊥) = P . For any classL of modules, obviously
L ⊆ ⊥(L⊥), L ⊆ (⊥L)⊥, and L⊥ and ⊥L are closed under extensions.

Definition 2.4. Let A be a class of modules, M be an R-module. Then M is said to have a special
A-precover ofM (also ξ or (A,ϕ) is called a specialA-precover ofM) if there exists an exact sequence

ξ : 0→ K → A
ϕ
→M→ 0, where A ∈ A and Ker(ϕ) ∈ A⊥.

Theorem 2.5. Let A be a class of modules.

(1) Every special A-precover of M is necessarily A-precover of M.

(2) Let A be closed under extensions. Let (A,ϕ) be an A-cover of a module M and ϕ be an epimor-
phism. Then (A,ϕ) is a special A-precover of M. In particular, if P ⊆ A, then every A-cover of
a module is a special A-precover.
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Proof. (1) Let ξ : 0 → K → A
ϕ
→ M → 0 be a special A-precover of M. For any A′ ∈ A, since

Ext1
R(A′ ,K) = 0, HomR(A′ ,ξ) is an exact sequence. So (A,ϕ) is an A-precover of M.

(2) Write K = Ker(ϕ). Then 0→ K → A
ϕ
→M→ 0 is an exact sequence. By (1), it is enough to prove

that K ∈ A⊥. Let A′ ∈ A and let 0→ K
σ→ X

α→ A′ → 0 be an exact sequence. Consider the following
commutative diagram with exact rows and columns:

0

��

0

��
0 // K //

σ ��

A
ϕ //

h��

M // 0

0 // X
f //

α ��

Q
g //

β��

M // 0

A′

��

A′

��
0 0

where the left upper corner is a pushout. Since A,A′ ∈ A, we have Q ∈ A. Since (A,ϕ) is an A-cover
of M, there exists δ :Q→ A such that ϕδ = g. Hence ϕ = ϕδh. Therefore δh is an isomorphism.

Define η(x) = (δh)−1δf (x), x ∈ X. Since ϕ = ϕ(δh)−1, we have ϕη(x) = ϕδf (x) = gf (x) = 0. Thus
η(x) ∈ K . Hence η : X→ K . Since ησ = (δh)−1δf σ = (δh)−1(δh) = 1, it follows that 0→ K → X→ A′→
0 is a split exact sequence. By [22, Theorem 3.3.5], Ext1

R(A′ ,K) = 0. Therefore K ∈ A⊥.

Theorem 2.6. Let A be a class of modules, M be an R-module, and (A,ϕ) be an A-precover of M. If
M has an A-cover, then

(1) A =D1 ⊕D2, where D1 ⊆ Ker(ϕ) and ϕ|D2
is an A-cover of M.

(2) (A,ϕ) is an A-cover of M if and only if A has a nonzero direct summand contained in Ker(ϕ).

Proof. (1) Let (A′ ,ϕ′) be an A-cover of M. By the definition, there exist homomorphisms f ′ : A′ → A
such that ϕf = ϕ′, and g : A→ A′ such that ϕ′g = ϕ. Thus ϕ′gf = ϕ′. By the definition of covers,
gf is an isomorphism. Thus f is a monomorphism, and there is an isomorphism h : A′ → A′ such
that gf h = 1A′ . By [22, Exercise 1.23], A = Ker(g)⊕ Im(f h). Set D1 = Ker(g) and D2 = Im(f h). Then
obviously D1 ⊆ Ker(ϕ) and D2 � Im(f ) � A′.

(2) This follows from (1).

Example 2.7. (1) Let ϕ : P → M → 0 be an epimorphism, where P is a projective module. Then
obviously (P ,ϕ) is a special P -precover of a module M. So every module has a special P -
precover.

(2) The P -cover of a module is the same as the projective cover. In fact, assume (P ,ϕ) is the projec-
tive cover of a moduleM and let h : P → P such that ϕh = ϕ. By [22, Theorem 2.7.13(1)], h is an
epimorphism. Since Ker(h) ⊆ Ker(ϕ), it follows that Ker(h) is a superfluous submodule of P . So
(P ,h) is a projective cover of P . From [22, Theorem 2.7.13(3)], h is an isomorphism. Therefore
a projective cover is a P -cover.

Conversely, assume (P ,ϕ) is a P -cover of a module M. Suppose that Ker(ϕ) +A = P and take a
homomorphism f : F→ P such that Im(f ) = A, where F is a free module. For any x ∈M, since
ϕ is an epimorphism, there is y ∈ P such that ϕ(y) = x. Write y = z + a, where z ∈ Ker(ϕ) and
a ∈ A. Then x = ϕ(y) = ϕ(a). So ϕf : F→M is an epimorphism, that is, (F,ϕf ) is a P -precover
of M. So there is a homomorphism g : P → F such that ϕf g = ϕ. So f g is an isomorphism, and
thus f is an epimorphism, that is, A = P . So Ker(ϕ) is a superfluous submodule of P . So every
P -cover is a projective cover.
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(3) Since each module has a projective cover if and only if R is a perfect ring. Thus, although a
special A-precover exists, an A-cover does not necessarily exist.

2.2 Preenvelopes and envelopes of modules

The definition of preenvelopes and envelopes of the module and the related conclusions can be ob-
tained by the dual method of precovers and covers of the module. Therefore here we only make only
the corresponding statements without proofs.

Definition 2.8. Let B be a class of modules, N be an R-module, B ∈ B, and ϕ :N → B be a homomor-
phism.

(1) (B,ϕ) is called a B-preenvelope of N if for any B′ ∈ B, the following can be completed into a
commutative diagram:

B′

N

f

OO

ϕ // B

h
ee

equivalently HomR(B,B′)
ϕ∗

→HomR(N,B′)→ 0 is an exact sequence for any B′ ∈ B.

(2) Let (B,ϕ) be a B-preenvelope ofN . Then (B,ϕ) is called a B-envelope ofN provided that B′ = B
and f = ϕ imply that h is an automorphism of B.

Theorem 2.9. Let B be a class of modules and let N be an R-module. If a B-preenvelope of N exists,
then B-preenvelopes of N are isomorphic, in other word, a B-preenvelope of N is unique up to
isomorphism if it exists.

Theorem 2.10. Let B be a class of modules, N be an R-module, and (B,ϕ) be a B-preenvelope of N .
If I ⊆ B, then ϕ is a monomorphism.

Definition 2.11. Let B be a class of modules, N be an R-module. Then (B,ϕ) is called a special B-
preenvelope of N (also ξ or (B,ϕ) is a special B-preenvelope of N ) if there exists an exact sequence

ξ : 0→N
ϕ
→ B→ L→ 0, where B ∈ B and L ∈ ⊥B

Theorem 2.12. Let B be a class of modules.

(1) Every special B-preenvelope of a module N is necessarily a B-preenvelope of N .

(2) Let B be closed under extensions. Let (B,ϕ) be an B-envelope of a module N and ϕ be a
monomorphism. Then (B,ϕ) is a specialA-preenvelope ofN . In particular, if I ⊆ B, then every
B-envelope of a module is a special B-preenvelope.

Theorem 2.13. Let B be a class of modules, N be an R-module, and (B,ϕ) be a B-preenvelope of N .
If N has a B-envelope, then:

(1) B = C1 ⊕C2, where Im(ϕ) ⊆ C1 and ϕ :N → C1 is a B-envelope of N .

(2) (B,ϕ) is a B-envelope of N if and only if B has a direct summand properly containing Im(ϕ).

Example 2.14. By [22, Theorem 2.4.19(2)], an injective envelope is an I -envelope. Conversely, as-
sume that (E,ϕ) is an I -envelope of N . By Theorem 2.10, ϕ is a monomorphism. Let g : E(N )→ E
be a homomorphism such that g |N = ϕ. By [22, Lemma 2.4.15], g is a monomorphism. By Theo-
rem 2.13, E � E(N ). Thus an I -envelope is also an injective envelope. Therefore I -envelopes and
injective envelopes are identical.
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2.3 Minimal approximation

An extension generator and a minimal extension generator of a class of modules play an important
role in determining a special precover and a special preenvelope of a module.

Definition 2.15. Let A be a class of modules, N be an R-module, and ξ : 0→ N → G→ L→ 0 be an
exact sequence.

(1) ξ is called an Ext-generator of N relative to A (below, abbreviated by an Ext-generator of N )
if for any exact sequence ξ ′ : 0 → N → G′ → L′ → 0, where L′ ∈ A, we have the following
commutative diagram:

0 // N // G′ //

g��

L′ //

h��

0

0 // N // G // L // 0

(2) Let ξ be an Ext-generator of N . Then ξ is called a minimal Ext-generator of N relative to
A (below, abbreviated by a minimal Ext-generator of N ) if h (and hence g) of the following
commutative diagram is an isomorphism:

0 // N // G //

g��

L //

h��

0

0 // N // G // L // 0

Note that if ξ is an Ext-generator of N , ξ ′ : 0→ N → G′ → L′ → 0 is an exact sequence, and we
have the following commutative diagram:

0 // N // G //

g��

L //

h��

0

0 // N // G′ // L′ // 0

then ξ ′ is also an Ext-generator of N .

Example 2.16. Let A = RM, N be an R-module, and E be an injective module containing N . Then
ξ : 0→ N → G → L→ 0 is an Ext-generator of N (relative to RM). When E is the injective envelope
of N , ξ is also a minimal Ext-generator of N .

Lemma 2.17. Let A be a class of modules which is closed under direct limits and let N be an R-module. If
ξ : 0→N → G→ L→ 0 is an Ext-generator, then there exists an Ext-generator ξ ′ : 0→N → G′→ L′→ 0
such that the corresponding commutative diagram

0 // N // G //

g��

L //

h��

0

0 // N // G′ //

g ′��

L′ //

h′��

0

0 // N // G′′ // L′′ // 0

satisfies: For any Ext-generator ξ ′′ : 0→ N → G′′ → L′′ → 0 in the corresponding commutative diagram,
Ker(g ′g) = Ker(g).
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Proof. Assume on the contrary that an Ext-generator which satisfies the given property does not exist.
Set G0 = G and L0 = L. Then there exists an Ext-generator ξ1 : 0→N → G1→ L1→ 0 such that in the
following commutative diagram,

0 // N // G // L // 0

0 // N // G0
//

g10��

L0
//

h10��

0

0 // N // G1
// L1

// 0

where 0 = Ker(1G) ⊂ Ker(g10). Thus g10 is not a monomorphism.
Since ξ1 does not have the required properties, there exists an Ext-generator ξ2 : 0→ N → G2 →

L2→ 0 such that the corresponding commutative diagram

0 // N // G1
//

g21��

L1
//

h21��

0

0 // N // G2
// L2

// 0

has Ker(g10) ⊂ Ker(g20), where g20 := g21g10.
For any ordinal α, by induction for any ordinal number β < α, an Ext-generator has been con-

structed ξβ : 0→N → Gβ → Lβ → 0 such that the corresponding commutative diagram

0 // N // Gβ //

gβ+1,β
��

Lβ //

hβ+1,β��

0

0 // N // Gβ+1
// Lβ+1

// 0

has the property gβ+1,β′ = gβ+1,βgβ,β′ , hβ+1,β′ = hβ+1,βgβ,β′ , β′ 6 β, (Regard gβ,β = 1.) and Ker(gβ,0) ⊂
Ker(gβ+1,0). If α is not a limit ordinal, take β = α − 1. Thus α = β + 1. By the way as stated above, we
can construct ξα, and the corresponding commutative diagram (in the above diagram, take β = α−1).
If α is a limit ordinal, then set Gα = lim

−→ β<α
Gβ and Lα = lim

−→ β<α
Lβ . By the hypothesis, Lα ∈ A. By [22,

Theorem 2.5.33], ξα : 0→N → Gα→ Lα→ 0 is an Ext-generator.
By our construction, for any ordinal β < α, Ker(gβ,0) ⊂ Ker(gα,0) ⊆ G. So for any non-limit ordinal

α, there exists an element xα ∈ Ker(gα,0) such that xα < Ker(gα−1,0). Since the cardinality |G| of G is
fixed, but α is arbitrary, there is an ordinal α such that |α| > |G|, a contradiction.

Lemma 2.18. Let A be a class of modules which is closed under direct limits and let N be an R-module. If
ξ : 0→N → G→ L→ 0 is an Ext-generator, then:

(1) There exists an Ext-generator ξ ′ : 0→ N → G′ → L′ → 0 such that for any Ext-generator ξ ′′ : 0→
N → G′′→ L′′→ 0, g ′ of the following corresponding commutative diagram is a monomorphism:

0 // N // G //

g��

L //

h��

0

0 // N // G′ //

g ′��

L′ //

h′��

0

0 // N // G′′ // L′′ // 0

(2) ξ ′ is a minimal Ext-generator of N .
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Proof. (1) Set G0 = G and L0 = L. By Lemma 2.17, we may assume that ξ0 := ξ has the concluding
properties of Lemma 2.17. For any n ∈N, recursively construct an Ext-generator ξn : 0→N → Gn→
Ln→ 0 to have the property: In the corresponding commutative diagram,

0 // N // Gn //

gn+1,n��

L //

hn+1,n��

0

0 // N // Gn+1
//

g ′′��

Ln+1
//

h′′��

0

0 // N // G′′ // L′′ // 0

we have Ker(g ′′gn+1,n) = Ker(gn+1,n). Set G′ = lim
−→ n

Gn and L′ = lim
−→ n

Ln. By the hypothesis, ξ ′ : 0 →
N → G′ → L′ → 0 is an Ext-generator. Let gn : Gn→ G′ and hn : Ln→ L′ be the direct limits defined
by companion maps. For any Ext-generator ξ ′′ : 0 → N → G′′ → L′′ → 0, let the corresponding
commutative diagram be

0 // N // G′ //

g ′��

L′ //

h′��

0

0 // N // G′′ // L′′ // 0

Let x ∈ G′ with g ′(x) = 0. By [22, Theorem 2.5.31], there is xn ∈ Gn such that x = gn(xn). Thus
g ′gn(xn) = 0. Since g ′gn = g ′gn+1gn+1,n, it follows that Ker(g ′gn) = Ker(fn+1,n). Thus xn ∈ Ker(gn+1,n).
Hence x = gn(xn) = gn+1gn+1,n(xn) = 0. Therefore g ′ is a monomorphism.

(2) Assume on the contrary that the assertion is not true. Set G1 = G and L1 = L. Then in the
corresponding commutative diagram,

0 // N // G //

g10��

L //

h10��

0

0 // N // G1
// L1

// 0

g10 is a monomorphism, but is not an epimorphism. Again set G2 = G and L2 = L. Then g21 is a
monomorphism, but is not an epimorphism.

0 // N // G1
//

g21��

L1
//

h21��

0

0 // N // G2
// L2

// 0

For any ordinal α, inductively assume that if β < α. Then an Ext-generator ξβ : 0→N → Gβ → Lβ →
0 satisfies Gβ = G, Nα = L, and in the corresponding commutative diagram,

0 // N // Gβ //

gβ+1,β
��

L1β //

hβ+1,β��

0

0 // N // Gβ+1
// Lβ+1

// 0

gβ+1,β is a monomorphism, but is not an epimorphism. As Lemma 2.17 above, for β′ 6 β, we have
gβ+1,β′ = gβ+1,βgβ,β′ . When α is the limit ordinal number, set Gα = lim

−→ β<α
Gβ = G and Lα = lim

−→ β<α
Lβ =

L. By [22, Exercise 2.52], in the commutative diagram,

0 // N // Gβ //

gα,β
��

Lβ //

hα,β��

0

0 // N // Gα // Lα // 0
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gα,β is a monomorphism. If such a gα,β is an epimorphism (and so an isomorphism), there is nothing
to prove. Now assume that such gα,β ’s are not epimorphisms. Take an ordinal number α such that
|α| > |G|. When β′ < β < α, Im(gα,β′ ) ⊂ Im(gα,β), which induces a contradiction.

Theorem 2.19. Let A be a class of modules which is closed under extensions and direct limits and
let N be an R-module. If N has a special A⊥–preenvelope (G,λ) and L := Coker(λ) ∈ A, then N has a
special A⊥-envelope.

Proof. By the hypothesis, N has an Ext-generator. By Lemma 2.18, we may assume that ξ : 0→N →
G→ L→ 0 is a minimal Ext-generator. Let A ∈ A and let 0→ G→Q→ A→ 0 be an exact sequence.
Consider the following commutative diagram with exact rows and columns:

0 // N λ // G σ //

g
��

L //

h��

0

0 // N
µ // Q τ //M // 0

where the right square is a pushout. Since Coker(h) � A ∈ A and L ∈ A, we have M ∈ A. Since ξ is an
Ext-generator, there exist homomorphisms α :Q→ G and β :M→ L such that αµ = λ and σα = βτ . It
follows from the minimality that gα and hβ are isomorphisms. So the left vertical exact sequence of
the above diagram is split. By [22, Theorem 3.3.5], Ext1

R(A,G) = 0. Thus G ∈ A⊥. By the minimality,
G is a special A⊥-envelope of N .

Dually we have:

Theorem 2.20. Let A be a class of modules which is closed under extensions and direct limits and
let M be an R-module. If M has a special A-precover (A,ϕ), then M has a special A-cover.

3 Cotorsion theory

3.1 Basic properties of cotorsion theory

Definition 3.1. Let A and B be two classes of modules. Then G := (A,B) is called a cotorsion pair or
cotorsion theory if A = ⊥B and B =A⊥. In this case, we write K =A∩B, which is called the kernel
of G. Naturally B ∈ B is called an A-injective module, A ∈ A is also called a B-projective module.

Example 3.2. (1) (P ,M) and (M,I ) are cotorsion theories.

(2) For any class L of modules, by Exercise 7, LL := (⊥(L⊥),L⊥) and RL := (⊥L, (⊥L)⊥) are cotor-
sion theories, which are called the cotorsion theory generated by L and the cotorsion theory
cogenerated by L respectively.

Trivially if (A,B) is a cotorsion theory, then P ⊆ A and I ⊆ B. In addition, A is closed under direct
sums and B is closed under direct products, as well as A and B are closed under extensions and
direct summands.

Definition 3.3. Let G = (A,B) be a cotorsion theory.

(1) G is called a complete cotorsion theory if every module has a special A-precover.

(2) G is called a perfect cotorsion theory if every module has an A-cover and a B-envelope.

(3) G is called a hereditary cotorsion theory if A is closed under kernels of epimorphism.

By Theorem 2.5, every perfect cotorsion theory is necessarily complete.
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Theorem 3.4. Let G = (A,B) be a cotorsion theory. Then G is complete if and only if every module
has a special B-preenvelope.

Proof. Assume that G is complete. Let N be an R-module. Then there is an exact sequence 0→N →
E

g
→ F → 0, where E is an injective module. Let (A,ϕ) be a special A-precover of F. Construct the

following commutative diagram with exact rows and columns:

0 // N σ // Q //

��

A //

ϕ
��

0

0 // N // E
g // F // 0

where the diagram on the right square is a pullback. Set B := Ker(ϕ). By the hypothesis, B,E ∈ B, and
so Q ∈ B. Thus (Q,σ ) is a special B-preenvelope of N .

The conclusion of the converse follows dually from the above proof.

Theorem 3.5. Let G = (A,B) be a cotorsion theory. Then the following are equivalent:

(1) G is hereditary.

(2) B is closed under cokernels of monomorphisms.

(3) ExtkR(A,B) = 0 for any A ∈ A, B ∈ B, and any k > 1.

Proof. (1)⇒(3) Let 0→ K → P → A→ 0 be an exact sequence, where P ∈ P , A ∈ A. By the hypothesis,
K ∈ A. Thus Extk+1

R (A,B) � ExtkR(K,B) for any B ∈ B. Now the assertion follows by the induction.
(3)⇒(1) Let 0→ A1→ A→ A2→ 0 be an exact sequence, where A,A2 ∈ A. For any B ∈ B, there is

an exact sequence 0 = Ext1
R(A,B)→ Ext1

R(A1,B)→ Ext2
R(A2,B) = 0. Thus A1 ∈ A.

(2)⇔(3) This follows dually from the above proof.

Example 3.6. (1) (P ,M) is a hereditary complete cotorsion theory. Note that (P ,M) is a perfect
cotorsion theory if and only if R is a perfect ring. Therefore a complete cotorsion theory is not
necessarily perfect.

(2) (M,I ) is a hereditary perfect cotorsion theory.

Theorem 3.7. Let G = (A,B) be a complete cotorsion theory. If A is closed under direct limits, then
G is perfect.

Proof. This follows from Theorem 2.19 and Theorem 2.20.

3.2 Structures of B-envelopes of modules

When (A,B) constitutes a perfect cotorsion theory, each module has aA-cover and a B-envelope. For
any given module N , the specific structure of B-envelope of N is given below.

Theorem 3.8. Let (A,B) be a perfect cotorsion theory and let N ⊆ L be an extension of R-modules.
Then L is a B-envelope of N if and only if L satisfies the following conditions:

(1) L ∈ B;

(2) L/N ∈ A. ((1) and (2) show that L is a special B-preenvelope of N );

(3) there is no nonzero submodules X of L such that N ∩X = 0, but L/(N +X) ∈ A.
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Proof. Assume that L is aB-envelope ofN and let i :N → L be the inclusion map. Then the conditions
(1) and (2) trivially hold true. Let X be a submodule of L such that X∩N = 0 and set A := L/(N +X) ∈
A. Let π : L→ L/X be the natural homomorphism. Then the natural homomorphism f = πi : N →
L/X is a monomorphism and Coker(f ) = A. Let (B,ϕ) be the B-envelope of L/X and set φ = ϕf .
Consider the following commutative diagram with exact rows:

0 // N
f // L/X //

ϕ
��

A //

p��

0

0 // N
φ // B // C // 0

where the right square is a pushout. Write Y = Coker(ϕ) � Coker(p). Since Y ,A ∈ A, we obtain that
C ∈ A. Thus (B,φ) is a special B-envelope of N . Since L ∈ B, there exists a homomorphism g : B→ L
such that gφ = i. Thus gϕπi = i, and so gϕπ is an isomorphism, and thus π is a monomorphism. It
follows that X = 0.

Conversely, assume that L satisfies conditions (1), (2), and (3). Let (E,ϕ) be the B-envelope of N .
Then A := E/N ∈ A. Thus there exist homomorphisms f : E→ L and g : L→ E such that f ϕ = i and
gi = ϕ. Hence gf : E→ E satisfies (gf )ϕ = ϕ. Thus gf is an isomorphism. Hence L = Im(f )⊕Ker(g).
Set X := Ker(g). Since ϕ is a monomorphism, N ∩ X = 0. Note that we have an exact sequence
0→ X → L/N → E/N → 0. Thus L/(N +X) � E/N ∈ A. It follows from the condition (3) that X = 0.
Therefore f : E→ L is an isomorphism.

3.3 Test method of complete cotorsion theory

Given a class A of modules, when A is generated by a class L of modules, by Exercise 11 we know
that (A,A⊥) formed a cotorsion theory. But it is very difficult to determine whether (A,A⊥) becomes
a complete cotorsion theory. The following cardinal number method is currently used to determine
the validity of the complete cotorsion theory.

Definition 3.9. Let A be a class of modules and let M be an R-module. If there exist an ordinal
number λ and a continuous chain of submodules:

0 =M0 ⊂M1 ⊂ · · · ⊂Mα ⊂Mα+1 ⊂ · · · ⊂Mλ =M

such that whenever α < λ, one has Mα+1/Mα ∈ A, then M is called an A-filtered module and a
continuous ascending chain {Mα | α 6 λ} is called an A-filtration of M.

Furthermore, let κ be a given cardinal number. If for any ordinal number α,Mα is a pure submod-
ule of M and |Mα+1/Mα | 6 κ, then this A-filtration is called a κ-refinement.

Lemma 3.10. LetA be a class of modules and letM be anA-filtered module. IfN ∈ A⊥, then Ext1
R(M,N ) =

0.

Proof. This follows by applying [22, Lemma 11.7.2].

Countably generated modules, finitely generated modules, finitely presented modules, and super-
finitely presented modules are all sets. More generally, let κ be an infinite cardinal number and let X
and Y be two cardinal numbers at most κ. By set theory, we know that the number of mapping from
X to Y does not exceed 2κ. Now let M be a set with |M | 6 κ. A binary operation on M is a mapping
from the Cartesian product M ×M to M. Therefore, in the sense of isomorphism, the number of
Abelian groups that M can be made into does not exceed 2(κ), in other words, the number of non-
isomorphic Abelian groups whose cardinality does not exceed κ does not exceed 2κ. In particular,
in the category M of modules, the totality of non-isomorphic R-modules whose cardinality does not
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exceed κ is a set whose cardinality does not exceed 2κ. This is an important fact for judging whether
a cotorsion theory is complete.

In order to determine when (L,L⊥) is a complete cotorsion theory, the following theorem is very
effective.

Theorem 3.11. (Eklof-Trlifaj) Let S be a set of modules.

(1) Let M be an R-module. Then there exists an exact sequence 0 → M → P → A → 0, where
P ∈ S⊥ and A is an S-filtered module, and thus A ∈ ⊥(S⊥).

(2) (⊥(S⊥),S⊥) is a complete cotorsion theory.

Proof. (1) Write X =
⊕
S∈S

S. Then X⊥ = S⊥. Thus we may assume that S is the class of modules

constituting of a module S and direct sums of some copies of S. Let 0→ K
µ
→ F→ S→ 0 be an exact

sequence, where F is a free module. Take a fixed cardinal number λ such that K has a generation
system X with |X | < λ.

Set P0 = M. Using cardinal numbers and ordinal numbers without distinction, for any ordinal
number α < λ, if Pα has been given, then set Iα := HomR(K,Pα) as a new index set. Let µα : K (Iα) →
F(Iα) be a homomorphism of direct sums. Then µα is a monomorphism and Coker(µα) = S(Iα).

Define ϕα : K (Iα) =
⊕
f ∈Iα

Kf → Pα, where Kf = K , by ϕα([xf ]) =
∑
f ∈Iα

f (xf ). Furthermore, for any

f ∈ Iα, let if : K → K (Iα) and jf : F→ F(Iα) be the natural embedding maps. Then there is a relation

f = ϕαif , jf µ = µαif . (3.1).

Now assume that when β 6 α, Pβ has been constructed (Note that when α is a limit ordinal number,
set Pα :=

⋃
β<α

Pβ), in particular Pα has been constructed. Construction a pushout diagram:

0 // K (Iα) µα //

ϕα
��

F(Iα) //

ψα��

S(Iα) //

�
��

0

0 // Pα
� � hα // Pα+1

// Pα+1/Pα // 0

we get Pα+1. Set P :=
⋃
α<λ

Pα = lim
−→ α<λ

Pα. Set A := P /M and Aα := Pα/M. Then Aα+1/Aα � Pα+1/Pα �

S(Iα). Since P =
⋃
α<λ

Pα, we have A =
⋃
α<λ

Aα. Thus A is an S-filtered module.

Finally we prove that P ∈ S⊥. To do this, it suffices to prove that µ∗ : HomR(F,P )→HomR(K,P ) is
an epimorphism.

Let g : K → P be a homomorphism. Since K has a generating system X with |X | < λ and P =
⋃
α<λ

Pα,

there exists an ordinal number α < λ such that Im(g) ⊆ Pα. Hence there exists a homomorphism
f : K → Pα such that for any x ∈ K , we have g(x) = f (x). By the pushout diagram and (3.1), we have

ψαjf µ = ψαµαif = hαϕαif = hαf . (3.2)

Define σ : F → P such that σ (z) = ψαjf (z) ∈ Pα+1 ⊆ P . Then a direct verification shows that g = σµ =
µ∗(σ ). Therefore σ is an epimorphism.

(2) Since S ∈ ⊥(S⊥), this follows from (1), Lemma 3.10, and Theorem 2.12.

Definition 3.12. Let L be a class of modules.
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(1) We say that L is a resolving class if L is closed under both extensions and kernels of epimor-
phisms, and P ⊆ L.

(2) We say that L is a coresolving class if L is closed under both extensions and cokernels of
monomorphisms, and I ⊆ L.

(3) It is said that L has the property (P ) if for any L ∈ L, there is an epimorphism P → L, where P
is a projective module and P ∈ L.

(4) It is said that L has the property (I) if for any L ∈ L, there is a monomorphism L→ I , where I
is an injective module and I ∈ L.

Definition 3.13. Let B be an R-module.

(1) B is called a strong L-injective module if ExtiR(L,B) = 0 for any L ∈ L and any i > 0.

(2) B is called a strong L-projective module if ExtiR(B,L) = 0 for any L ∈ L and any i > 0.

Theorem 3.14. Let L be a class of modules. Use L⊥∞ to denote the class of strong L-injective modules
and ⊥∞L to denote the class of strong L-projective modules.

(1) L⊥∞ is a coresolving class.

(2) ⊥∞L is a resolving class.

Proof. (1) Obviously L⊥∞ is closed under extensions, and I ⊆ L⊥∞ .
Let 0→ A→ B→ C → 0 be an exact sequence with A,B ∈ L⊥∞ . Let L ∈ L and i > 0. Then there

is an exact sequence 0 = ExtiR(L,B)→ ExtiR(L,C)→ Exti+1
R (L,A) = 0. From this we get ExtiR(L,C) = 0,

that is, C ∈ L⊥∞ . So L⊥∞ is closed under cokernels of monomorphisms. Thus L⊥∞ is a coresolving
class.

(2) It can be proved similarly to (1).

Theorem 3.15. (1) Let L be a class of modules closed under kernels of epimorphisms, and have
the property (P ). Then L⊥ = L⊥∞ .

(2) Let L be a class of modules closed under cokernels of monomorphisms, and have the property
(I). Then ⊥L = ⊥∞L.

Proof. (1) Obviously L⊥∞ ⊆ L⊥. Conversely, let B ∈ L⊥. For any L ∈ L, take an exact sequence
0 → M → F → L → 0, where F is a free module. From the condition, M ∈ L. Let i > 0. Then
Exti+1

R (L,B) � ExtiR(M,B). So B ∈ L⊥∞ can be obtained by induction.
(2) It can be proved similarly to (1).

Lemma 3.16. Let L be a class of modules. Then:

(1) L ⊆ ⊥(L⊥∞).

(2) (⊥(L⊥∞))⊥ = L⊥∞ .

(3) (⊥(L⊥∞),L⊥∞) is a hereditary cotorsion theory.

(4) For each M ∈ L, select a projective resolution P(M) of M. LetAM be the set of all syzygies (including
M itself) of P(M). Set A =

⋃
M∈L
AM . Then A⊥ = L⊥∞ .
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Proof. (1) Let L ∈ L. Then obviously Ext1
R(L,A) = 0 for any A ∈ L⊥∞ , and so L ∈ ⊥(L⊥∞).

(2) Apparently L⊥∞ ⊆ (⊥(L⊥∞))⊥. By Theorem 3.14, L⊥∞ contains all injective modules and it is
closed under cokernels of monomorphisms. From Theorem 3.15(2) and Theorem 3.14, we know
⊥(L⊥∞) contains all projective modules and closed under kernels of epimorphisms. Applying Theo-
rem 3.15(1), we know that (⊥(L⊥∞))⊥∞ = (⊥(L⊥∞))⊥ = L⊥∞ .

(3) This is obtained by (2) and Theorem 3.14.
(4) Let N ∈ L⊥∞ . For any A ∈ A, there exist M ∈ L and an exact sequence

0 −→ A −→ Pk −→ ·· · −→ P1 −→ P0 −→M −→ 0, (3.2)

where P0, P1, . . . , Pk are projective modules. So Ext1
R(A,N ) � Extk+2

R (M,N ) = 0. Therefore N ∈ A⊥.
On the other hand, let N ∈ A⊥. For any M ∈ L and any k > −1, consider the exact sequence (3.2).

Then Extk+2
R (M,N ) � Ext1

R(A,N ) = 0. So N ∈ L⊥∞ .

Theorem 3.17. Let S be a set of modules and set B = S⊥∞ . Then (⊥B,B) is a hereditary and complete
cotorsion theory. Thus each module has a strong S-injective special preenvelope.

Proof. By Lemma 3.16, (B⊥,B) is a hereditary cotorsion theory. ConstructA as in Lemma 3.16. Then
L is a set. It is easy to see that B = A⊥. It follows from Theorem 3.11 that (⊥B,B) is a complete
cotorsion theory.

The following example is a specific application of Theorem 3.11, Theorem 3.17, and other results.

Example 3.18. (1) Let L denote the class of finitely presented modules. Then L-injective mod-
ules are FP-injective modules. Use F PI to denote FP-injective modules. Then F PI = L⊥.
From Theorem 3.11, (⊥F PI ,F PI ) is a complete cotorsion theory, so that each module has an
FP-injective special preenvelope. Similarly, by Theorem 3.17, each module has a strong FP-
injective special preenvelope.

(2) Let L denote the class of super-finitely presented modules. Then L is a set, at this time L-
injective modules are exactly weak injective modules. Use WI to denote the class of weak
injective modules. ThenWI = L⊥. According to Theorem 3.11, (⊥WI ,WI ) is a hereditary and
complete cotorsion theory, so that each module has a weak injective special preenvelope.

(3) Let n be a non-negative integer and L represent the class of finitely generated modules. For
each M ∈ L, take the (n − 1)th syzygy KM of a projective resolution. Then the module class S
formed by these KM is also a set, and In = S⊥. By Theorem 3.17, (⊥In,In) is a hereditary and
complete cotorsion theory, so that each module has an In-special preenvelope.

Use P1 to denote the class of modules whose projective dimension does not exceed 1.

Lemma 3.19. Let M ∈ P1.

(1) M has a tight system, that is, a family T of submodules satisfying:

(a) 0,M ∈ T , and T is closed under unions of chains;

(b) If A,B ∈ T , and A ⊆ B, then B/A ∈ P1;

(c) Let A ∈ T and X be a countable subset of M. Then there exists B ∈ T such that A,X ⊆ B, and
B/A is countably generated.

(2) Let S be the class of modules that can be generated countably and whose projective dimension does
not exceed 1. Then S is a set and M has S-filtration.

Proof. (1) See [11, Proposition VI.5.1]. (2) See [11, Proposition VI.6.1].



306 Moroccan Journal of Algebra and Geometry with Applications / F. Wang and H. Kim

Example 3.20. Let L denote the module class of 1-cosyzygies. Note that for an R-module M and a
positive integer n, pdRM 6 n if and only if Ext1

R(M,X) = 0 for any (n−1)-th cosyzygy module X. Thus
P1 = ⊥L. Then (P1,P⊥1 ) is a cotorsion theory. From Lemma 3.19, ⊥(S⊥) = ⊥(P⊥1 ) = ⊥((⊥L)⊥) = ⊥L = P1.
By Theorem 3.11, (P1,P⊥1 ) is a hereditary and complete cotorsion theory. Thus each module has a
P1-special precover.

3.4 Test method of perfect cotorsion theory

Now we define κ as follows: When |R| is finite, set κ = ℵ0; when |R| is infinite, set κ = |R|.

Lemma 3.21. Let G = (A,B) be the hereditary cotorsion theory generated by a class L of modules, where
L ⊆ PI . Then A ∈ A. if and only if there exists an ordinal number λ such that A has a κ-refinement of an
A-filtration {Aα | α 6 λ}.

Proof. Assume that A ∈ A. If |A| 6 κ, then the assertion follows by setting A0 = 0 and A1 = A. Now
assume that λ = |A| > κ. By Theorem 1.5(1), there exists a nonzero pure submodule A1 of A such
that |A1| 6 κ. For any L ∈ L, since Ext1

R(A,L) = 0 and L is a pure injective module, Ext1
R(A/A1,L) = 0,

that is, A/A1 ∈ A. By the heredity, A1 ∈ A. Trivially A1 , A. Thus there exists a submodule A2 of
A containing A1 such that A2/A1 is a nonzero pure submodule of A/A1, |A2/A1| 6 κ, and A2/A1 ∈ A.
Similarly we have A/A2 ∈ A. For any ordinal number α, inductively we assume that when β < α,
β is a non-limit ordinal, Aβ has been given, and satisfies the condition: Aβ is a pure submodule of
A, A/Aβ ∈ A, Aβ/Aβ−1 ∈ A, and |Aβ/Aβ−1| 6 κ. When α is a non-limit ordinal, repeating the above-
mentioned process for A/Aα−1, construct Aα to meet the requirements. When α is a limit ordinal, set
Aα :=

⋃
β<α

Aβ . Since the functors ⊗ and lim commute, Aα is a pure submodule of A. Thus A/Aα ∈ A.

Let λ = |A|. Using cardinal numbers and ordinal numbers without distinction, we can recursively get
the required κ-refinement of A.

Conversely, assume that A has a κ-refinement. For any N ∈ L, by Lemma 3.10, Ext1
R(A,N ) = 0.

Therefore A ∈ ⊥L =A.

Theorem 3.22. Let G = (A,B) be the hereditary cotorsion theory generated by a class L of modules,
where L ⊆ PI . Then G is a perfect cotorsion theory.

Proof. Let S be the module class {A ∈ M | A ∈ A and |A| 6 κ}. Then S is a set. Since S ⊆ A, we
have B = A⊥ ⊆ S⊥. Now let B ∈ S⊥ and A ∈ A. By Lemma 3.21, A has a κ-refinement {Aα}. Since
|Aα+1/Aα | 6 κ, by the choice of S , we have Ext1

R(Aα+1/Aα ,N ) = 0. By Lemma 3.10, Ext1
R(A,N ) = 0,

that is, N ∈ A⊥ = B. Thus B = S⊥. By Theorem 3.11, G = (A,B) = (⊥(S⊥),S⊥) is a complete cotorsion
theory.

In order to prove that G is a perfect cotorsion theory, by Theorem 3.7 it is enough to show that A
is closed under direct limits. Let {Ai ,ϕij} be a direct system in A over a directed set Γ . By Exercise
11, there is an exact sequence 0→N →

⊕
i

Ai → lim
−→

Ai → 0. For any C ∈ L, we have Ext1
R(

⊕
i

Ai ,C) �∏
i

Ext1
R(Ai ,C) = 0. Thus Ext1

R(lim
−→

Ai ,C) = 0. Therefore A is closed under direct limits.

Remark 3.1 Although, in Theorem 3.22 and Theorem 3.26 behind, hereditary conditions are not
added, we still get that G is a perfect cotorsion theory, see reference [13]. But to reduce the space, in
Lemma 3.21 the hereditary condition is added.

Definition 3.23. Let A and B be two classes of modules. Then (A,B) is called a Tor-torsion pair (or
Tor-torsion theory) if A = B> and B =A>. If A is closed under kernels of epimorphisms, then (A,B)
is said to be a hereditary Tor-torsion theory.
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Theorem 3.24. Let G = (A,B) be a Tor-torsion theory. Then the following are equivalent:

(1) G is hereditary.

(2) B is closed under kernels of epimorphisms.

(3) TorRk (A,B) = 0 for any A ∈ A, B ∈ B, and any k > 1.

Proof. The proof is similar to that of Theorem 3.5.

Example 3.25. (1) (F ,M) is a hereditary Tor-torsion theory.

(2) For any class L of modules, by Exercise 7, TL := (L>, (L>)>) is a Tor-torsion theory.

Theorem 3.26. Let (A,B) be a hereditary Tor-torsion theory. Then:

(1) A is closed under direct limits.

(2) Set L = {B+ | B ∈ B}. Then L ⊆A⊥.

(3) ⊥L =A, and thus ⊥(A⊥) =A.

(4) RL = (A,A⊥) is a perfect cotorsion theory.

Proof. (1) This follows from [22, Theorem 2.5.34].
(2) By [22, Theorem 3.4.11], for any A,B ∈M, we have the natural isomorphism:

Ext1
R(A,B+) � TorR1 (A,B)+.

When A ∈ A and B ∈ B, we have TorR1 (A,B) = 0, and so Ext1
R(A,B+) = 0. It follows that L ⊆A⊥.

(3) Trivially A ⊆ ⊥(A⊥) ⊆ ⊥L. Now let A ∈ ⊥L. Then Ext1
R(A,B+) = 0 for any B ∈ B. It follows from

(1.2) and [22, Exercise 3.27] that TorR1 (A,B) = 0. Thus A ∈ B> =A. Therefore ⊥(A⊥) =A.
(4) This follows from Example 1.10 and Theorem 3.22.

Example 3.27. (1) Let A = RM. Then B =M> = F and A⊥ = I . Thus (A,B) is a Tor-torsion theory.
It follows from Theorem 3.26 that each module has an injective envelope.

(2) Let A = F and B = RM. Then (A,B) is a Tor-torsion theory. It follows from Theorem 3.26 that
each module has a flat cover.

(3) (FCC) Note that for a module M, M is w-flat if and only if TorR1 (M,B) = 0 for any B ∈ F >w . Thus
(Fw,Fw>) is a Tor-torsion theory. By Theorem 3.26, each module has a w-flat cover.

Enochs’ Conjecture [9]: For any ring R, every R-module has a flat cover (FCC). Enochs et al. made
a long-term effort, in 2001 [7] solved this problem.

Now let’s consider the dual approach of strong L-injective modules, in which the proof methods
of some results are similar, and so the proof is omitted.

Definition 3.28. Let L be a class modules. Then a module A is called strong L-flat moduleif
TorRi (L,A) = 0 for any L ∈ L and any i > 0.

Use L>∞ to represent the class of strong L-flat modules. From [22, Theorem 3.4.14], the module
class L>∞ is closed under direct limits.

Theorem 3.29. L>∞ is a resolving class.
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Theorem 3.30. Let L be a class of modules closed under kernels of epimorphisms and have the
property (P ). Then L> = L>∞ , namely every L-flat module is a strong L-flat module.

Lemma 3.31. Let L be a class of modules. Then:

(1) L ⊆ (L>∞)>.

(2) ((L>∞)>)> = L>∞ .

(3) (L>∞ , (L>∞)>) is a hereditary Tor-torsion theory.

Theorem 3.32. Let L be a class of modules and set A = L>∞ . Then (A,A⊥) is a hereditary perfect
cotorsion theory. In other words, each module has a special strong L-flat cover and a special (L>∞)⊥-
injective envelope.

Proof. This is obtained from Lemma 3.31 and Theorem 3.26.

Corollary 3.33. Let L be a class of modules closed under kernels of epimorphisms and have the property
(P ). Then each module has a special L-flat cover and a special L⊥-injective envelope.

Example 3.34. If L represents the class of flat modules, then A := L> = RM and A⊥ = I . At this
point, Corollary 3.33 points out that each module has an injective envelope.

4 Cotorsion theory of weak w-projective modules

4.1 w-version of Kaplansky’s theorem

Kaplansky proved that every projective module is a direct sum of countably generated projective
submodules ([22, Corollary 2.3.15]), so that the projective modules over the local ring are all free
modules. This section provides thew-version of [22, Corollary 2.3.15]. The content of this subsection
is taken from [25].

Definition 4.1. (1) Let ξ : 0→ A
f
→ B

g
→ C→ 0 be an exact sequence. Then ξ is said to bew-split if

there exist J := (d1, . . . ,dn) ∈GV(R) and h1, . . . ,hn ∈HomR(C,B) such that dk1C = ghk , k = 1, . . . ,n.

(2) Let M be an R-module. Then M is called a w-split module if there exist a projective module F

and an epimorphism g : F→M such that 0→ Ker(g)→ F
g
→M→ 0 is a w-split exact sequence.

(3) Let ξ : 0→ P
f
→ F

g
→M → 0 be a w-split exact sequence and J and hk is defined as above. Let

F1 be a submodule of F and set g1 := g |B1
, C1 := Im(g1), A1 := f −1(Ker(g1)), and f1 = f |A1

. Then

ξ1 : 0→ A1
f1→ B1

g1→ C1→ 0 is an exact sequence. If hk(C1) ⊆ B1 for k = 1, . . . ,n, then it is obvious
that ξ1 is a w-split exact sequence, which is called a w-split exact sequence induced by ξ.

Lemma 4.2. Let ξ : 0→ A
f
→ B

g
→ C→ 0 be an exact sequence. Then ξ is w-split if and only if there exist

J = (d1, . . . ,dn) ∈GV(R) and q1, . . . , qn ∈HomR(B,A) such that dk1A = qkf , k = 1, . . . ,n.

Proof. Assume that ξ is w-split. Then there exist J := (d1, . . . ,dn) ∈ GV(R) and h1, . . . ,hn ∈ HomR(C,B)
such that dk1C = ghk , k = 1, . . . ,n. Consider the following commutative diagram with exact rows:

0 // A
f //

dk ��

B
g //

dk��
qk

xx

C //

dk��
hk

xx

0

0 // A
f // B

g // C // 0
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where the vertical arrows are all multiplicative homomorphisms used to multiply. By [22, Exercise
1.60] there exist a homomorphism qk : B→ A such that qkf = dk1A, k = 1, . . . ,n. Similarly the converse
can be proved.

Remark 4.3. In the diagram of the proof of Lemma 4.2, it is easy to see that the equality dk1B =
f qk + hkg holds, k = 1, . . . ,n.

Let ξ : 0 → P
f
→ F

g
→ M → 0 be an exact sequence, where F =

⊕
i∈I
Fi with each Fi a projective

module. Let H ⊆ I . If H = ∅, then write:

F(H) = 0, P (H) = 0,M(H) = 0.

And if H , ∅, then write:

F(H) =
⊕
i∈H

Fi , gH = g |F(H), M(H) = Im(gH ), P (H) = f −1(Ker(gH )), fH = f |P (H).

Naturally F = F(I), P = P (I), and M = M(I). Obviously we have: if H1 ⊆ H2, then F(H1) is a direct

summand of F(H2). In addition, for any H ⊆ I , ξH : 0 → P (H)
fH→ F(H)

gH→ M(H) → 0 is an exact
sequence.

Definition 4.4. Suppose F, ξ,H and other assumptions are as above. If ξH is aw-split exact sequence
induced by ξ, then M(H) is a w-split module, which is called a w-split module induced by ξ.

Lemma 4.5. Let ξ : 0→ P
f
→ F

g
→ M → 0 be a w-split exact sequence, where F =

⊕
i∈I
Fi with each Fi a

projective module. Assume that S is a set of subsets H of I , totally ordered by inclusion, satisfying: each

ξH : 0→ P (H)
fH→ F(H)

gH→M(H)→ 0 is a w-split exact sequence induced by ξ. Then we have

(1)
⋃
H∈S

F(H) is a projective module.

(2) The sequence
ξ ′ : 0 −→

⋃
H∈S

P (H) −→
⋃
H∈S

F(H) −→
⋃
H∈S

M(H) −→ 0

is a w-split exact sequence induced by ξ.

(3) M(
⋃
H∈S

H) =
⋃
H∈S

M(H) is a w-split module induced by ξ.

Proof. (1) Write J =
⋃
H∈S

H . We prove F(J) =
⋃
H∈S

F(H), and thus
⋃
H∈S

F(H) is a projective module.

Trivially
⋃
H∈S

F(H) ⊆ F(J). Let y ∈ F(J) =
⊕
i∈J
Fi . Then there exist i1, . . . , im ∈ J such that y = y1+· · ·+ym,

where yt ∈ Fit , t = 1, . . . ,m. Since S is totally ordered, there exists H ∈ S such that i1, . . . , im ∈ H . Thus
y ∈ F(H). Therefore F(J) =

⋃
H∈S

F(H).

(2) Let x ∈
⋃
H∈S

M(H). Then there exists H0 ∈ S such that x ∈ M(H0). Since ξH0
is a w-split exact

sequence induced by ξ, we have hk(x) ∈ F(H0) ⊆
⋃
H∈S

F(H), k = 1, . . . ,n. Thus ξ ′ aw-split exact sequence

induced by ξ.
(3) By (2) we know that

⋃
H∈S

M(H) is a w-split module induced by ξ. It is enough to prove that

M(J) =
⋃
H∈S

M(H).
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Consider the following commutative diagram with exact rows:

0 // ⋃
H∈S

P (H) //

� _

��

⋃
H∈S

F(H) // ⋃
H∈S

M(H) //

� _

��

0

0 // P (J) // F(J) //M(J) // 0

Trivially
⋃
H∈S

P (H) ⊆ P (J). Thus the left vertical arrow is a monomorphism. By [22, Theorem 1.9.10],

the right vertical arrow is an epimorphism. Also since
⋃
H∈S

M(H) ⊆M(J), it follows immediately that

M(J) =
⋃
H∈S

M(H).

Definition 4.6. An R-moduleM is called a w-countably generated module if there exist a countably
generated moduleM0 and aw-isomorphism f :M0→M; equivalently, there is a countably generated
submodule N of M such that Nm =Mm for any maximum w-ideal m.

Let M,N be R-modules. Then M and N are said to be w-isomorphic if there exist an R-module A,
a w-isomorphism (mapping) f : A→M, and a w-isomorphism (mapping) g : A→ N . Obviously, if a
homomorphism f :M→N is a w-isomorphism (mapping), then M and N are w-isomorphic.

Lemma 4.7. Let F be a w-module and have a direct sum decomposition F =
⊕
i∈I
Fi , where Fi is countably

generated. Let

ξ : 0 −→ P
f
−→ F

g
−→M −→ 0

be a w-split exact sequence. If H is a proper subset of I and satisfies that

ξH : 0 −→ P (H)
fH−→ F(H)

gH−→M(H) −→ 0

is a w-split exact sequence induced by ξ, then:

(1) There exists a subset H1 ⊃H of I such that

ξH1
: 0 −→ P (H1)

fH1−→ F(H1)
gH1−→M(H1) −→ 0

is also a w-split exact sequence induced by ξ.

(2) C :=M(H1)/M(H) is a countably generated module.

(3) If M is a GV-torsion-free module, then D := M(H1)w/M(H)w is w-isomorphic to C, and so D is a
w-countably generated module.

(4) If each Fj is a projective module, then M(H) and M(H1) are all w-split modules induced by ξ, and C
is a w-split module, and so D is a w-countably generated w-projective module.

Proof. (1) Let J := (d1, . . . ,dn) and qk ,hk be as in Lemma 4.2. Then for any j ∈ I , both f qk(Fj ) and
hkg(Fj ) are countably generated. If x ∈ Fj , it follows from Remark 4.3 that dkx = f qk(x)+hkg(x). Thus
dkFj ⊆ f qk(Fj ) + hkg(Fj ), k = 1, . . . ,n.

Take an i0 ∈ I \H . Then there exists a countable subset I1 ⊆ I such that dkFi0 ⊆ f qk(Fi0) +hkg(Fi0) ⊆⊕
i∈I1
Fi , k + 1, . . . ,n. Since Fi is countably generated and I1 is a countable subset,

⊕
i∈I1
Fi is countably
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generated. Thus there exists a countable subset I2 ⊆ I such that I1 ⊆ I2 and dk(
⊕
j∈I1
Fj ) ⊆ f qk(

⊕
j∈I1
Fj ) +

hkg(
⊕
j∈I1
Fj ) ⊆

⊕
i∈I2
Fi , k = 1, . . . ,n. Inductively we obtain subsets I0 = {i0}, I1, I2, . . . , Is, . . . satisfying

dk(
⊕
j∈Is

Fj ) ⊆ f qk(
⊕
j∈Is

Fj ) + hkg(
⊕
j∈Is

Fj ) ⊆
⊕
i∈Is+1

Fi , k = 1, . . . ,n (4.1)

Hence J(
⊕
j∈Is
Fj ) ⊆

⊕
i∈Is+1

Fi . Since Fi are all w-modules,
⊕
j∈Is
Fj ⊆

⊕
i∈Is+1

Fi .

Set L :=
⋃∞
k=1 Ik . Then L is a countable set, and thus L1 := L \H is a countable set. Set H1 := H ∪ L.

Then H1 = H ∪ L1. Thus V :=
⊕
i∈L1

Fi is countably generated. Write U = F(H) and W = F(H1). Then

W =U ⊕V .
We want to prove that 0→ P (H1)→ F(H1)→M(H1)→ 0 is a w-split exact sequence induced by

the exact sequence ξ. It suffices to prove that hk(M(H1)) ⊆ F(H1), that is, for any j ∈ H1, we have
hkg(Fj ) ⊆ F(H1), k = 1, . . . ,n.

If j ∈ H , then hkg(Fj ) ⊆ F(H) ⊆ F(H1) since ξH is a w-split exact sequence. If j ∈ L1, then there
exists s such that j ∈ Is. It follows from (4.1) that hkg(Fj ) ⊆ F(H1).

(2) By [22, Theorem 1.9.10], we have the following commutative diagram with exact rows and
columns:

0

��

0

��

0

��
0 // P (H) //

��

F(H) //

��

M(H) //
ww

��

0

0 // P (H1) //

��

F(H1) //

��

M(H1) //
ww

��

0

0 // A //

��

V
g ′ //

��

C
yy

��

// 0

0 0 0

where g ′ is the homomorphism induced from the right upper square. Since V is countably generated,
C is also countably generated.

(3) Observing the following commutative diagram with exact rows:

0 //M(H) //

��

M(H1) //

��

C //

h ��

0

0 //M(H)w //M(H1)w // D // 0

it follows by [22, Theorem 1.9.10] that we have an exact sequence 0 → Ker(h) → M(H)w/M(H) →
M(H1)w/M(H1)→ Coker(h)→ 0. Thus Ker(h) and Coker(h) are all GV-torsion modules, and so D is
w-isomorphic to C.

(4) By the hypothesis,M(H) andM(H1) arew-split modules induced by ξ. Note that for k = 1, . . . ,n,
the restrictions of hk on M(H) and M(H1) make the upper right dashed diagram a commutative
diagram. Thus there exists a homomorphism αk : C → V such that g ′αk = dk1C . Thus the bottom
row of the above diagram is also a w-split exact sequence. Therefore C is a w-split module.

Let M be a w-split module and ξ : 0 → P → F → M → 0 be a w-split exact sequence, where
F =

⊕
i∈I
Fi and each Fi is a countably generated projective module. Let N be a submodule of M. If
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there is a subset H of I and a continuous ascending chain of subsets of H (if α is a limit ordinal
number, then define Hα =

⋃
β<α

Hβ)

∅ =H0 ⊆H1 ⊆H2 ⊆ · · · ⊆Hα ⊆ · · · ⊆Hµ =H

such that N = M(H), each Nα := M(Hα) is a w-split module induced by ξ, and in the corresponding
continuous ascending chain of submodules

0 =N0 ⊆N1 ⊆N2 ⊆ · · · ⊆Nα ⊆ · · · ⊆Nµ =N, (4.2)

where each factorNα+1/Nα is a countably generatedw-split module, thenN is called a submodule of
M with respect to thew-splitℵ0-continuous ascending chain of ξ orN has aw-splitℵ0-continuous
ascending chain of ξ. When N = M, we ignore ξ and simply it is called that M has a w-split ℵ0-
continuous ascending chain.

Note that eachNα in (4.2) is a submodule ofM with respect to thew-split ℵ0-continuous ascending
chain of ξ. In addition, let B be also a submodule of M and have a w-split ℵ0-continuous ascending
chain of ξ

0 = B0 ⊆ B1 ⊆ B2 ⊆ · · · ⊆ Bα ⊆ · · · ⊆ Bλ = B.

If there exists an ordinal µ such that µ 6 λ and Nα = Bα for each α 6 µ, then B is called an ℵ0-filtered
extension of N with respect to ξ, simply B is called an ℵ0-filtered extension of N .

Lemma 4.8. Let M be a w-split module and the corresponding ξ, F be assumed as above. Assume that
{Ai} is a totally ordered family of submodules ofM with respect to a w-split ℵ0-continuous ascending chain
of ξ, and that if Ai ⊆ Aj , then Aj is an ℵ0-filtered extension of Ai . Then N :=

⋃
i
Ai is also a w-split

ℵ0-continuous ascending chain of submodule of M.

Proof. Write Ai = M(Hi), where Hi ⊆ I . By Lemma 4.5, N =
⋃
i
Ai = M(

⋃
i
Hi) is a w-split module

induced by ξ. In the following we use the fact that each Ai has a w-split ℵ0-continuous ascending
chain of ξ and the ℵ0-extension property to construct a w-split ℵ0-continuous ascending chain (4.2)
of ξ of N . For each index i, there exist an ordinal λi and a w-split ℵ0-continuous ascending chain of
Ai with respect to ξ:

0 = Ai0 ⊆ Ai1 ⊆ Ai2 ⊆ · · · ⊆ Aiα ⊆ · · · ⊆ Aiλi = Ai , (4.3)

If there is an index i such that N = Ai , then we have nothing to prove. So we assume that for any
i, Ai , N . Now to initiate our structure, choose arbitrary a w-split ℵ0-continuous ascending chain
(4.2) of ξ. Thus for an ordinal number α 6 λi , set N0 = 0 = Ai0,N1 = Ai1, . . . ,Nλi = Aiλi = Ai . Hence
for α 6 λi , all Nα are constructed. By the definition of the ℵ0-filtered extension, the choice of Nα has
nothing to do with the subscript i that satisfies α 6 λi , that is, for any subscript i satisfying α 6 λi ,

0 =N0 ⊆N1 ⊆N2 ⊆ · · · ⊆Nγ ⊆ · · · ⊆Nα
is a subchain of (4.3) and Nλi = Ai .

Since Ai = Nλi , N , there exists Aj such that Aj * Ai . Thus by the hypothesis, Ai ⊂ Aj . Set
Nλi+1 = Aj(λi+1),Nλ2+1 = Aj(λi+2), . . . ,Nλj = Aj(λj ). By our construction method, for a given ordinal
number α and the subscript satisfying α 6 λj , all Nα are constructed.

Continue the above process. So we’ve reached this point: For a given ordinal α, satisfying that for
any i, there is always λi < α, and when β < α, Nβ(,N ) has been constructed, and there is a subscript
i such that Nβ = Ai . At this time, α is a limit ordinal, otherwise β := α − 1 < α. Thus there exists a
subscript i such that Nβ ⊆ Ai . If Nβ , Ai , then β < λi , and so α 6 λi , a contradiction. If β = λi , then
there exists a subscript j such that Ai ⊂ Aj since Ai ,N . Thus λi < λj , and so α 6 λj , a contradiction.
Set Nα :=

⋃
β<α

Nβ . Then Nα ⊆
⋃
Ai =N . On the other hand, since Nλi = Ai , we have N ⊆Nα. It follows

immediately that Nα =N . Taking µ = α, we get the required continuous ascending chain (4.2).
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Let M be a w-projective w-module. If there is a continuous ascending chain

0 =M ′0 ⊆M
′
1 ⊆M

′
2 ⊆ · · · ⊆M

′
α ⊆ · · · ⊆M ′µ =M

of w-projective w-submodules of M such that each factor M ′α+1/M
′
α is a w-ℵ0-generated w-projective

module, then it is said that M has a w-projective w-ℵ0-continuous ascending chain.

Theorem 4.9. (w-version of Kaplansky’s theorem) Let M be a w-projective w-module. Then we
have:

(1) M has a w-split ℵ0-continuous ascending chain.

(2) M has a w-projective w-ℵ0-continuous ascending chain.

Proof. (1) Let ξ : 0→ P → F→M → 0 be an exact sequence, where F is a projective module. By Ka-
plansky’s theorem, we may assume that F =

⊕
i∈I
Fi , where each Fi is a countably generated projective

module. It follows from [25, Proposition 2.7] that ξ is a w-split exact sequence. Let the notation be
as in Lemma 4.7 and let S be a set of subsets H of I satisfying:

(a) If H ∈ S, then ξH : 0→ P (H)→ F(H)→M(H)→ 0 is a w-split exact sequence induced by ξ.

(b) M(H) has a w-split ℵ0-continuous ascending chain with respect to ξ.

When H = ∅, F(H) = 0 and M(H) = 0, and so S is not empty. Define a partial order as follows:

H1 6H2⇔H1 ⊆H2 mboxand M(H2) is an ℵ0-filtered extension of M(H1)

Then S is a partially ordered set. Let S1 = {Hs} be a totally ordered subset of S. Set H :=
⋃
s
Hs. By

Lemma 4.5, ξH is a w-split exact sequence induced by ξ, andM(H) =
⋃
s
M(Hs). By Lemma 4.8, M(H)

has a w-split ℵ0-continuous ascending chain with respect to ξ. Thus H ∈ S. Hence H is an upper
bound of S1. By Zorn’s lemma, S has a maximal element, still denoted by H .

If H , I , then it follows by Lemma 4.7 that there exists H1 ⊃ H such that 0→M(H)→M(H1)→
C → 0 is an exact sequence, and M(H),M(H1), and C are w-split modules induced by ξ, and C is
countably generated. Thus H1 ∈ S, which contradicts the maximality of H . Therefore H = I , and so
M(H) =M. It follows immediately that M has a w-split ℵ0-continuous ascending chain.

(2) Let 0 = M0 ⊆M1 ⊆M2 ⊆ · · · ⊆Mα ⊆ · · · ⊆Mλ = M be a w-split ℵ0-continuous ascending chain
of M. For any ordinal number α, set M ′α := (Mα)w. Then M ′α is a w-projective w-submodule of M.
Similarly to the proof of Lemma 4.7(3), we can prove that M ′α+1/M

′
α is w-isomorphic to Mα+1/Mα.

Therefore M ′α+1/M
′
α is a w-ℵ0-generated w-projective module.

4.2 Cotorsion theory of weak w-projective modules

The contents of this subsection are excerpts from [17]. Denote by F I the class of GV-torsion-free
modules, byW the class of w-modules, and byW∞ the class of strong w-modules.

Let S be a class of modules. Define:

S† := S⊥ ∩F T
= {N ∈M |N is GV-torsion-free and Ext1

R(M,N ) = 0 for any M ∈ S}

Correspondingly define:

S†∞ := S⊥∞ ∩F T

=
{
N ∈M

∣∣∣∣∣∣ N is GV-torsion-free and
ExtkR(M,N ) = 0 for any M ∈ S and any k > 1

}
.

Set GV(R)∗ := {R/J | J ∈GV(R)}. Obviously GV(R)∗ is a set of modules.
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Example 4.10. (1) It is easy to see that (GV(R)∗)† =W .

(2) (GV(R)∗)†∞ =W∞. Indeed, this follows from the fact that for a GV-torsion-free module N , N is
a strong w-module if and only if ExtkR(R/J,N ) = 0 for any J ∈GV(R) and any k > 1.

Proposition 4.11. Let S ,S1 be classes of modules. Then:

(1) S ⊆ ⊥(S†∞) ⊆ ⊥(S†).

(2) If S ⊆ S1, then S†1 ⊆ S† and S†∞1 ⊆ S†∞ .

(3) (S ∪S1)† = S† ∩S†1 .

(4) If GV(R)∗ ⊆ S , then S† ⊆W and S†∞ ⊆W∞.

Proof. These are obvious.

In order to make Theorem 3.11 apply to the context of a class of w-modules, we make correspond-
ing modifications to it, but note that the idea belongs to Eklof–Trlifaj essentially.

Lemma 4.12. Let S = GV(R)∗ ∪S1 be a set of modules, where S1 ⊆ F T .

(1) Let N be a GV-torsion-free module. Then there exists an exact sequence

0→N →Q→ A→ 0,

where Q ∈ S† and A is an S-filtered module such that A ∈ ⊥(S†).

(2) Let M be an R-module. Then there exists an exact sequence

0→ B→ P →M→ 0,

where P ∈ ⊥(S†) and B ∈ S†.

Proof. (1) Set X :=
⊕
S∈S1

S and Y :=
⊕

J∈GV(R)
R/J . Then X is a GV-torsion-free module and Y is a GV-

torsion module. Set S = X ⊕ Y . Then S⊥ = {S}⊥. Thus we may assume that S is the class of modules

consists of a specific module S and its direct sums. Let 0→ K1
µ1−−→ F1→ X→ 0 and 0→ K2

µ2−−→ F2→
Y → 0 be exact sequences, where F1 and F2 are free modules. Set F := F1⊕F2 and K := K1⊕K2. Then

0 → K
µ
−→ F → S → 0 is an exact sequence, where µ := µ1 ⊕ µ2. Since X is GV-torsion-free, K1 is a

w-module. Since Y is GV-torsion, (K2)w = F2
Take a regular cardinal λ so that K has a generating system X with |X | < λ.
Set Q0 := N . Then Q0 is GV-torsion-free. For α < λ, if Qα has been constructed, select a free

module F
′
α and an epimorphism δα : F

′
α → Qα. Set Iα := HomR(K,Qα) to be a new index set and

define µα : K (Iα) → F(Iα) as the homomorphism of direct sums, which is induced by µ. Then µα is a
monomorphism and Coker(µα) = S(Iα).

Define ϕα : K (Iα) ⊕F ′α = (
⊕
f ∈Iα

Kf )⊕F ′α→Qα, where Kf = K , by ϕα([uf ], z) =
∑
f ∈Iα

f (uf ) + δα(z), where

uf ∈ Kf , z ∈ F
′
α. Since δα is an epimorphism, so is ϕα. Now assume that if β 6 α, then Qβ has

been constructed (if α is a limit ordinal, set Qα :=
⋃
β<α

Qβ), in particular, Qα has been constructed.

Construct the following pushout diagram:

0 // K (Iα) ⊕F ′α
µα⊕1 //

ϕα
��

F(Iα) ⊕F ′α //

ψα��

S(Iα) //

�
��

0

0 // Qα
hα // Qα+1

// Qα+1/Qα // 0
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One gets Qα+1. At this time ψα is an epimorphism. As you can see from the above diagram, if Qα is a
GV-torsion-free module, then Ker(ψα) � Ker(ϕα) is a w-module, and thus Qα+1 is also a GV-torsion-
free module. Hence by a transfinite induction, we see that each Qα is a GV-torsion-free module.

Set Q :=
⋃
α<λ

Qα = lim
→
α<λ

Qα. Then Q is a GV-torsion-free module. Set A := Q/N and Aα := Qα/N .

Then Aα+1/Aα � Qα+1/Qα � S
(Iα). Since Q =

⋃
α<λ

Qα, one gets that A =
⋃
α<λ

Aα. Thus A is an S-filtered

module, and thus one has A ∈ ⊥(S⊥). Since S† ⊆ S⊥, one has A ∈ ⊥(S†).
Similarly to the process of Theorem 3.11, one can prove thatQ ∈ S⊥. ThereforeQ ∈ S⊥∩F T = S†.
(2) Take an exact sequence 0→ N → F → M → 0, where F is a projective module. Then N is a

GV-torsion-free module. By (1), there is an exact sequence 0→ N → Q→ A→ 0, where Q ∈ S† and
A ∈ ⊥(S†). Consider the following commutative diagram with exact rows:

0

��

0

��
0 // N //

��

F

��

//M // 0

0 // Q //

��

P //

��

M // 0

A

��

A

��
0 0

where the square diagrams in the upper left and lower corners are pushout diagrams. Since F,A ∈
⊥(S†), one has P ∈ ⊥(S†). Therefore one gets the desired sequence by taking B :=Q.

In order to make Theorem 3.11 suitable for the relevant module classes under the w-module
framework, we make corresponding transformations to it.

Theorem 4.13. Let S = GV(R)∗∪S1 be a set of modules, where S1 ⊆ F T . SetA := ⊥(S†). IfA is closed
under w-isomorphisms, then (A,A⊥) is a complete cotorsion theory.

Proof. Note that (A,A⊥) is the cotorsion theory generated by S†. In the following, we prove that
every module M has a special A-precover.

By Lemma 4.12, there exists an exact sequence 0 → B → P → M → 0, where P ∈ A, B ∈ S† ⊆
[⊥(S†)]⊥ =A⊥. Therefore M has a special A-precover.

Proposition 4.14. Let S be a class of modules such that GV(R)∗ ⊆ S . Set B := ⊥(S†∞). Then:

(1) S†∞ is closed under direct products, direct summands, and cokernels of monomorphisms.

(2) B is closed under direct sums, direct summands, kernels of epimorphisms, and w-isomorphisms.

(3) B† = B†∞ = S†∞ .

Proof. (1) Obviously L†∞ is closed under direct products and direct summands. By Theorem 3.14,
S⊥∞ is closed under cokernels of monomorphisms. By [24, Proposition 2.2],W∞ is also closed under
cokernels of monomorphisms. Since S†∞ = S⊥∞ ∩W∞, it follows that S†∞ is closed under cokernels
of monomorphisms.

(2) Obviously B is closed under direct sums and direct summands. I follows by (1) that B is closed
under kernels of epimorphisms.
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(3) Obviously S†∞ ⊆
(
⊥(S†∞)

)⊥
∩ F T = B†. Since B is closed under kernels of epimorphisms,

B⊥∞ = B⊥. Thus B† = B⊥∞ ∩ F T = B†∞ . Since S ⊆ B, it follows that B† = B†∞ ⊆ S†∞ . Therefore
B† = S†∞ .

Proposition 4.15. (1) Set wPw := ⊥(P †∞w ), that is, wPw is the class of weak w-projective R-modules.
Then wPw† = P †∞w .

(2) Let S = GV(R)∗ ∪ S1 be a set of modules, where S1 is the class of w-projective w-ℵ0-generated w-
modules. Then S†∞ = P †∞w .

Proof. (1) This follows immediately by setting S := Pw in Proposition 4.14.
(2) Since S ⊆ Pw, we have P †∞w ⊆ S†∞ . Let N ∈ S†∞ . For any w-projective w-module P , by Theorem

4.9 P is an S1-filtered module. Thus ExtiR(P ,N ) = 0 for any i > 1. By Proposition 4.11, N is a strong
w-module. Let P be a w-projective module. Then ExtiR(P ,N ) = 0 for any w-projective module P and

any i > 1. Thus N ∈ P⊥∞w ∩F T = P †∞w . Therefore S†∞ = P †∞w .

Theorem 4.16. Let S = GV(R)∗ ∪ S1 be a set of modules, where S1 ⊆ F T . Set B := ⊥(S†∞). Then
(B,B⊥) is a hereditary and complete cotorsion theory.

Proof. For each M ∈ S , fix a projective resolution P(M) of M. Let LM be the set consisting of all
syzygies in P(M) (including M itself) and set L :=

⋃
M∈S
LM . Then L is naturally a set. By Lemma

3.16(4), L⊥ = S†∞ , and so L† = S†∞ .
Split L into L = GV(R)∗ ∪ L1, where L1 is the set of all syzygies of M ∈ S1 and all nonnegative

syzygies of R/I . Then L1 ⊆ F T . By Proposition 4.14, (A,A⊥) is a hereditary cotorsion theory.

Theorem 4.17. (wPw,wPw⊥) is a hereditary and complete cotorsion theory, and so every module has
a special weak w-projective precover.

Proof. Let S1 be the set of all w-countably generated w-projective w-modules and set S = GV(R)∗ ∪
S1. Since the collection of all countably generated modules is a set, S is also a set. By Proposition
4.15, S†∞ = P †∞w . Thus wPw = ⊥(S†∞). By Theorem 4.16, (wPw,wPw⊥) is a hereditary and complete
cotorsion theory.

Proposition 4.18. LetM be aw-module. Then there exists a special weakw-projective precoverϕ : P →M

of M such that P is a w-module and Ker(ϕ) ∈ P †∞w .

Proof. Let the notation be as in the proof of Theorem 4.16 and S be as in Proposition 4.15(2). Then
L† = S†∞ = P †∞w . By Lemma 4.12, M has a special weak w-projective precover 0→ B→ P →M → 0,
where P ∈wPw, B ∈ L† = P †∞w . Thus B is a strong w-module, and so P is a w-module.

5 Homology methods of cotorsion theory

5.1 Homology of cotorsion pairs

When a cotorsion theory is given, naturally we can construct the homological dimension of the co-
torsion theory. The description of the homological dimension of a general cotorsion theory can be
found in the literature [15, 26]. This section presents the homological method for general cotorsion
pairs. In [19] the definition of the global cotorsion dimension of a ring is a good example. That is,
through a clear understanding of this dimension, we can grasp the homological dimension of all the
hereditary and complete cotorsion theories.
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Definition 5.1. Let G = (A,B) be a hereditary cotorsion theory and let M and N be R-modules.

(1) We say that M has an A-resolution with length at most n if there is an exact sequence

0 −→ An −→ An−1 −→ ·· · −→ A1 −→ A0 −→M −→ 0, Ai ∈ A.

Use pdA(M) to represent the minimal length among all (finite) A-resolutions of M. If such a
finite exact sequence does not exist, then we say that M has an A-resolution of infinite length,
denoted by pdA(M) =∞.

(2) Correspondingly, we say that N has a B-resolution with length at most n if there is an exact
sequence

0 −→N −→ B0 −→ B1 −→ ·· · −→ Bn−1 −→ Bn −→ 0, Bi ∈ B.

Use idB(M) to represent the minimal length among all (finite) B-resolutions of M. If such a
finite exact sequence does not exist, then we say that N has a B-resolution of infinite length,
denoted by idB(N ) =∞.

Example 5.2. Let G = (A,B) be a hereditary cotorsion theory.

(1) pdA(A) = 0 if and only if A ∈ A, that is, A is a B-projective module.

(2) idB(B) = 0 if and only if B ∈ B, that is, B is an A-injective module.

If (A,B) is a complete cotorsion theory, then each module has a special A-precover and a special
B-preenvelope. Although a special A-precover and a special B-preenvelope of a module are not
unique, for any moduleN , in order to simplify the statement, we still useA(N ) and B(N ) to represent
a special A-precover and a special B-preenvelope of N respectively.

Theorem 5.3. Let G = (A,B) be a hereditary cotorsion theory, n be a nonnegative integer, and M be
an R-module. Then the following are equivalent:

(1) pdA(M) 6 n.

(2) Extn+1
R (M,B) = 0 for any B ∈ B.

(3) ExtkR(M,B) = 0 for any B ∈ B and any k > n.

(4) If 0 → Pn → Pn−1 → ·· · → P1 → P0 → M → 0 is an exact sequence, where P0, P1, . . . , Pn−1 are
projective modules, then Pn ∈ A.

(5) If 0→ An→ An−1→ ·· · → A1→ A0→M → 0 is an exact sequence, where A0,A1, . . . ,An−1 ∈ A,
then An ∈ A.

If G is also a complete cotorsion theory, then each of the above conditions is equivalent to:

(6) pdA(B(M)) 6 n.

Proof. (1)⇒(3) By the hypothesis, for any k > n, there exists an exact sequence

0→ Ak→ Ak−1→ ·· · → An+1→ An→ ·· · → A1→ A0→M→ 0,

where if 0 6 i 6 n, then Ai ∈ A, and if n < i 6 k, then Ai = 0. Denote by Li the i-th syzygy of M in
the above-mentioned exact sequence. Then Ln−1 = An and if n 6 i 6 k − 1, then Li = 0. For any given
B ∈ B, since (A,B) is a hereditary cotorsion theory,

ExtkR(M,B) � Extk−1
R (L0,B) � Extk−2

R (L1,B) � · · · � Ext1
R(Lk−2,B).
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If k = n + 1, then Ext1
R(Ln−1,B) = Ext1

R(An,B) = 0. And if k > n + 2, then Lk−2 = 0, and so trivially
Ext1

R(Lk−2,B) = 0. Therefore, if k > n, then ExtkR(M,B) = 0.
(3)⇒(2) Obvious.
(2)⇒(5) Let 0→ An → An−1 → ·· · → A1 → A0 → M → 0 be an exact sequence, where A0,A1, . . . ,

An−1 ∈ A. Denote by Li the i-th A-syzygy. Then Ln−1 = An. For any given B ∈ B,

Extn+1
R (M,B) � ExtnR(L0,B) � Extn−1

R (L1,B) � · · · � Ext1
R(Ln−1,B) = Ext1

R(An,B).

Since Extn+1
R (M,B) = 0, it follows that Ext1

R(An,B) = 0. Therefore An ∈ A.
(5)⇒(4) Let 0→ Pn → Pn−1 → ·· · → P1 → P0 →M → 0 be an exact sequence, where P0, P1, . . . , Pn−1

are projective modules. Since P ⊆ A, we have P0, P1, . . . , Pn−1 ∈ A. It follows from (5) that Pn ∈ A.
(4)⇒(1) For any given R-module M, there is an exact sequence 0 → Pn → Pn−1 → ·· · → P1 →

P0 → M → 0, where P0, P1, . . . , Pn−1 are projective modules. It follows from (4) that Pn ∈ A. Thus
pdA(M) 6 n.

(1)⇔(6) Since G is perfect, there is an exact sequence 0 → M → B(M) → A → 0, where A ∈ A.
For any given B ∈ B, since G is hereditary, ExtkR(A,B) = 0 for any k > 0. Hence there exists a natural
isomorphism ExtkR(M,B) � ExtkR(B(M),B). Therefore pdA(M) = pdA(B(M)).

Theorem 5.4. Let G = (A,B) be a hereditary cotorsion theory, n be a nonnegative integer, and N be
an R-module. Then the following are equivalent:

(1) idB(N ) 6 n.

(2) Extn+1
R (A,N ) = 0 for any A ∈ A.

(3) ExtkR(A,N ) = 0 for any A ∈ A and any k > n.

(4) If 0 → N → E0 → E1 → ·· · → En−1 → En → 0 is an exact sequence, where E0,E1, . . . ,En−1 are
injective modules, then En ∈ B.

(5) If 0→ N → B0 → B1 → ·· · → Bn−1 → Bn → 0 is an exact sequence, where B0,B1, . . . ,Bn−1 ∈ B,
then Bn ∈ B.

If G is also a complete cotorsion theory, then each of the above conditions is equivalent to:

(6) idB(A(N )) 6 n.

Proof. By Theorem 5.3, this can be proved dually.

Definition 5.5. Let G = (A,B) be a hereditary cotorsion theory. Define:

(1) gldA(R) = sup{pdA(M) |M is any R-module}, which is called the global GA-dimension of R.

(2) gldB(R) = sup{idB(N ) |N is any R-module}, which is called the global GB-dimension of R.

Theorem 5.6. Let G = (A,B) be a hereditary cotorsion theory and let n be a nonnegative integer.
Then the following are equivalent:

(1) gldA(R) 6 n.

(2) Extn+1
R (M,B) = 0 for any B ∈ B and M ∈M.

(3) ExtkR(M,B) = 0 for any B ∈ B, M ∈M, and any k > n.

(4) idRB 6 n for any B ∈ B.

If G is also a complete cotorsion theory, then each of the above conditions is equivalent to:
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(5) Extn+1
R (B,B′) = 0 for any B,B′ ∈ B.

(6) ExtkR(B,B′) = 0 for any B,B′ ∈ B, and any k > n.

(7) pdA(B) 6 n for any B ∈ B.

Proof. (1)⇒(3) For any given R-moduleM, by the hypothesis, pdA(M) 6 n. By Theorem 5.3, we know
that ExtkR(M,B) = 0 for any given B ∈ B and any k > n.

(3)⇒(2) This follows by taking k = n+ 1.
(2)⇒(1) For any B ∈ B and M ∈ M, we have Extn+1

R (M,B) = 0. By Theorem 5.3, pdA(M) 6 n.
Therefore gldA(R) 6 n

(2)⇔(4) This follows from [22, Theorem 3.5.10].
(3)⇒(6)⇒(5) Trivial.
(5)⇒(2) Since (A,B) is a complete cotorsion theory, for any module M, there is an exact sequence

0→M → B′ → A→ 0, where B′ ∈ B and A ∈ A. For any B ∈ B, since (A,B) is a hereditary cotorsion
theory, there is an exact sequence

0 = Extn+1
R (B′ ,B) −→ Extn+1

R (M,B) −→ Extn+2
R (A,B) = 0.

Therefore Extn+1
R (M,B) = 0.

(5)⇔(7) This follows from Theorem 5.3.

Theorem 5.7. Let G = (A,B) be a hereditary cotorsion theory and let n be a nonnegative integer.
Then the following are equivalent:

(1) gldB(R) 6 n.

(2) Extn+1
R (A,N ) = 0 for any A ∈ A and N ∈M.

(3) ExtkR(A,N ) = 0 for any A ∈ A, N ∈M, and any k > n.

(4) pdRA 6 n for any A ∈ A.

If G is also a complete cotorsion theory, then each of the above conditions is equivalent to:

(5) Extn+1
R (A,A′) = 0 for any A,A′ ∈ A.

(6) Extn+1
R (A,A′) = 0 for any A,A′ ∈ A, and any k > n.

(7) idB(A) 6 n for any A ∈ A.

Proof. By Theorem 5.6, this can be proved dually.

Corollary 5.8. Let G = (A,B) be a hereditary cotorsion theory. Then:

(1) gldA(R) = sup{idRB | B ∈ B}.

(2) gldB(R) = sup{pdRA | A ∈ A}.

By Corollary 5.8, we can get

gl.dim(R) def= sup{pdRM |M ∈M} = sup{idRN |N ∈M}.

Corollary 5.9. Let G = (A,B) be a hereditary complete cotorsion theory. Then:

(1) gldA(R) = sup{pdA(B) | B ∈ B}.
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(2) gldB(R) = sup{idB(A) | A ∈ A}.
Example 5.10. (1) For the cotorsion theoryG = (P ,M), we have gldP (R) = gl.dim(R) and gldM(R) =

0.

(2) For the cotorsion theory G = (M,I ), we have gldM(R) = 0 and gldI (R) = gl.dim(R).

Theorem 5.11. Let G = (A,B) be a hereditary complete cotorsion theory.

(1) If gldA(R) <∞, then

gldA(R) = sup{idRN |N ∈ K} = sup{pdA(E) | E ∈ I}.

(2) If gldB(R) <∞, then

gldB(R) = sup{pdRM |M ∈ K} = sup{idB(P ) | P ∈ P }.

Proof. (1) Write sup{idRN | N ∈ K} = n and gldA(R) = m. By Theorem 5.6, n 6 m. And by Theorem
5.6, for any B ∈ B, we have pdA(B) 6m. Thus B has a G-projective resolution of length at most m

0→ Am→ Am−1→ ·· · → A1→ A0→ B→ 0, Ai ∈ A.

Since G is a hereditary complete cotorsion theory, we can assume that each syzygy Ki in the just
above exact sequence is in B. Since B is closed under extensions, each Ai ∈ K. Thus for any module
M,

Extn+1
R (M,B) � Extn+2

R (M,K0) � · · · � Extn+m+1
R (M,Am) = 0.

Hence m 6 n, and so n =m.
Again set n = sup{pdA(E) | E ∈ I}. Then n 6 m. By Theorem 5.6, idRB 6 m for any B ∈ B. Thus B

has an injective resolution

0→ B→ E0→ E1→ ·· · → Em−1→ Em→ 0, Ei ∈ I .

Denote by Li the i-th cosyzygy of the just above exact sequence. For any B′ ∈ B, since sup{pdA(E) |
E ∈ I} = n, we have ExtkR(Ei ,B′) = 0 for any k > n. Thus

Extn+1
R (B,B′) � Extn+2

R (L0,B
′) � · · · � Extn+m+1

R (Em,B) = 0.

By Theorem 5.6, m 6 n. Therefore n =m.
(2) By (1), this can be proved dually.

Theorem 5.12. Let G = (A,B) be a hereditary cotorsion theory and let M be an R-module. Then

(1) pdRM 6 gldB(R) + pdA(M).

(2) idRM 6 gldA(R) + idB(M).

Proof. (1) We may assume that m = gldB(R) <∞ and n = pdA(M) <∞. Then M has an A-resolution:

0 −→ An −→ An−1 −→ ·· · −→ A1 −→ A0 −→M −→ 0, Ai ∈ A.

By Theorem 5.7(4), pdRAi 6 m, i = 0,1, . . . ,n. Let Ki be the i-th syzygy of the above exact sequence.
Decompose the exact sequence into n short exact sequences:

0 −→ Ki −→ Ai −→ Ki−1 −→ 0, i = 0,1, . . . ,n− 1, K−1 =M.

Since Kn−1 = An, we obtain that pdRKn−2 6 m + 1. Successively we obtain that pdRKn−3 6 m + 2, · · · .
Finally we get that pdRM 6m+n.

(2) By (1), this can be proved dually.

Corollary 5.13. Let G = (A,B) be a hereditary cotorsion theory. Then

gl.dim(R) 6 gldA(R) + gldB(R).
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5.2 Homology of Tor-torsion theories

Definition 5.14. Let G = (A,B) be a hereditary Tor-torsion theory and let M be an R-module.
(1) We say that M has a weakA-resolution of length at most n if there exists an exact sequence

0→ An→ An−1→ ·· · → A1→ A0→M→ 0, Ai ∈ A.

Use fdA(M) to represent the minimal length among all (finite) A-resolutions of M. If such a finite
exact sequence does not exist, then we say that M has an A-resolution of infinite length, denoted by
fdA(M) =∞.

(2) The definition of a weak B-resolution of length fdB(N ) of a module N is defined correspond-
ingly, needless to say.

Remark 5.1 If G = (A,B) is a hereditary Tor-torsion theory, then by Theorem 3.26, G1 = (A,A⊥) is a
hereditary perfect cotorsion theory. In this case, pdA(M) = fdA(M) for any module M.

Example 5.15. LetG = (A,B) be a hereditary Tor-torsion theory. Then fdA(A) = 0 if and only if A ∈ A.
By the same argument, fdB(B) = 0 if and only if B ∈ B.

Theorem 5.16. Let G = (A,B) be a hereditary Tor-torsion theory, n be a nonnegative integer, and M
be an R-module. Then the following are equivalent:

(1) fdA(M) 6 n.

(2) TorRn+1(M,B) = 0 for any B ∈ B.

(3) TorRk (M,B) = 0 for any B ∈ B and any k > n.

(4) If 0 → Pn → Pn−1 → ·· · → P1 → P0 → M → 0 is an exact sequence, where P0, P1, . . . , Pn−1 are
projective modules, then Pn ∈ A.

(5) If 0→ Pn → Pn−1 → ·· · → P1 → P0 →M → 0 is an exact sequence, where P0, P1, . . . , Pn−1 are flat
modules, then Pn ∈ A.

(6) If 0→ An→ An−1→ ·· · → A1→ A0→M → 0 is an exact sequence, where A0,A1, . . . ,An−1 ∈ A,
then An ∈ A.

Proof. The proof is similar to that of the corresponding situation of cotorsion theory, and so the proof
will be omitted.

Definition 5.17. Let G = (A,B) be a hereditary Tor-torsion theory. Define:

(1) wgldA(R) = sup{fdA(M) |M is any R-module}, which is called the global GA-flat dimension of
R.

(2) wgldB(R) = sup{fdB(N ) | N is any R-module}, which is called the global GB-flat dimension of
R.

Theorem 5.18. Let G = (A,B) be a hereditary Tor-torsion theory and let n be a nonnegative integer.
Then the following are equivalent:

(1) wgldA(R) 6 n.

(2) TorRn+1(M,B) = 0 for any B ∈ B, M ∈ RM.

(3) TorRk (M,B) = 0 for any B ∈ B, M ∈ RM, and any k > n.
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(4) fdRB 6 n for any B ∈ B.

Proof. The proof is similar to that of Theorem 5.6, and so we omit it.

Corollary 5.19. Let G = (A,B) be a hereditary Tor-torsion theory. Then

wgldA(R) = sup{fdRB | B ∈ B}.

Example 5.20. Let G = (F ,M). Then wgldF (R) = w.gl.dim(R) and wgldM(R) = 0.

Corollary 5.21. Let G = (A,B) be a hereditary Tor-torsion theory. Then every module is an A-flat module
(i.e., B = RM) if and only if A = F .

Proposition 5.22. Let G = (A,B) be a hereditary Tor-torsion theory and let N be an R-module with
fdBN =m > 0. Then there exists E ∈ A∩A⊥ such that TorRm(E,N ) , 0.

Proof. By Theorem 5.16, TorRm+1(A,N ) = 0 for any module A ∈ A, and there exists M ∈ A such that
TorRm(M,N ) , 0. By Theorem 3.26, (A,A⊥) is a hereditary perfect cotorsion theory. Thus there is an
exact sequence 0→ M → E → A→ 0, where E = A⊥(M) ∈ A⊥ and A ∈ A. Since A is closed under
extensions, E ∈ A.

It follows by the exact sequence of 0 = TorRm+1(A,N )→ TorRm(M,N )→ TorRm(E,N ) and the fact that
TorRm(M,N ) , 0 that TorRm(E,N ) , 0.

Theorem 5.23. Let G = (A,B) be a hereditary Tor-torsion theory. If wgldB(R) <∞, then

wgldB(R) = sup{fdRA | A ∈ A∩A⊥} = sup{fdB(E) | E ∈ A⊥}

Proof. Write sup{fdRA | A ∈ A∩A⊥} = n and wgldB(R) =m. By Theorem 5.18, n 6m. By Proposition
5.22, n >m. Therefore n =m.

Again set n = sup{fdB(E) | E ∈ A⊥}. Then obviously n 6 m. For any B ∈ B, by Proposition 5.22,
m 6 n. Thus n =m.

Theorem 5.24. Let G = (A,B) be a hereditary Tor-torsion theory and let M be an R-module. Then

fdRM 6wgldB(R) + fdA(M).

Proof. The proof is similar to that of Theorem 5.12.

Corollary 5.25. Let G = (A,B) be a hereditary Tor-torsion theory. Then

w.gl.dim(R) 6wgldA(R) + wgldB(R).

6 n-cotorsion modules and n-torsion-free modules

Below we always set n to be a nonnegative integer if not specified otherwise. Using a cotorsion
theory (Fn,Cn) as an example, we introduce homological properties of cotorsion theory which play
an important role in characterizations of ring structures.
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6.1 n-cotorsion modules and n-torsion-free modules

Definition 6.1. (1) An Fn-injective module is called an n-cotorsion module. In particular, a 0-
cotorsion module (i.e., F -injective module) is called a cotorsion module. Denote by Cn the class
of n-cotorsion modules and by C the class of cotorsion modules.

(2) An Fn-flat module is called an n-torsion-free module. Denote by Tn the class of n-torsion-free
modules.

(3) A Tn-injective module is called an n-Warfield cotorsion module. Denote by WCn the class of
n-Warfield cotorsion modules.

Example 6.2. The following statements are obvious.

(1) Every module is a 0-torsion-free module and a 0-Warfield cotorsion module is injective.

(2) Let m 6 n. Since Fm ⊆ Fn, we have Tn ⊆ Tm, and Cn ⊆ Cm, but WCm ⊆ WCn, that is, every n-
torsion-free module is m-torsion-free, every n-cotorsion module is an m-cotorsion module, but
every m-Warfield cotorsion module is an n-Warfield cotorsion module.

(3) Let R be a domain and n > 1. Then every n-torsion-free module is torsion-free, and every
n-cotorsion module is a divisible module.

(4) Let R be a domain. Then a module M is 1-torsion-free if and only if M is torsion-free. In other
words, if we denote by T the class of torsion-free modules, then T1 = T .

(5) Since F ⊆ Tn, we haveWCn ⊆ C, that is, every n-Warfield cotorsion module is a cotorsion mod-
ule.

(6) By [22, Theorem 3.4.14], the direct limit of n-torsion-free modules over a directed set is also
n-torsion-free.

Remark 6.1 When R is a domain, 1-Warfield cotorsion modules have been called Warfield cotorsion
modules [11]. Therefore, following this terminology, we call a 1-Warfield cotorsion module over any
ring a Warfield cotorsion module.

Theorem 6.3. Every Fn-pure injective module is n-Warfield cotorsion.

Proof. This follows by taking L = Fn in Theorem 1.20.

Corollary 6.4. Every pure injective module is a cotorsion module.

Theorem 6.5. Let D be an R-module.

(1) D ∈ Tn if and only if D+ ∈ Cn, that is, D is an n-torsion-free module if and only if its character
module D+ is an n-cotorsion module. In particular, M+ is a cotorsion module for any module
M.

(2) D ∈ Fn if and only if D+ ∈ WCn, that is, fdRD 6 n if and only if its character module D+ is an
n-Warfield cotorsion module.

Proof. This follows by taking L = Fn and L = Tn respectively in Theorem 1.14.

Theorem 6.6. (1) If C is an m-cotorsion module, then the n-th injective cosyzygy of C is an (m +
n+ 1)-cotorsion module. In particular, the n-th injective cosyzygy of a cotorsion module is an
(n+ 1)-cotorsion module.
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(2) If M is an m-torsion-free module, then the n-th flat weak syzygy of M is an (m+n+ 1)-torsion-
free module. In particular, the n-th flat weak syzygy of any module is an (n + 1)-torsion-free
module.

Proof. (1) Let 0 → C → E0 → E1 → ·· · → En → L → 0 be an exact sequence, where E0,E1, . . . ,En
are injective modules. For any X ∈ Fn+m+1, there is an exact sequence 0→ Fn+m+1 → Fm+n → ·· · →
F1 → F0 → X → 0, where F0,F1, . . . ,Fm+n+1 are flat modules. Let Y be the (n − 1)-th syzygy of this
flat resolution. Then fdRY 6 m. Thus Ext1

R(X,L) � Extn+2
R (X,C) � Ext1

R(Y ,C) = 0. Therefore C is an
(m+n+ 1)-cotorsion module.

(2) This is similar to (1).

Theorem 6.7. The following are equivalent for an R-module M:

(1) M ∈ Fn.

(2) TorR1 (M,D) = 0 for any D ∈ Tn.

(3) TorR1 (M,D) = 0 for the (n− 1)-th weak syzygy D of any R-module X.

Proof. (1)⇒(2)⇒(3) Trivial, but we need Theorem 6.6(2).
(3)⇒(1) It follows from the fact that TorRn+1(M,X) � TorR1 (M,D) = 0 that fdRM 6 n. Therefore

M ∈ Fn.

Corollary 6.8. (Fn,Tn) is a hereditary Tor-torsion theory.

Proof. By Theorem 6.7, T >n = Fn. Thus (Fn,Tn) is a Tor-torsion theory. The heredity is trivial.

Theorem 6.9. The following are equivalent for an R-module M:

(1) M ∈ Fn.

(2) Ext1
R(M,L) = 0 for any L ∈ Cn.

(3) Ext1
R(M,L) = 0 for the (n− 1)-th injective cosyzygy L of any R-module X.

Proof. The proof is similar to that of Theorem 6.7. Note that (3)⇒(1) needs to use Theorem 6.5(1).

Corollary 6.10. (Fn,Cn) is a hereditary perfect cotorsion theory.

Proof. By Theorem 6.9, ⊥Cn = Fn. Thus (Fn,Cn) is a cotorsion theory. By Theorem 3.26 and Corollary
6.8, (Fn,Cn) is a perfect cotorsion theory.

Theorem 6.11. The following are equivalent for an R-module D:

(1) D ∈ Tn.

(2) Ext1
R(D,L) = 0 for any L ∈WCn.

(3) Ext1
R(D,L) = 0 for any Fn-pure injective module L.

Proof. This follows by taking L = Fn in Theorem 1.21.

Corollary 6.12. (Tn,WCn) is a hereditary perfect cotorsion theory.

Proof. By Theorem 6.11, ⊥WCn = Tn. Thus G = (Tn,WCn) is a cotorsion theory. By Theorem 3.24,
G is a hereditary cotorsion theory. Let L be the class of Fn-pure injective modules. It follows from
Theorem 6.11 that ⊥L = Tn. Since T >n = Fn, it follows from Theorem 3.26 that G =RL is perfect.
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Theorem 6.13. If L is an n-Warfield cotorsion module, then idRL 6 n.

Proof. Let X be any R-module and choose A to be the (n− 1)-th projective syzygy of X. By Theorem
6.6, A ∈ Tn. Thus Extn+1

R (X,L) � Ext1
R(A,L) = 0. Therefore idRL 6 n.

The following Theorem 6.14 can be regarded as an application of 1-torsion-free modules.

Theorem 6.14. Let 0→ A→ B→ C→ 0 be a pure exact sequence with fdRB 6 1. Then fdRC 6 1, and
so fdRA 6 1.

Proof. By Theorem 6.7, the class of T1-flat modules is exactly F1. Taking L = T1 in Proposition 1.17,
we get fdRC 6 1.

6.2 n-cotorsion dimension and n-torsion-free dimension

By Corollary 6.10, G = (Fn,Cn) is a hereditary perfect cotorsion theory. For an R-module N , we can
set

cndRN = idCn(N ),

which is called the n-cotorsion dimension of N . Correspondingly, for a ring R, set

gldCn(R) = {cndRN |N ∈M},

which is called the global n-cotorsion dimension of R. Correspondingly, for a Tor-torsion theory
G = (Fn,Tn) we also define

tndRN = fdTn(N ),

which is called the n-torsion-free dimension of N . At this time

wgldTn(R) = {tndRN |N ∈M},

which is called the global n-torsion-free dimension of R

Remark 6.2 Since we have already written C0 = C, we write cndRN for cdRN , which is the original
notation of [19]. Correspondingly, we also write gldC(R) for gldC0

(R).

Example 6.15. Let R be a ring. Then:

(1) gldCn(R) 6 gldCn+1
(R).

(2) By [22, Theorem 3.10.26], gldCn(R) 6 FPD(R) 6 gl.dim(R).

(3) wgldTn(R) 6wgldTn+1
(R) 6 w.gl.dim(R).

Theorem 6.16. Let R be a ring. Then:

(1) gldCn(R) = sup{pdRM |M ∈ Fn} = sup{cndRM |M ∈ Fn}.

(2) wgldTn(R) = sup{fdRM |M ∈ Fn}.

(3) wgldTn(R) 6 gldCn(R).

Proof. (1) This follows from Corollary 5.8 and Corollary 5.9.
(2) This follows from Corollary 5.19.
(3) This is trivial.

Theorem 6.17. For any ring R, wgldTn(R) 6 n.
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Proof. Let M be any R-module. By Theorem 6.6, the (n − 1)-th weak syzygy of M must be an n-
torsion-free module. Hence tndRM 6 n. Therefore wgldTn(R) 6 n.

Theorem 6.18. Let R be a ring. Then:

(1) If gldCn(R) <∞, then

gldCn(R) = sup{pdRM |M ∈ Fn ∩Cn} = sup{cndRM |M ∈ P }.

(2) wgldTn(R) = sup{fdRM |M ∈ Fn ∩Tn}.

Proof. (1) This follows by applying Theorem 5.11(2).
(2) This follows by applying Theorem 5.23 and Theorem 6.17.

Theorem 6.19. (Mao-Ding) gl.dim(R) 6 gldC dim(R) +w.gl.dim(R).

Proof. For the cotorsion theory (F ,C), this follows by applying Corollary 5.13.

Proposition 6.20. If tndRM =m > 0, then there exists E ∈ Fn ∩Cn such that TorRm(M,E) , 0.

Proof. This follows from Proposition 5.22.

Proposition 6.21. (1) Let 0 → A → F → B → 0 be an exact sequence, where F is an n-torsion-free
module. If m = tndRB > 0, then tndRA =m− 1.

(2) Let 0 → A → F → B → 0 be an exact sequence, where F is a flat module. If tndRB 6 m, then
tn+1dRA 6m. In particular, if B is an n-torsion-free module, then A is an (n+1)-torsion-free module.

Proof. (1) This is trivial.
(2) Let 0→ L→ P → N → 0 be an exact sequence, where P is a flat module and N ∈ Fn+1. Then

L ∈ Fn. Thus TorRm+1(A,N ) � TorRm+2(B,N ) � TorRm+1(B,L) = 0. Therefore tn+1dRA 6m.

Theorem 6.22. For any ring R,

wgldTn(R) = sup{tndRR/I | I is an ideal of R}
= sup{tndRR/I | I is a finitely generated ideal of R}.

Proof. It is sufficient to prove that if for each finitely generated ideal I of R, tndRR/I 6 m, and then
we can get wgldTn(R) 6m.

Let M be any R-module with tndRM = k. Then there exists N ∈ Fn such that TorRk+1(M,N ) , 0.
Write fdRN = s. Then k 6 s 6 n. Thus there is a finitely generated ideal I such that TorRs+1(N,R/I) , 0.
Hence m > tndRR/I > s > k. It follows that wgldTn(R) 6m.

6.3 Change of rings theorems for n-torsion-free dimensions

Theorem 6.23. Let φ : R→ T be a ring homomorphism and let T as an R-module be an n-torsion-free
module. Then:

(1) If N is an R-module with fdRN 6 n, then fdT (T ⊗RN ) 6 n.

(2) If L is an n-torsion-free T -module, then L is also an n-torsion-free R-module.

(3) tndRL 6 tndT L for any T -module L.
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Proof. (1) Let 0 → Pn → Pn−1 → ·· · → P1 → P0 → N → 0 be a flat resolution of N . Since T is an
n-torsion-free R-module, TorRi (T ,N ) = 0 for any i > 0. Thus

0→ T ⊗R Pn→ T ⊗R Pn−1→ ·· · → T ⊗R P1→ T ⊗R P0→ T ⊗RN → 0

is an exact sequence. Hence fdT (T ⊗RN ) 6 n.
(2) LetN ∈ Fn(R) and let 0→ A→ P →N → 0 be an exact sequence, where P is a free R-module. By

(1), fdT (T ⊗RN ) 6 n. Since L is an n-torsion-free T -module, TorT1 (L,T ⊗RN ) = 0. From the following
commutative diagram with exact rows:

0 // 0 //

��

L⊗T (T ⊗RA) //

�
��

L⊗T (T ⊗R P )
�
��

0 // TorR1 (L,N ) // L⊗RA // L⊗R P

we have TorR1 (L,N ) = 0. Therefore L is also an n-torsion-free R-module.
(3) Write m = tndT L. Then there is an exact sequence 0 → Fm → Fm−1 → ·· · → F1 → F0 → L →

0, where F0,F1, . . . ,Fm−1,Fm are n-torsion-free T -modules. Therefore it follows by (2) that tndRL 6
tndT L.

Theorem 6.24. Let φ : R→ T be a ring homomorphism and let T as an R-module be a flat module.
If B is an n-torsion-free R-module, then T ⊗R B is an n-torsion-free T -module.

Proof. Let L be a T -module with fdT L 6 n. Since T is a flat R-module, every flat T -module is also a
flat R-module. Hence fdRL 6 n. Note that TorT1 (T ⊗R B,L) � T ⊗R TorR1 (B,L) = 0. Therefore T ⊗R B is
an n-torsion-free T -module.

Theorem 6.25. Let S be a multiplicative subset of R. Then:

(1) If B is an n-torsion-free R-module, then BS is an n-torsion-free RS-module.

(2) wgldTn(RS ) 6wgldTn(R).

Proof. (1) This follows from Theorem 6.24.
(2) Write m = wgldTn(R). Let L ∈ Fn(RS ). Then L ∈ Fn(R). Let A be an RS-module. Then tndRA 6m.

Thus TorRSm+1(A,L) = TorRSm+1(AS ,LS ) = (TorRm+1(A,L))S = 0. Hence tndRSA 6m. Therefore wgldTn(RS ) 6
m.

Let u ∈ R and X be an R-module. Write Xu = {x ∈ X | ux = 0}. Note that Xu is an R/(u)-module.

Lemma 6.26. Let n > 0 be an integer, u ∈ R be a non-zero-divisor nonunit, and R = R/(u). Let E be an
n-cotorsion R-module. Then:

(1) Eu is an (n− 1)-cotorsion R-module.

(2) If E ∈ Fn(R), then Eu ∈ Fn−1(R).

Proof. (1) Let B be an R-module and let A be a submodule of B with B/A ∈ Fn−1(R). By [22, Theorem
3.8.15], fdRB/A 6 n. Let f : A→ Eu be a homomorphism. Consider the following diagram

Eu // E

0 // A //

f

OO

B

g
dd

g

OO
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Since E is an n-cotorsion R-module, there is a homomorphism g : B→ E such that the above diagram
can be completed to a commutative diagram. Since ux = 0 for any x ∈ B, we have g(ux) = ug(x) = 0.
Thus Im(g) ⊆ Eu . Therefore Eu is an (n− 1)-cotorsion R-module.

(2) For anyR-moduleA, by [22, Theorem 3.8.15], TorRn (A,Eu) � TorRn+1(A,E) = 0. Therefore fdRE
u 6

n− 1.

Lemma 6.27. Let n > 0 be an integer, u ∈ R be a non-zero-divisor nonunit, and R = R/(u). Let C be an
(n− 1)-cotorsion R-module with fdRC 6 n− 1. Then there is an n-cotorsion R-module E ∈ Fn(R) such that
Eu = C.

Proof. Let E be the n-cotorsion envelope of C as an R-module and set B = E/C. Then B ∈ Fn(R). Since
fdRC 6 n− 1, we have fdRC 6 n. Therefore fdRE 6 n.

It follows from uC = 0 that C ⊆ Eu . Thus we have the following commutative diagram with exact
rows and columns:

0

��

0

��
0 // C // Eu //

��

A //

��

0

0 // C // E //

u ��

B //

��

0

E

��

E

��
0 0

It follows from the heredity of Fn that A ∈ Fn(R). By Lemma 6.26, fdRE
u 6 n− 1. It follows from the

exactness of the first row that fdRA <∞. It also follows from [22, Theorem 3.8.15] that fdRA 6 n− 1.
Since C is an (n − 1)-cotorsion module, Ext1

R
(A,C) = 0. Thus the first row is split. So there exists

a submodule A′ of Eu such that A′ � A and Eu = C ⊕A. Since E is the n-cotorsion envelope of C,
E/Eu � E ∈ Fn(R). Hence it follows from Theorem 3.8 that A = 0, which implies that C = Eu .

Theorem 6.28. Let n > 0 be an integer, u ∈ R be a non-zero-divisor nonunit, and R = R/(u).

(1) Let M be a nonzero R-module. Then tndRM = tn−1dRM + 1.

(2) wgldTn(R) >wgldTn−1
(R) + 1.

Proof. (1) Set m := tn−1dRM. By Proposition 6.20, there exists an (n − 1)-cotorsion R-module C with

fdRC 6 n − 1 such that TorRm(M,C) , 0. By Lemma 6.27, there exists an n-cotorsion R-module E

with fdRE 6 n such that C = Eu . By [22, Theorem 3.8.15], TorRm+1(M,E) � TorRm(M,C) , 0. Therefore
k := tndRM >m+ 1.

If k > m+1, then again by Proposition 6.20 and Lemma 6.26, there exists an n-cotorsion R-module
E with fdRE 6 n such that TorRk (M,E) � TorRk−1(M,Eu) , 0, which contradicts the fact that tn−1dRM =
m. Therefore k =m+ 1.

(2) Let m = wgldTn−1
(R). Then there is an R-module M such that tn−1dRM = m. By (1), tndRM =

m+ 1. Therefore wgldTn(R) >m+ 1.

7 The weak finitistic dimension of a ring

The weak finitistic dimension of the ring is a dimension introduced by Bass in [2] in 1960. Few liter-
ature contains the properties of ring structures using weak finitistic dimensions. In this section, we
present several methods through torsion theory to characterize ring structures using weak finitistic
dimensions. The contents of this section are excerpts from [23].
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7.1 The weak finitistic dimension of a ring

Definition 7.1. Let R be a ring. Set

FFD(R) = sup{fdRM | fdRM <∞},

which is called the weak finitistic dimension of R.

Remark 7.1 Trivially for any ring R, fPD(R) 6 FFD(R) 6 FPD(R).

Theorem 7.2. Let S be a multiplicative subset of R. Then FFD(RS ) 6 FFD(R).

Proof. Without loss of generality, we assume that m := FFD(R) < ∞. Let N be an RS-module and
fdRSN < ∞. By [22, Corollary 3.8.6], fdRN = fdRSN < ∞. Thus fdRSN 6 m. Therefore FFD(RS ) 6
m.

Theorem 7.3. Let R be a ring. Then

FFD(R) = sup{FFD(Rm) |m ∈Max(R)}
= sup{FFD(Rp) | p ∈ Spec(R)}.

Proof. We only prove the maximal ideal situation. Let m be a nonnegative integer. Suppose that
FFD(R) 6 m. By Theorem 7.2, FFD(Rm) 6 m for any maximal ideal m of R. Now assume that the
hypothesis of the converse is satisfied. Let N be an R-module with fdRN < ∞. Let 0 → Fm →
Fm−1 → ·· · → F1 → F0 → N → 0 be an exact sequence, where F0,F1, . . . ,Fm−1 are flat modules. Since
fdRmNm <∞ for any m ∈Max(R) and the sequence

0→ (Fm)m→ (Fm−1)m→ ·· · → (F1)m→ (F0)m→Nm→ 0

is exact, it follows from the given condition that (Fm)m is a flat Rm-module. Thus Fm is a flat R-
module. Therefore fdRM 6m.

Proposition 7.4. The following statements are equivalent for a ring R.

(1) FFD(R) 6 n.

(2) Fm = Fn for any integer m > n.

(3) There exists an integer m > n such that Fm = Fn.

(4) Cm = Cn for any integer m > n.

(5) There exists an integer m > n such that Cm = Cn.

(6) Tm = Tn for any integer m > n.

(7) There exists an integer m > n such that Tm = Tn.

(8) WCm =WCn for any integer m > n.

(9) There exists an integer m > n such thatWCm =WCn.

Proof. Exercise.

Theorem 7.5. Let m < n. Then the following statements are equivalent for a ring R.

(1) FFD(R) 6m.
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(2) If W is an n-Warfield cotorsion module, then idRW 6m.

(3) If U is an Fn-pure injective module, then idRU 6m.

(4) wgldTn(R) 6m.

(5) wgldTm+1
(R) 6m.

Proof. (1)⇒(2) By Proposition 7.4, W ∈WCm. By Theorem 6.13, idRW 6m.
(2)⇒(4) This follows immediately from Corollary 5.8.
(4)⇒(5) Since n > m + 1, this follows from the fact that every n-torsion-free module is (m + 1)-

torsion-free.
(5)⇒(1) Let M be an R-module and let k := fdRM <∞. Assume on the contrary that k > m. Then

there exists an R-module X such that fdRX = m + 1. Let N be any R-module. By the hypothesis,
tm+1dRN 6m < k. Thus TorRm+1(X,N ) = 0, a contradiction. Therefore FFD(R) 6m.

(2)⇒(3) This follows from Theorem 6.3.
(3)⇒(4) Let N be any R-module and let D be the (m − 1)-th weak syzygy of N . Then for any

Fn-pure injective module U , by the hypothesis, Ext1
R(D,U ) � Extm+1

R (N,U ) = 0. By Theorem 6.11,
D ∈ Tm. Therefore wgldTn(R) 6m.

Corollary 7.6. The following statements are equivalent for a ring R.

(1) FFD(R) = 0.

(2) Every R-module is n-torsion-free for any n > 1.

(3) Every cotorsion module is an n-cotorsion module for any n > 1.

(4) wgldTn dim(R) = 0 for any n > 1.

(5) Every R-module is 1-torsion-free.

(6) wgldT1
(R) = 0.

Proof. (1)⇔(2)⇔(3)⇔(5) follows from Proposition 7.4, while (1)⇔(4)⇔(6) follows from Theorem
7.5.

For the finitistic dimension of a ring, we have the following corresponding characterization.

Theorem 7.7. Let m < n. Then the following statements are equivalent for a ring R.

(1) FPD(R) 6m.

(2) gldCn(R) 6m.

(3) gldCm+1
(R) 6m.

Proof. (1)⇒(2) Let N ∈ Fn. By [22, Theorem 3.10.26], pdRN <∞. By the hypothesis, pdRN 6 m. By
Theorem 6.16, gldCn(R) 6m.

(2)⇒(3) This is trivial.
(3)⇒(1) Let M be an R-module and set k := pdRM < ∞. Assume on the contrary that k > m.

Then without loss of generality, we may assume that k = m + 1. Thus M ∈ Fm+1. By Theorem 6.16,
pdRM 6m, a contradiction. Thus FPD(R) 6m.

Theorem 7.8. The following statements are equivalent for a ring R.
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(1) FPD(R) = 0.

(2) Every R-module is an n-cotorsion module for any n > 1.

(3) gldCn(R) = 0 for any n > 1.

(4) Every R-module is a cotorsion module.

(5) R is a perfect ring.

(6) gldC(R) = 0.

Proof. (1)⇒(2)⇒(3) This follows from Theorem 7.7.
(3)⇒(6)⇒(4) This is trivial.
(4)⇒(5) By the hypothesis, C =M, and so F = P . By [22, Theorem 3.10.22], R is a perfect ring.
(5)⇒(1). This follows from [22, Theorem 3.10.25].

Theorem 7.9. The following statements are equivalent for a ring R.

(1) w.gl.dim(R) 6 n.

(2) Every n-cotorsion module is injective.

(3) Every n-torsion-free module is flat.

Proof. (1)⇒(2) Let L be an n-cotorsion module and let M be any R-module. By the hypothesis,
fdRM 6 n. Thus Ext1

R(M,L) = 0. Therefore L is injective.
(2)⇒(1) Since Cn = I , we have Fn = ⊥Cn = ⊥I =M. Thus w.gl.dim(R) 6 n.
(1)⇔(3) The proof is similar to that of (1)⇔(2).

7.2 Integral domains with weak finitistic dimension 1

Theorem 7.10. The following statements are equivalent for an integral domain R.

(1) FFD(R) 6 1.

(2) FFD(R/(u)) = 0 for any nonzero nonunit u ∈ R.

(3) wgldT1
(R/(u)) = 0 for any nonzero nonunit u ∈ R..

(4) Every torsion-free R-module is 2-torsion-free.

(5) If A is a torsion-free R-module with fdRA <∞, then A is flat.

(6) If A is a torsion-free R-module with fdRA 6 1, then A is flat.

(7) F2 = F1.

(8) Every submodule of a flat R-module is 2-torsion-free.

(9) Every ideal of R is 2-torsion-free.

(10) wgldT2
(R) 6 1.

(11) wgldTn(R) 6 1 for any n > 2.
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Proof. For a nonzero nonunit u ∈ R, write R = R/(u).
(1)⇒(2) Let B be a nonzero R-module with fdRB <∞. By [22, Theorem 3.8.15], fdRB = fdRB+1 6 1.

Thus fdRB = 0. Therefore FFD(R) = 0.
(2)⇒(3) This follows from Corollary 7.6.
(3)⇒(10) Let I be a nonzero proper ideal of R and setM = R/I . Take u ∈ I with u , 0. Thus uM = 0,

and so M is an R-module. By the hypothesis, t1dRM = 0. By Theorem 6.28, t2dRM = 1. By Theorem
6.22, wgldT2

(R) 6 1.
(10)⇒(11)⇒(1) This follows from Theorem 7.5.
(10)⇒(4) Let M be a torsion-free module. Then M can be embedded in a flat module F = K ⊗RM.

By the hypothesis, t2dRF/M 6 1. Therefore M is 2-torsion-free.
(4)⇒(8)⇒(9) This is trivial.
(9)⇒(10) This follows from Theorem 6.22.
(1)⇒(5) Since A is a torsion-free module, there exists an exact sequence 0 → A → F → C → 0,

where F is a flat module. Thus fdRC <∞. By the hypothesis, fdRC 6 1. Therefore A is flat.
(5)⇒(6) This is trivial.
(6)⇒(7) This follows from direct verification.
(7)⇒(1) Let N be an R-module and set k := fdRN <∞. Assume on the contrary that k > 2. Then

there exists a module B such that fdRB = 2. Thus B ∈ F2 = F1, which yields immediately that fdRB 6 1,
a contradiction. Therefore FFD(R) 6 1.

Proposition 7.11. Let R ⊆ T be an extension of domains.

(1) T is a 2-torsion-free R-module if and only if T ⊗R N is a torsion-free T -module for any torsion-free
R-module N with fdRN 6 1.

(2) If FFD(R) 6 1, then T is a 2-torsion-free R-module.

(3) Let S be a multiplicative set of R such that RS ⊆ T . If T is a 2-torsion-free R-module, then T is a
2-torsion-free RS-module.

Proof. (1) Assume that T is a 2-torsion-free R-module. Since N is a torsion-free R-module, there
exists an exact sequence 0→ N → P → C → 0, where P is a flat R-module. Thus fdRC 6 2. Hence
TorR1 (T ,C) = 0. Thus 0→ T ⊗R N → T ⊗R P → T ⊗R C → 0 is an exact sequence, and so T ⊗R N is a
torsion-free T -module.

Assume that the opposite is true. Let C be an R-module with fdRC 6 2. Take an exact sequence
0→N → P → C→ 0, where P is a flat R-module. Then we have an exact sequence: 0→ TorR1 (T ,C)→
T ⊗R N → T ⊗R P → T ⊗R C → 0. By the hypothesis T ⊗R N is a torsion-free T -module. Since T is
included in the quotient field of R, T ⊗R N is also a torsion-free R-module. By [22, Exercise 3.7],
TorR1 (T ,C) = 0. Therefore T is a 2-torsion-free R-module.

(2) This follows immediately from Theorem 7.10.
(3) Let N be an RS-module with fdRSN 6 2. By [22, Corollary 3.8.6], fdRN 6 2, and so TorR1 (T ,N ) =

0. Note that TS = T and NS = N . By [22, Corollary 3.4.12], TorRS1 (T ,N ) � TorR1 (T ,N )S = TorR1 (T ,N ) =
0. Therefore T is a 2-torsion-free RS-module.

Theorem 7.12. Let (R,m) be a local ring with fPD(R) = 0. Then R/m is a 1-torsion-free module.

Proof. Let B be an R-module with fdRB 6 1. Then there exists an exact sequence 0→ A→ P → B→
0, where P ,A are flat R-modules. By [22, Theorem 3.10.9], mA = mP ∩ A. By [22, Exercise 3.46],
TorR1 (R/m,B) = 0. Therefore R/m is 1-torsion-free.
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7.3 The weak finitistic dimension in Cartesian square

For a Cartesian square (RDT F,M), we always assume that π : T → F := T /M is the natural homomor-
phism.

Proposition 7.13. Let (RDT F,M) be a Cartesian square, where D,F are fields. Let N be a T -module.
Then:

(1) There exist a D-module I and an F-isomorphism h : F ⊗D I → F ⊗T N .

(2) Set B := (I,N ,h). Then D ⊗R B � I and T ⊗R B �N .

Proof. (1) Since F is a field, F ⊗T N is an F-vector space. Write s as the dimension of this vector
space. (It can be infinite dimensional.) Take a D-vector space I of dimension s. Then there exists an
F-isomorphism h : F ⊗D I → F ⊗T N .

(2) This follows from [22, Proposition 8.1.8 and Theorem 8.1.9].

Theorem 7.14. Let (RDT F,M) be a Cartesian square, where D is a field and T as an R-module is
(n+ 1)-torsion-free. If FFD(T ) 6 n, then FFD(R) 6 n.

Proof. In order to prove that FFD(R) 6 n, it suffices that fdRN 6 n+1 implies that fdRN 6 n. Let N be
an R-module with fdRN 6 n+ 1. Let 0→ B→ Pn−1→ ·· · → P1→ P0→ N → 0 be an exact sequence,
where P0, P1, . . . , Pn−1 are flat R-modules. Since T is an (n + 1)-torsion-free R-module, TorRi (T ,N ) = 0
for each i > 1. Thus

0→ T ⊗R B→ T ⊗R Pn−1→ ·· · → T ⊗R P1→ T ⊗R P0→ T ⊗RN → 0

is an exact sequence. By Theorem 6.23, fdT (T ⊗RN ) 6 n+ 1. Since FFD(T ) 6 n, it follows that T ⊗R B
is a flat T -module. Since D is a field, D ⊗R B = B/MB is naturally a flat D-module. By [22, Theorem
8.2.1], B is a flat R-module. Therefore FFD(R) 6 n.

Theorem 7.15. Let (RDT F,M) be a Cartesian square, where D is a field and T is a domain. If
FFD(R) 6 1 and M is a flat R-module, then T is a flat R-module.

Proof. By [23, Lemma 3.3], fdRT 6 1. By Theorem 7.10, T is a flat R-module.

Theorem 7.16. Let (RDT F,M) be a Cartesian square, where D,F are fields. Then fPD(R) = 0 if and
only if fPD(T ) = 0.

Proof. Assume that fPD(R) = 0. Let A be a finitely generated proper ideal of T . Then there exists
a finitely generated proper ideal I of R such that A = IT . By [22, Theorem 3.10.11], there exists a
nonzero a ∈ R such that aI = 0. Thus aA = 0. By [12, Theorem 3.3.16] (or [22, Theorem 3.10.8 and
Theorem 3.10.11]), fPD(T ) = 0.

Conversely, assume that fPD(T ) = 0. Let I be a finitely generated proper ideal of R and set A = IT .
Assume by way of contradiction that A = T . By [22, Proposition 8.3.2], M ⊂ I . Since D is a field,
I = R, a contradiction. Thus A , T . Hence there exists t ∈ T such that tA = 0, and so tI = 0. If t < R,
then t <M. Take a quasi-inverse t′ of t such that a := t′t ∈ R and a , 0. In this case, aI = t′tI = 0. By
[12, Theorem 3.3.16], fPD(R) = 0.

Lemma 7.17. Let (RDT F,M) be a Cartesian square, where D is a field. Let B be an R-module and set
N = T ⊗R B. If TorT1 (F,N ) = 0 and fdTN 6 1, then fdRB 6 1.
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Proof. Let 0→ A→ P → B→ 0 be an exact sequence, where P is a flat R-module. Thus we have the
following exact sequence:

0→ A1→D ⊗R P →D ⊗R B→ 0 and 0→ A2→ T ⊗R P → T ⊗R B→ 0,

where A1 = Ker(D ⊗R P → D ⊗R B) and A2 = Ker(T ⊗R P → T ⊗R B). By [22, Proposition 8.1.10], we
can set P = (D ⊗R P ,T ⊗R P ,δP ). Since D is a field, A1 is a flat D-module. Since fdTN 6 1, A2 is a
flat T -module. Since F is naturally a flat D-module, 0→ F ⊗D A1→ F ⊗R P → F ⊗R B→ 0 is an exact
sequence. Since TorT1 (F,N ) = 0, it follows that 0→ F ⊗T A2 → F ⊗R P → F ⊗R B→ 0 is also an exact
sequence. Therefore we have the following diagram with exact rows:

0 // F ⊗D A1
//

h1 ��

F ⊗R P // F ⊗R B // 0

0 // F ⊗T A2
// F ⊗R P // F ⊗R B // 0

where h1 is the induced homomorphism from the right square. By [22, Theorem 1.9.9], h1 : F⊗DA1→
F ⊗T A2 is an isomorphism.

Consider the following commutative diagram:

0

��

0

��

0

��
0 // A //

��

A1 ⊕A2
//

��

F ⊗T A2
//

��

0

0 // P //

��

(D ⊗R P )⊕ (T ⊗R P )

��

//

��

F ⊗R P //

��

0

0 // B //

��

(D ⊗R B)⊕ (T ⊗R B) //

��

F ⊗R B //

��

0

0 0 0

where three columns and two bottom rows are exact sequences. By [22, Theorem 1.9.12], the first
row is also exact. It follows that A � (A1,A2,h1). By [22, Theorem 8.2.2], A is a flat R-module. Thus
fdRB 6 1.

Theorem 7.18. Let (RDT F,M) be a Cartesian square, where D,F are fields. Then FFD(R) = 0 if and
only if FFD(T ) = 0.

Proof. Suppose that FFD(R) = 0. Let N be a T -module with fdTN 6 1. By Proposition 7.13, there
exist a D-module I and an F-isomorphism h : F ⊗D I → F ⊗T N such that B = (I,N ,h) and T ⊗R B �N .

First assume that T is a local ring, so that R is a local ring. By Theorem 7.16, fPD(T ) = 0. By
Theorem 7.12, F is a 1-torsion-free T -module, and so TorT1 (F,N ) = 0. By Lemma 7.17, fdRB 6 1.
Since FFD(R) = 0, B is a flat R-module. Thus N � T ⊗R B is a flat T -module. Therefore FFD(T ) = 0.

Now consider the general case. Let Q be a maximal ideal of T and set P := Q ∩ R. If Q , M,
then [22, Proposition 8.3.1] and Theorem 7.3, FFD(TQ) = FFD(RP ) = 0. If M = Q and set S := R \M,
then (RSDTSF,MTS ) is a Cartesian square. By [22, Lemma 8.3.8], TS = TM . It is proved by the local
situation that FFD(TM ) = 0. By Theorem 7.3, FFD(T ) = 0.

Conversely, assume that FFD(T ) = 0. By Theorem 7.16, fPD(R) = 0. First assume that T is a local
ring. By Theorem 7.12, D is a 1-torsion-free R-module. Since D is a field, F is a direct sum of copies
of D. Thus F is also a 1-torsion-free R-module. From the exact sequence 0 → M → T → F → 0
and the fact that M is a 1-torsion-free R-module, it follows that T is a 1-torsion-free R-module. By
Theorem 7.14, FFD(R) = 0.
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Now consider the general case. Let P be a maximal ideal of R and set Q = Q(P ) as [22, Theorem
8.3.17]. If P ,M, then by [22, Theorem 8.3.17], Q is a maximal ideal of T and Q ,M. At this time,
FFD(RP ) = FFD(TQ) = 0. If P = M, then (RSDTSF,MTS ) is a Cartesian square. It has been proved by
the above that FFD(RP ) = 0. Again by Theorem 7.3, FFD(R) = 0.

Proposition 7.19. Let (RDT F,M) be a Milnor square. If FFD(R) 6 1, then FFD(D) 6 1.

Proof. The situation where D is a field is obvious. Now suppose that D is not a field. First assume
that (T ,M) is a local ring. Let u ∈D be a nonzero nonunit. Take x ∈ R such that π(x) = u. Then x ∈ R,
x <M, and x is not a unit. By [22, Theorem 8.3.6], M ⊂ xR. In this case, R/(x) � D/(u). By Theorem
7.10, FFD(D/(u)) = 0. Again by Theorem 7.10, FFD(D) 6 1.

Now consider the general situation. Let p be a maximal ideal of D. Then there is a maximal ideal
P of R such that π(P ) = p. Set S1 = R \ P and S2 = T \M. Then Dp = DS1

. By [22, Lemma 8.3.8],
TS1

= TS2
is a local ring. Since (RS1

DS1
TS1
F,MTS1

) is a Milnor square, it follows from the above that
FFD(Dp) 6 1. By Theorem 7.3, FFD(D) 6 1.

Theorem 7.20. Let (RDT F,M) be a Milnor square of type I. Then FFD(R) 6 1 if and only if FFD(D) 6
1 and FFD(T ) 6 1.

Proof. Assume that FFD(R) 6 1. By [22, Theorem 8.3.10], T = RS is a flat R-module, where S = R\M.
By Theorem 7.2, FFD(T ) 6 1. By Proposition 7.19, FFD(D) 6 1.

Conversely, let A be an R-module with fdRA 6 2. Let 0→ B→ P → A→ 0 be an exact sequence,
where P is a flat R-module. Since T is a flat R-module and FFD(T ) 6 1, T ⊗R B is a flat T -module,
and by Theorem 7.10 and Theorem 6.23(2),M is both a 2-torsion-free T -module and a 2-torsion-free
R-module. Thus TorR1 (M,A) � TorR2 (D,A) � TorR1 (D,B) = 0. Let 0 → B1 → P1 → B→ 0 be an exact
sequence, where P1 is a flat R-module. Since fdRB 6 1, B1 is a flat module. Note that 0→ B1/MB1→
P1/MP1 → B/MB → 0 is a D-module exact sequence. Thus fdD(B/MB) 6 1. It follows from [22,
Proposition 8.2.8] that B/MB is a torsion-free D-module. Since FFD(D) 6 1, applying Theorem 7.10,
we get that B/MB is a flat D-module. It follows from [22, Theorem 8.2.1] that B is a flat R-module.
So fdRA 6 1, and thus FFD(R) 6 1.

Theorem 7.21. Let (RDT F,M) be a Milnor square of type II.

(1) Assume that t2dT F 6 1. If FFD(R) 6 1, then FFD(T ) 6 1.

(2) Assume that T is a 2-torsion-free R-module. If FFD(D) 6 1 and FFD(T ) 6 1, then FFD(R) 6 1.

Proof. (1) First assume that D is a field. Let N be a torsion-free T -module with fdTN 6 1. By
Proposition 7.13, we can let N = T ⊗R B, where B is the pullback of N and a certain D-module I .
By the hypothesis, t2dT F 6 1, and so TorT1 (F,N ) = 0. By Lemma 7.17, fdRB 6 1. Since B is a torsion-
free module, B is a flat module. Hence N is a flat T -module. Therefore FFD(T ) 6 1.

Now consider the general case. Let L be the quotient field of D. Split the original Milnor square
into the following two Milnor squares:

R //

��

T1

��

// T

��
D // L // F

Since L is the quotient field of D, we have FFD(T1) 6 1. Since L is a field, FFD(T ) 6 1.
(2) First assume that D is a field. By the hypothesis, T is a 2-torsion-free R-module. By applying

Theorem 7.14, we know that FFD(R) 6 1.
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Now consider the general case. Let L be the quotient field of D. Split the original Milnor square
into the following two Milnor squares:

R //

��

T2

��

// T

��
D // L // F

By Proposition 7.11, T is a 2-torsion-free T2-module. Thus FFD(T2) 6 1. Since L is the quotient field
of D, we get that FFD(R) 6 1.

Lemma 7.22. Let (RDT F,M) be a Milnor square, where D is a field. Then:

(1) There exists an exact sequence
0 −→M −→ P −→ C −→ 0,

where P is a finitely generated free R-module, C is a finitely generated torsion-free R-module. Thus
M is a 2-torsion-free R-module.

(2) If M is a flat ideal of T with M2 =M, then M is also a flat R-module.

Proof. (1) By [22, Theorem 8.5.5], there exists a finitely generated fractional ideal I of R such that

M = I−1. Take an exact sequence 0 → A
f
→ Q → I → 0, where Q is a finitely generated projective

R-module. Thus we have an exact sequence 0→ I ∗→ Q∗
f ∗

→ A∗. Set P = Q∗ and C = Im(f ∗). Now the
proof follows immediately from I ∗ � I−1 =M.

(2) Since M2 = M, we have F ⊗T M = 0. Computation gets the pullback (0,M,0) � M. By [22,
Theorem 8.2.2], M is a flat R-module.

Theorem 7.23. Let (RDT F,M) be a Milnor square, where D is a field and T is a local ring.

(1) If T as an R-module is not a 2-torsion-free module, then M is a flat T -module and M =M2.

(2) If FFD(T ) 6 1 and M is a flat ideal of T with M =M2, then T as an R-module is not a 2-torsion-
free module.

Proof. (1) Assume that T as an R-module is not a 2-torsion-free module. By Proposition 7.11(1),
there exists a torsion-free R-module B such that fdRB 6 1 and T ⊗R B is not a torsion-free T -module.
Since T is a 1-torsion-free R-module, it follows from Theorem 6.23 that fdT (T ⊗R B) 6 1. Take an
exact sequence 0→ B→ P →N → 0, where P is a flat R-module. Let θ : T ⊗RB→ T ⊗R P be a natural
homomorphism and write I = Im(θ) and L = Ker(θ). Then I is a submodule of a flat T -module
T ⊗R P , and thus a torsion-free T -module. By Lemma 7.22(1), t2dRD 6 1, and so TorR1 (D,B) = 0. By
[22, Exercise 3.46], M ⊗R B �MB. Note that MB ⊆ B ⊆ I . Thus we have the following commutative
diagram with exact rows:

0 // L // T ⊗R B

��

//

��

I //

β��
h

vv

0

0 // L // F ⊗R B
g // I/MB // 0

Thus L is an F-vector space. Since the bottom row in the above diagram is an exact sequence of
F-vector spaces, it is split. Hence we have a homomorphism h : I → F ⊗R B such that hg = β. By [22,
Exercise 1.60], the top row is split. Thus T ⊗R B � L⊕ I . Hence fdT I 6 1 and fdT L 6 1.

Since T ⊗R B is not a torsion-free T -module, it follows that L , 0. Since L is an F-vector space, L is
the direct sum of some copies of F. From this we have fdT F = fdT L 6 1, so that M is a flat T -module.
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If M ,M2, by [22, Theorem 2.5.22] M is a principal ideal, and so M = T u. Thus T �M. By Lemma
7.22(1), T as an R-module is 2-torsion-free, which contradicts the known conditions. Thus M =M2.

(2) Assume on the contrary that T as an R-module is a 2-torsion-free module. By Lemma 7.22(2),
M is a flat ideal of R. By Theorem 7.21, FFD(R) 6 1. By Theorem 7.15, T as an R-module is flat. By
[22, Theorem 8.3.10], F is the quotient field of D, a contradiction. Therefore T as an R-module is not
2-torsion-free.

7.4 Weak global dimension and weak finitistic dimension of pseudo-valuation rings

Let R be a pseudo-valuation ring. By [22, Corollary 11.8.9], there is a Milnor square (RDT F,M),
where (T ,M) is a valuation ring and D is a field.

Lemma 7.24. Let (R,M) be a pseudo-valuation ring and A be a finitely generated proper ideal of R. Then
there is an exact sequence

0 −→Mn−1 −→ Rn −→ A −→ 0,

where n is an appropriate positive integer.

Proof. Let {x1,x2, . . . ,xn} be a minimal generating set of A. The situation of n = 1 is obvious, and
so we may assume that n > 1. Let ϕ : Rn → A be a projective cover. Then Ker(ϕ) ⊆ Mn. Let z =
(m1,m2, . . . ,mn) ∈ Ker(ϕ). Define g(z) = (m2,m3, . . . ,mn). If g(x) = 0, then m2 = · · · = mn = 0. Thus
m1x1 = 0. Since A is a torsion-free module, it follows that m1 = 0. Thus g is a monomorphism.

Again letm2, . . . ,mn ∈M. Set I = Rx2+· · ·+Rxn and J = Rx1. By minimality of a generating set, J 6⊆ I .
By [22, Theorem 11.8.6], IM ⊆ JM = Mx1. Thus there exists m1 ∈ M such that m1x1 +m2x2 + · · · +
mnxn = 0, and so (m1,m2, . . . ,mn) ∈ Ker(ϕ). Thus g is an epimorphism. Therefore Ker(ϕ) �M(n−1).

Proposition 7.25. Let (R,M) be a pseudo-valuation ring, but not a valuation ring. Then:

(1) M =M2 if and only if M is a flat ideal of R.

(2) If M ,M2, then there exists an exact sequence

0 −→M(L1) −→ R(L) −→M −→ 0,

where L,L1 are appropriate index sets.

Proof. (1) Assume that M =M2. By Lemma 7.22(2), M is a flat ideal of R. Conversely, assume that M
is a flat ideal of R. If M ,M2, then by [22, Theorem 2.5.22], M is a principal ideal, which contradicts
[22, Theorem 8.3.3 (2)]. Thus M =M2.

(2) Let X = {xi | i ∈ L} ⊆ R such that {xi} is an R/M-basis of T /M. We may assume that x1 = 1. By
[22, Theorem 2.5.22],M = T u, where u ∈M \M2. Define ϕ : R(L)→M by ϕ(ei) = xiu, where {ei | i ∈ L}
is the standard basis of R(L). Thus Im(ϕ) =

∑
i
Rxiu =

∑
i
Rxiu+Mu = (

∑
i
Rxi +M)u = T u =M, and so ϕ

is an epimorphism. It is easy to see that Ker(ϕ) ⊆M(L). Set L1 = L− {1} and I =
∑
j,1
Rxju, J = Ru. Then

J 6⊆ I . Similarly to the proof of Lemma 7.24, we have Ker(ϕ) �M(L1).

Let (R,M) be a pseudo-valuation ring, but not a valuation ring. In [8], Dobbs proved that ifM =M2

holds, then w.gl.dim(R) = 2; when M , M2, one has w.gl.dim(R) = +∞. We now provide a more
precise form of Dobbs’ theorem.

Theorem 7.26. Let (R,M) be a pseudo-valuation ring, but not a valuation ring, then FFD(R) 6 2.
More specifically:

(1) If M =M2, then w.gl.dim(R) = 2.
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(2) If M ,M2, then FFD(R) = 1, at this time w.gl.dim(R) = +∞.

Proof. (1) Since M = M2, by Proposition 7.25 M is a flat ideal of R. Let A be a finitely generated
proper ideal of R. By Lemma 7.24, fdRR/A 6 2, and so w.gl.dim(R) 6 2. Since R is not a valuation
ring, w.gl.dim(R) = 2.

(2) Since M is a flat ideal of T , by applying Theorem 7.23, T as an R-module is 2-torsion-free.
It follows by Theorem 7.21 that FFD(R) 6 1. Assume on the contrary that fdRM = n < +∞. Then
it follows by Proposition 7.25 that n > 0. By Proposition 7.25 and [22, Theorem 3.6.6], we get that
n = n+ 1, a contradiction. Thus fdRM = +∞, and so w.gl.dim(R) = +∞.

8 Matlis cotorsion modules and Matlis domains

This section uses the Matlis domain as an example to show some methods of cotorsion theory for de-
scribing the structure of the ring. The Matlis domain is the domain class to which Matlis is primarily
concerned [20]. For the domain R, K is always used below to indicate the quotient field of R.

8.1 h-divisible modules and Matlis cotorsion modules

Definition 8.1. Let R be a domain and let D be an R-module.

(1) D is called an h-divisible module if it is a factor module of an injective module (i.e., 0-th
cosyzygy module). Denote by Dh the class of h-divisible modules.

(2) D is called a reduced module (resp., an h-reduced module) if it does not contain any nonzero
divisible (resp., h-divisible) submodule.

Theorem 8.2. Let R be a domain and let D be an R-module. Then the following are equivalent:

(1) D is h-reduced.

(2) 0→HomR(K/R,D)→HomR(K,D)→HomR(R,D)→ 0 is an exact sequence.

(3) D is a factor module of a torsion-free divisible module (i.e., a K-vector space).

(4) For any x ∈D, there exists a homomorphism g : K →D such that g(1) = x.

Proof. (1)⇒(2) Since D is h-reduced, there exists an epimorphism E → D, where E is an injective
module. Consider the following commutative diagram:

HomR(K,E) //

��

HomR(K,D)

��
HomR(R,E) // HomR(R,D)

where all mappings are natural homomorphisms. Since E is injective, the left vertical map is an
epimorphism. Since R is a free module, the second row is an epimorphism. Therefore the right
vertical map is an epimorphism.

(2)⇒(3) Note that HomR(K,D) is trivially a K-vector space. Now this follows from the fact that
D �HomR(R,D).

(3)⇒(1) By [22, Theorem 2.4.7], every torsion-free divisible module is injective, and so D is h-
divisible.

(2)⇔(4) This is trivial.

Example 8.3. Let R be a domain.
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(1) Every factor module of an h-divisible module is h-divisible and any direct product of h-divisible
modules is h-divisible.

(2) Since every factor module of a divisible module is divisible, every h-divisible module is divisi-
ble. Denote by D the class of divisible modules. Then Dh ⊆ D.

(3) By Zorn’s lemma and Exercise 16, any module has a maximal divisible (resp., h-divisible) sub-
module. Denote by d(X) (resp., dh(X)) a maximal divisible submodule (resp., maximal h-
divisible submodule) of a module X. Trivially a moduleM is reduced (resp., h-reduced) if and
only if HomR(D,M) = 0 for any divisible (resp., h-divisible) module D.

(4) Any submodule of a reduced module (resp., an h-reduced module) is naturally reduced (resp.,
h-reduced).

Proposition 8.4. LetR be a domain and letM be anR-module. Then pdRM 6 1 if and only if Ext1
R(M,D) =

0 for any h-divisible module D. In other words, P1 = ⊥Dh.

Proof. Note that for a ring R and a positive integer n, pdRM 6 n if and only if Ext1
R(M,X) = 0 for any

(n− 1)-th cosyzygy module X. Now the assertion follows by taking n = 1.

Proposition 8.5. Let R be a domain and let M be an R-module. Then M is h-reduced if and only if
HomR(K,M) = 0. In particular, if R is not a field, then R is an h-reduced module; more generally every free
module is h-reduced.

Proof. Assume that HomR(K,M) , 0. Then there is a nonzero homomorphism f : K →M. Thus f (K)
is a nonzero h-divisible submodule of M. Hence M is not h-reduced.

Conversely, assume that M is not h-reduced. Then M has a nonzero h-divisible submodule D.
By Theorem 8.2, there exists a homomorphism g : K → D such that g(1) , 0. Let λ : D → M be an
embedding. Then λg : K →M is a nonzero. Thus HomR(K,M) , 0.

Proposition 8.6. Let R be a domain and let D be an h-divisible module. Then the total torsion submodule
tor(D) is a direct summand of D. In particular, tor(E) of an injective module E is a direct summand of E,
and so is an injective module.

Proof. Let E be a K-vector space and let g : E→D be an epimorphism. Set T := tor(D) and N :=D/T .
Then N is a torsion-free divisible module, and so a K-vector space. Let {xi} ⊆ D such that {xi} is
a K-basis of N . For any i, choose ei ∈ E such that g(ei) = xi . Then it is clear that {ei} in E is K-
linearly independent. Let M be a K-vector space in E generated by {ei}. Then we have the following
commutative diagram with exact rows:

0 // A //

��

E h //

g��

N // 0

0 // T // D π // N // 0

where π is a natural homomorphism. By Exercise 9, h is a K-homomorphism, and so A is also a
K-vector space. For k ∈ K and x ∈M, define kg(x) = g(kx). Since Ker(g) ⊆ A, it follows that g(M) has
been made into a K-vector space, which is a torsion-free module as an R-module. Thus T ∩g(M) = 0.
It follows by direct verification that D = T + g(M). Therefore D = T ⊕ g(M).

Definition 8.7. Let R be a domain and let M, W be R-modules.

(1) W is called a Matlis cotorsion module if Ext1
R(K,W ) = 0. Denote by MC the class of Matlis

cotorsion modules.
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(2) W is called a Lee cotorsion module if Ext1
R(K/R,W ) = 0. Denote byLC the class of Lee cotorsion

modules.

(3) M is called a strongly flat module if M ∈ ⊥MC. Denote by SF the class of strongly flat mod-
ules.

(4) Write SF 1 = ⊥LC.

Proposition 8.8. Let R be a domain. Then:

(1) C ⊆ MC and C1 ⊆ LC. In other words, every cotorsion module is Matlis cotorsion and every 1-
cotorsion module is Lee cotorsion.

(2) LC ⊆MC∩Dh. That is, every Lee cotorsion module is both h-divisible and Matlis cotorsion.

(3) P ⊆ SF ⊆ F and P1 ⊆ SF 1 ⊆ F1.

(4) SF ⊆ SF 1.

(5) Let G be an R-module. If there exists u ∈ R \ {0} such that uG = 0, then G ∈MC.

(6) The quotient field K of R is trivially a strongly flat R-module.

Proof. Exercise.

Theorem 8.9. Let R be a domain. Then (SF ,MC) and (SF 1,LC) are all complete cotorsion theories.

Proof. This follows by taking S = {K} and S = {K/R} respectively in Theorem 3.11.

Lemma 8.10. Let R be a domain.

(1) Let 0→ A→ B→ C→ 0 be an exact sequence. If B ∈MC and C is h-reduced, then A ∈MC.

(2) Let A be a torsion module. Then HomR(A,X) is an h-reduced Matlis cotorsion module for any R-
module X. In particular, HomR(K/R,X) is an h-reduced Matlis cotorsion module.

(3) Let D be an h-divisible module. Then there exists an exact sequence 0→M→ E→ D→ 0, where E
is a K-vector space and M is an h-reduced Matlis cotorsion module.

(4) LetM be a torsion-free module. Then Ext1
R(K/R,M) is always an h-reduced Matlis cotorsion module..

Proof. (1) SinceC is h-reduced, HomR(K,C) = 0. Thus there exists an exact sequence 0→ Ext1
R(K,A)→

Ext1
R(K,B) = 0. Therefore Ext1

R(K,A) = 0, and so A ∈MC.
(2) Since A is a torsion module, by [22, Theorem 2.2.16] HomR(K,HomR(A,X)) = 0. By Proposition

8.5, HomR(A,X) is an h-reduced module.
Let 0 → X → E → Y → 0 be an exact sequence, where E is an injective module. Then there

exists an exact sequence 0 → HomR(A,X) → HomR(A,E) → HomR(A,Y ). By [22, Theorem 3.4.11],
Ext1

R(K,HomR(A,E)) �HomR(TorR1 (K,A),E) = 0. Thus HomR(A,E) is a Matlis cotorsion module. Since
HomR(A,Y ) is an h-reduced module, it follows by (1) that HomR(A,X) is a Matlis cotorsion module.

(3) This follows from Theorem 8.2 by taking E = HomR(K,D) and M = HomR(K/R,D).
(4) By [22, Theorem 3.6.12] there exists an exact sequence 0→M → K ⊗RM → (K/R)⊗RM → 0.

Since M and K ⊗RM are torsion-free, K ⊗RM is an injective R-module. Hence there is an exact
sequence:

0→HomR(K/R, (K/R)⊗RM)→ Ext1
R(K/R,M)→ Ext1

R(K/R,K ⊗RM) = 0.

Therefore HomR(K/R, (K/R)⊗RM) � Ext1
R(K/R,M). Now the assertion follows by (2).



Cotorsion theory and its application to ring structures - a book chapter 341

Lemma 8.11. Let R be a domain and let M be an h-reduced module.

(1) M ∈MC if and only if M � Ext1
R(K/R,M).

(2) If M is a torsion-free module, then there exists an exact sequence

0→M→ C→ E→ 0,

where E is a K-vector space and C is an h-reduced Matlis cotorsion module.

Proof. (1) Since M is h-reduced, HomR(K,M) = 0, and hence there exists an exact sequence

0→M = HomR(R,M)→ Ext1
R(K/R,M)→ Ext1

R(K,M)→ 0.

Thus M ∈MC if and only if M � Ext1
R(K/R,M).

(2) This follows immediately by taking C = Ext1
R(K/R,M) and E = Ext1

R(K,M) in the exact sequence
in (1) and by applying Lemma 8.10.

Theorem 8.12. Let R be a domain and let M be an R-module. Then the following are equivalent:

(1) M is a strongly flat module.

(2) M is a direct summand of a certain module N , where N fits into an exact sequence 0→ F →
N → E→ 0, where F is a free module and E is a K-vector space.

(3) M ∈ F and Ext1
R(M,C) = 0 for any C ∈ F ∩MC.

(4) M ∈ F and Ext1
R(M,C) = 0 for any reduced Matlis cotorsion module C.

Proof. (1)⇒(2) Let 0→ H → F →M → 0 be an exact sequence, where F is a free module. Since F is
a torsion-free h-reduced module, H is also torsion-free h-reduced. By Lemma 8.11(2), there exist a
Matlis cotorsion module C and an embedding map i : H → C such that E := Coker(i) is a K-vector
space. Consider the following commutative diagram with exact rows:

0 // H //

i��

F
g��

//M // 0

0 // C // N //M // 0

where the left square is a pushout diagram. Note that Coker(g) � E. Since C is a Matlis cotorsion
module, the second row is split. Thus M is a direct summand of N .

(2)⇒(1) Since F and E are strongly flat modules, N is strongly flat, and so M is strongly flat.
(1)⇒(4) Trivial.
(4)⇒(3) Since C is a flat module, C is torsion-free. Let D be a maximal divisible submodule of C.

Then D is injective, and hence we have a direct sum decomposition C =D⊕C1. Thus C1 is a reduced
Matlis cotorsion module. By the hypothesis, Ext1

R(M,C) = Ext1
R(M,C1) = 0.

(3)⇒(1) Let C be a Matlis cotorsion module. Since (F ,C) is a perfect cotorsion theory, there is an
exact sequence 0→ X→ G→ C→ 0, where G is a flat module and X is a cotorsion module. Thus G ∈
F ∩MC. By the hypothesis, Ext1

R(M,G) = 0. By the exact sequence 0 = Ext1
R(M,G)→ Ext1

R(M,C)→
Ext2

R(M,X) and Ext2
R(M,X) = 0, it follows that Ext1

R(M,C) = 0. Therefore M is a strongly flat module.

Theorem 8.13. Let R be a domain, P be a projective module, and F be a strongly flat submodule of
P . Then F is a projective module.
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Proof. Let D be an h-divisible module. By Lemma 8.10, there is an exact sequence 0→ M → E →
D→ 0, where E is a K-vector space andM ∈MC. Thus Ext1

R(P /F,D) � Ext2
R(P /F,M) � Ext1

R(F,M) = 0.
By Proposition 8.4, pdRP /F 6 1, and so F is projective.

Theorem 8.14. Let R be a domain, S be a multiplicative subset of R, and C be a Matlis cotorsion
R-module. Then:

(1) CS := HomR(RS ,C) is a Matlis cotorsion RS-module.

(2) If C is also an h-reduced module, then CS is an h-reduced Matlis cotorsion RS-module and
CS � Ext1

R(K/RS ,C).

Proof. (1) Let ξ : 0→ C → E → N → 0, where E is an injective R-module. Then we have an exact
sequence:

0→HomR(RS ,C)
f
→HomR(RS ,E)→H → 0,

where H := Coker(f ). Thus we have the following commutative diagram with exact rows:

HomRS (K,HomR(RS ,E)) //

�
��

HomRS (K,H)

σ
��

// Ext1
RS

(K,HomR(RS ,C)) //

τ��

0

HomR(K ⊗RS RS ,E) // HomR(K ⊗RS RS ,N ) // Ext1
R(K ⊗RS RS ,C) // 0

Since H ⊆ HomR(RS ,N ), σ is a monomorphism, and so τ is a monomorphism. Since C is a Matlis
cotorsion module, Ext1

RS
(K,HomR(RS ,C)) = 0, and thus HomR(RS ,C) is a Matlis cotorsion RS-module.

(2) Since HomRS (K,HomR(RS ,C)) �HomR(K ⊗RS RS ,C) = 0, CS is a reduced RS-module. From the
exact sequence 0→ RS → K → K/RS → 0, we have an exact sequence:

0 = HomR(K,C)→HomR(RS ,C)→ Ext1
R(K/RS ,C)→ Ext1

R(K,C) = 0.

Now the last assertion follows.

Theorem 8.15. Let R be a domain, S be a multiplicative subset of R, and M be a strongly flat R-
module. Then MS is a strongly flat RS-module.

Proof. By Theorem 8.12, M is a direct summand of a module N , where N fits in an exact sequence
0→ F→ N → E→ 0 with F a free module and E a K-vector space. Thus MS is a direct summand of
NS and 0→ FS →NS → E→ 0 is an exact sequence. It follows by Theorem 8.12 that MS is a strongly
flat RS-module.

8.2 Characterizations of Matlis domains

Definition 8.16. A domain R is called a Matlis domain if pdRK 6 1, equivalently, pdRK/R 6 1.

Trivially every Dedekind domain is a Matlis domain.

Theorem 8.17. The following are equivalent for a domain R:

(1) R is a Matlis domain.

(2) Dh = LC, that is, every h-divisible module is a Lee cotorsion module.

(3) Every factor module of a Lee cotorsion module is a Lee cotorsion module.

(4) P1 = SF 1.
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(5) (SF ,MC) is a hereditary cotorsion theory.

(6) The projective dimension of any strong flat module is at most 1.

Proof. (1)⇒(2) Let D be an h-divisible module. By Proposition 8.4, Ext1
R(K/R,D) = 0. Thus D is a Lee

cotorsion module.
(2)⇒(3) Obviously, because LC ⊆ Dh, every factor module of a Lee cotorsion module is h-divisible.
(3)⇒(1) Let D be any h-divisible module. By the hypothesis, D is a Lee cotorsion module, and so

Ext1
R(K/R,D) = 0. By Proposition 8.4, pdRK/R 6 1, that is, R is a Matlis domain.

(2)⇒(4) By the hypothesis, Dh = LC. By Proposition 8.4, P1 = ⊥Dh = ⊥LC = SF 1.
(4)⇒(1) This follows from the fact that K/R ∈ SF 1 = P1.
(1)⇒(5) Let 0→ A→ B→ C → 0 be an exact sequence, where A,B are Matlis cotorsion modules.

Then by an exact sequence 0 = Ext1
R(K,B)→ Ext1

R(K,C)→ Ext2
R(K,A) = 0 it follws that Ext1

R(K,C) = 0.
Thus C is a Matlis cotorsion module. By Theorem 3.5 and Theorem 8.9, (SF ,MC) is a hereditary
cotorsion theory.

(5)⇒(1) Let D be an h-divisible module. By Lemma 8.10, there exists an exact sequence 0→M→
E → D → 0, where E is a K-vector space and M is an h-reduced Matlis cotorsion module. By the
hypothesis, D is a Matlis cotorsion module, and so Ext1

R(K,D) = 0. By Proposition 8.4, pdRK 6 1, that
is, R is a Matlis domain.

(1)⇒(6) Let M be a strongly flat module and 0→N → P →M→ 0 be an exact sequence, where P
is a projective module. By Theorem 8.17, (SF ,MC) is a hereditary cotorsion theory. By Theorem 3.5,
N is a strongly flat module. By Theorem 8.13, N is a projective module, and so pdRM 6 1.

(6)⇒(1) This is obvious because K is a strongly flat module.

Let R be a Matlis domain. By Theorem 8.17, G = (SF ,MC) is a hereditary cotorsion theory. From
Section 5 one can define the strongly flat dimension of a module M to be ∞, or the shortest length
of strongly flat resolutions of M, denoted by SfdRM. By Theorem 5.3, fdRM 6 SfdRM 6 pdRM.

Proposition 8.18. Let R be a Matlis domain and M be a torsion-free R-module. Then the following are
equivalent:

(1) M is a strongly flat R-module.

(2) pdR((K/R)⊗RM) 6 1.

(3) SfdR((K/R)⊗RM) 6 1.

Proof. (1)⇒(2) By tensoring K/R with the exact sequence of Theorem 8.12(2), we have the following
exact sequence

0 −→ (K/R)⊗R F −→ (K/R)⊗RN −→ (K/R)⊗R E −→ 0.

Since (K/R)⊗R F and (K/R)⊗R E are direct sums of some copies of K/R respectively,

pdR((K/R)⊗RN ) 6max{pdR((K/R)⊗R F),pdR((K/R)⊗R E)} 6 1.

Thus pdR((K/R)⊗RN ) 6 1. Therefore pdR((K/R)⊗RM) 6 1.
(2)⇒(3) This is trivial.
(3)⇒(1) Consider the exact sequence 0→ R→ K → K/R→ 0. Since M is a torsion-free module, it

follows by [22, Exercise 3.6] that

0 −→M −→ K ⊗RM −→ (K/R)⊗RM −→ 0

is an exact sequence. Since SfdR((K/R)⊗RM) 6 1, it follows that M is a strongly flat module.
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Lemma 8.19. Let a1, . . . , an, . . . be a sequence of nonzero elements of R and let F be a free R-module with
its basis x0,x1, . . . ,xn, . . . . Set

yn = xn − an+1xn+1, n = 0,1,2, . . . .

Let n > 1 and y = r0x0 + r1x1 + · · ·+ rnxn ∈ F. Then

y =
n−1∑
k=0

(
k∑
j=0

rjaj+1 · · ·ak)yk + (rn + rn−1an + · · ·+ r1a2 · · ·an + r0a1 · · ·an)xn.

where if j = k, regard aj+1 · · ·ak = 1.

Proof. If n = 1, then y = r0x0 + r1x1 = r0y0 + (r1 + r0a1)x1. Thus the assertion is true. Assume that n > 1
and set z = r0x0 + r1x1 + · · ·+ rn−1xn−1. By the induction hypothesis,

z =
n−2∑
k=0

(
k∑
j=0

rjaj+1 · · ·ak)yk + (
n−1∑
j=0

rjaj+1 · · ·an−1)xn−1.

Therefore

y = z+ rnxn

=
n−2∑
k=0

(
k∑
j=0
rjaj+1 · · ·ak)yk + (

n−1∑
j=0

rjaj+1 · · ·an−1)yn−1 + an(
n−1∑
j=0

rjaj+1 · · ·ak)xn + rnxn

=
n−1∑
k=0

(
k∑
j=0
rjaj+1 · · ·ak)yk + (

n∑
j=0
rjaj+1 · · ·an)xn. �

Lemma 8.20. Let R be a domain, a1, . . . , an, . . . be a sequence of nonzero elements of R, and A be an R-
submodule of K generated by

{1, 1
a1
, . . . ,

1
a1 · · ·an

, · · · }.

Then pdRA 6 1. In particular, if u ∈ R \ {0}, then pdRRu 6 1.

Proof. Let F be a free module with its basis x0,x1, . . . ,xn, . . . and let φ : F→ A be an epimorphism such
that φ(x0) = 1 and φ(xn) = 1

a1···an , n > 1. Set P = Ker(φ) and yn := xn − an+1xn+1, n > 0. Below we prove
that P is a submodule of F generated by y0, y1, y2, . . . , yn, . . . . Then by [22, Theorem 3.10.19(1)], P is a
free module, and so pdRA 6 1.

By a direct verification, one has φ(y0) = 1−a1
1
a1

= 0, and if n > 1, then φ(yn) = 1
a1···an −an+1

1
a1···anan+1

=
0. Thus yn ∈ P . On the other hand, for any y ∈ P we can write y = r0x0 +r1x1 + · · ·+rnxn. Since φ(y) = 0,
we have r0a1 · · ·an + r1a2 · · ·an + · · ·+ rn−1an + rn = 0. If n = 0, then y = r0x0. Since φ(y) = r0 = 0, we have

y = 0. Let n > 1. By Lemma 8.19, y = r0y0 +
n−1∑
k=1

(rk + rk−1ak + · · ·+ r0a1 · · ·ak)yk .

The last assertion follows from the fact that 1, 1
u , . . . ,

1
un , . . . is as an R-module a generating system

of Ru .

Theorem 8.21. Let R be a domain. If K as an R-module is countably generated, then R is a Matlis
domain. In particular, every umbrella ring is a Matlis domain.

Proof. Suppose that K is generated by {xn}∞n=1. Write xn = bn
an

, n > 1. Note that {1, 1
a1
, 1
a1a2

, . . . , 1
a1···an , . . . }

is also a generating system of K . By Lemma 8.20, pdRK 6 1.



Cotorsion theory and its application to ring structures - a book chapter 345

Lemma 8.22. Let R be a domain, S be a multiplicative set of R, and T be a multiplicative subset of S. If
pdRRS 6 1 and pdRRS /RT 6 1, then we have:

(1) RT /sRT is a projective R/sR-module for any s ∈ S.

(2) Let m ∈Max(R). If T ∩m = ∅, then (RT )m = Rm. If T ∩m , ∅, then (RT )m = (RS )m.

(3) RT /R is a direct summand of RS /R.

Proof. (1) Obviously pdRRT 6 1. Write R = R/sR. Since pdRRS 6 1 and RT is a torsion-free module,
pdRRT /sRT 6 1. Since sRS = RS , we have RS /RT � sRS /sRT = RS /sRT . From the exact sequence
0 → RT /sRT → RS /sRT → RS /RT → 0 we know that pdRRT /sRT 6 1. It follows by [22, Theorem
3.8.13] that pdRRT /sRT = 0.

(2) If T ∩m = ∅, then obviously (RT )m = Rm, which is true for any domain. If T ∩m , ∅, then
over the ring Rm, by (1), (RT )m/s(RT )m is a free Rm/sRm-module. Since t(RT )m = (RT )m if t ∈ T ∩m, it
follows that (RT )m/s(RT )m is a t-divisible module. Since t is not a unit of Rm, but (RT )m/s(RT )m is a
free Rm/sRm-module, there can only be (RT )m/s(RT )m = 0, that is, (RT )m is a divisible Rm-submodule
of K . Therefore (RT )m = K .

(3) Let m be a maximal ideal of R. If T ∩m = ∅, then (RT )m = Rm. Thus (RT /R)m = Rm/Rm = 0.
If T ∩m , ∅, then (RT )m = K , and so (RT /R)m = K/Rm. Therefore (RT /R)m is a divisible Rm-module.
Note that for a domain R, an R-module X is divisible if and only if Xm is a divisible Rm-module for
any m ∈ Max(R). Then RT /R is a divisible module. Thus RT = sRT + R for any s ∈ R \ {0}. Hence
R/(sRT ∩R) � RT /sRT is a cyclic projective R/sR-module. Therefore the natural homomorphism h :
R/sR→ R/(sRT ∩R) is a split epimorphism, and it is easy to get Ker(h) = (sRT ∩R)/sR � (RT ∩s−1R)/R.
Thus

R/sR � s−1R/R = (RT ∩ s−1R)/R⊕C, where C � RT /sRT . (8.1)

Write Γ1 = {m ∈Max(R) | T ∩m = ∅} and Γ2 = {m ∈Max(R) | T ∩m , ∅}. And set

A =
⋂
m∈Γ1

Rm, B =
⋂
m∈Γ2

Rm.

Then A∩B =
⋂

m∈Max(R)
Rm = R. Thus A/R+B/R = A/R⊕B/R. Since RT ⊆ A, it follows that RT /R+B/R =

RT /R⊕B/R.
In the direct sum decomposition of (8.1), the first term (RT ∩ s−1R)/R ⊆ RT /R. Now we come to

prove C ⊆ B/R.
If m ∈ Γ1, then by (2), Cm ⊆ (RT /R)m ⊕ (B/R)m = (B/R)m. If m ∈ Γ2, then

Cm � (RT /sRT )m = (RT )m/s(RT )m = K/K = 0 ⊆ (B/R)m.

Therefore C ⊆ B/R.
Based on the above, it has been proved that s−1R/R ⊆ RT /R ⊕ B/R, and so s−1 + R ∈ RT /R ⊕ B/R.

From the arbitrariness of s, we get RS /R = RT /R⊕B/R.

Lemma 8.23. Let R be a Matlis domain and u ∈ R be a nonzero nonunit element. Then there is a multi-
plicative set T of countable elements of R such that u ∈ T and RT /R is a direct summand of K/R, and so
RT /R is an h-divisible module.

Proof. Let T1 be the set of submodules of the form RT /R of K/R. Then T1 is a weak tight system of
K/R, that is, the set of submodules that satisfy the following conditions (a), (b):

(a) 0,K/R ∈ T1 and T1 is closed under unions of chains;
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(b) If A ∈ T1 and X is a countable subset of K/R, then there exists B ∈ T1 such that A,X ⊆ B and B/A
is countably generated.

By Lemma 3.19, K/R has a weak tight system T . Obviously a tight system is a weak tight system,
and the intersection of a tight system and a weak tight system is a tight system. Set T2 = T1∩T . Then
T2 is a tight system. Thus if RT /R ∈ T2, then pdRK/RT 6 1. By Lemma 8.22, each RT /R ∈ T2 is a direct
summand of K/R. Now the assertion follows immediately by taking A = 0 and X = {u} in Lemma
3.19(1)(c).

Theorem 8.24. The following are equivalent for a domain R:

(1) R is a Matlis domain.

(2) D =Dh, that is, every divisible module is h-divisible.

(3) D = LC, that is every divisible module is a Lee cotorsion module.

(4) (SF 1,D) is a cotorsion theory.

(5) (SF 1,Dh) is a cotorsion theory.

Proof. (1)⇒(2) Let D be a divisible module. First assume that D is a torsion module. For any x ∈ D
with x , 0, there exists u ∈ R with u , 0 such that ux = 0. Set x0 = x. By Lemma 8.23, there exists a
multiplicative set T with countable elements of R such that u ∈ T and Ru/R is an h-divisible module.

Write T = {1, s0 = u,sn | n > 1}. For n > 1, recursively take xn ∈ D satisfying snxn = xn−1. Note
that the elements in RT can be expressed as r

sn
= rs0s1···sn−1

s0s1···sn . Define f : RT → D by f ( a
s0s1···sn ) = axn,

a ∈ R, n > 0. It is easy to see that f is a well-defined homomorphism. Since f (1) = uf ( 1
u ) = ux = 0,

we have R ⊆ Ker(f ). By [22, Theorem 1.2.18], f induces a homomorphism g : Ru/R→ D such that
g( a
s0s1···sn +R) = axn. So any element in D is contained in an h-divisible submodule, and thus D is an

h-divisible module.
Now consider the general situation. Set D0 = tor(D). Then 0→ D0 → D → D/D0 → 0 is an exact

sequence. Since D/D0 is a torsion-free divisible module. Therefore it is a K-vector space, that is, the
direct sum of some copies of K . Obviously D0 is also a divisible module. From the above proof, D0 is
an h-divisible module. Since pdRK 6 1, by Proposition 8.4, Ext1

R(D/D0,D0) = 0. Therefore the exact
sequence is split, so that D is also an h-divisible module.

(2)⇒(1) By Proposition 8.4, it suffices to prove that Ext1
R(K,D) = 0 for any h-divisible modulus D.

By Proposition 8.6, we may assume that D is a torsion module. Let ξ : 0→ D → G
g
→ K → 0 be an

exact sequence. For x ∈ G and s ∈ R \ {0}, since K is divisible, there exists y ∈ G such that g(x) = sg(y).
Thus x − sy ∈ D. So there exists z ∈ D such that x − sy = sz. Thus x = s(y + z), that is, G is a divisible
module. By the hypothesis G is an h-divisible module. Obviously D = tor(G). By Proposition 8.6, ξ
is a split exact sequence. It follows by [22, Theorem 3.3.5] that Ext1

R(K,D) = 0.
(2)⇒(3) This follows immediately from Theorem 8.17.
(3)⇒(4) By the hypothesis, D = LC. Then (SF 1,LC) is a cotorsion theory.
(4)⇒(5) By the hypothesis, D = LC = SF ⊥1 . Since LC ⊆ Dh ⊆ D, it follows that Dh = LC.
(5)⇒(1) By the hypothesis, SF 1 = ⊥Dh = P1. Now the assertion follows immediately from Theorem

8.17.

Proposition 8.25. Let R be a Matlis domain and N be an R-module. Then N/d(N ) is a reduced module.

Proof. By Proposition 8.4 and Theorem 8.24, Ext1
R(K,d(N )) = 0. Thus we have the following exact

sequence:
0 −→HomR(K,d(N )) −→HomR(K,N ) −→HomR(K,N/d(N )) −→ 0.
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Let f ∈HomR(K,N ). Then f (K) is a divisible submodule ofN , and so f (K) ⊆ d(N ). Thus HomR(K,d(N )) =
HomR(K,N ). Therefore HomR(K,N/d(N )) = 0, that is, N/d(N ) is reduced.

Theorem 8.26. (Kaplansky) Let (R,m) be a local domain. Then R is a Matlis domain if and only if K
as an R-module is a countably generated module.

Proof. Suppose that R is a Matlis domain. Take any u ∈ m with u , 0. By Lemma 8.22(3), (Ru)m =
Ru = K . ThusK is a countably generatedR-module. The converse follows immediately from Theorem
8.21.

Definition 8.27. Let R be a domain. The R is called an h-local ring if R satisfies the following two
conditions:

(1) For any nonzero element a ∈ R, a is contained in only a finite number of maximal ideals;

(2) Each nonzero prime ideal is only contained in one maximal ideal.

Obviously every local integral domain is an h-local ring. In addition, an integral domain with
Krull dimension 1 that satisfies the above condition (1) is also an h-local ring.

Theorem 8.28. Let R be a h-local ring. Then:

(1) If m1 and m2 are two distinct maximal ideals of R, then Rm1
⊗R Rm2

= K .

(2) Let m be a maximal ideal of R and let B be a torsion R-module. Then the natural homomor-
phism θ : B→ Bm is an epimorphism.

(3) Let m be a maximal ideal of R, B be a torsion Rm-module, and A be an R-submodule of B. Then
A is also an Rm-module.

(4) Let m be a maximal ideal of R and let B be a countably generated torsion Rm-module, Then B
as an R-module is also countably generated.

(5) For any R-torsion module B, B �
⊕

m∈Max(R)
Bm. In particular,

K/R �
⊕

m∈Max(R)

(K/Rm).

Proof. (1) Set S1 = R\m1, S2 = R\m2, S = S1S2, and S0 = R\ {0}. Then K = RS0
. Trivially Rm1

⊗RRm2
=

RS ⊆ K . If RS , K , then S , S0. By [22, Theorem 1.4.7], there exists a nonzero prime ideal p satisfying
the condition that p∩S = ∅. Since S1,S2 ⊆ S, we have p ⊆m1∩m2. Since R is assumed to be an h-local
ring, there is no such p. So S = S0, and thus RS = K .

(2) From the exact sequence 0 → R → Rm → Rm/R → 0, we have an exact sequence B → Bm →
(Rm/R)⊗R B→ 0. Set X = (Rm/R)⊗R B and let m′ be any maximal ideal of R. Note that for a multi-
plicative subset consisting of non-zero-divisors of a ring R, RS ⊗R (RS /R) = 0. Thus if m′ = m, then
Xm = 0. If m′ ,m, then it follows by (1) that Rm ⊗R Rm′ ⊗R B = 0. From the exact sequence

Rm′ ⊗R B→ Rm′ ⊗R Rm ⊗R B→ Rm′ ⊗R (Rm/R)⊗R B→ 0,

it follows that Xm′ = 0. Thus X = 0. Therefore θ is an epimorphism.
(3) From the commutative diagram below, we can see that the natural homomorphism θ : A→ Am

is an isomorphism:
0 // A //

θ ��

B

0 // Am // Bm
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(4) Let {xi}∞i=1 be a generating system of B as an Rm-module. Set A =
∞∑
i=1
Rxi . Then A is an R-

submodule of B. It follows by (3) that A = Am = B. Therefore B as an R-module is also countably
generated.

(5) For any x ∈ B, since B is a torsion module, there exists u ∈ R \ {0} such that ux = 0. Since u
is contained in only finitely many maximal ideals of R, it follows that if u is not contained in these
maximal ideals, then x

1 = 0. Define φ : B →
⊕

m∈Max(R)
Bm by φ(x) = [x1 ]. Then φ is a well-defined

R-homomorphism. For any m ∈Max(R),

Rm ⊗R (
⊕

m∈Max(R)
Bm) = (Rm ⊗R Bm)⊕ (

⊕
m′,m

(Rm ⊗R Rm′ )⊗Rm′ Bm′ ) = Bm

Therefore φ is an isomorphism.

Theorem 8.29. Let R be a domain with dim(R) 6 1. If R is of finite character, i.e., satisfying Definition
8.27(1), then we have:

(1) Let u ∈ R be a nonzero element, m be a maximal ideal of R, and u ∈m. Then K/Rm = (Ru/R)m.

(2) Let u ∈ R be a nonzero nonunit element. Then Ru/R �
k⊕
i=1

(K/Rmi
), where m1, . . . ,mk are all the

maximal ideals of R containing u.

(3) R is a Matlis domain.

Proof. (1) Since (Ru)m = (Rm)u , we may assume that (R,m) is a local ring. Let x ∈ R with x , 0. If x is
a unit, then u ∈ Rx. If x is not a unit, then, since

√
Rx = m, there exists n such that un ∈ Rx, and so

x−1 ∈ Ru−n ⊆ Ru . It follows that K = Ru .
(2) If u < m, then (Ru/R)m = 0. Now the assertion follows by taking B = Ru/R in Theorem 8.28(5)

and applying (1).
(3) Let m be a maximal ideal of R. Take any u ∈ m \ {0}. By (2) and Lemma 8.20, K/Rm is a direct

summand of Ru/R, and so pdRK/Rm 6 1. It follows from the second isomorphism in Theorem 8.28(5)
that pdRK/R 6 1.

9 Almost perfect domains

Similarly to the Matlis domains discussed in the previous section, this section uses almost perfect
domains as an example to show some methods of cotorsion theory for describing the structure of
the ring. For a study of almost perfect domains, please refer to [1, 3, 4, 5, 10, 21]. To this end, the
so-called 1-perfect domain will be described first.

9.1 Characterizations of 1-perfect domains

Definition 9.1. Let n > 0 be an integer. A ring R is called an n-perfect ring if gldC(R) 6 n.

By Theorem 7.8, the 0-perfect ring is exactly the perfect ring. In this subsection, we will charac-
terize 1-perfect domains.

Theorem 9.2. Let R be a 1-perfect domain. Then R is a Matlis domain.

Proof. By Theorem 6.16, pdRK 6 gldC(R) 6 1.

Theorem 9.3. The following statements are equivalent for an integral domain R.
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(1) R is a 1-perfect domain.

(2) D ⊆ C, that is, every divisible module is a cotorsion module.

(3) Dh ⊆ C, that is, every h-divisible module is a cotorsion module.

(4) Every factor module of a cotorsion module is a cotorsion module.

(5) Every pure submodule of a projective module is a projective module.

(6) The projective dimension of a flat module is at most 1.

Proof. (5)⇔ (6) This is trivial.
(1)⇔ (2)⇔ (3)⇔ (4) The proofs of these equivalences are similar to those of Theorem 8.24.
(1)⇒ (5) Let A be a pure submodule of a projective module P . By Proposition 1.17, P /A is a flat

module. By Theorem 6.16, pdR(P /A) 6 1. Therefore A is a projective module.
(5)⇒ (1) Let F be a flat module and let 0→ A→ P → F → 0 be an exact sequence, where P is a

projective module. Thus A is a pure submodule of P . By hypothesis, A is a projective module. Thus
pdR(F) 6 1. By Theorem 6.16, R is a 1-perfect domain.

Theorem 9.4. Let (RDT F,M) be a Milnor square. Then R is a 1-perfect domain if and only if both D
and T are 1-perfect domains.

Proof. Assume that both D and T are 1-perfect domains. Let A be a flat R-module and let 0→ B→
P → A→ 0 be an exact sequence, where P is a projective R-module. Then T ⊗R A is a flat T -module
and D ⊗R A is a flat D-module. Since TorR1 (T ,A) = 0 and TorR1 (R/M,A) = 0, it follows that both
0→ T ⊗R B→ T ⊗R P → T ⊗R A→ 0 and 0→ D ⊗R B→ D ⊗R P → D ⊗R A→ 0 are exact sequences.
Since both D and T are 1-perfect domains, T ⊗R B is a flat T -module and D ⊗R B is a flat D-module.
By Theorem [22, Theorem 8.2.3], B is a projective R-module. It follows that pdR(A) 6 1, and hence R
is a 1-perfect domain.

Conversely, assume that R is a 1-perfect domain. LetQ be a flat T -module. Since F is a field, F⊗TQ
is a free F-module. Therefore there exist a free D-module P and an isomorphism h : F⊗D P → F⊗T Q.
Construct a pullback A = (P ,Q,h) over h. By [22, Theorem 8.2.2], A is a flat R-module, andD⊗RA � P
and T ⊗R A � Q. Since R is a 1-perfect domain, pdR(M) 6 1. Let 0 → A1 → A0 → M → 0 be an
exact sequence, where A0 and A1 are projective R-modules. Since TorR1 (T ,M) = 0, it follows that
0→ T ⊗R A1→ T ⊗R A0→ Q→ 0 is an exact sequence. Thus pdT (Q) 6 1. Therefore T is a 1-perfect
domain. Similarly we can prove that D is a 1-perfect domain.

Theorem 9.5. Let (RDT F,M) be a Milnor square. Then R is a Matlis domain if and only if T is a
Matlis domain.

Proof. Assume that T is a Matlis domain. Let 0→ B→ P → K → 0 be an exact sequence, where P is
a projective R-module. Note that R and T have the common quotient field K , and D as an R-module
is a torsion module. Thus D⊗RK = 0 is a projective D-module. Similarly to the proof of Theorem 9.4
it can be proved that B is a projective R-module. Thus pdR(K) 6 1. Therefore R is a Matlis domain.

Conversely, assume that R is a Matlis domain. Again let 0→ B→ P → K → 0 be an exact sequence,
where P is a projective R-module. Then B is a projective R-module. Since TorR1 (T ,K) = 0, we have
0→ T ⊗R B→ T ⊗R P → T ⊗R K = K → 0 is an exact sequence. It follows that pdT (K) 6 1, and so T is
a Matlis domain.
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9.2 Characterizations of almost perfect domains

Definition 9.6. A domain R is called an almost perfect domain if any nontrivial factor ring of R is a
perfect ring.

Theorem 9.7. Let R be an almost perfect domain. Then:

(1) dim(R) 6 1, that is, every nonzero prime ideal is maximal.

(2) R has finite character, that is, every nonzero x ∈ R is contained in only finitely many maximal
ideals.

(3) If I is a nonzero ideal of R, then R/I contains a simple submodule.

(4) R is a Matlis domain.

Proof. (1) Let p be a nonzero prime ideal of R. Then R/p is a perfect domain. Thus R/p is a field.
Therefore p is a maximal ideal of R.

(2) Since R/(x) is a perfect ring, it follows by [22, Theorem 3.10.22] that R/(x) is a direct product of
a finite number of local rings, and hence is a semilocal ring. Therefore x is contained in only finitely
many maximal ideals.

(3) Since R/I is a perfect ring, this follows from [22, Theorem 3.10.22].
(4) This follows from Theorem 8.29.

Theorem 9.8. The following are equivalent for a domain R:

(1) R is an almost perfect domain.

(2) FPD(R/(u)) = 0 for any nonzero nonunit u ∈ R, in other words, R/(u) is a perfect ring.

(3) Every divisible module is an n-cotorsion module for any n > 2.

(4) Every h-divisible module is an n-cotorsion module for any n > 2.

(5) Every factor module of an n-cotorsion module is an n-cotorsion module for any n > 2.

(6) gldCn(R) 6 1 for any n > 2.

(7) gldC2
(R) 6 1.

(8) FPD(R) 6 1.

(9) Pn = P1 for any n > 1.

(10) R is of finite character, and Rm is an almost perfect domain for any maximal ideal m of R.

(11) gldC1
(R) 6 1

(12) D ⊆ C1, that is, every divisible module is 1-cotorsion.

(13) Dh ⊆ C1, that is, every h-divisible module is 1-cotorsion.

(14) Every factor module of a 1-cotorsion module is 1-cotorsion.

(15) P1 = F1.

(16) MC = C, that is, every Matlis cotorsion module is a cotorsion module.
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(17) (Bazzoni-Salce) F = SF , that is, every flat module is a strongly flat module.

Proof. We first prove that one step from (1) to (10) are equivalent, and one step from (11) to (17) are
equivalent. Then we prove that the two steps are equivalent.

The proof of (3)⇔(4)⇔(5)⇔(6) is similar to that of Theorem 8.24, while for (6)⇔(7)⇔(8), see
Theorem 7.7.

(1)⇒(2) Trivial.
(2)⇒(1) Let I be a nonzero proper ideal of R. Take u ∈ I with u , 0. By the hypothesis, R/(u) is a

perfect domain. Since R/I is a factor ring of R/(u), it follows from [22, Corollary 3.10.23] that R/I is
a perfect ring. Therefore R is an almost perfect domain.

(8)⇒(2) Let A be any nonzero R := R/(u)-module with pdRA <∞. By [22, Theorem 3.8.13], pdRA =
pdRA+ 1 6 1. Thus pdRA = 0. Therefore FPD(R) = 0.

(1)&(2)⇒(8) By Theorem 9.7, R is a Matlis domain. Let M be an R-module with pdRM < ∞.
We may assume that pdRM 6 2. To prove that pdRM 6 1, we will prove that for any R-module C,
Ext2

R(M,C) = 0.
Let 0→ B→ F→M→ 0 be an exact sequence, where F is a projective R-module. Thus pdRB 6 1.

Taking any exact sequence 0 → A → P → B → 0, where P is a projective module, we know that
A is also a projective module. Note that B is a torsion-free module. Then there exists an exact
sequence 0 → A/uA → P /uP → B/uB → 0. By the hypothesis, FPD(R/uR) = 0. Hence B/uB is a
projective R/uR-module. By [22, Theorem 3.8.13], pdRB/uB 6 1. Thus Ext2

R(B/uB,C) = 0. Since

0→ B
u→ B→ B/uB→ 0 is an exact sequence, there is an exact sequence

Ext1
R(B/uB,C)→ Ext1

R(B,C)
u→ Ext1

R(B,C)→ Ext2
R(B/uB,C) = 0.

Thus Ext1
R(B,C) = uExt1

R(B,C), that is, Ext1
R(B,C) is a u-divisible module. Since u is arbitrary, Ext1

R(B,C)
is a divisible module. Hence Ext2

R(M,C) is a divisible module. By Theorem 8.24, Ext2
R(M,C) is a Lee

cotorsion module. Thus Ext1
R(K/R,Ext2

R(M,C)) = 0.
For any free module F =

⊕
R, we have natural isomorphisms

HomR(F,Ext2
R(M,C)) �

∏
Ext2

R(M,C) � Ext2
R(F ⊗RM,C).

Since a K-vector space K ⊗RM is isomorphic to a direct sum of copies of K , we have pdR(K ⊗RM) =
pdRK 6 1. Therefore Ext2

R(K ⊗RM,C) = 0. Let 0→ F1→ F0→ K → 0 be an exact sequence, where F0,
F1 are free R-modules. Then we have the following commutative diagram with exact rows:

0 = Ext2
R(K ⊗RM,C) //

��

Ext2
R(F0 ⊗RM,C) //

���

Ext2
R(F1 ⊗RM,C)

���
0 // HomR(K,Ext2

R(M,C)) // HomR(F0,Ext2
R(M,C)) // HomR(F1,Ext2

R(M,C))

Thus HomR(K,Ext2
R(M,C)) = 0. It follows from the exact sequence

0 = HomR(K,Ext2
R(M,C))→HomR(R,Ext2

R(M,C))→ Ext1
R(K/R,Ext2

R(M,C)) = 0,

that Ext2
R(M,C) = 0.

(8)⇒(9) By the hypothesis, Pn ⊆ P1 for any n > 1, and thus Pn = P1.
(9)⇒(8) This is trivial.
(1)⇒(10) By Theorem 9.7, R has finite character.
Let m be a maximal ideal of R and let I be a nonzero proper ideal of R. Then R/I is a perfect

ring. By [22, Theorem 3.10.22], Rm/Im = (R/I)m is a perfect ring. Therefore Rm is an almost perfect
domain.
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(10)⇒(2) Let m ∈Max(R). Since Rm is an almost perfect domain, dim(Rm) 6 1. Thus dim(R) 6 1.
Let u ∈ R \ {0}. By the hypothesis, there are only finitely many maximal ideals m1, . . . ,ms containing

u. By Theorem 8.28(5), R/(u) �
s⊕
i=1
Rm/Rmu. Therefore R/(u) is a perfect ring.

The proof of (11)⇔(12)⇔(13)⇔(14) is similar to that of the above corresponding cases, while
(16)⇔(17) is trivial.

(11)⇒(15) Let M ∈ F1. By Theorem 6.16, pdRM 6 gldC1
(R) 6 1. Therefore M ∈ P1.

(15)⇒(12) Since K ∈ F1 = P1, R is a Matlis domain. By Theorem 8.24, D = Dh. Let D ∈ D. Then
Ext1

R(M,D) = 0 for any M ∈ F1 = P1. Therefore D ∈ C1.
(15)⇒(6) Let M be a Matlis cotorsion module and let F be a flat module. Set Q = K ⊗R F. Then Q

is a flat module, and A := Q/F ∈ F1 = P1. Thus it follows from the exact sequence 0 = Ext1
R(Q,M)→

Ext1
R(F,M)→ Ext2

R(A,M) = 0 that Ext1
R(F,M) = 0. Therefore M is a cotorsion module.

(17)⇒(12) Let M ∈ F1. Then there exists an exact sequence 0 → F → P → M → 0, where P is
a projective module. Thus F is a flat module. By the hypothesis, F is a strongly flat module. By
Theorem 8.13, F is a projective module. Therefore pdRM 6 1.

(7)⇒(11) This follows immediately from Example 6.15.
(15)⇒(2) Let u be a nonzero nonunit of R and write R = R/(u). Let A be a flat R-module. By

[22, Theorem 3.8.15], fdRA 6 1. By hypothesis, pdRA 6 1. Thus there exists an exact sequence
0 → Q → F → A → 0, where Q and F are projective R-modules. Since uA = 0, we have uP ⊆ Q.
Hence we have an R-module exact sequence 0→ B→ F/uF → A→ 0, where B = Q/uF, and exact
sequence 0→ A→ Q/uQ→ B→ 0. Thus 0→ A⊕ B→ Q/uQ ⊕ P /uP → A⊕ B→ 0 is an R-module
exact sequence. Trivially B is a flat R-module. By [6, Theorem 2.5], A⊕B, and hence A is a projective
R-module. Hence R is a perfect ring, that is, FPD(R) = 0.

Corollary 9.9. If R is an almost perfect domain, then R is a 1-perfect domain.

Theorem 9.10. Let R be a coherent domain. Then R is an almost perfect domain if and only if R is a
Noetherian domain with dim(R) 6 1.

Proof. Assume that R is an almost perfect domain. For any nonzero nonunit u of R, we have R/(u)
is a coherent domain, and is a perfect ring. By [22, Theorem 4.1.10], R is an Artinian ring. By [22,
Theorem 4.3.20], R is a Noetherian ring. By Theorem 9.7, dim(R) 6 1. The converse follows from [22,
Theorem 4.3.21] and Theorem 9.8.

Theorem 9.11. Let (RDT F,M) be a Milnor square. Then R is an almost perfect domain if and only if
D is a field and T is an almost perfect domain.

Proof. Assume that D is a field and T is an almost perfect domain. Let A be a flat submodule of
a projective R-module P and write B = P /A. Thus fdRB 6 1 and 0 → A → P → B → 0 is an exact
sequence. Since T is a torsion-free module, TorR1 (T ,B) = 0. Thus 0→ T ⊗R A→ T ⊗R P → T ⊗R B→ 0
is an exact sequence. Hence T ⊗R A is a flat submodule of a projective T -module T ⊗R P . Since
FPD(T ) 6 1, it follows that T ⊗R A is a projective T -module. Since D is a field, D ⊗R A is trivially a
projective D-module. By [22, Theorem 8.2.3], A is a projective R-module. Therefore FPD(R) 6 1.

Conversely, assume that FPD(R) 6 1. Since D = R/M is a proper factor ring of R, it follows that D
is a perfect domain, and so is a field. To prove that T is an almost perfect domain, it is sufficient to
show that for u ∈ T , u , 0, T /uT is a perfect domain. Take a ∈M, a , 0. Since auT ⊆ aT , the natural
homomorphism T /auT → T /uT is an epimorphism, and so we prove that T /auT is a perfect domain.
Thus we may assume that u ∈M. In this case, uT ⊆M ⊆ R, and the commutative diagram

R/uT //

��

T /uT

��
D // F
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is a Cartesian square.
Let Q be a flat T /uT -module. Since F is a field, F ⊗T /uT Q is a free F-module. Thus there exist a

free D-module P and an F-isomorphism h : F ⊗D P → F ⊗T /uT Q. Construct a pullback A = (P ,Q,h).
By [22, Theorem 8.2.2], A is a flat R/uT -module and (T /uT ) ⊗R/uT A � Q. Since R/uT is a perfect
ring, A is a projective R/uT -module. So Q is a projective T /uT -module. Therefore T /uT is a perfect
ring.

9.3 Characterizations of Prüfer domains and G-Dedekind domains

The Prüfer domain is a natural extension of the Dedekind domain. Although there are many ways
to characterize Prüfer domains, we now look at how to use cotorsion theories to characterize Prüfer
domains.

Denote by F PI the class of all FP-injective modules.

Theorem 9.12. The following are equivalent for a domain R:

(1) R is a Prüfer domain.

(2) C =WC, that is, each cotorsion module is Warfield cotorsion.

(3) D = F PI , that is, every divisible module is FP-injective.

(4) Dh ⊆ F PI , that is, every h-divisible module is FP-injective.

(5) Every factor module of an FP-injective module is FP-injective.

(6) LC ⊆ F PI , that is, every Lee cotorsion module is FP-injective.

(7) C1 ⊆ F PI , that is, every 1-cotorsion module is FP-injective.

(8) C1 = I , that is, every 1-cotorsion module is injective.

Proof. (1)⇒(2) By [22, Theorem 3.7.13], F = T . ThusWC = C.
(2)⇒(1) By the hypothesis,WC = C. Thus T = ⊥WC = ⊥C = F , that is, each torsion-free module is

flat. Therefore it follows from [22, Theorem 3.7.13] that R is a Prüfer domain.
(1)⇒(3) Let I = (a1, . . . , ak) be a finitely generated ideal of R. Without loss of generality, we assume

that ai , 0. By the hypothesis, I is invertible. Thus there exist x1, . . . ,xn ∈ I−1 such that a1x1+· · ·+akxk =
1. Let D be a divisible module and let f : I → D be a homomorphism. Then there exists yi ∈ D such

that aiyi = f (ai), i = 1, . . . , k. Since aixi ∈ R, we have y =
k∑
i=1
aixiyi ∈ D. Then for any b ∈ I , we have

bxi ∈ R, and so

f (b) = f (
k∑
i=1
baixi) =

k∑
i=1
bxif (ai) =

k∑
i=1
baixiyi = b

k∑
i=1
aixiyi = by.

Define g : R→ D by g(r) = ry,y ∈ R. Then for any b ∈ I , g(b) = bg(1) = by = f (b). Thus HomR(R,D)→
HomR(I,D) is an epimorphism. Therefore it follows by Exercise 24 that D is an FP-injective module.

(3)⇒(4)⇒ (6)⇒(7) and (5)⇒(4) These are trivial.
(7)⇒(1) Let A be a torsion-free module. By Theorem 6.5, A+ is a 1-cotorsion module. By the

hypothesis, A+ is an FP-injective module. Let M be a finitely presented module. Then TorR1 (M,A)+ �
Ext1

R(M,A+) = 0. Thus TorR1 (M,A) = 0. Therefore A is a flat module. Hence it follows by [22, Theorem
3.7.13] that R is a Prüfer domain.

(3)⇒(5) This follows from the fact that every FP-injective module over a domain is divisible.
(1)⇔(8) This follows from Theorem 7.9.
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Since the G-Dedekind domain is a generalization of the Dedekind domain, one can use divisibility
to characterize the G-Dedekind domain.

Theorem 9.13. Let R be a G-Dedekind domain. Then R is an almost perfect domain, and so a Matlis
domain.

Proof. This follows immediately from [22, Theorem 11.4.8] and Theorem 9.8.

Theorem 9.14. The following are equivalent for a domain R:

(1) R is a G-Dedekind domain.

(2) Every divisible module is a G-injective module.

(3) Every h-divisible module is a G-injective module.

Proof. (1)⇒ (2) Let D be a divisible module. Since R is a Matlis domain, D is an h-divisible module.
Thus there exists an exact sequence 0→ X → E → D → 0, where E is an injective module. By [22,
Corollary 11.4.5], D is a G-injective module.

(2)⇒ (3) This is trivial.
(3)⇒ (1) For any module X, take an exact sequence 0→ X → E→ D → 0, where E is an injective

module. By hypothesis,D is a G-injective module. Again by [22, Corollary 11.4.5], R is a G-Dedekind
domain.

Example 9.15. By Theorem 8.29, every completely integrally closed valuation domain (valuation
domain with Krull dimension 1) is a Matlis domain. By [22, Theorem 8.6.2(2)] and Theorem 9.5,
there exists a Matlis valuation domain with any Krull dimension.

Example 9.16. (1) An almost perfect domain is not necessarily a Dedekind domain. For example, set
R = Q+XR[[X]]. Note that R[[X]] is a DVR. By Theorem 9.11, R is an almost perfect domain. By [22,
Theorem 8.5.17], R is not a coherent domain. Naturally R is not a Dedekind domain.

(2) A 1-perfect domain is not necessarily an almost perfect domain. For example, set R = Z +
XR[[X]]. By Theorem 9.4, R is a 1-perfect domain. By Theorem 9.11, R is not an almost perfect
domain.

(3) A Matlis domain is not necessarily a 1-perfect domain. For example, let D be a valuation
domain with gl.dim(D) = 3. Let F be the quotient field of D and set R =D+XF[X]. By Exercise 26, D
is not a 1-perfect domain. By Theorem 9.5, R is a Matlis domain. By Theorem 9.4, R is not a 1-perfect
domain.

10 Exercise

1. For any module M, the canonical homomorphism

ρ :M→M++ = Hom(Hom(M,Q/Z),Q/Z)

is a pure monomorphism.

2. Let ξ : 0→ A→ B→ C→ 0 be an exact sequence, where C is a finitely presented module. Then ξ is pure if
and only if ξ is split.

3. Let M be an R-module and let I be an index set. Then M(I) is a pure submodule of MI .

4. Let R be a PID and let A be a submodule of a module B. Then A is a pure submodule of B if and only if
A∩ rB = rA for any nonzero r ∈ R.
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5. Let A and B be submodules of N such that A ⊆ B.

(1) If B is a pure submodule of N , then B/A is a pure submodule of N/A.

(2) If A is a pure submodule of N and B/A is a pure submodule of N/A, then B is a pure submodule of N .

6. If E is a pure injective module, then HomR(M,E) is a pure injective module for any R-module M.

7. Let L be a class of modules. Then:
(1) L ⊆ ⊥(L⊥)∩ (⊥L)⊥, (⊥(L⊥))⊥ = L⊥, and ⊥((⊥L)⊥) = ⊥L.
(2) L ⊆ (L>)> and ((L>)>)> = L>.

8. Let 0→ A→ B→ C→ 0 be a pure exact sequence and let E be a pure injective module. Then

0 −→HomR(C,E) −→HomR(B,E) −→HomR(A,E) −→ 0

is a split exact sequence.

9. Let R be a domain with quotient field K , let A,B be K-modules, and let f : A→ B be an R-homomorphism.
Then f is also a K-homomorphism, and so HomR(A,B) = HomK (A,B).

10. If L is an FP-injective and pure injective module, then L is injective.

11. (1) Let {Mi ,ϕij } be a direct system over a directed set Γ . Then 0→ N →
⊕
i

Mi → lim
−→

Mi → 0 is pure

exact.

(2) Let L be a class of modules which is closed under direct sums and pure quotient modules (i.e., if 0→
B→ C→ 0 is a pure exact and B ∈ L, then C ∈ L). Then L is closed under direct limits.

12. Let (A,B) be a Tor-torsion theory and let 0→ L→ Q→ N → 0 be a pure exact sequence. If M ∈ A, then
L,N ∈ A.

13. Let R be an integral domain. Then:

(1) Any direct sum of h-divisible modules is again h-divisible.

(2) If R is not a field, then R is an h-reduced module.

14. An R-module A is called a strongly copure flat module if TorRi (A,E) = 0 for any injective R-module E and
any i ≥ 1. Then every module has a strongly copure flat cover.

15. An R-module A is called a strongly copure injective module if ExtiR(A,E) = 0 for any injective R-module
E and any i ≥ 1. Then:

(1) Every module has a strongly copure injective special preenvelope.

(2) If R is an n-Gorenstein ring, then every module has a G-injective special preenvelope.

16. Let R be a domain and let M be an R-module. If D1,D2 are divisible (resp., h-divisible) submodules of M,
then D1 +D2 is also a divisible (resp., an h-divisible) submodule of M.

17. Let R be a domain and let D be a pure injective R-module. Then the following are equivalent.
(1) D is a Lee cotorsion module.
(2) D is h-divisible.
(3) D is divisible.

18. Let L be a field and let R = L[X1, . . . ,Xk , . . . ] be a polynomial ring in countably infinite indeterminates, and
M = R/(X1, . . . ,Xn, . . . ). Then:

(1) fdRM =∞.
(2) Let · · · → Fn → Fn−1 → ·· · → F1 → F0 → M → 0 be a flat resolution of M and let Kn be its n-th weak

syzygy. Then Kn is an (n+ 1)-torsion-free module, but not an (n+ 2)-torsion-free module.
(3) The above K+

n is an (n+ 1)-cotorsion module, but not an (n+ 2)-cotorsion module.



356 Moroccan Journal of Algebra and Geometry with Applications / F. Wang and H. Kim

19. The following are equivalent for a module L.
(1) L is FP-injective.
(2) If L is a submodule of an R-module B, then L is a pure submodule of B (thus in many literature, an

FP-injective module is also called an absolutely pure module).
(3) L is a pure submodule of E(L).

20. A ring R is called an IF ring if every injective R-module is flat. Then:

(1) Every QF ring is IF.

(2) Every IF ring R is coherent and FFD(R) = 0.

(3) If R is a perfect ring which is also an IF ring, then R is a QF ring.

21. Let n be nonnegative integer. Then (Pn,P⊥n ) is a hereditary complete cotorsion theory.

22. Let R be a domain. Then:

(1) Any direct sum of h-divisible modules is again h-divisible, and so any direct limit of h-divisible modules
over a directed set is also h-divisible.

(2) Let {Di} be a chain of a family of h-divisible submodules of a moduleM. Then
⋃
Di is also an h-divisible

submodule of M.

23. Let M be an R-module and set T := torGV(M). If ϕ : F → M/T is a weak w-projective cover of M/T .
Consider a pullback diagram:

0 // T
λ // F1

β //

α
��

F //

ϕ
��

0

0 // T // M
π // M/T // 0.

Then α : F1→M is a weak w-projective cover of M.

24. Let R be a coherent domain. Then an R-module E is an FP-injective module if and only if Ext1
R(R/I,E) = 0

for any finitely generated ideal I of R, equivalently any homomorphism f : I → E can be extended to R for any
finitely generated ideal I of R

25. Let R be a domain and let M be an R-module. Then:

(1) M is a torsion h-divisible module if and only if M � K/R⊗R HomR(K/R,M).

(2) M is a Warfield cotorsion module if and only if M is a Matlis cotorsion module and idRM 6 1.

(3) M is a Lee cotorsion module if and only if M is an h-divisible Matlis cotorsion module.

26. Let R be a Prüfer domain. Then R is a 1-perfect domain if and only if gl.dim(R) 6 2.

27. Let φ : R → T be a ring homomorphism and let L be a cotorsion T -module. Then L is also a cotorsion
R-module.

28. Let L be a class of modules which is closed under extensions. Consider the following commutative dia-
gram:

A //

f
��

B

hww
g
��

X ϕ
// M

where A is a submodule of B and ϕ is an L-cover of M. If C := B/A ∈ L, then there exists a homomorphism
h : B→ X such that hϕ = g.

29. The following are equivalent for a domain R:

(1) Every h-divisible module is a Warfield cotorsion module.
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(2) Every factor module of a Warfield cotorsion module is a Warfield cotorsion module.

(3) The projective dimension of any torsion-free module is at most 1.

(4) R is a Matlis domain with gl.dim(R) 6 2.

(5) Every divisible module is a Warfield cotorsion module.

30. Let R be a domain and set H := HomR(K/R,K/R). Then:

(1) H is a commutative ring and H as an R-module is a torsion-free module.

(2) There exists an exact sequence 0→ R→H → Ext1
R(K,R)→ 0.

(3) If each proper submodule of K/R is h-reduced, then H is a domain.

(4) If R is a valuation domain, then H is also a valuation domain.

31. Let M be an R-module and A be a submodule of M. Then there exists a continuous ascending chain of
pure submodules of M:

A =M0 ⊂M1 ⊂M2 ⊂ · · · ⊂Mα ⊂Mα+1 ⊂ · · · · ⊂Mτ =M

such that each Mα+1/Mα is countably generated.

32. Let A be a class of modules which is closed under w-isomorphisms, M be an R-module, and ϕ : P →M be
an A-cover. Then:

(1) If M is a GV-torsion-free module, then so is P .

(2) If ϕ is a special A-cove and M is a w-module, then P is a w-module.

33. Let F be an R-module. Then F is a w-flat module if and only if Ext1
R(F,N ) = 0 for any N ∈ F ⊥w ∩W .

34. Let TGV denote the class of GV-torsion modules and let M ∈ TGV
⊥. Then:

(1) If M is a GV-torsion module and N is a submodule with N ∈ TGV
⊥, then N is a direct summand of M.

(2) torGV(M) ∈ TGV
⊥. Especially torGV(E) ∈ TGV

⊥ for any injective module E.

(3) Set T := torGV(E(M)). Then T ⊆M, and thus torGV(M) = torGV(E(M)).

(4) If M is a GV-torsion module, then there exists an injective module E such that M � torGV(E).

35. Let M be an R-module and set E := E(M). Then the following are equivalent.

(1) M ∈ TGV
⊥

(2) torGV(E) ⊆M and Ext1
R(R/J,M) = 0 for any J ∈GV(R).

(3) If Jx ⊆M, where J ∈GV(R) and x ∈ E, then x ∈M.

(4) E/M is a GV-torsion-free module.

(5) If J is an ideal of R with Jw = R, then Ext1
R(R/J,M) = 0.

36. Let M be an R-module. Then M ∈ ⊥W if and only if M � P ⊕ T , where P is a projective module and T is a
GV-torsion module.

37. Let D := R[[X,Y ]] and set R :=D[Z]/(Z2 −XY ). Then:

(1) R is a 2-Gorenstein ring.

(2) R is an integrally closed domain, and thus a Krull domain.

(3) gl.dim(R) , 2, and thus gl.dim(R) =∞.

38. LetM be a GV-torsion-free R-module. ThenM has a weak w-projective cover if and only ifMw has a weak
w-projective cover. If B is a weak w-projective cover, then B is a GV-torsion-free R-module.

39. LetM be an R-module with w.w-pdR(M) = n > 0. Then there exists P ∈wPw∩P
†∞
w such that ExtnR(M,P ) , 0.
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40. Let ξ : 0→ A→ B→ C→ 0 be a w-exact sequence and let E be an injective w-module. Then HomR(ξ,E) is
an exct sequence.

41. Let ξ : 0→ A→ B→ C→ 0 be a w-exact sequence. Then ξ is called a w-pure exact sequence ifM⊗R ξ is a
w-exact sequence for any module M. Let ξ : 0→ A→ B→ C→ 0 be a w-pure exact sequence, M an R-module,
E be an injective w-module. Then HomR(ξ,HomR(M,E)) is an exact sequence.

Let A be a class of modules. Define

w-A> = {D ∈M | TorR1 (A,D) is a GV-torsion module for any A ∈ A}.

Let A,B be classes of modules. Then (A,B) is called a w-Tor-torsion theory if w-A> = B and w-B> =A.

42. Let G = (A,B) be a hereditary w-Tor-torsion theory. Then

(1) Set L = {HomR(B,E) | B ∈ B and E is an injective w-module}. Then L ⊆A⊥.

(2) ⊥L =A, and so ⊥(A⊥) =A.

(3) (A,A⊥) is a perfect cotorsion theory.

(4) A is closed under direct limits.

43. Let G = (A,B) be a hereditary cotorsion theory and L be a class of modules cogenerated by a w-module,
where N ∈ L satisfies: If ξ is a w-pure exact sequence, then HomR(ξ,N ) is an exact sequence. Then

(1) A is closed under direct limits.

(2) G is a perfect cotorsion theory.

Here we correct the errors in the authors’ book [22]. The authors would like to thank all readers for pointing
out the error.

• (Jesse Elliott) There are some errors in [22, Section 5.7] on valuation methods in rings with zero-divisors.
Unfortunately [22, Theorem 5.7.4(2)] is wrong. R[p] doesn’t have to be a pseudo-local ring. In fact, [p][p]
doesn’t have to be a maximal ideal. See [14, Example 7, p. 182]. The problem is that, if R isn’t Marot,
then R can have several maximal ideals containing the same regular elements, so just because [p][p]
contains all of the regular nonunits of R[p] doesn’t mean that [p][p] is the unique regular maximal ideal
of R[p] (unless R is Marot). Consequently, [22, Proposition 5.7.13(1)] is also incorrect. This means that
the proof of [22, Theorem 5.7.21] should also be fixed, and there may also be other proofs that need to
be fixed.
Also, the relation > defined on [22, p. 315, line 1] isn’t transitive in general and is therefore not an
equivalence relation. If we define v(x) ≤ v(y) iff xz ∈ p implies yz ∈ p for all z ∈ K , then ≤ is a partial
ordering, but not necessarily a total ordering.

• p. 318: line -11, replace “subring" with “overring".

• p. 346: line 7, replace “Coker(f )" with “Coker(g)".

• p. 372: line 14, replace “F→M→ C→ 0" with “F→M→ 0".

• p. 430: line 3, add "Let R be an H-domain." after "(2)".

• p. 444: line 10, replace “over R" with “over T ".

• p. 447: line 8, replace “ofT " with “of T ".

• p. 470: line -1, replace “F = P /RP " with “F = RP /P RP ".

• p. 620: line 9, replace “Im(P0→ P1)" with “Im(P0→ P−1)".

• p. 632: line -14, replace “this Li" with “this L′i".

• pp. 685–691: During the editorial process of the publisher, the first letter of the person’s name in the
titles of articles in the References was erroneously changed to lowercase.
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