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0. Introduction

Cotorsion theory is a hot topic in homological algebra. Validation of the cotorsion theory shows
that classical homological methods can be transferred to many classes of modules. Therefore many
scholars believe that this is a relative homology theory, and Gorenstein homology theory is only a
special form of the relative homology theory. The formation and completion of the cotorsion theory
lies in solving the so-called flat cover conjecture (FCC) in [7]] in 2001. The FCC is committed to
Enochs, who has been worked since 1984. Since flatness and injectivity are linked through character
modules, the researchers believe that each module has a flat cover. Finally this conclusion is solved
by proving that the class of flat modules and the class of cotorsion modules form a cotorsion theory.
In this survey article, we introduce the properties of the cotorsion theory and show how to construct
the homology theory for all cotorsion theories.

The class of modules mentioned in this article refers to a full subcategory, which is closed isomor-
phisms, of the R-module category N1. We always denote by P the class of projective modules, by Z
the class of injective modules, by F the class of flat modules. We also represent by P,, Z,, and F, re-
spectively the class of modules whose projective dimension, injective dimension and flat dimension
is at most n.

1 Generalized purity of modules

1.1 Pure exact sequences

A flat module over a ring R is an R-module M such that taking the tensor product over R with M
preserves exact sequences. Below we discuss the converse property.
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Definition 1.1. Let £ be a class of modules.

(1) Anexactsequence & :0— A — B — C — 0is called an £-pure exact sequence if for any M € £,
MErEDO—MERA—MRB— M®rC—0

is also an exact sequence.

(2) A submodule A of an R-module B is called an £-pure submodule if the exact sequence 0 —
A — B — B/A — 0is L-pure.

(3) A monomorphism f : A — B is called an £-pure monomorphism if the exact sequence 0 —

A i> B — Coker(f) — 0is L-pure.

(4) When £ =M, an L-pure exact sequence is called a pure exact sequence, an £-pure submodule
is called a pure submodule, and an £-pure monomorphism is called a pure monomorphism.

Example 1.2. Let £ be any class of modules. Then every split exact sequence and every pure exact
sequence are L-pure.

Lemma 1.3. Let xq,...,X,, be a basis of R, eq,...,e, be a basis of R", and a : R™ — R" be a homomorphism.

n
Write a(x;) = }_rijej, r;j € R, i=1,...,m. Let R" 5 Re i N — 0 be an exact sequence and let B be an
j=1

R-module. If in N ®g B we have

n
) Blejj®bj=0, bjeB,
j=1
n
then there exist uq,...,u,, € B such that b]- =) rijui, j=1,...,n
i=1
n
Proof. Let K = Ker(f). Then K is a submodule of R" generated by {} r;je;}/2; and 0 - K — R” ﬂ
j=1

N — 0 is an exact sequence. Thus K®g B — F ®g B — N ®g B — 0 is an exact sequence. Hence there
isu; €B,i=1,...,m, such that

n m n n m
ZEJ‘ ®b] = Z(Zrijej)ébui = Z(Z] ®(Zrijui).
j=1 i=1 j=1 j=1 i=1
n
By [22, Exercise 2.7], b]- =) rijui, j=1,...,m. O
i=1

For a finitely presented module N, we can assume that there exist a free module F with its basis
ey,...,e, and an epimorphism g : F — N. Set K = Ker(f). Then K is finitely generated with its
n

generating system y; = ) rj;ej, i = 1,...,m. Moreover for any module X, like [22} Exercise 3.27], its
j=1

character module is denoted by X™ = Homg(X,Q/Z). As in [22, Example 2.1.27], there exists an
evaluation map p: X — X**:

p(x)(f) = f(x), xeX, feX™

Theorem 1.4. The following are equivalent for an exact sequence £: 0 - A — B 5coo



288 Moroccan Journal of Algebra and Geometry with Applications/F. Wang and H. Kim

(1) & is a pure exact sequence.

(2) For any finitely presented module N, the induced sequence N ®g, & is exact.

m m
(3) Letaj =) rijbi, rij€R,a;€A, b;€B,j=1,...,n. Then there exist v; € A such that a; = }_ r;;v;.
i=1 i=1
In other words, for any integers m, n, if any system of linear equations

m

(Smn):Zrijxi:a]-, Ti]'ER, ajEA,izl,...,,n (11)
i=1

has a solution in B, the equations must have a solution in A.

(4) For any commutative diagram of the form:

B

o
U//T h
0 AL B—2.¢C 0

where N is a finitely presented module and F is a finitely generated free module, there is a
homomorphism y : F — A such that y|x = o.

(5) For any finitely presented module N, the induced sequence
Hompg(N,&): 0 » Homg(N,A) - Homg(N, B) - Homg(N,C) —> 0
is exact.
(6) The induced exact sequence £ : 0 — C* — B* - A" — 0 is split.

Proof =(3) Let F be a free module with its basis ej,...,e,, K be a submodule of F generated by
{Z rije; | i=1,...,m}and N := F/K. Let : F — N be the natural homomorphism. Then in N ® B

we have o o
Zf” J@a;=) ) Ble@ribi=) () rijle)®bi=0.
i=1 j=1 i=1 j=1

n
Since A is a pure submodule of B, we also have,in N®r A, }_ f(ej)®a; = 0. By Lemma there exist
j=1

m
vi€A,i=1,...,m,such thata; = Z 1ijv;.
(3)=(2) Let a; € A such that in N ® B, we have Z plej)®a; = 0. Also assume N = F/K. By
j= 1
Lemma there exist b; € B,i = 1,...,m, such that aj = Z rij b;. By the hypothesis, there exist v; € A,

i=1,...,n,such thata; = Z rijv;. Hence in N ®g A, we have
i=1

Y Blep@a;=Y () rule)@u; =0
j=1 i=1 j=1

Therefore N g A — N ®g B is a monomorphism.
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(2)=(1) Let M be any R-module. By [22, Theorem 2.6.20], M = lim{N; | i € '}, where I is a

directed set and {N; | i € I'} is a direct system of finitely presented modules over I'. By the hypothesis,
0 > N;®A — N;®r B — N;® C — 0 is an exact sequence for any i € I'. By [22, Theorem 2.5.33]
and [22] Theorem 2.5.34], M ®y & is an exact sequence.

n
(3)=(4) Still let eq,...,e, be a basis of F and set y; := ) r;je; for each j = 1,...,m and let K be
j=1

generated by {y;}/Z,. Write 7(¢;) = bj and a; = o(y;). Then a; = }_ r;;b;. By the hypothesis, there
j=1

n
exist v; € A, j = 1,...,n, such that a; = j;rijvj' i=1,..,m Sety(ej)=vj,j=1,..,n Then y(y;) =
y( X rijej) = Y rijvj = a; = o(y;). Therefore y|x = 0.
j:1 ]:1

m
(4)=(3) Leta; = }_r;;b;, rij € R, aj€ A, b; € B, j=1,...,n. Let F be a free module with its basis
i=1

n

m
X1,.., Xy, and set z; := ) r;;x; for eachi =1,...,n and let K be a submodule of F generated by {Zj}jzl'

i=1
n
and N = F/K. Set 7(x;) = b; and o(zj) = a;. If ¢; €R, } ¢jz; =0, then for any i, ) ¢;r;; = 0. Thus
j=1 j=1
n m n
j; cjaj = El j;l ¢jr;ijb; = 0. Hence o is a well-defined homomorphism. It is easy to see that o and 7
give the hypothesis of the commutative diagram. By the hypothesis, there exists a homomorphism

m m
y i F — Asuch that y|x = 0. Write v; = y(x;). Then a; = y(zj) = }_ rijy(x;) = L 1jv;.
i=1 i=1

(4)=(5) Let h € Homg(N, C). It is easy to construct conditions given in the commutative diagram.
By [22] Exercise 1.60], there exists a homomorphism h’: N — B such that h = ¢h’ = g,(h’). Therefore
g. : Homg(N,B) - Homg(N, C) is an epimorphism.

(5)=(4) This follows from [22}, Exercise 1.60].

(1)=(6) Since & is a pure exact sequence, for any module M, (M ®g B)* - (M ®r A)" — 0 is an
exact sequence. Taking M = A%, by [22, Theorem 2.2.16], Homg(A",B*) - Homg(A",A*) — 0 is an
exact sequence. Since 14+ € Hompg(A*, A"), the exact sequence &* is split.

(6)=(1) Since &* is a split exact sequence, Homg(M, ™) is an exact sequence for any module M.
By [22, Theorem 2.2.16], we get that & is a pure exact sequence. O

+

Theorem 1.5. (Bican-Bashir-Enochs) Let M be an R-module and « be an infinite cardinal number
with « > |R|.

(1) Let X be a submodule of M with |X| < x. Then there exists a pure submodule N of M containing
X such that [N| < «.

(2) There exists a continuous ascending chain of pure submodules of M
0=MycM;cM,c---cM,CMy1C---CM, =M,
such that [M,,1/M,| < .

Proof. (1) Let Ny be a submodule generated by X. Then trivially |[Ny| < x. Inductively, let i be a
natural number and let a module N; be given. Let N;,; be a submodule of M generated by the
solution x; of a system of linear equations (1.1) (S,,,) (where a; € N;) and N;. Since |R| < x, we have
IN;;1l < k. Set N = [J N;. Then |[N| < «, and it follows from Theoremthat N is a pure submodule

i=0
of M with X C N.

289
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(2) Without loss of generality, we assume that M = 0. Set M, := 0. By (1), there exists a nonzero
pure submodule M; of M such that [M;| < k. Again by (1), there exists a nonzero pure submodule
M,/M; of M/M, such that [My/M;| < k. By Exercise[5, M, is a pure submodule of M. If this goes on,
it is proved by transfinite induction. O

Definition 1.6. Let £ be a class of modules and let L be an R-module.
(1) Lis called an L-injective module if Extllz(X,L) =0forany X € L.
(2) Lis called an £-flat module if Torlf(L,X) =0forany X € L.

Example 1.7. (1) If £ denotes the class of finitely generated modules, then an £-injective module
is just injective.
(2) If £ denotes the class of finitely presented modules, then an £-injective module is just an FP-

injective module.

Theorem 1.8. Let £ be a class of modules. Then a module L is £-injective if and only if any exact
sequence of the form £ : 0 - L — B — C — 0 is split, where C € L.

Proof. Assume that L is an L-injective module. Since C € £, Homg(¢&,L) is an exact sequence. It
follows from the fact that 1 € Homg(L, L) that this exact sequence is split.

Assume that the converse condition is satisfied. For any C € £, by [22, Theorem 3.3.5], Extllz(C, L)=
0. Therefore L is L-injective. O

1.2 Pure injective modules

Definition 1.9. Let £ be a class of modules and let L be an R-module. Then L is called an £-pure
injective module if for any £-pure exact sequence { : 0 > A — B — C — 0, the induced sequence
Homg(&,L) : 0 —» Hompg(C,L) — Homg(B,L) — Hompg(A,L) — 0 is also exact. When £ = N, an
L-pure injective module is just a pure injective module.

Example 1.10. Let £ be a class of modules.

(1) Since every pure exact sequence is an L-pure exact sequence, every L-pure injective module is
pure injective.

(2) Every injective module is £-pure injective. We denote by PZ the class of pure injective modules.
ThenZ CPZ.

(3) Any direct product of £-pure injective modules is also £-pure injective.
(4) For any A € L, its character module A™ is £-pure injective, and thus A* is pure injective.

Proof. We only prove (4). Let 0 > X — Y — Z — 0 be an L-pure exact sequence. Then we have the
following commutative diagram:

0 (A®gr Z)+—>-(A®R Y)t (A®g X)+ 0
J ! J
0 Hompg(Z,A™) Homp(Y,A™) Homp(X,A™) 0

By the hypothesis, the top row is exact. By [22, Theorem 2.2.16], three vertical arrows are isomor-
phisms. By [22], Exercise 1.59], the bottom row is exact. Therefore A" is L-pure injective. O

Theorem 1.11. Let £ be a class of modules. Then the following are equivalent for a module L:
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(1) Lisan L-pure injective module.
(2) Any L-pure exact sequence of the form £:0 - L - M — C — 0 is split.

Proof. (1)=(2) This follows from the facts that Homg(&, L) is an exact sequence and 1; € Hompg(L, L).
(2)=(1) Let 0 > A —» B — C — 0 be an L-pure exact sequence and let h: A — L be a homomor-
phism. By [22], Theorem 1.9.19], we have the following commutative diagram with exact rows:

0 AL g8 ¢ 0
W
0 L M C 0

Let N be a finitely presented module. Use the functor Homg(N,—) to act on the above commutative
diagram to get the following commutative diagram with exact rows:

&

0 Homp(N,A) Hompg(N, B) Hompg (N, C) 0
0 Hompg(N, L) Hompg(N,M) ———— Homg(N, C)

From the right side of the above diagram, we get that y, is an epimorphism, and thus 0 - L —
M — C — 0 is a pure exact sequence. By hypothesis, there exists a homomorphism o : M — L such
that ca =1. Thus t:=0f:B — L, and ©f = 0ff = cah = h. Therefore L is an L-pure injective
module. O

Corollary 1.12. Let L be a class of modules and let L be an L-pure injective module. If L is an L-pure
submodule of an injective module, then L is injective.

Corollary 1.13. The following are equivalent for a module L:
(1) Lis a pure injective module.
(2) Any pure exact sequence of the form 0 — L — B — C — 0 is split.

(3) The natural homomorphism p : L — L** is a split monomorphism, that is, L is a direct summand of
L.

(4) Lis a direct summand of some X*.
Let £ be a class of modules. Define:
LT ={Dem| Tor]f(L,D) =0forany L e L},

which is called a Tor-orthocomplement of £. Trivially each D € LT is an £-flat module. Note that,
since we assume that R is a commutative ring, we don’t need to define T L.

Theorem 1.14. Let £ be a class of R-modules. Then the following are equivalent for an R-module D:
(1) D is an £L-flat module.
(2) D*is an L-injective module, that is, Exty(A, D*) = 0 for any A € L.
(3) Any exact sequence of the form#:0 - X - Y — D — 0is L-pure.

(4) IféE:0—->X—>Y —> A— 0is an exact sequence with A € £, then the induced sequence & ® D
is exact.

291
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(5) Any L-pure exact sequence of the form#:0 — X — F — D — 0is L-pure, where F is projective.
(6) Any L-pure exact sequence of the form#:0 - X — F — D — 0is L-pure, where F is flat.

(7) There exists an £-pure exact sequence : 0 - K - F — D — 0, where F is flat.

(8) There exists an L-pure exact sequence 7: 0 - K — F — D — 0, where F is £L-flat.

Proof. We only prove (1)&(2)<(3), and leave the rest to the reader.
(1)=(2) By [22] Theorem 3,4,11], for any A, B € N, we have the natural isomorphism:

Extk(A, BY) = TorX(B, A)*. (1.2)

When A€ L and D € LT, we have Torlf(A,D) = 0. It follows from (1.2) that Exty(A,D*) = 0.
(2)=(3) It can be obtained by backward deduction from the isomorphism (1.2).
(1)=(3) For any A € L, this follows from the exact sequence

0 =TorR(A,D) > A®r X - A®r Y — A® D — 0.

(3)=(1) Let F be a flat module and let 1 : 0 - X — F — D — 0 be an exact sequence. By the
hypothesis, # is an L-pure exact sequence. Thus A ®g 7 is an exact sequence for any module A € L.
Since

0 — Torf(A,D) — A®r X — A®R F — A®r D — 0

is also an exact sequence, Torlf(A,D) = 0. Therefore D is L-flat. O
Corollary 1.15. The following are equivalent for an R-module D:

(1) D is a flat module.

(2) D™ is an injective module.

(3) Any exact sequence of the form 0 - X — Y — D — 0 is pure.

(4) Any exact sequence of the form 0 - X — F — D — 0 is pure, where F is flat.
Definition 1.16. Let £ be a class of modules.

(1) Lissaid to be closed under extensions if for any exact sequence 0 > A —>B—>C —0,A4,Ce/l
imply that Be L.

(2) L issaid to be closed under direct sums (resp., direct products) if whenever {C;} is a family of
modules in £, we have P C; € £ (resp., [[C; € £).
i i
(3) Lis said to be closed under direct summands if C; @ C, € £ implies that C;,C; € L.

(4) Lis said to be closed under direct limits if whenever {(C;, ¢;;) |,i € I'} is a direct system, where
I is a directed set and C; € £, we have lim C; € L.

(5) L is said to be closed under kernels of epimorphisms if whenever 0 > A — B — C — 0 is an
exact sequence, where B,C € £, we have A € L.

(6) L is said to be closed under cokernels of monomorphisms if whenever 0 > A —-B - C — 0
is an exact sequence, where A, B € £, we have C € L.

Proposition 1.17. Let L be a class of modules.
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(1) If P C L and L is closed under kernels of epimorphisms, then a module D is an L-flat module if and
only ifTorf(L,D) =0 forany L € L and any k > 0.

(2) Let F be an L-flat module and X be an L-pure submodule of F. Then F/X is an L-flat module. In
addition, if P C L and L is closed under kernels of epimorphisms, then X is also an L-flat module.
In particular, let F be a flat module and X be a pure submodule of F. Then F/X and X are both flat
modules.

Proof. Exercise. O

Theorem 1.18. Let £ be a class of R-modules and let £ : 0 > A — B — C — 0 be an exact sequence.
Then the following are equivalent:

1) &1is L-pure.

(1)
(2) Homg(&,L) is an exact sequence for any L-pure injective module L.

(3) Hompg(&, M™) is an exact sequence for any M € L.

(4) 0 > Homg(M,C") - Homg(M, B") - Homg(M,A") — 0 is an exact sequence for any M € L.

Proof. (1)=(2) Trivial.
(2)=(3) By Example M is L-pure injective. Now the assertion follows from the hypothesis.
(3)=(4) For any module X, it follows from [22], Theorem 2.2.16] that there is an isomorphism

Hompg(M, X*) = (M ®g X)* = Homg(X, M*).

Therefore the assertion is true.
(4)=(1) By [22] Theorem 2.2.16], (M ®g &)* is an exact sequence. By [22] Exercise 3.27], M ®g & is
an exact sequence. Therefore & is an L£-pure exact sequence. O

Corollary 1.19. Let £ : 0 > A — B — C — 0 be an exact sequence. Then & is pure if and only if the
induced sequence Hompg(&, L) is exact for any pure injective module L..

Theorem 1.20. Let £ be a class of R-modules. Then every L-pure injective module is £ -injective.

Proof. Let E be an L-pure injective module. For any £-flat module D, by Theorem there is an
L-pure exact sequence & : 0 » K — P — D — 0, where P is a projective module. Since Homg(&, E) is
an exact sequence, Exty(D, E) = 0. Therefore E is L7 -injective. O

Theorem 1.21. Let £ be a class of R-modules. Then the following are equivalent for an R-module D:
(1) Dis an £-flat module.
(2) Extll{(D, U) = 0 for any L -injective module U.
(3) ExtllQ(D, V) =0 for any L-pure injective module V.

Proof. Exercise. O

2 Approximation theory of a class of modules

Approximation theory of module classes is known as a cover and an envelope theory of modules. It
can be traced back to: In 1940, Baer et al. constructed a theory of injective envelopes and in 1960,
Bass construct a projective cover and characterized perfect rings. By good properties of the cover
and the envelope, after giving impetus by Enochs et al., approximation theory of classes of modules
has been already demonstrated important applications in many problem solving.
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2.1 Precovers and covers of modules

Definition 2.1. Let A be a class of modules, M be an R-modules, A € A, and ¢ : A > M be a
homomorphism.

(1) (A, @) is called an A-precover of M if for any A’ € A, the following diagram can be completed
into a commutative diagram,
A/
e
AZ? M
equivalently Hompg(A’, A) RS Hompg(A’, M) — 0 is an exact sequence for any A" € A.

(2) Let (A, @) be an A-precover of M. Then (A, ¢) is called an A-cover of M provided that A" = A
and f = ¢ imply that h is an automorphism of A.

Theorem 2.2. Let A be a class of modules and let M be an R-module. If an A-cover of M exists, then
A-covers of M are isomorphic, in other words, an A-cover of M is unique up to isomorphism if it
exists.

Proof. Let (A1,¢1) and (A;, ¢,) be A-covers of M. Then there exist a homomorphism f : A; — A,
such that ¢,f = ¢, and a homomorphism g : A, — A; such that ¢,¢ = ¢,. It follows from equal-
ities @1¢f = @1 and @,fg = @, that fg and gf are isomorphisms, which imply that f and g are
isomorphisms. O

Theorem 2.3. Let A be a class of modules, M be an R-module, and (4, ¢) be an A-precover of M. If
P C A, then @ is an epimorphism.

Proof. Let P € P and let f : P — M be an epimorphism. By the definition of precovers, there exists a
homomorphism h : P — A such that ¢h = f. Therefore ¢ is an epimorphism. O

Let £ be a class of modules. Define:
tL={Aem]| Extllz(A,C) =0 for any C € L}

and
Lt ={BeMm| Extllz(C,B) =0 forany C € £},
which are called respectively the left orthocomplement and right orthocomplement of L.

The simplest case is £ = {R}, at this time £+ = gM, +(L+) = P. For any class £ of modules, obviously
LCHLY), LS (HL)Y, and L+ and L £ are closed under extensions.

Definition 2.4. Let A be a class of modules, M be an R-module. Then M is said to have a special
A-precover of M (also & or (A, @) is called a special A-precover of M) if there exists an exact sequence

é:0—>K—>AﬂM—>O,WhereAeAandKer((p)eAL.
Theorem 2.5. Let A be a class of modules.
(1) Every special A-precover of M is necessarily A-precover of M.

et A be closed under extensions. Let (A4, e an A-cover of a module M an e an epimor-

2) Let A be closed und i Let (A,¢)b A f dule M and ¢ b pi
phism. Then (A, ) is a special A-precover of M. In particular, if P C A, then every A-cover of
a module is a special .A-precover.
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Proof. (1) Let £: 0 - K - A LM > 0bea special A-precover of M. For any A’ € A, since
Extlla(A’,K) =0, Hompg(A’, &) is an exact sequence. So (A, ¢) is an A-precover of M.
(2) Write K = Ker(¢). Then0 - K — A % M = 0is an exact sequence. By (1), it is enough to prove

that K € A+. Let A’€ Aand let 0 > K > X 5 A’ - 0 be an exact sequence. Consider the following
commutative diagram with exact rows and columns:

I

R
o h

0 X— 0% .M 0
o) s
A A
! |
0 0

where the left upper corner is a pushout. Since A,A’ € A, we have Q € A. Since (A, ¢) is an A-cover
of M, there exists 0 : Q — A such that o = g. Hence ¢ = @oh. Therefore 6h is an isomorphism.
Define #(x) = (6h) ™16 f(x), x € X. Since ¢ = @(6h)~!, we have ¢n(x) = pdf(x) = gf(x) = 0. Thus
n(x) € K. Hence 1 : X — K. Since 5o = (0h)"16fo = (6h)~'(0h) =1, it follows that 0 > K — X — A’ —
0 is a split exact sequence. By [22, Theorem 3.3.5], Extp(A’,K) = 0. Therefore K € A*. O

Theorem 2.6. Let A be a class of modules, M be an R-module, and (A, ¢) be an A-precover of M. If
M has an A-cover, then

(1) A=D; @D,, where D; C Ker(¢) and ¢|p, is an A-cover of M.

(2) (A, @) is an A-cover of M if and only if A has a nonzero direct summand contained in Ker(¢).

Proof. (1) Let (A’,¢’) be an A-cover of M. By the definition, there exist homomorphisms f": A" — A
such that ¢f = ¢’, and g: A — A’ such that ¢’¢ = ¢. Thus ¢’gf = ¢’. By the definition of covers,
gf is an isomorphism. Thus f is a monomorphism, and there is an isomorphism h: A” — A" such
that gfh =14. By [22], Exercise 1.23], A = Ker(g) ®Im(fh). Set D; = Ker(g) and D, = Im(fh). Then
obviously D; C Ker(¢) and D, =Im(f)=A’.

(2) This follows from (1). O

Example 2.7. (1) Let ¢ : P > M — 0 be an epimorphism, where P is a projective module. Then
obviously (P,¢) is a special P-precover of a module M. So every module has a special P-
precover.

(2) The P-cover of a module is the same as the projective cover. In fact, assume (P, ¢) is the projec-
tive cover of a module M and let /i : P — P such that ¢h = ¢. By [22, Theorem 2.7.13(1)], his an
epimorphism. Since Ker(h) C Ker(¢), it follows that Ker(h) is a superfluous submodule of P. So
(P, h) is a projective cover of P. From [22] Theorem 2.7.13(3)], & is an isomorphism. Therefore
a projective cover is a P-cover.

Conversely, assume (P, @) is a P-cover of a module M. Suppose that Ker(¢) + A = P and take a
homomorphism f : F — P such that Im(f) = A, where F is a free module. For any x € M, since
@ is an epimorphism, there is y € P such that ¢(y) = x. Write y = z+ a, where z € Ker(¢) and
a€A. Then x = ¢(y) = ¢(a). So ¢f : F — M is an epimorphism, that is, (F,¢f) is a P-precover
of M. So there is a homomorphism g : P — F such that ¢ fg = ¢. So fg is an isomorphism, and
thus f is an epimorphism, that is, A = P. So Ker(¢) is a superfluous submodule of P. So every
P-cover is a projective cover.
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(3) Since each module has a projective cover if and only if R is a perfect ring. Thus, although a
special A-precover exists, an .A-cover does not necessarily exist.

2.2 Preenvelopes and envelopes of modules

The definition of preenvelopes and envelopes of the module and the related conclusions can be ob-
tained by the dual method of precovers and covers of the module. Therefore here we only make only
the corresponding statements without proofs.

Definition 2.8. Let 3 be a class of modules, N be an R-module, B € B, and ¢ : N — B be a homomor-
phism.

(1) (B, @) is called a B-preenvelope of N if for any B’ € B, the following can be completed into a
commutative diagram:
B/

equivalently Hompg(B, B') ®, Hompg(N, B’) — 0 is an exact sequence for any B’ € B.

(2) Let (B, @) be a B-preenvelope of N. Then (B, ¢) is called a 5-envelope of N provided that B’ = B
and f = ¢ imply that h is an automorphism of B.

Theorem 2.9. Let B be a class of modules and let N be an R-module. If a B-preenvelope of N exists,
then B-preenvelopes of N are isomorphic, in other word, a B-preenvelope of N is unique up to
isomorphism if it exists.

Theorem 2.10. Let B be a class of modules, N be an R-module, and (B, ¢) be a B-preenvelope of N.
If 7 C B, then ¢ is a monomorphism.

Definition 2.11. Let B be a class of modules, N be an R-module. Then (B, ¢) is called a special 5B-
preenvelope of N (also & or (B, @) is a special B-preenvelope of N) if there exists an exact sequence

é:O—>Nf>B—>L—>O,WhereBeBandLelB
Theorem 2.12. Let B be a class of modules.
(1) Every special B-preenvelope of a module N is necessarily a 3-preenvelope of N.

(2) Let B be closed under extensions. Let (B,¢) be an B-envelope of a module N and ¢ be a
monomorphism. Then (B, ¢) is a special A-preenvelope of N. In particular, if Z C 5, then every
B-envelope of a module is a special B-preenvelope.

Theorem 2.13. Let BB be a class of modules, N be an R-module, and (B, ¢) be a B-preenvelope of N.
If N has a B-envelope, then:

(1) B=Cy®C,, whereIm(¢p) CC; and ¢ : N — C; is a B-envelope of N.
(2) (B, ) is a B-envelope of N if and only if B has a direct summand properly containing Im(¢).

Example 2.14. By [22, Theorem 2.4.19(2)], an injective envelope is an Z-envelope. Conversely, as-
sume that (E, @) is an Z-envelope of N. By Theorem [2.10} ¢ is a monomorphism. Let g : E(N) — E
be a homomorphism such that g|y = ¢. By [22, Lemma 2.4.15], g is a monomorphism. By Theo-
rem [2.13} E = E(N). Thus an Z-envelope is also an injective envelope. Therefore Z-envelopes and
injective envelopes are identical.
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2.3 Minimal approximation

An extension generator and a minimal extension generator of a class of modules play an important
role in determining a special precover and a special preenvelope of a module.

Definition 2.15. Let A be a class of modules, N be an R-module,and £ :0 >N —- G — L — 0 be an
exact sequence.

(1) & is called an Ext-generator of N relative to .A (below, abbreviated by an Ext-generator of N)
if for any exact sequence £’ : 0 > N - G’ —» L’ — 0, where L’ € A, we have the following
commutative diagram:

0 N G’ L 0
|| s b
0 N G L 0

(2) Let & be an Ext-generator of N. Then & is called a minimal Ext-generator of N relative to
A (below, abbreviated by a minimal Ext-generator of N) if & (and hence g) of the following
commutative diagram is an isomorphism:

0 N G L 0
|| s b
0 N G L 0

Note that if £ is an Ext-generator of N, £’: 0 > N — G’ — L’ — 0 is an exact sequence, and we
have the following commutative diagram:

0 N G L 0
[ | |
0 N G’ r 0

then &’ is also an Ext-generator of N.

Example 2.16. Let A = g1, N be an R-module, and E be an injective module containing N. Then
£:0—>N — G — L— 0is an Ext-generator of N (relative to g11). When E is the injective envelope
of N, ¢ is also a minimal Ext-generator of N.

Lemma 2.17. Let A be a class of modules which is closed under direct limits and let N be an R-module. If
£:0—> N — G — L — 0isan Ext-generator, then there exists an Ext-generator ’:0 > N -G - L — 0
such that the corresponding commutative diagram

0 N G L 0
|| Is I

0 N G’ L 0
|| l¢ b

0 N G” L 0

satisfies: For any Ext-generator £ : 0 - N — G” — L” — 0 in the corresponding commutative diagram,
Ker(g’g) = Ker(g).
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Proof. Assume on the contrary that an Ext-generator which satisfies the given property does not exist.
Set Gy = G and Lj = L. Then there exists an Ext-generator £; : 0 = N — G; — L; — 0 such that in the
following commutative diagram,

U

0 N Go Lo 0
| e

0 N G, L 0

where 0 = Ker(15) € Ker(g1¢). Thus g is not a monomorphism.
Since &; does not have the required properties, there exists an Ext-generator £, : 0 > N — G, —
L, — 0 such that the corresponding commutative diagram

0 N G, L 0
| e
0 N G, L, 0

has Ker(g19) C Ker(g29), where g5¢ := g21810-
For any ordinal a, by induction for any ordinal number < «, an Ext-generator has been con-
structed &g : 0 > N — Gg — Lg — 0 such that the corresponding commutative diagram

0 N Gg Lg 0
H N
0 N Gpe1 Lgs1 0

has the property gg.1,8 = p+1,88p.87 Mp+1,7 = hp+1,888,8 B’ < B, (Regard gp,p = 1.) and Ker(gg) C
Ker(gg11,0)- If @ is not a limit ordinal, take = @ — 1. Thus @ = f + 1. By the way as stated above, we
can construct &,, and the corresponding commutative diagram (in the above diagram, take f = a—1).
If @ is a limit ordinal, then set G, =lim  Ggand L, =lim  Lg. By the hypothesis, L, € A. By [22,

— B<a — p<a
Theorem 2.5.33],¢,:0 >N — G, — L, — 0 is an Ext-generator.
By our construction, for any ordinal f < a, Ker(gg,0) C Ker(g,4,0) € G. So for any non-limit ordinal
a, there exists an element x, € Ker(g, o) such that x, ¢ Ker(g,_1,). Since the cardinality |G| of G is

fixed, but « is arbitrary, there is an ordinal & such that |a| > |G|, a contradiction. O

Lemma 2.18. Let A be a class of modules which is closed under direct limits and let N be an R-module. If
£:0—- N — G — L — 0is an Ext-generator, then:

(1) There exists an Ext-generator &' : 0 - N — G” — L’ — 0 such that for any Ext-generator £” : 0 —
N - G” —>L"—0, g’ of the following corresponding commutative diagram is a monomorphism:

0 N G L 0
|| Is I

0 N G’ L 0
|| le b

0 N G” L 0

(2) & is a minimal Ext-generator of N.
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Proof. (1) Set Gy = G and Ly = L. By Lemma we may assume that &y := & has the concluding
properties of Lemma|[2.17} For any n € N, recurswely construct an Ext-generator &,: 0 > N — G, —
L, — 0 to have the property: In the corresponding commutative diagram,

0 N G, L 0
H \l,grwl,n l/hm—l n

0 N Gn+1 Ly 0
H Je b

0 N G” L” 0

we have Ker(g”g,,1.,) = Ker(g,41,4). Set G’ = 11m G,and L' = 11rn L,. By the hypothesis, £’ : 0 —

N — G"— L" — 0 is an Ext-generator. Let g, : G L, G’ and h, L L, L be the direct limits defined
by companion maps. For any Ext-generator £’ : 0 > N — G” — L” — 0, let the corresponding
commutative diagram be

0 N G’ L 0
|| l¢ b
0 N G” L 0

Let x € G’ with ¢’(x) = 0. By [22, Theorem 2.5.31], there is x,, € G, such that x = g,(x,). Thus
§'8u(x,) = 0. Since g’gy = §'gn118u+1,n, it follows that Ker(g’g,) = Ker(fy1,0)- Thus x,, € Ker(g41,1)-
Hence x = g,,(x,,) = g1+18n+1,n(x,) = 0. Therefore g’ is a monomorphism.

(2) Assume on the contrary that the assertion is not true. Set G; = G and Ly = L. Then in the
corresponding commutative diagram,

0 N G L 0
H Joo o
0 N G, L 0

g10 is @ monomorphism, but is not an epimorphism. Again set G, = G and L, = L. Then g; is a
monomorphism, but is not an epimorphism.

0 N G L 0
R
0 N G, L, 0

For any ordinal a, inductively assume that if § < . Then an Ext-generator :0 >N — Gg — Lg —
0 satisfies Gg = G, N, = L, and in the corresponding commutative diagram,

0 N Gy Lip 0
| e e
0 N Gpi1 Lg 0

gg+1,p is @ monomorphism, but is not an epimorphism. As Lemma |2.17|above, for f’ < B, we have
8p+1,p° = 8p+1,88p,p’- When a is the limit ordinal number, set G, = 11m Gﬁ =Gand L, =lim Lg=

— p<a — B<a
L. By [22], Exercise 2.52], in the commutative diagram,

0 N Gy Ly 0

H Jos e

0 N G, L, 0
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8a,p 1s @ monomorphism. If such a g, g is an epimorphism (and so an isomorphism), there is nothing
to prove. Now assume that such g, g’s are not epimorphisms. Take an ordinal number a such that
la|>|G|. When B’ < B <@, Im(g, p) C Im(g,, ), which induces a contradiction. O

Theorem 2.19. Let A be a class of modules which is closed under extensions and direct limits and
let N be an R-module. If N has a special At-preenvelope (G, 1) and L := Coker(A) € A, then N has a
special A+-envelope.

Proof. By the hypothesis, N has an Ext-generator. By Lemma we may assume that £:0 > N —
G — L — 0 is a minimal Ext-generator. Let A€ A and let 0 > G - Q — A — 0 be an exact sequence.
Consider the following commutative diagram with exact rows and columns:

0 N—4 .62 . 0
Ik b
0 N 0 M 0

where the right square is a pushout. Since Coker(h) A € A and L € A, we have M € A. Since £ is an
Ext-generator, there exist homomorphisms @ : Q - Gand f: M — Lsuchthatap=Aand oa = fr. It
follows from the minimality that ga and hp are isomorphisms. So the left vertical exact sequence of
the above diagram is split. By [22, Theorem 3.3.5], Ext;(A,G) = 0. Thus G € A*. By the minimality,
G is a special A+-envelope of N. O]

Dually we have:

Theorem 2.20. Let A be a class of modules which is closed under extensions and direct limits and
let M be an R-module. If M has a special .A-precover (A, ¢), then M has a special A-cover.

3 Cotorsion theory

3.1 Basic properties of cotorsion theory

Definition 3.1. Let A and 5 be two classes of modules. Then & := (A, B) is called a cotorsion pair or
cotorsion theory if A =15 and B = A'. In this case, we write = AN B, which is called the kernel
of &. Naturally B € B is called an .A-injective module, A € A is also called a B-projective module.

Example 3.2. (1) (P,M)and (M,Z) are cotorsion theories.

(2) For any class £ of modules, by Exercise [7} G, := (+(£+),£+) and R, := (*L£,(+L)*) are cotor-
sion theories, which are called the cotorsion theory generated by £ and the cotorsion theory
cogenerated by L respectively.

Trivially if (A, B) is a cotorsion theory, then P C A and 7 C B. In addition, A is closed under direct
sums and B is closed under direct products, as well as A and B are closed under extensions and
direct summands.

Definition 3.3. Let & = (A, B) be a cotorsion theory.
(1) Gis called a complete cotorsion theory if every module has a special A-precover.
(2) Gis called a perfect cotorsion theory if every module has an .A-cover and a B-envelope.
(3) Gis called a hereditary cotorsion theory if A is closed under kernels of epimorphism.

By Theorem 2.5} every perfect cotorsion theory is necessarily complete.
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Theorem 3.4. Let & = (A, B) be a cotorsion theory. Then & is complete if and only if every module
has a special B-preenvelope.

Proof. Assume that & is complete. Let N be an R-module. Then there is an exact sequence 0 > N —

ESFo 0, where E is an injective module. Let (A, @) be a special A-precover of F. Construct the
following commutative diagram with exact rows and columns:

0 N—=0Q A 0
I e
0 N E F 0

where the diagram on the right square is a pullback. Set B := Ker(¢). By the hypothesis, B,E € B, and
so Q € B. Thus (Q, 0) is a special B-preenvelope of N.
The conclusion of the converse follows dually from the above proof. O

Theorem 3.5. Let & = (A, B) be a cotorsion theory. Then the following are equivalent:
(1) &is hereditary.
(2) Bis closed under cokernels of monomorphisms.
(3) Ext'l‘z(A,B) =0forany Ac A, BeB,and any k > 1.

Proof. (1)=(3)Let 0 > K - P — A — 0 be an exact sequence, where P € P, A € A. By the hypothesis,
K € A. Thus Ext'fz+1 (A, B) = Ext’l‘z(K,B) for any B € B. Now the assertion follows by the induction.
(3)=(1)Let0 > A; > A — A, — 0 be an exact sequence, where A, A, € A. For any B € B, there is
an exact sequence 0 = Extlle(A,B) — Ext}Q(Al,B) - Extlze(Az,B) =0. Thus A; € A.
(2)<(3) This follows dually from the above proof. O

Example 3.6. (1) (P,M) is a hereditary complete cotorsion theory. Note that (P,M) is a perfect
cotorsion theory if and only if R is a perfect ring. Therefore a complete cotorsion theory is not
necessarily perfect.

(2) (M,Z) is a hereditary perfect cotorsion theory.

Theorem 3.7. Let & = (A, B) be a complete cotorsion theory. If A is closed under direct limits, then
& is perfect.

Proof. This follows from Theorem and Theorem 2.20] O

3.2 Structures of B-envelopes of modules

When (A, B) constitutes a perfect cotorsion theory, each module has a .A-cover and a 3-envelope. For
any given module N, the specific structure of B-envelope of N is given below.

Theorem 3.8. Let (A, B) be a perfect cotorsion theory and let N C L be an extension of R-modules.
Then L is a B-envelope of N if and only if L satisfies the following conditions:

(1) LeB;
(2) L/N € A. ((1) and (2) show that L is a special B-preenvelope of N);

(3) there is no nonzero submodules X of L such that NN X =0, but L/(N + X) € A.

301
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Proof. Assume that Lis a 3-envelope of N and leti : N — L be the inclusion map. Then the conditions
(1) and (2) trivially hold true. Let X be a submodule of L such that XNN =0and set A:=L/(N+X) €
A. Let w: L — L/X be the natural homomorphism. Then the natural homomorphism f =i : N —
L/X is a monomorphism and Coker(f) = A. Let (B, ) be the B-envelope of L/X and set ¢ = ¢f.
Consider the following commutative diagram with exact rows:

0 N L/X A 0
I, b
0 N B C 0

where the right square is a pushout. Write Y = Coker(¢) = Coker(p). Since Y, A € A, we obtain that
C € A. Thus (B, ¢) is a special B-envelope of N. Since L € B3, there exists a homomorphism g: B — L
such that g¢p = i. Thus gpni =i, and so g7 is an isomorphism, and thus 7t is a monomorphism. It
follows that X = 0.

Conversely, assume that L satisfies conditions (1), (2), and (3). Let (E, ¢) be the 5-envelope of N.
Then A := E/N € A. Thus there exist homomorphisms f : E — L and g: L — E such that f¢ =i and
gi = ¢@. Hence gf : E — E satisfies (¢f )@ = ¢. Thus gf is an isomorphism. Hence L = Im(f) @ Ker(g).
Set X := Ker(g). Since ¢ is a monomorphism, N N X = 0. Note that we have an exact sequence
0—>X—>L/N—E/N —0. Thus L/(N + X) = E/N € A. It follows from the condition (3) that X = 0.
Therefore f : E — L is an isomorphism. O

3.3 Test method of complete cotorsion theory

Given a class A of modules, when A is generated by a class £ of modules, by Exercise [[1]we know
that (A, A+) formed a cotorsion theory. But it is very difficult to determine whether (A, A+) becomes
a complete cotorsion theory. The following cardinal number method is currently used to determine
the validity of the complete cotorsion theory.

Definition 3.9. Let A be a class of modules and let M be an R-module. If there exist an ordinal
number A and a continuous chain of submodules:

0=MycM;c---cM,CMy1C---CM,; =M

such that whenever a < A, one has M,./M, € A, then M is called an A-filtered module and a
continuous ascending chain {M, | a < A} is called an A-filtration of M.

Furthermore, let x be a given cardinal number. If for any ordinal number «, M,, is a pure submod-
ule of M and |[M,,1/M,| < «, then this A-filtration is called a k-refinement.

Lemma 3.10. Let A be a class of modules and let M be an A-filtered module. If N € AL, then Exty(M,N) =
0.

Proof. This follows by applying [22, Lemma 11.7.2]. O

Countably generated modules, finitely generated modules, finitely presented modules, and super-
finitely presented modules are all sets. More generally, let « be an infinite cardinal number and let X
and Y be two cardinal numbers at most «. By set theory, we know that the number of mapping from
X to Y does not exceed 2. Now let M be a set with |M| < k. A binary operation on M is a mapping
from the Cartesian product M x M to M. Therefore, in the sense of isomorphism, the number of
Abelian groups that M can be made into does not exceed 2(1<), in other words, the number of non-
isomorphic Abelian groups whose cardinality does not exceed x does not exceed 2*. In particular,
in the category N1 of modules, the totality of non-isomorphic R-modules whose cardinality does not
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exceed « is a set whose cardinality does not exceed 2*. This is an important fact for judging whether
a cotorsion theory is complete.

In order to determine when (£, £1) is a complete cotorsion theory, the following theorem is very
effective.

Theorem 3.11. (Eklof-Trlifaj) Let S be a set of modules.

(1) Let M be an R-module. Then there exists an exact sequence 0 > M — P — A — 0, where
P € 8t and A is an S-filtered module, and thus A € +(S4).

(2) (£(81),8%)is a complete cotorsion theory.

Proof. (1) Write X = €0S. Then X+ = St. Thus we may assume that S is the class of modules
Ses

constituting of a module S and direct sums of some copies of S. Let 0 — K A F S = 0 be an exact

sequence, where F is a free module. Take a fixed cardinal number A such that K has a generation

system X with |X]| < A.

Set Py = M. Using cardinal numbers and ordinal numbers without distinction, for any ordinal
number a < ), if P, has been given, then set I, := Homg(K, P,) as a new index set. Let p, : KUs) —
F2) be a homomorphism of direct sums. Then Uq 1s @ monomorphism and Coker(p,) = sa),

Define ¢, : K = (P Ky — P,, where Ky = K, by @,([xf]) = )X f(xs). Furthermore, for any

fel, fel,
felyletif: K— K2) and jriF— FUe) be the natural embedding maps. Then there is a relation

f:(Paifr ]f'u:]/lalf (3.1).

Now assume that when < «, Plg has been constructed (Note that when « is a limit ordinal number,
set Py := | Pg), in particular P, has been constructed. Construction a pushout diagram:

p<a
0 K)o p(l) ) 0
Pa L l/l,ba lg
0 P,€ - Pav1 Ppi1/Py —0
we get P,,q. Set P:= (J P, =lim /\Pa. Set A:= P/M and A, := P,/M. Then A,,1/Ay = Pyy1/P, =
a<) — a<
SUs), Since P= |J P,, wehave A= |J A,. Thus A is an S-filtered module.
a<A a<A

Finally we prove that P € S+. To do this, it suffices to prove that y* : Homg(F, P) — Hompg(K, P) is
an epimorphism.
Let g: K — P be a homomorphism. Since K has a generating system X with [X|<Aand P = |J P,,

a<A
there exists an ordinal number a < A such that Im(g) C P,. Hence there exists a homomorphism

f : K — P, such that for any x € K, we have g(x) = f(x). By the pushout diagram and (3.1), we have

Il)ajfl/‘ = Il)a.“aif = ha(Paif =hof. (3.2)

Define o : F — P such that 0(z) = ¢, jf(z) € Ps41 € P. Then a direct verification shows that g = op =
u* (o). Therefore o is an epimorphism.
(2) Since S € +(S81), this follows from (1), Lemma and Theorem [2.12] O

Definition 3.12. Let £ be a class of modules.
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(1) We say that £ is a resolving class if £ is closed under both extensions and kernels of epimor-
phisms, and P C L.

(2) We say that £ is a coresolving class if £ is closed under both extensions and cokernels of
monomorphisms, and Z C L.

(3) It is said that £ has the property (P) if for any L € £, there is an epimorphism P — L, where P
is a projective module and P € L.

(4) It is said that £ has the property (I) if for any L € £, there is a monomorphism L — I, where I
is an injective module and I € L.

Definition 3.13. Let B be an R-module.
(1) Bis called a strong L-injective module if Ext}é(L,B) =0forany L € £ and any i > 0.
(2) Bis called a strong L-projective module if Ext}é(B,L) =0forany L € £ and any i > 0.

Theorem 3.14. Let £ be a class of modules. Use £+~ to denote the class of strong L-injective modules
and ‘=L to denote the class of strong L-projective modules.

(1) L1~ is a coresolving class.
(2) t~L is aresolving class.

Proof. (1) Obviously £+« is closed under extensions, and Z C L1,

Let 0 > A — B — C — 0 be an exact sequence with A,B € L+~. Let L € £ and i > 0. Then there
is an exact sequence 0 = Ext}é(L,B) - Ext}é(L,C) - Extj{“l(L,A) = 0. From this we get Ext}é(L,C) =0,
that is, C € L+~. So L+ is closed under cokernels of monomorphisms. Thus £+~ is a coresolving
class.

(2) It can be proved similarly to (1). O

Theorem 3.15. (1) Let £ be a class of modules closed under kernels of epimorphisms, and have
the property (P). Then £+ = L1,

(2) Let £ be a class of modules closed under cokernels of monomorphisms, and have the property
(I). Then +£L =1~ L.

Proof. (1) Obviously £+~ C £1. Conversely, let B € £L+. For any L € £, take an exact sequence
0> M —>F — L — 0, where F is a free module. From the condition, M € £. Let i > 0. Then
Ext};rl (L,B) = Ext%(M, B). So B € L+~ can be obtained by induction.

(2) It can be proved similarly to (1). O

Lemma 3.16. Let L be a class of modules. Then:
(1) LCSH(LF).
(2) (L(LL))t = Lt
(3) (*(L+),L1L=)is a hereditary cotorsion theory.
(4) For each M € L, select a projective resolution P(M) of M. Let Ay be the set of all syzygies (including

M itself) of P(M). Set A= |J App. Then A+ = L1,
MeL
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Proof. (1) Let L € £. Then obviously Exty(L, A) = 0 for any A € £*~, and so L € L(L1=).

(2) Apparently L+~ C (+(L+~))+. By Theorem L+~ contains all injective modules and it is
closed under cokernels of monomorphisms. From Theorem [3.15|2) and Theorem we know
+(L+~) contains all projective modules and closed under kernels of epimorphisms. Applying Theo-
rem 1), we know that (+(L1e))te = (L(L1x))L = Lt

(3) This is obtained by (2) and Theorem

(4) Let N € L1~. For any A € A, there exist M € L and an exact sequence

0—wA—>P—--—P—>Ph—M—0, (3.2)

where Py, Py, ..., P, are projective modules. So Extll{(A,N) = Ext’l‘{z(M,N) = 0. Therefore N € A+.
On the other hand, let N € AL. For any M € £ and any k > -1, consider the exact sequence (3.2).
Then Extk"?(M,N) = Exth(A,N) = 0. So N € L=, O

Theorem 3.17. Let S be a set of modules and set B = S+~. Then (15, B) is a hereditary and complete
cotorsion theory. Thus each module has a strong S-injective special preenvelope.

Proof. By Lemma (B+,B) is a hereditary cotorsion theory. Construct A as in Lemma Then
L is a set. It is easy to see that B = AL. It follows from Theorem that (+5,B) is a complete
cotorsion theory. O

The following example is a specific application of Theorem Theorem and other results.

Example 3.18. (1) Let £ denote the class of finitely presented modules. Then L-injective mod-
ules are FP-injective modules. Use FPZ to denote FP-injective modules. Then FPZ = L1
From Theorem [3.11} (+ FPZ, FPI) is a complete cotorsion theory, so that each module has an
FP-injective special preenvelope. Similarly, by Theorem each module has a strong FP-
injective special preenvelope.

(2) Let £ denote the class of super-finitely presented modules. Then L is a set, at this time £-
injective modules are exactly weak injective modules. Use WZ to denote the class of weak
injective modules. Then WZ = £+. According to Theorem (*WI,WI)is a hereditary and
complete cotorsion theory, so that each module has a weak injective special preenvelope.

(3) Let n be a non-negative integer and £ represent the class of finitely generated modules. For
each M € L, take the (n — 1)th syzygy Ky, of a projective resolution. Then the module class S
formed by these Ky, is also a set, and Z,, = S*. By Theorem (*Z,,Z,) is a hereditary and
complete cotorsion theory, so that each module has an Z,,-special preenvelope.

Use P, to denote the class of modules whose projective dimension does not exceed 1.
Lemma 3.19. Let M € P;.
(1) M has a tight system, that is, a family T of submodules satisfying:

(a) O,M €T, and T is closed under unions of chains;

(b) IfA,BeT,and AC B, then B/A € Py;

(c) Let A€ T and X be a countable subset of M. Then there exists B € T such that A,X C B, and
B/A is countably generated.

(2) Let S be the class of modules that can be generated countably and whose projective dimension does
not exceed 1. Then S is a set and M has S-filtration.

Proof. (1) See [11}, Proposition VI.5.1]. (2) See [11}, Proposition VI.6.1]. O
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Example 3.20. Let £ denote the module class of 1-cosyzygies. Note that for an R-module M and a
positive integer n, pdxM < 1 if and only if Ext(M, X) = 0 for any (n—1)-th cosyzygy module X. Thus
Py =1 L. Then (P}, P}") is a cotorsion theory. From Lemma LS =HPH) =) ) =L =P
By Theorem (Py,Pj) is a hereditary and complete cotorsion theory. Thus each module has a
Py -special precover.

3.4 Test method of perfect cotorsion theory
Now we define « as follows: When |R| is finite, set x = 8(; when |R] is infinite, set x = |R]|.

Lemma 3.21. Let & = (A, B) be the hereditary cotorsion theory generated by a class L of modules, where
L CPI. Then A e A. if and only if there exists an ordinal number A such that A has a k-refinement of an
A-filtration {A, | @ < AL

Proof. Assume that A € A. If |A| < k, then the assertion follows by setting Ay = 0 and A; = A. Now
assume that A = |A] > k. By Theorem 1), there exists a nonzero pure submodule A; of A such
that |A;| < k. For any L € £, since Extllz(A, L)=0and L is a pure injective module, Extllz(A/Al,L) =0,
that is, A/A; € A. By the heredity, A; € A. Trivially A; # A. Thus there exists a submodule A, of
A containing A; such that A,/A; is a nonzero pure submodule of A/A;, |[Ay/A1| < k, and Ay/A; € A.
Similarly we have A/A, € A. For any ordinal number «a, inductively we assume that when g < «,
B is a non-limit ordinal, Ay has been given, and satisfies the condition: Ag is a pure submodule of
A, AlAg € A, Ap/Ag_1 € A, and |Aﬁ/Aﬁ—1| < k. When « is a non-limit ordinal, repeating the above-
mentioned process for A/A,_, construct A, to meet the requirements. When « is a limit ordinal, set
A = |J Ap. Since the functors ® and lim commute, A, is a pure submodule of A. Thus A/A, € A.
p<a

Let A =|A|. Using cardinal numbers and ordinal numbers without distinction, we can recursively get
the required x-refinement of A.

Conversely, assume that A has a x-refinement. For any N € £, by Lemma Exth(A,N) = 0.
Therefore A e +L = A. 0

Theorem 3.22. Let & = (A, B) be the hereditary cotorsion theory generated by a class £ of modules,
where £ C PZ. Then & is a perfect cotorsion theory.

Proof. Let S be the module class {A € M | Ae Aand |[A|<«k}. Then § is a set. Since S C A, we
have B = A+ C §+. Now let B€ S+ and A € A. By Lemma A has a k-refinement {A,}. Since
|Agi1/A4] < x, by the choice of S, we have Ext}a(AaH/Aa,N) = 0. By Lemma Extllz(A,N) =0,
that is, N € A+ = B. Thus B = §*. By Theorem[3.11} & = (A4, B) = (+(S+),S*) is a complete cotorsion
theory.

In order to prove that (& is a perfect cotorsion theory, by Theorem it is enough to show that A
is closed under direct limits. Let {A;, ¢;;} be a direct system in A over a directed set I'. By Exercise

there is an exact sequence 0 > N —» 5 A; > limA; — 0. For any C € £, we have Extk(@Ai, C)=
i - i

]_[Extll{(Ai, C)=0. Thus Extll{(limAi, C) = 0. Therefore A is closed under direct limits. O
i —

Remark 3.1 Although, in Theorem and Theorem behind, hereditary conditions are not
added, we still get that & is a perfect cotorsion theory, see reference [13]]. But to reduce the space, in
Lemma the hereditary condition is added.

Definition 3.23. Let A and B be two classes of modules. Then (.4, B) is called a Tor-torsion pair (or
Tor-torsion theory) if A =BT and B = AT. If Ais closed under kernels of epimorphisms, then (A4, B)
is said to be a hereditary Tor-torsion theory.
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Theorem 3.24. Let & = (A, B) be a Tor-torsion theory. Then the following are equivalent:

(1) &is hereditary.

(2) Bis closed under kernels of epimorphisms.

(3) Torf(A,B) =0forany A€ A, Be 3, and any k > 1.
Proof. The proof is similar to that of Theorem 3.5 O
Example 3.25. (1) (F,M)is a hereditary Tor-torsion theory.

(2) For any class £ of modules, by Exercise[7}, T, := (LT,(£T)T) is a Tor-torsion theory.
Theorem 3.26. Let (A, B) be a hereditary Tor-torsion theory. Then:

(1) Ais closed under direct limits.

(2) Set £L={B*|Be€ B}. Then L C AL.

(3) £ =A, and thus +(A') = A.

(4) R, = (A, AL) is a perfect cotorsion theory.

Proof. (1) This follows from [22, Theorem 2.5.34].
(2) By [22, Theorem 3.4.11], for any A, B € M, we have the natural isomorphism:

Exth(A,B) = Tork(A, B)".

When A € A and B € B, we have Torlf(A,B) =0, and so ExtllQ(A, B*) = 0. It follows that £ C A+,

(3) Trivially A C +(AL) CLL. Now let A € L£. Then Exty(A, B*) = 0 for any B € B. It follows from
(1.2) and [22} Exercise 3.27] that TorR(A, B) = 0. Thus A € BT = A. Therefore +(AL) = A.

(4) This follows from Example[1.10]and Theorem [3.22] O

Example 3.27. (1) Let A= M. Then B=M" = F and A+ =Z. Thus (A, B) is a Tor-torsion theory.
It follows from Theorem [3.26]that each module has an injective envelope.

(2) Let A=F and B = gM. Then (A, B) is a Tor-torsion theory. It follows from Theorem that
each module has a flat cover.

(3) (FCC) Note that for a module M, M is w-flat if and only if Torlf(M,B) =0 for any Be F,[. Thus
(Fw» Fu T) is a Tor-torsion theory. By Theorem each module has a w-flat cover.

Enochs’ Conjecture [[9]: For any ring R, every R-module has a flat cover (FCC). Enochs et al. made
a long-term effort, in 2001 [7] solved this problem.

Now let’s consider the dual approach of strong £-injective modules, in which the proof methods
of some results are similar, and so the proof is omitted.

Definition 3.28. Let £ be a class modules. Then a module A is called strong L£-flat moduleif
Torf(L,A) =0forany L € £ and any i > 0.

Use L7~ to represent the class of strong £-flat modules. From [22, Theorem 3.4.14], the module
class LT~ is closed under direct limits.

Theorem 3.29. L7~ is a resolving class.
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Theorem 3.30. Let £ be a class of modules closed under kernels of epimorphisms and have the
property (P). Then LT = LT~, namely every £-flat module is a strong £-flat module.

Lemma 3.31. Let L be a class of modules. Then:
(1) LC(LT=)T.
(2) (LT=)T)T = LT,
(3) (LT=,(LT=)T)is a hereditary Tor-torsion theory.

Theorem 3.32. Let £ be a class of modules and set A = LT~. Then (A, A') is a hereditary perfect
cotorsion theory. In other words, each module has a special strong £-flat cover and a special (£ T~)+-
injective envelope.

Proof. This is obtained from Lemma and Theorem O]

Corollary 3.33. Let L be a class of modules closed under kernels of epimorphisms and have the property
(P). Then each module has a special L-flat cover and a special L+-injective envelope.

Example 3.34. If L represents the class of flat modules, then A := £T = M and At = 7. At this
point, Corollary points out that each module has an injective envelope.

4 Cotorsion theory of weak w-projective modules

4.1 w-version of Kaplansky’s theorem

Kaplansky proved that every projective module is a direct sum of countably generated projective

submodules ([22], Corollary 2.3.15]), so that the projective modules over the local ring are all free

modules. This section provides the w-version of [22], Corollary 2.3.15]. The content of this subsection

is taken from [25].

Definition 4.1. (1) Let{:0— A i> B 5 C - 0be an exact sequence. Then ¢ is said to be w-split if
there exist ] :=(dy,...,d,) € GV(R) and hy,...,h, € Homg(C, B) such that dy1c = ghy, k=1,...,n.

(2) Let M be an R-module. Then M is called a w-split module if there exist a projective module F

and an epimorphism g : F — M such that 0 — Ker(g) —» F 5 MSo0isa w-split exact sequence.
(3) LetE: 0> P L FEM > 0bea w-split exact sequence and J and hy is defined as above. Let
Fy be a submodule of F and set g; := gl , C; :=1Im(g;), Ay := f~Y(Ker(g)), and f; = fla,- Then

&1:0-0 A i B; LN C; — Ois an exact sequence. If hi(C;) € B for k =1,...,n, then it is obvious

that &; is a w-split exact sequence, which is called a w-split exact sequence induced by &.

Lemma 4.2. Let{:0— A L B3 C — 0 be an exact sequence. Then & is w-split if and only if there exist
J=(dy,...,d,) € GV(R) and q,...,q,, € Homg(B,A) such that di1, =qxf, k=1,...,n.

Proof. Assume that & is w-split. Then there exist | := (dy,...,d,) € GV(R) and hy,...,h, € Homg(C, B)
such that dy1¢ = ghy, k =1,...,n. Consider the following commutative diagram with exact rows:

v
d d/d
0 PN v S 0
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where the vertical arrows are all multiplicative homomorphisms used to multiply. By [22] Exercise
1.60] there exist a homomorphism g : B— A such that g f =di14, k=1,...,n. Similarly the converse
can be proved. O]

Remark 4.3. In the diagram of the proof of Lemma it is easy to see that the equality dy1p =
far+hegholds, k=1,...,n.

Let£:0—P i) F 5 M — 0 be an exact sequence, where F = (D F; with each F; a projective
i€l
module. Let H C I. If H = @, then write:

F(H)=0,P(H)=0,M(H) =0.
And if H # @, then write:
F(H) = @Pi: g =glrmy M(H)=Im(gy), P(H)=f"(Ker(gu), fu=flpm)
ieH
Naturally F = F(I), P = P(I), and M = M(I). Obviously we have: if H; C H,, then F(H;) is a direct

summand of F(H,). In addition, for any H C I, & : 0 — P(H) 25 F(H) &5 M(H) — 0 is an exact

sequence.

Definition 4.4. Suppose F, &, H and other assumptions are as above. If £ is a w-split exact sequence
induced by &, then M(H) is a w-split module, which is called a w-split module induced by &£.

Lemma 4.5. Let £: 0 - P i> FEM > 0bea w-split exact sequence, where F = (D F; with each F; a
iel
projective module. Assume that S is a set of subsets H of I, totally ordered by inclusion, satisfying: each

&y :0— P(H) g F(H) & M(H) — 0 is a w-split exact sequence induced by &. Then we have

(1) \U F(H) is a projective module.
HeS

(2) The sequence
&0— UP(H)—> UF(H)—> UM(H)—>O

HeS HeS HeS

is a w-split exact sequence induced by &.

(3) M(J H)= U M(H) is a w-split module induced by &.

HeS HeS
Proof. (1) Write ] = |J H. We prove F(J) = |J F(H), and thus |J F(H) is a projective module.
HeS HeS HeS
Trivially |J F(H) C F(]). Lety € F(J) = @DF;. Then there exist iy, ..., i,, € ] such that y = p; +---+v,,,
HeS ie]

where y, € F;, t =1,...,m. Since S is totally ordered, there exists H € S such that iy,...,i, € H. Thus
y € F(H). Therefore F(J) = J F(H).

HeS
(2) Let x € |J M(H). Then there exists Hy € S such that x € M(H). Since &y, is a w-split exact
HeS
sequence induced by &, we have hy(x) € F(Hy) € | F(H),k=1,...,n. Thus £ a w-split exact sequence
HeS
induced by €.

(3) By (2) we know that |J M(H) is a w-split module induced by &. It is enough to prove that

HeS
M(])= U M(H).
HeS

309
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Consider the following commutative diagram with exact rows:

0—— | P(H)
HeS HeS HeS

r ||
0 P()) F(J) M(]) 0

0

Trivially (J P(H) C P(J). Thus the left vertical arrow is a monomorphism. By [22, Theorem 1.9.10],
HeS
the right vertical arrow is an epimorphism. Also since |J M(H)C M(]), it follows immediately that
HeS
M(J)= U M(H). =
HeS

Definition 4.6. An R-module M is called a w-countably generated module if there exist a countably
generated module M, and a w-isomorphism f : My — M; equivalently, there is a countably generated
submodule N of M such that N, = M,;, for any maximum w-ideal m.

Let M, N be R-modules. Then M and N are said to be w-isomorphic if there exist an R-module A,
a w-isomorphism (mapping) f : A —» M, and a w-isomorphism (mapping) g: A — N. Obviously, if a
homomorphism f : M — N is a w-isomorphism (mapping), then M and N are w-isomorphic.

Lemma 4.7. Let F be a w-module and have a direct sum decomposition F = @ F;, where F; is countably
iel
generated. Let
£0—-PLFSM—0

be a w-split exact sequence. If H is a proper subset of I and satisfies that

E41:0— P(H) 2 F(H) 25 M(H) — 0

is a w-split exact sequence induced by &, then:
(1) There exists a subset Hy D H of I such that

le 8Hy
&y, 10— P(H;) — F(H;) — M(H;) — 0

is also a w-split exact sequence induced by €.
(2) C:=M(Hy)/M(H) is a countably generated module.

(3) If M is a GV-torsion-free module, then D := M(H;),/M(H),, is w-isomorphic to C, and so D is a
w-countably generated module.

(4) If each F is a projective module, then M (H) and M(H) are all w-split modules induced by &, and C
is a w-split module, and so D is a w-countably generated w-projective module.

Proof. (1) Let | := (dy,...,d,) and qi, hy be as in Lemma Then for any j € I, both fq(F;) and
hyg(F;) are countably generated. If x € F}, it follows from Remarkthat dix = fqr(x)+hrg(x). Thus
dkP]' c qu(F]) + hkg(F]'), k=1,...,n.

Take an ip € I \ H. Then there exists a countable subset I; C I such that diF; C fqx(F; )+ hg(F;)) €
PF;, k+1,...,n. Since F; is countably generated and I; is a countable subset, (PF; is countably

ieIl ieIl
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generated. Thus there exists a countable subset I, C I such that I; C I, and dk(@Fj) c qu(@Fj) +
jeh jeh
hkg(@Fj) C EPF;, k=1,...,n. Inductively we obtain subsets Iy = {ig}, I}, I5,...,I,... satisfying

jeh i€l,
A EF) < fa E@DF) + s @DF) < P Fik=1,...,n (4.1)

jEIs jeIs jEIs ieIerl

Hence ](@Fj) C P F;. Since F; are all w-modules, @Pj C P E.
jels i€l jel; i€l
Set L:= (J;2, Ix. Then L is a countable set, and thus L, := L\ H is a countable set. Set H; := HU L.
Then Hy = HUL,. Thus V := € F; is countably generated. Write U = F(H) and W = F(H;). Then
iel
W=UaV. 1
We want to prove that 0 — P(H;) — F(H;) —» M(H;) — 0 is a w-split exact sequence induced by
the exact sequence &. It suffices to prove that hy(M(H,)) € F(H;), that is, for any j € H;, we have
hkg(F]) c F(Hl),k =1,...,n
If j € H, then hg(F;) C F(H) C F(H;) since g is a w-split exact sequence. If j € Ly, then there
exists s such that j € I;. It follows from (4.1) that hyg(F;) C F(Hy).
(2) By [22, Theorem 1.9.10], we have the following commutative diagram with exact rows and
columns:

0 0 0
¢ IR

0 P(H) F(H) M(H) 0
| I

0 P(Hy) F(H,) M(H;) 0
| b}

0 A 4 C 0
l | |
0 0 0

where g’ is the homomorphism induced from the right upper square. Since V is countably generated,
C is also countably generated.
(3) Observing the following commutative diagram with exact rows:

0 M(H) M(H,) C 0
} } 3
0 M(H)w M(Hl)w D 0

it follows by [22, Theorem 1.9.10] that we have an exact sequence 0 — Ker(h) - M(H),/M(H) —
M(Hy)/M(H;) — Coker(h) — 0. Thus Ker(h) and Coker(h) are all GV-torsion modules, and so D is
w-isomorphic to C.

(4) By the hypothesis, M(H) and M(H;) are w-split modules induced by &. Note that fork =1,...,n,
the restrictions of hy on M(H) and M(H;) make the upper right dashed diagram a commutative
diagram. Thus there exists a homomorphism a; : C — V such that g’a; = dy1c. Thus the bottom
row of the above diagram is also a w-split exact sequence. Therefore C is a w-split module. O]

Let M be a w-split module and £ : 0 > P - F - M — 0 be a w-split exact sequence, where
F = (P F; and each F; is a countably generated projective module. Let N be a submodule of M. If

i€l
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there is a subset H of I and a continuous ascending chain of subsets of H (if a is a limit ordinal
number, then define H, = | Hp)
p<a
@=HyCH; QHQQ"‘QHQQ"'QHH:H

such that N = M(H), each N, := M(H,) is a w-split module induced by &, and in the corresponding
continuous ascending chain of submodules

0=NgCN; CN;C--CN,C--CN, =N, (4.2)

where each factor N, /N, is a countably generated w-split module, then N is called a submodule of
M with respect to the w-split N)-continuous ascending chain of £ or N has a w-split 8)-continuous
ascending chain of £&. When N = M, we ignore ¢ and simply it is called that M has a w-split N;-
continuous ascending chain.

Note that each N, in (4.2) is a submodule of M with respect to the w-split §j-continuous ascending
chain of £. In addition, let B be also a submodule of M and have a w-split Xy-continuous ascending
chain of &

OZBogBl QBQQQBQQQB/\:B

If there exists an ordinal y such that y < A and N, = B, for each a < y, then B is called an N-filtered
extension of N with respect to &, simply B is called an N-filtered extension of N.

Lemma 4.8. Let M be a w-split module and the corresponding &, F be assumed as above. Assume that

{A;} is a totally ordered family of submodules of M with respect to a w-split Ry-continuous ascending chain

of &, and that if A; C Aj, then A; is an Ro-filtered extension of A;. Then N := A; is also a w-split
i

No-continuous ascending chain of submodule of M.
Proof. Write A; = M(H;), where H; C I. By Lemma 4.5, N = |JA; = M(|JH;) is a w-split module

1 1
induced by &. In the following we use the fact that each A; has a w-split 8j-continuous ascending
chain of £ and the Ny-extension property to construct a w-split Xy-continuous ascending chain (4.2)
of &£ of N. For each index i, there exist an ordinal A; and a w-split 8j-continuous ascending chain of
A; with respect to &:
O:AiogAilQA,'QQ"'QA,'&Q"'QAMZ.:Ai, (4.3)

If there is an index i such that N = A;, then we have nothing to prove. So we assume that for any
i, A;j # N. Now to initiate our structure, choose arbitrary a w-split 8y-continuous ascending chain
(4.2) of &. Thus for an ordinal number a < A;, set Ny = 0 = A;o,N; = A;y,...,N), = A;), = A;. Hence
for a < A;, all N, are constructed. By the definition of the 8,-filtered extension, the choice of N, has
nothing to do with the subscript i that satisfies @ < A;, that is, for any subscript i satisfying a < A;,

0=NgCN;CN,C---CN,C---CN,

is a subchain of (4.3) and N, = A;.

Since A; = N,, # N, there exists A; such that A; Z A;. Thus by the hypothesis, A; C A;. Set
Ny = Aja+1p Nayer = A]‘(/\i+2),...,N/\j = A]'(/\j). By our construction method, for a given ordinal
number a and the subscript satisfying @ < Aj, all N, are constructed.

Continue the above process. So we’ve reached this point: For a given ordinal «, satisfying that for
any i, there is always A; < a, and when 8 < a, Ng(# N) has been constructed, and there is a subscript
i such that Nﬁ = A;. At this time, a is a limit ordinal, otherwise  := @« — 1 < a. Thus there exists a
subscript i such that Ny C A;. If Ng = A;, then f < A;, and so & < A;, a contradiction. If g = A;, then
there exists a subscript j such that A; C A; since A; # N. Thus A; < 1j, and so @ < A}, a contradiction.
Set Ny := [J Ng. Then N, CJA; = N. On the other hand, since N, = A;, we have N C N,. It follows

p<a
immediately that N, = N. Taking p = a, we get the required continuous ascending chain (4.2). O
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Let M be a w-projective w-module. If there is a continuous ascending chain
/ ’ 7 ’ /
OZMongQMzQ“‘QMaQ'“QMy:M

of w-projective w-submodules of M such that each factor M, ,,/M;, is a w-Ny-generated w-projective
module, then it is said that M has a w-projective w-N,-continuous ascending chain.

Theorem 4.9. (w-version of Kaplansky’s theorem) Let M be a w-projective w-module. Then we
have:

(1) M has a w-split 8p-continuous ascending chain.

(2) M has a w-projective w-Ny-continuous ascending chain.

Proof. (1)Let£:0— P — F — M — 0 be an exact sequence, where F is a projective module. By Ka-

plansky s theorem we may assume that F = D F;, where each F; is a countably generated projective
i€l

module. It follows from [25, Proposition 2.7] that & is a w-split exact sequence. Let the notation be

as in Lemma(4.7]and let S be a set of subsets H of I satisfying:

(a) f He S, then £y : 0 » P(H) — F(H) —» M(H) — 0 is a w-split exact sequence induced by &.
(b) M(H) has a w-split 8y-continuous ascending chain with respect to &.
When H =0, F(H) =0 and M(H) =0, and so S is not empty. Define a partial order as follows:
H, < H, © H{ € H, mboxand M(H,) is an Ny-filtered extension of M(H;)
Then S is a partially ordered set. Let S; = {H,} be a totally ordered subset of S. Set H := UHS. By
Lemmal4.5| £y is a w-split exact sequence induced by &, and M(H) = UM( s). By Lemma M(H)

has a w-split 8j-continuous ascending chain with respect to &. Thus H € S. Hence H is an upper
bound of S;. By Zorn’s lemma, S has a maximal element, still denoted by H.

If H # I, then it follows by Lemma that there exists H; D H such that 0 - M(H) - M(H;) —
C — 0 is an exact sequence, and M(H),M(H;), and C are w-split modules induced by &, and C is
countably generated. Thus H; € S, which contradicts the maximality of H. Therefore H =1, and so
M(H) = M. It follows immediately that M has a w-split §,-continuous ascending chain.

(2) Let0=MyCM; CM,C---CM,C---C M, =M be a w-split 8y-continuous ascending chain
of M. For any ordinal number a, set M/, := (M,),,. Then M, is a w-projective w-submodule of M.
Similarly to the proof of Lemma 3), we can prove that M ,,/M;, is w-isomorphic to M,,1/M,.
Therefore M/, /M, is a w-X-generated w-projective module. O

4.2 Cotorsion theory of weak w-projective modules

The contents of this subsection are excerpts from [17]. Denote by FZ the class of GV-torsion-free
modules, by W the class of w-modules, and by W, the class of strong w-modules.
Let S be a class of modules. Define:
St = StnFT
= {N eM|N is GV-torsion-free and Extllg(M,N) =0 for any M € S}
Correspondingly define:

Ste 1= SlenrFT
Nem N is GV-torsion-free and
Extk (M,N)=0forany M € S and any k > 1

Set GV(R)* :={R/] | ] € GV(R)}. Obviously GV(R)" is a set of modules.
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Example 4.10. (1) It is easy to see that (GV(R)*)" = W.

(2) (GV(R)*)t> = W,,. Indeed, this follows from the fact that for a GV-torsion-free module N, N is
a strong w-module if and only if Ext’;e(R/],N) =0 for any ] e GV(R) and any k > 1.

Proposition 4.11. Let S,S; be classes of modules. Then:

(1) SCH(ST=)cH(Sh).

(2) IfS C 8y, then ST € 8T and 5]~ ¢ 8™~

(3) (SuS)F=stnst.

(4) IfGV(R)* C S, then ST CW and ST> c W,

Proof. These are obvious. O

In order to make Theorem apply to the context of a class of w-modules, we make correspond-
ing modifications to it, but note that the idea belongs to Eklof-Trlifaj essentially.

Lemma 4.12. Let S = GV(R)* U Sy be a set of modules, where S; C FT.
(1) Let N be a GV-torsion-free module. Then there exists an exact sequence
0->N->Q—->A—>0,
where Q € ST and A is an S-filtered module such that A € +(S%).
(2) Let M be an R-module. Then there exists an exact sequence
0—->B—>P->M-—>0,
where P € +(S*) and Be ST,

Proof. (1) Set X := @S and Y := € R/J. Then X is a GV-torsion-free module and Y is a GV-
SeS, JeGV(R)
torsion module. Set S = X @Y. Then S = {S}+. Thus we may assume that S is the class of modules

consists of a specific module S and its direct sums. Let 0 — K; A, F;>X—>0and 0 > K, LN Fy —
Y — 0 be exact sequences, where F; and F, are free modules. Set F := F{ ®F, and K := K; ®K;. Then

0K F S 0isan exact sequence, where y := pu; @ pp. Since X is GV-torsion-free, Kj is a
w-module. Since Y is GV-torsion, (K3),, = F,

Take a regular cardinal A so that K has a generating system X with |X| < A.

Set Qp := N. Then Qg is GV-torsion-free. For a < A, if Q, has been constructed, select a free
module F;X and an epimorphism 9, : F; — Q,. Set I, := Homgp(K,Q,) to be a new index set and
define p, : K'«) — Fa) as the homomorphism of direct sums, which is induced by u. Then p, is a
monomorphism and Coker(y,) = SUa),

Define g, : KU @ F,, = (D Ky) @ F, — Qu, where Ky =K, by @a([uf],2) = ¥ f(uf)+64(2), where

fel, fel
ur € Ky,z € F,. Since 6, is an epimorphism, so is ¢,. Now assume that if § < a, then Qp has
been constructed (if « is a limit ordinal, set Q, := |J Qp), in particular, Q, has been constructed.

p<a
Construct the following pushout diagram:
0 Kl gF, L i) gF, g(l,) 0
L e |
0 Qa - Qa+1 Qa+l/Qa 0
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One gets Q, 1. At this time ¢, is an epimorphism. As you can see from the above diagram, if Q, is a
GV-torsion-free module, then Ker(¢,) = Ker(¢, ) is a w-module, and thus Q,,; is also a GV-torsion-
free module. Hence by a transfinite induction, we see that each Q, is a GV-torsion-free module.

Set Q:= UQ, = li_r>nQa. Then Q is a GV-torsion-free module. Set A := Q/N and A, := Q,/N.

a<A a<A

Then Ay, 1/Ag = Qus1/Qq = SUs). Since Q = |J Q,, one gets that A = |J A,. Thus A is an S-filtered

a<A a<A
module, and thus one has A € 1(S1). Since ST C S+, one has A € 1(S7).

Similarly to the process of Theorem one can prove that Q € S*. Therefore Q e ST NFT = S*.

(2) Take an exact sequence 0 > N — F —- M — 0, where F is a projective module. Then N is a
GV-torsion-free module. By (1), there is an exact sequence 0 - N — Q — A — 0, where Q € ST and
A € +(S1). Consider the following commutative diagram with exact rows:

0 0
| |

0 N F M 0
J J ||

0 Q p M 0
J J
A A
| |
0 0

where the square diagrams in the upper left and lower corners are pushout diagrams. Since F,A €
1(S1), one has P € +(S"). Therefore one gets the desired sequence by taking B:= Q. O

In order to make Theorem [3.11] suitable for the relevant module classes under the w-module
framework, we make corresponding transformations to it.

Theorem 4.13. Let S = GV(R)*US; be a set of modules, where S; C F7. Set A :=+(ST). If Ais closed
under w-isomorphisms, then (A, At) is a complete cotorsion theory.

Proof. Note that (A, AL) is the cotorsion theory generated by ST. In the following, we prove that
every module M has a special A-precover.
By Lemma there exists an exact sequence 0 - B —- P — M — 0, where P € A, Be ST C
[+(ST)]*+ = AL. Therefore M has a special .A-precover.
O

Proposition 4.14. Let S be a class of modules such that GV(R)* C S. Set B :=+(St~). Then:
(1) St~ is closed under direct products, direct summands, and cokernels of monomorphisms.
(2) Bis closed under direct sums, direct summands, kernels of epimorphisms, and w-isomorphisms.
(3) BY =Bt =St

Proof. (1) Obviously L'~ is closed under direct products and direct summands. By Theorem
S+ is closed under cokernels of monomorphisms. By 24, Proposition 2.2], W, is also closed under
cokernels of monomorphisms. Since Sto = §to W, it follows that St~ is closed under cokernels
of monomorphisms.

(2) Obviously B is closed under direct sums and direct summands. I follows by (1) that B is closed
under kernels of epimorphisms.
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(3) Obviously ST~ C (L(‘S‘er))l NFT = B'. Since B is closed under kernels of epimorphisms,
Bie = BL. Thus Bf = Bt~ N FT = B~. Since S C B, it follows that B" = Bt~ ¢ S*~. Therefore
Bt = St~. O

Proposition 4.15. (1) Set wP,, := L(Pl}"), that is, wP,, is the class of weak w-projective R-modules.

Then wP," = 7?:,"".

(2) Let S = GV(R)* U S, be a set of modules, where Sy is the class of w-projective w-Ny-generated w-
modules. Then Ste = 77:,“’.

Proof. (1) This follows immediately by setting S := P,, in Proposition [4.14]

2) Since S C P, we have 77:,‘” C Sts. Let N € S™~. For any w-projective w-module P, by Theorem
P is an S -filtered module. Thus Ext%(P,N) =0 foranyi>1. By Propositionm N is a strong
w-module. Let P be a w-projective module. Then Ext}(P,N) = 0 for any w-projective module P and

any i > 1. Thus N € Pi= N FT = Py=. Therefore St~ = Pi=. 0

Theorem 4.16. Let S = GV(R)* U S; be a set of modules, where S; C F7. Set B := +(S™~). Then
(B,B%) is a hereditary and complete cotorsion theory.

Proof. For each M € S, fix a projective resolution P(M) of M. Let L, be the set consisting of all
syzygies in P(M) (including M itself) and set £ := |J £);. Then £ is naturally a set. By Lemma

MeS
4), £+ =8%, and so LT = ST,
Split £ into £ = GV(R)* U L, where L, is the set of all syzygies of M € §; and all nonnegative
syzygies of R/I. Then £, C FT. By Proposition[4.14} (A, A') is a hereditary cotorsion theory. O

Theorem 4.17. (wP,,wP,") is a hereditary and complete cotorsion theory, and so every module has
a special weak w-projective precover.

Proof. Let S; be the set of all w-countably generated w-projective w-modules and set S = GV(R)* U
S;. Since the collection of all countably generated modules is a set, S is also a set. By Proposition

St = P,:rjx’. Thus wP, = +(S*~). By Theorem (WP, wP,1) is a hereditary and complete
cotorsion theory. O

Proposition 4.18. Let M be a w-module. Then there exists a special weak w-projective precover ¢ : P — M
of M such that P is a w-module and Ker(¢p) € PJ,“".

Proof. Let the notation be as in the proof of Theorem and S be as in Proposition 2). Then
LF =8 = 7?:,‘”. By Lemma M has a special weak w-projective precover 0 > B —P - M — 0,
where P ewP,, Be LT = PJ“’. Thus B is a strong w-module, and so P is a w-module. O]

5 Homology methods of cotorsion theory

5.1 Homology of cotorsion pairs

When a cotorsion theory is given, naturally we can construct the homological dimension of the co-
torsion theory. The description of the homological dimension of a general cotorsion theory can be
found in the literature [[15) [26]. This section presents the homological method for general cotorsion
pairs. In [19] the definition of the global cotorsion dimension of a ring is a good example. That is,
through a clear understanding of this dimension, we can grasp the homological dimension of all the
hereditary and complete cotorsion theories.
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Definition 5.1. Let & = (A, 3) be a hereditary cotorsion theory and let M and N be R-modules.

(1) We say that M has an A-resolution with length at most # if there is an exact sequence
0—A,—A,1— - —A —A)—M—0, A; e A

Use pd 4(M) to represent the minimal length among all (finite) .A-resolutions of M. If such a
finite exact sequence does not exist, then we say that M has an .A-resolution of infinite length,
denoted by pd 4(M) = co.

(2) Correspondingly, we say that N has a B-resolution with length at most n if there is an exact
sequence
0—N-—sBy—By—:--—B,.1—B,—0, B; € B.

Use idz(M) to represent the minimal length among all (finite) B-resolutions of M. If such a
finite exact sequence does not exist, then we say that N has a B-resolution of infinite length,
denoted by idg(N) = co.

Example 5.2. Let & = (A, B) be a hereditary cotorsion theory.
(1) pd4(A) =0if and only if A € A, that is, A is a B-projective module.
(2) idg(B) = 0 if and only if B € B, that is, B is an A-injective module.

If (A, B) is a complete cotorsion theory, then each module has a special A-precover and a special
B-preenvelope. Although a special A-precover and a special B-preenvelope of a module are not
unique, for any module N, in order to simplify the statement, we still use A(N) and B(N) to represent
a special A-precover and a special B-preenvelope of N respectively.

Theorem 5.3. Let & = (A, B) be a hereditary cotorsion theory, n be a nonnegative integer, and M be
an R-module. Then the following are equivalent:

(1) pd (M) <n.
(2) Ext’"'(M,B) =0 for any B€ B.
(3) Extllg(M,B) =0 for any B € B and any k > n.

4 1f0—->P,—>P_4—>:-—>P - P —> M- 0is an exact sequence, where Py, P,,...,P,_| are
projective modules, then P, € A.

(5) f0—>A,—>A, 41— — A —> Ay > M — 0is an exact sequence, where Ay, Ay,...,A,_1 €A,
then A, € A.

If & is also a complete cotorsion theory, then each of the above conditions is equivalent to:
(6) pd4(B(M)) < n.
Proof. (1)=(3) By the hypothesis, for any k > n, there exists an exact sequence
0> A oA 1> —A 1A > DA Ao M—0,

where if 0 <i < n, then A; € A, and if n <i <k, then A; = 0. Denote by L; the i-th syzygy of M in
the above-mentioned exact sequence. Then L,, ; = A, and if n <i <k -1, then L; = 0. For any given
B € B, since (A, B) is a hereditary cotorsion theory,

Extk (M, B) = Extk (Lo, B) = Ext& 2(Ly, B) = --- = Extk(Ls_,, B).
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If k =n+1, then Extll{(Ln_l,B) = Extll{(An,B) = 0. And if k > n+ 2, then Ly_, = 0, and so trivially
Extll{(Lk_z,B) = 0. Therefore, if k > n, then Extll‘{(M,B) =0.

(3)=(2) Obvious.
(2)=(5)Let 0 > A, > A, 1 »> -+ > A > Ay > M — 0 be an exact sequence, where Ay, A,...,
A,_1 € A. Denote by L; the i-th A-syzygy. Then L,_; = A,,. For any given B € B3,

Ext"! (M, B) = Ext}y(Lo, B) = Ext’ !(L, B) = --- = Extj(L,_1, B) = Ext)(A,, B).

Since Ext?{l (M, B) = 0, it follows that Extllz(An,B) = 0. Therefore A, € A.

(5)=(4) Let 0 > P, > P,y > --- > P, > Py > M — 0 be an exact sequence, where Py, P,,...,P,_;
are projective modules. Since P C A, we have Py, Py,...,P,_; € A. It follows from (5) that P, € A.

(4)=(1) For any given R-module M, there is an exact sequence 0 - P, - P, 1 —» -+ - P —
Py > M — 0, where Py, Py,...,P,_; are projective modules. It follows from (4) that P, € A. Thus
pd (M) < n.

(1)&(6) Since & is perfect, there is an exact sequence 0 > M — B(M) - A — 0, where A € A.
For any given B € B, since & is hereditary, Ext'f{(A,B) = 0 for any k > 0. Hence there exists a natural
isomorphism Extk (M, B) = Extk(B(M), B). Therefore pd 4(M) = pd 4(B(M)). O

Theorem 5.4. Let & = (A, B) be a hereditary cotorsion theory, n be a nonnegative integer, and N be
an R-module. Then the following are equivalent:

(1) idg(N) < n.
(2) Exth"(A,N) =0 forany A€ A.
(3) Extllg(A,N) =0 for any A € A and any k > n.

(4 f0 >N —>Ey—>E —» - —>E,; > E, — 0is an exact sequence, where Ey,E,...,E,_; are
injective modules, then E,, € B.

(5 f0—>N—>By—B; »:+-— B, ; — B, — 0is an exact sequence, where By, B,...,B,_; € B,
then B, € .

If & is also a complete cotorsion theory, then each of the above conditions is equivalent to:
(6) idg(A(N)) < n.
Proof. By Theorem [5.3] this can be proved dually. O]
Definition 5.5. Let & = (A, B) be a hereditary cotorsion theory. Define:
(1) gld 4(R) = sup{pd ,(M) | M is any R-module}, which is called the global & 4-dimension of R.
(2) gldg(R) =sup{idp(N)|N is any R-module}, which is called the global &z-dimension of R.

Theorem 5.6. Let & = (A, B) be a hereditary cotorsion theory and let n be a nonnegative integer.
Then the following are equivalent:

(1) gld 4(R) < n.

(2) Exth"!(M,B) =0 for any B€ Band M € M.

(3) Ext'I‘Q(M,B) =0 forany Be B, M € M, and any k > n.
(4) idgB < n for any B € B.

If & is also a complete cotorsion theory, then each of the above conditions is equivalent to:
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(5) BExt*!(B,B’) = 0 for any B,B’ € B.
(6) Extﬁ(B,B’) =0 for any B,B’ € B, and any k > n.
(7) pd4(B) < nfor any B € B.

Proof. (1)=(3) For any given R-module M, by the hypothesis, pd 4(M) < n. By Theorem we know
that Extﬁ(M,B) =0 for any given B € B and any k > n.

(3)=(2) This follows by taking k =n+1.

(2)=(1) For any B € B and M € M, we have Exts"!(M,B) = 0. By Theorem pd4(M) < n.
Therefore gld 4,(R) <n

(2)=(4) This follows from [22], Theorem 3.5.10].

(3)=(6)=(5) Trivial.

(5)=(2) Since (A, B) is a complete cotorsion theory, for any module M, there is an exact sequence
0—>M — B — A — 0, where B’ € Band A € A. For any B € B, since (A, B) is a hereditary cotorsion
theory, there is an exact sequence

=
=

0 = Ext’s"!(B’, B) — Ext}" (M, B) — Ext}"?(A, B) = 0.

Therefore Ext}™ (M, B) = 0.
(5)=(7) This follows from Theorem O

Theorem 5.7. Let & = (A, B) be a hereditary cotorsion theory and let n be a nonnegative integer.
Then the following are equivalent:

(1) gldz(R) < n.

(2) Ext''(A,N)=0forany Ac Aand N € M.

(3) Extll‘z(A,N) =0 forany Ac A, N €M, and any k > n.
(4) pdgrA < nforany A e A.

If & is also a complete cotorsion theory, then each of the above conditions is equivalent to:

(5) Extly''(A,A’) =0 for any A, A’ € A.

(6) Exti"'(A,A’) =0 for any A,A’ € A, and any k > n.

(7) idg(A) < n for any A € A.
Proof. By Theorem 5.6} this can be proved dually. O]
Corollary 5.8. Let & = (A, B) be a hereditary cotorsion theory. Then:

(1) gld 4(R) = sup{idgB| B € B}.

(2) gldg(R) = sup(pdgA| A€ Al.

By Corollary[5.8] we can get

gl.dim(R) %' sup{pd xM | M € M} = suplidgN | N € M}.

Corollary 5.9. Let & = (A, B) be a hereditary complete cotorsion theory. Then:

(1) gld 4(R) = sup{pd 4(B) | B € B}.
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(2) gldg(R) =supfidg(A)| A e A}.

Example 5.10. (1) For the cotorsion theory & = (P, M), we have gld5(R) = gl.dim(R) and gld,(R) =
0.

(2) For the cotorsion theory & = (N11,Z), we have gld;(R) = 0 and gld;(R) = gl.dim(R).
Theorem 5.11. Let & = (A, B) be a hereditary complete cotorsion theory.
(1) If gld 4(R) < oo, then
gld ,(R) = sup{idgN | N € K} = sup{pd 4(E) | E€ I}.
(2) If gldg(R) < co, then
gldz(R) = sup{pdxM | M € K} = sup{idz(P) | P € P}.
Proof. (1) Write sup{idgN | N € K} = n and gld 4(R) = m. By Theorem n < m. And by Theorem
for any B € B, we have pd 4(B) < m. Thus B has a &-projective resolution of length at most m
0>A,—>A,.1—>—>A >Ay—>B—0, A; €A

Since & is a hereditary complete cotorsion theory, we can assume that each syzygy K; in the just
above exact sequence is in 3. Since B is closed under extensions, each A; € K. Thus for any module
M,

Exti™ (M, B) = Ext}*?(M, Kq) = --- = Extk™™ (M, A,,) = 0.

Hence m < n, and so n = m.
Again set n = sup{pd 4(E) | E € Z}. Then n < m. By Theorem [5.6] idgB < m for any B € B. Thus B
has an injective resolution

0—-B—>Ey—»E —>--—E,.1—>E,—0 E; el

Denote by L; the i-th cosyzygy of the just above exact sequence. For any B” € BB, since sup{pd 4(E) |
E € I} = n, we have Extﬁ(Ei,B’) =0 for any k > n. Thus

Exti™ (B, B') = Ext}y"*(Lg, B) = --- = Exts""*!(E,,, B) = 0.

By Theorem [5.6}, m < n. Therefore n = m.
(2) By (1), this can be proved dually. O

Theorem 5.12. Let & = (A, B) be a hereditary cotorsion theory and let M be an R-module. Then
(1) pdrM < gldz(R) +pd 4(M).
(2) idgM < gld 4(R) +idg(M).
Proof. (1) We may assume that m = gldz(R) < co and n = pd 4(M) < co. Then M has an A-resolution:
0—A,—A, 41— - —A —A)—M—0, A;e A

By Theorem 4), pdrA; <m,i=0,1,...,n. Let K; be the i-th syzygy of the above exact sequence.
Decompose the exact sequence into n short exact sequences:

0—K,—A;, —K;_1 —0, i=01,...,n-1, K_ ;=M.

Since K,,_; = A, we obtain that pdzK,_, < m+ 1. Successively we obtain that pdzK, 3 <m+2, ---.
Finally we get that pdyM < m +n.
(2) By (1), this can be proved dually. O

Corollary 5.13. Let & = (A, B) be a hereditary cotorsion theory. Then
gl.dim(R) < gld 4(R) + gldg(R).
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5.2 Homology of Tor-torsion theories

Definition 5.14. Let & = (A, B) be a hereditary Tor-torsion theory and let M be an R-module.
(1) We say that M has a weak .A-resolution of length at most n if there exists an exact sequence

0-A, A, 1> DA A > M—>0, A; e A

Use fd 4(M) to represent the minimal length among all (finite) A-resolutions of M. If such a finite
exact sequence does not exist, then we say that M has an A-resolution of infinite length, denoted by
fd 4(M) = 0.

(2) The definition of a weak 5-resolution of length fdz(N) of a module N is defined correspond-
ingly, needless to say.

Remark 5.1 If & = (A, B) is a hereditary Tor-torsion theory, then by Theorem &) =(A A)isa
hereditary perfect cotorsion theory. In this case, pd 4(M) = fd 4(M) for any module M.

Example 5.15. Let & = (A, B) be a hereditary Tor-torsion theory. Then fd 4(A) = 0 if and only if A € A.
By the same argument, fdz(B) = 0 if and only if B € B.

Theorem 5.16. Let & = (A, B) be a hereditary Tor-torsion theory, n be a nonnegative integer, and M
be an R-module. Then the following are equivalent:

(1) fdaq(M) < n.

(2) TorR

n+1

(M, B) =0 for any B e B.
(3) Torf(M,B) =0 for any Be B and any k > n.

4 1f0—-pP,—>P_4—>:-—>P - P —> M- 0is an exact sequence, where Py, P,,...,P,_| are
projective modules, then P, € A.

(5 1f0—->P,>P,; >-+— P — P)— M — 0is an exact sequence, where Py, P,...,P,_; are flat
modules, then P, € A.

(6) f0>A,—> A, > —> A > Ay —> M — 0is an exact sequence, where Ay, Aq,...,A,_1 €A,
then A, € A.

Proof. The proof is similar to that of the corresponding situation of cotorsion theory, and so the proof
will be omitted. O

Definition 5.17. Let & = (A, B) be a hereditary Tor-torsion theory. Define:

(1) wgld 4(R) = sup{fd 4(M) | M is any R-module}, which is called the global & 4-flat dimension of
R.

(2) wgldz(R) = sup{fdp(N) | N is any R-module}, which is called the global &z-flat dimension of
R.

Theorem 5.18. Let & = (A, B) be a hereditary Tor-torsion theory and let # be a nonnegative integer.
Then the following are equivalent:

(1) wgld 4(R) < n.

(2) TorR

n+1

(M,B) =0 for any Be B, M € gN.

(3) Torf(M,B) =0 forany Be B, M € y, and any k > n.
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(4) fdgB < n for any B € .

Proof. The proof is similar to that of Theorem [5.6 and so we omit it. O

Corollary 5.19. Let & = (A, B) be a hereditary Tor-torsion theory. Then
wgld 4(R) = sup{fdrB| B € B}.
Example 5.20. Let & = (F,M). Then wgld (R) = w.gl.dim(R) and wgld;(R) = 0.

Corollary 5.21. Let & = (A, B) be a hereditary Tor-torsion theory. Then every module is an A-flat module
(i.e, B=gM)ifand only if A=F.

Proposition 5.22. Let & = (A, B) be a hereditary Tor-torsion theory and let N be an R-module with
fdgN = m > 0. Then there exists E € AN AL such that TorX (E,N) = 0.

Proof. By Theorem m Tor® ,,(A,N) = 0 for any module A € A, and there exists M € A such that
TorR(M,N) # 0. By Theorem (A, At) is a hereditary perfect cotorsion theory. Thus there is an
exact sequence 0 > M — E - A — 0, where E = AY(M) € A+ and A € A. Since A is closed under
extensions, E € A.

It follows by the exact sequence of 0 = TorX ., (A,N) — TorR (M, N) — Tork (E, N) and the fact that
Tor® (M, N) = 0 that TorR (E,N) = 0. O

Theorem 5.23. Let & = (A, B) be a hereditary Tor-torsion theory. If wgldz(R) < oo, then

wgld;(R) = sup{fdrA| A € AN At} =sup{fdg(E) | E € At}
Proof. Write sup{fdgA|A e AN At} =nand wgldz(R) = m. By Theorem n < m. By Proposition
5.22| n > m. Therefore n = m.

Again set n = sup{fdg(E) | E € A*}. Then obviously n < m. For any B € B, by Proposition [5.22}
m < n. Thus n = m. O

Theorem 5.24. Let & = (A, B) be a hereditary Tor-torsion theory and let M be an R-module. Then
tdrM < wgldzg(R) +fd 4(M).
Proof. The proof is similar to that of Theorem[5.12} O

Corollary 5.25. Let & = (A, B) be a hereditary Tor-torsion theory. Then

w.gl.dim(R) < wgld 4(R) + wgldz(R).

6 n-cotorsion modules and n-torsion-free modules

Below we always set n to be a nonnegative integer if not specified otherwise. Using a cotorsion
theory (F,,C,) as an example, we introduce homological properties of cotorsion theory which play
an important role in characterizations of ring structures.
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6.1 n-cotorsion modules and n-torsion-free modules

Definition 6.1. (1) An F,-injective module is called an n-cotorsion module. In particular, a 0-
cotorsion module (i.e., F-injective module) is called a cotorsion module. Denote by C,, the class
of n-cotorsion modules and by C the class of cotorsion modules.

(2) An F,-flat module is called an n-torsion-free module. Denote by 7,, the class of n-torsion-free
modules.

(3) A 7,-injective module is called an n-Warfield cotorsion module. Denote by WC, the class of
n-Warfield cotorsion modules.

Example 6.2. The following statements are obvious.
(1) Every module is a 0-torsion-free module and a 0-Warfield cotorsion module is injective.

(2) Let m < n. Since F,, C F,, we have 7, C 7, and C, C C,,, but WC,, C WC,, that is, every n-
torsion-free module is m-torsion-free, every n-cotorsion module is an m-cotorsion module, but
every m-Warfield cotorsion module is an n-Warfield cotorsion module.

(3) Let R be a domain and n > 1. Then every n-torsion-free module is torsion-free, and every
n-cotorsion module is a divisible module.

(4) Let R be a domain. Then a module M is 1-torsion-free if and only if M is torsion-free. In other
words, if we denote by 7 the class of torsion-free modules, then 7; = 7.

(5) Since F € 7,, we have WC,, C C, that is, every n-Warfield cotorsion module is a cotorsion mod-
ule.

(6) By [22, Theorem 3.4.14], the direct limit of n-torsion-free modules over a directed set is also
n-torsion-free.

Remark 6.1 When R is a domain, 1-Warfield cotorsion modules have been called Warfield cotorsion
modules [L1]]. Therefore, following this terminology, we call a 1-Warfield cotorsion module over any
ring a Warfield cotorsion module.

Theorem 6.3. Every F,-pure injective module is n-Warfield cotorsion.

Proof. This follows by taking £ = #, in Theorem 1.20] O
Corollary 6.4. Every pure injective module is a cotorsion module.

Theorem 6.5. Let D be an R-module.

(1) D €7, if and only if D* € C,, that is, D is an n-torsion-free module if and only if its character
module D* is an n-cotorsion module. In particular, M* is a cotorsion module for any module
M.

(2) D € F, if and only if D* € WC,, that is, f{dgD < n if and only if its character module D* is an
n-Warfield cotorsion module.

Proof. This follows by taking £ = F, and £ = T, respectively in Theorem [I.14] O

Theorem 6.6. (1) If C is an m-cotorsion module, then the n-th injective cosyzygy of C is an (m +
n+ 1)-cotorsion module. In particular, the n-th injective cosyzygy of a cotorsion module is an
(n+ 1)-cotorsion module.
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(2) If M is an m-torsion-free module, then the n-th flat weak syzygy of M is an (m + n + 1)-torsion-
free module. In particular, the n-th flat weak syzygy of any module is an (n + 1)-torsion-free
module.

Proof. (1) Let 0 > C - Ey - E; —» --- > E, —» L — 0 be an exact sequence, where Ey,Ey,...,E,
are injective modules. For any X € F,,,,,1, there is an exact sequence 0 — F,,,,,1 — Fyppy = -+ —
Fy - Fy —» X — 0, where Fy,Fy,...,F,.,s1 are flat modules. Let Y be the (n — 1)-th syzygy of this
flat resolution. Then fdgY < m. Thus Ext}{(X,L) =~ Ext?{z(X, C) = Extllz(Y,C) = 0. Therefore C is an
(m+ n+ 1)-cotorsion module.

(2) This is similar to (1). O

Theorem 6.7. The following are equivalent for an R-module M:
(1) MeF,.
(2) Torlf(M,D) =0forany D e7,.
(3) Torf(M, D) = 0 for the (n—1)-th weak syzygy D of any R-module X.

Proof. (1)=(2)=(3) Trivial, but we need Theorem [6.6{2).
(3)=(1) It follows from the fact that Tor®  (M,X) = Torlf(M,D) = 0 that fdgkM < n. Therefore

n+1

M e F,. O
Corollary 6.8. (F,,7,) is a hereditary Tor-torsion theory.
Proof. By Theorem[6.7} 7,7 = F,. Thus (%,,7,) is a Tor-torsion theory. The heredity is trivial. O
Theorem 6.9. The following are equivalent for an R-module M:

(1) MeF,.

(2) Extll{(M,L) =0forany LeC,.

(3) Extp(M,L) =0 for the (n—1)-th injective cosyzygy L of any R-module X.
Proof. The proof is similar to that of Theorem Note that (3)=(1) needs to use Theoreml). O
Corollary 6.10. (F,,C,,) is a hereditary perfect cotorsion theory.

Proof. By Theorem[6.9} +C, = F,. Thus (%,,C,) is a cotorsion theory. By Theorem and Corollary
(Fu.,C,) is a perfect cotorsion theory. n

Theorem 6.11. The following are equivalent for an R-module D:

(1) DeT,.

(2) Bxth(D,L)=0 for any L € WC,.

(3) Extllz(D,L) = 0 for any J,-pure injective module L.
Proof. This follows by taking £ = #, in Theorem[1.21] O
Corollary 6.12. (7, WC,) is a hereditary perfect cotorsion theory.

Proof. By Theorem ‘wce, =7,. Thus & = (7,,WC,) is a cotorsion theory. By Theorem
& is a hereditary cotorsion theory. Let £ be the class of F,-pure injective modules. It follows from
Theorem that +£ =7,. Since 7,' = F,, it follows from Theorem that & = R is perfect. [
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Theorem 6.13. If L is an n-Warfield cotorsion module, then idgzL < n.

Proof. Let X be any R-module and choose A to be the (1 —1)-th projective syzygy of X. By Theorem
A eT,. Thus EX‘[?{rl (X,L)= Extllg(A,L) = 0. Therefore idgL < n. O

The following Theorem can be regarded as an application of 1-torsion-free modules.

Theorem 6.14. Let 0 > A — B — C — 0 be a pure exact sequence with f{dgB < 1. Then fdyC <1, and
so fdrA < 1.

Proof. By Theorem[6.7} the class of 7;-flat modules is exactly 7. Taking £ = 7; in Proposition
we get fdrC < 1. O
6.2 n-cotorsion dimension and n-torsion-free dimension

By Corollary & = (F,,C,) is a hereditary perfect cotorsion theory. For an R-module N, we can
set
CndRN = lan(N);

which is called the n-cotorsion dimension of N. Correspondingly, for a ring R, set
gld; (R) ={c,drN | N € M},

which is called the global n-cotorsion dimension of R. Correspondingly, for a Tor-torsion theory
& = (£, 7,,) we also define
t,dgN =fd7 (N),

which is called the n-torsion-free dimension of N. At this time
wgldTn(R) ={t,dgN | N e M},

which is called the global n-torsion-free dimension of R

Remark 6.2 Since we have already written Cy = C, we write c,dgN for cdgN, which is the original
notation of [19]. Correspondingly, we also write gld(R) for gld; (R).

Example 6.15. Let R be a ring. Then:
(2) By [22) Theorem 3.10.26], gld; (R) < FPD(R) < gl.dim(R).

s (R):
(3) wgldy (R) <wgldy (R) <w.gl.dim(R).

Theorem 6.16. Let R be a ring. Then:
(1) glde (R) = sup{pdgM | M € %} = suplc,dgM | M € 7).
(2) wgldy (R) = sup{fdgM |M e F,}.
(3) wgldy (R) < gld; (R).

Proof. (1) This follows from Corollary 5.8]and Corollary
(2) This follows from Corollary |5.19l
(3) This is trivial. O

Theorem 6.17. For any ring R, wgld (R) <n.
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Proof. Let M be any R-module. By Theorem the (n — 1)-th weak syzygy of M must be an n-
torsion-free module. Hence t,,dgM < n. Therefore wgleI(R) < n. O

Theorem 6.18. Let R be a ring. Then:
(1) If gld; (R) <co, then

glan(R) =sup{pdyM | M € F,NC,} =sup{c,drM | M € P}.

(2) wgldy (R) = sup{fdrM | M € %, N T,,).

Proof. (1) This follows by applying Theorem [5.11]2).
(2) This follows by applying Theorem|[5.23|and Theorem[6.17] O

Theorem 6.19. (Mao-Ding) gl.dim(R) < gld, dim(R) + w.gl.dim(R).

Proof. For the cotorsion theory (F,C), this follows by applying Corollary [5.13] O
Proposition 6.20. If t,dgxM = m > 0, then there exists E € F, NC,, such that Torfn(M,E) # 0.

Proof. This follows from Proposition[5.22} O

Proposition 6.21. (1) Let 0 > A — F — B — 0 be an exact sequence, where F is an n-torsion-free
module. If m =t,dgB > 0, then t,dgA =m—1.

(2) Let 0 > A — F — B — 0 be an exact sequence, where F is a flat module. If t,dgB < m, then
t,y1dRrA < m. In particular, if B is an n-torsion-free module, then A is an (n+1)-torsion-free module.

Proof. (1) This is trivial.
(2) Let 0 > L - P - N — 0 be an exact sequence, where P is a flat module and N € %,,;. Then
L€ F,. Thus Tor® (A ,N)=TorR (B,N)=TorR  (B,L)=0. Therefore t,,;dgA < m. O

m+1 m+2 m+1
Theorem 6.22. For any ring R,

sup{t,dgrR/I | I is an ideal of R}
sup{t,dgrR/I | I is a finitely generated ideal of R}.

wgld (R)

Proof. It is sufficient to prove that if for each finitely generated ideal I of R, t,dgrR/I < m, and then
we can get wgldy (R) < m.

Let M be any R-module with t,dgM = k. Then there exists N € F, such that Toer(M,N) = 0.
Write f{dg N =s. Then k < s < n. Thus there is a finitely generated ideal I such that T0r§+l(N, R/T) = 0.
Hence m > t,dgR/I > s > k. It follows that wgld; (R) < m. O
6.3 Change of rings theorems for n-torsion-free dimensions

Theorem 6.23. Let ¢ : R — T be a ring homomorphism and let T as an R-module be an n-torsion-free
module. Then:

(1) If N is an R-module with fdgx N < n, then fdt(T ® N) < n.
(2) If L is an n-torsion-free T-module, then L is also an n-torsion-free R-module.

(3) t,drL <t,drL for any T-module L.
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Proof. (1) Let 0 > P, - P,y — - > P, —> Py > N — 0 be a flat resolution of N. Since T is an
n-torsion-free R-module, Torf(T,N ) =0 for any i > 0. Thus

0->T®rP, >TQrP11 = >TrP >TORPh>TORN —0

is an exact sequence. Hence fd7(T ®g N) < n.

(2)Let N € Fy(R)andlet 0 > A — P — N — 0 be an exact sequence, where P is a free R-module. By
(1), fd7(T ®g N) < n. Since L is an n-torsion-free T-module, TorlT(L, T ®g N) = 0. From the following
commutative diagram with exact rows:

0 1) Ler (T®rA) L®7 (T ®g P)
0 — TorR(L,N) LerA L®gP

we have Torlf(L,N) = 0. Therefore L is also an n-torsion-free R-module.

(3) Write m = t,drL. Then there is an exact sequence 0 - F,, » F,, ; » -+ > F > Fy—> L —
0, where Fy, Fy,...,F,_1,F,, are n-torsion-free T-modules. Therefore it follows by (2) that t,dgL <
t,drL. O

Theorem 6.24. Let ¢ : R — T be a ring homomorphism and let T as an R-module be a flat module.
If B is an n-torsion-free R-module, then T ®3 B is an n-torsion-free T-module.

Proof. Let L be a T-module with fdrL < n. Since T is a flat R-module, every flat T-module is also a
flat R-module. Hence fdgxL < n. Note that TorlT(T ®r B,L) =T ®pg Torlf(B,L) = 0. Therefore T g B is
an n-torsion-free T-module. O]

Theorem 6.25. Let S be a multiplicative subset of R. Then:
(1) If B is an n-torsion-free R-module, then Bg is an n-torsion-free Rg-module.
(2) wgldz (Rs) <wgldy (R).

Proof. (1) This follows from Theorem
(2) Write m = wgldTn(R). Let L € F,(Rg). Then L € ,(R). Let A be an Rg-module. Then t,,drA <m

Thus Torfnil(A,L) = Tor™$ (Ag,Lg) = (Tor® . (A,L))g = 0. Hence t,drgA < m. Therefore wgld (Rs)

m+1 m+1 <
m. ]

Let u € R and X be an R-module. Write X* = {x € X | ux = 0}. Note that X" is an R/(u)-module.

Lemma 6.26. Let n > 0 be an integer, u € R be a non-zero-divisor nonunit, and R = R/(u). Let E be an
n-cotorsion R-module. Then:

(1) E* isan (n—1)-cotorsion R-module.
(2) IfE € F,(R), then E* € F,_;(R).

Proof. (1) Let B be an R-module and let A be a submodule of B with B/A € F,_;(R). By [22, Theorem
3.8.15], f{dgB/A <n. Let f : A— E" be a homomorphism. Consider the following diagram

E¥ —>E
~ A
fT ~ 8 :g

0 A > B
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Since E is an n-cotorsion R-module, there is a homomorphism g : B — E such that the above diagram
can be completed to a commutative diagram. Since ux = 0 for any x € B, we have g(ux) = ug(x) = 0.
Thus Im(g) C E*. Therefore E* is an (1 — 1)-cotorsion R-module.

(2) For any R-module A, by [22, Theorem 3.8.15], TorX(A, E#) = Torlrf+1 (A,E) = 0. Therefore fdzE" <

n—1. O

Lemma 6.27. Let n > 0 be an integer, u € R be a non-zero-divisor nonunit, and R =R/(u). Let C be an
(n—1)-cotorsion R-module with fdzC < n—1. Then there is an n-cotorsion R-module E € F,(R) such that
E" =C.

Proof. Let E be the n-cotorsion envelope of C as an R-module and set B = E/C. Then B € F,(R). Since
tdzC <n -1, we have fdgC < n. Therefore fdgrE < n.

It follows from uC = 0 that C C E*. Thus we have the following commutative diagram with exact
rows and columns:

0 0
| !
0 C E" A 0
|| J J
0 C E B 0
) }
E E
| J
0 0

It follows from the heredity of F, that A € 7,(R). By Lemma fdzE" < n—1. It follows from the
exactness of the first row that fdzA < co. It also follows from [22, Theorem 3.8.15] that fdzA <n—1.
Since C is an (n — 1)-cotorsion module, Extlﬁ(A,C) = 0. Thus the first row is split. So there exists
a submodule A’ of E* such that A’ = A and E* = C® A. Since E is the n-cotorsion envelope of C,
E/E" = E € F,(R). Hence it follows from Theorem 3.8|that A = 0, which implies that C = E*. O

Theorem 6.28. Let n > 0 be an integer, u € R be a non-zero-divisor nonunit, and R = R/(u).
(1) Let M be a nonzero R-module. Then t,dgxM = ty-1dgM + 1.

(2) wgldTn(R) > ngdT,,,l (R)+1.
Proof. (1) Set m :=t,_;dgM. By Proposition there exists an (1 — 1)-cotorsion R-module C with
fdzC < n -1 such that TorR (M, C) = 0. By Lemma m there exists an n-cotorsion R-module E

with fdgE < n such that C = E*. By [22, Theorem 3.8.15], Torf;Hl(M,E) = TorZ(M, C) # 0. Therefore
k:=t,dgM >m+1.
If k > m+1, then again by Proposition and Lemma [6.26}, there exists an n-cotorsion R-module

E with fdgE < n such that Torf(M,E) = Torf_1 (M, E") # 0, which contradicts the fact that t,_dzM =
m. Therefore k =m + 1.

(2) Let m = ngdT,,,l (R). Then there is an R-module M such that t,_1dgM = m. By (1), t,drM =
m+ 1. Therefore wgldy (R) > m +1. O

7 The weak finitistic dimension of a ring

The weak finitistic dimension of the ring is a dimension introduced by Bass in [2]] in 1960. Few liter-
ature contains the properties of ring structures using weak finitistic dimensions. In this section, we
present several methods through torsion theory to characterize ring structures using weak finitistic
dimensions. The contents of this section are excerpts from [23]].
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7.1 The weak finitistic dimension of a ring
Definition 7.1. Let R be a ring. Set
FFD(R) = sup{fdgM | fdgM < oo},
which is called the weak finitistic dimension of R.
Remark 7.1 Trivially for any ring R, fPD(R) < FFD(R) < FPD(R).
Theorem 7.2. Let S be a multiplicative subset of R. Then FFD(Rs) < FFD(R).

Proof. Without loss of generality, we assume that m := FFD(R) < co. Let N be an Rg-module and
fdg N < co. By [22] Corollary 3.8.6], fdgN = fdg N < co. Thus fdg,N < m. Therefore FFD(Rg) <
m. [

Theorem 7.3. Let R be a ring. Then

FFD(R) = sup{FFD(R,)|m € Max(R)}
= sup{FFD(R,) | p € Spec(R)}.

Proof. We only prove the maximal ideal situation. Let m be a nonnegative integer. Suppose that
FFD(R) < m. By Theorem FFD(Ry,) < m for any maximal ideal m of R. Now assume that the
hypothesis of the converse is satisfied. Let N be an R-module with fdgN < . Let 0 — F,, —
F,1—-+-—F — Fy— N — 0 be an exact sequence, where Fy,Fy,...,F,,_; are flat modules. Since
fdr Ny < oo for any m € Max(R) and the sequence

0—= (Fp)m = (Fy1)m = = (F1)m = (Fo)m = Ny — 0

is exact, it follows from the given condition that (F,,), is a flat R;-module. Thus F,, is a flat R-
module. Therefore fdgM < m. dJ

Proposition 7.4. The following statements are equivalent for a ring R.

(1) FFD(R) < n.

(2) Fy = F, for any integer m > n.

(3) There exists an integer m > n such that F,, = F,.

(4) C,, =C, for any integer m > n.

(5) There exists an integer m > n such that C,, = C,,.

(6) T,, =T, for any integer m > n.

(7) There exists an integer m > n such that 7,, = 7,,.

(8) WC,, =WC,, for any integer m > n.

(9) There exists an integer m > n such that WC,, =WC,,.
Proof. Exercise. O
Theorem 7.5. Let m < n. Then the following statements are equivalent for a ring R.

(1) FFD(R) < m.
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(2) If W is an n-Warfield cotorsion module, then idg W < m.
(3) If U is an F,-pure injective module, then idgU < m.
(4) wgldz (R) < m.

(5) wgld,

m+1

(R) < m.

Proof. (1)=(2) By Proposition[7.4, W € WC,,. By Theorem [6.13] idgW < m.

(2)=(4) This follows immediately from Corollary/[5.8]

(4)=(5) Since n > m + 1, this follows from the fact that every n-torsion-free module is (m + 1)-
torsion-free.

(5)=(1) Let M be an R-module and let k := fdgM < co. Assume on the contrary that k > m. Then
there exists an R-module X such that fdgX = m+ 1. Let N be any R-module. By the hypothesis,
t,.1dgN < m < k. Thus Tor® _ (X,N) =0, a contradiction. Therefore FFD(R) < .

m+1

(2)=(3) This follows from Theorem

(3)=(4) Let N be any R-module and let D be the (m — 1)-th weak syzygy of N. Then for an
F.-pure injective module U, by the hypothesis, Ext}Q(D, U) = Eth‘*l(N, U) = 0. By Theorem
D €7,,. Therefore wgldy (R) < m. O

Corollary 7.6. The following statements are equivalent for a ring R.
(1) FFD(R) = 0.
(2) Every R-module is n-torsion-free for any n > 1.
(3) Every cotorsion module is an n-cotorsion module for any n > 1.
(4) wgldTH dim(R) =0 for any n > 1.
(5) Every R-module is 1-torsion-free.
(6) wgldT1 (R)=0.

Proof. (1)&(2)=(3)<(5) follows from Proposition while (1)=(4)<(6) follows from Theorem
7.5 O

For the finitistic dimension of a ring, we have the following corresponding characterization.
Theorem 7.7. Let m < n. Then the following statements are equivalent for a ring R.

(1) FPD(R) < m.

(2) gld; (R) <m.

(3) glde (R)<m.

Proof. (1)=(2) Let N € F,. By [22, Theorem 3.10.26], pdyN < co. By the hypothesis, pdzxN < m. By
Theorem glde (R) < m.

(2)=(3) This is trivial.

(3)=(1) Let M be an R-module and set k := pdyM < co. Assume on the contrary that k > m.
Then without loss of generality, we may assume that k = m + 1. Thus M € F,,,;. By Theorem[6.16]
pdrM < m, a contradiction. Thus FPD(R) < m. O

Theorem 7.8. The following statements are equivalent for a ring R.
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(1) FPD(R) = 0.

(2) Every R-module is an n-cotorsion module for any n > 1.
(3) gldcn(R) =0foranyn>1

(4) Every R-module is a cotorsion module.

(5) Ris a perfect ring.

(6) gldo(R)=0

Proof. (1)=(2)=(3) This follows from Theorem
(3)=(6)=(4) This is trivial.
(4)=(5) By the hypothesis, C =M, and so F = P. By [22, Theorem 3.10.22], R is a perfect ring.
(5)=(1). This follows from [22, Theorem 3.10.25]. O

Theorem 7.9. The following statements are equivalent for a ring R.
(1) w.gl.dim(R) < n.
(2) Every n-cotorsion module is injective.
(3) Every n-torsion-free module is flat.

Proof. (1)=(2) Let L be an n-cotorsion module and let M be any R-module. By the hypothesis,
fdgM < n. Thus Ext}{(M,L) = 0. Therefore L is injective.

(2)=(1) Since C,, = Z, we have F, = +C, = +Z = N. Thus w.gl.dim(R) < n.

(1)&(3) The proof is similar to that of (1)&(2). O

7.2 Integral domains with weak finitistic dimension 1

Theorem 7.10. The following statements are equivalent for an integral domain R.
(1) FFD(R) < 1.
(2) FFD(R/(u)) = 0 for any nonzero nonunit u € R.
(3) wgldT1 (R/(u)) = 0 for any nonzero nonunit u € R..
(4) Every torsion-free R-module is 2-torsion-free.
(5) If A is a torsion-free R-module with fdgA < oo, then A is flat.
(6) If A is a torsion-free R-module with fdgrA < 1, then A is flat.
(7) o= HA.
(8) Every submodule of a flat R-module is 2-torsion-free.
(9) Every ideal of R is 2-torsion-free.

(10) wgldz (R) < 1.

(11) wgldy (R) <1 forany n > 2.
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Proof. For a nonzero nonunit u € R, write R = R/(u).

(1)=(2) Let B be a nonzero R-module with fd%B < co. By [22], Theorem 3.8.15], fdgB = fdzB+1 < 1.
Thus fdzB = 0. Therefore FFD(R) = 0.

(2)=(3) This follows from Corollary[7.6]

(3)=(10) Let I be a nonzero proper ideal of R and set M = R/I. Take u € I with u # 0. Thus uM =0,
and so M is an R-module. By the hypothesis, t;dgM = 0. By Theorem t,dgM = 1. By Theorem
wgldz (R) < 1.

(10)=(11)=(1) This follows from Theorem|[7.5

(10)=(4) Let M be a torsion-free module. Then M can be embedded in a flat module F = K ® M.
By the hypothesis, t,dgF/M < 1. Therefore M is 2-torsion-free.

(4)=(8)=(9) This is trivial.

(9)=(10) This follows from Theoremm

(1)=>(5) Since A is a torsion-free module, there exists an exact sequence 0 > A - F - C — 0,
where F is a flat module. Thus fdgC < co. By the hypothesis, f{dgC < 1. Therefore A is flat.

(5)=(6) This is trivial.

(6)=(7) This follows from direct verification.

(7)=(1) Let N be an R-module and set k := f{dgN < co. Assume on the contrary that k > 2. Then
there exists a module B such that fdgB = 2. Thus B € , = F, which yields immediately that f{dgB <1,
a contradiction. Therefore FFD(R) < 1. O

Proposition 7.11. Let R C T be an extension of domains.

(1) T is a 2-torsion-free R-module if and only if T ®g N is a torsion-free T-module for any torsion-free
R-module N with fdgN < 1.

(2) IfFFD(R) <1, then T is a 2-torsion-free R-module.

(3) Let S be a multiplicative set of R such that R¢ C T. If T is a 2-torsion-free R-module, then T is a
2-torsion-free Rg-module.

Proof. (1) Assume that T is a 2-torsion-free R-module. Since N is a torsion-free R-module, there
exists an exact sequence 0 > N — P — C — 0, where P is a flat R-module. Thus fdgC < 2. Hence
Torlf(T,C) =0. Thus 0 > T® N - T® P > T ® C — 0 is an exact sequence, and so T ®g N is a
torsion-free T-module.

Assume that the opposite is true. Let C be an R-module with fdxC < 2. Take an exact sequence
0 >N — P — C — 0, where Pis a flat R-module. Then we have an exact sequence: 0 — Torf(T, C)—
TOQrN - T®r P - TQ®rC — 0. By the hypothesis T ®; N is a torsion-free T-module. Since T is
included in the quotient field of R, T ®g N is also a torsion-free R-module. By [22, Exercise 3.7],
Torf(T, C) = 0. Therefore T is a 2-torsion-free R-module.

(2) This follows immediately from Theoremm

(3) Let N be an Rg-module with fdr N < 2. By [22} Corollary 3.8.6], fdgN < 2, and so TorX(T,N) =
0. Note that Ts = T and Ng = N. By [22] Corollary 3.4.12], TorfS(T,N) = TorX(T,N)s = TorX(T,N) =
0. Therefore T is a 2-torsion-free Rg-module. O

Theorem 7.12. Let (R, m) be a local ring with fPD(R) = 0. Then R/m is a 1-torsion-free module.

Proof. Let B be an R-module with fdgB < 1. Then there exists an exact sequence 0 > A —-P —» B —
0, where P, A are flat R-modules. By [22, Theorem 3.10.9], mA = mP N A. By [22, Exercise 3.46],
Torlf(R/m,B) = 0. Therefore R/m is 1-torsion-free. O
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7.3 The weak finitistic dimension in Cartesian square

For a Cartesian square (RDTF, M), we always assume that 77 : T — F := T/M is the natural homomor-
phism.

Proposition 7.13. Let (RDTF,M) be a Cartesian square, where D,F are fields. Let N be a T-module.
Then:

(1) There exist a D-module I and an F-isomorphism h: F®p I — F ®7 N.
(2) Set B:=(I,N,h). Then D®zrB=1and T ®y B=N.

Proof. (1) Since F is a field, F ® N is an F-vector space. Write s as the dimension of this vector
space. (It can be infinite dimensional.) Take a D-vector space I of dimension s. Then there exists an
F-isomorphism h: F®p I — F®r N.

(2) This follows from [22} Proposition 8.1.8 and Theorem 8.1.9]. O

Theorem 7.14. Let (RDTF,M) be a Cartesian square, where D is a field and T as an R-module is
(n+ 1)-torsion-free. If FFD(T) < n, then FFD(R) < n.

Proof. In order to prove that FFD(R) < n, it suffices that fdgxN < n+1 implies that fdgxN < n. Let N be
an R-module with f{dgkN <n+1. Let0 > B— P, | — -+ > P, —> Py —» N — 0 be an exact sequence,
where Py, Py,...,P,_; are flat R-modules. Since T is an (n + 1)-torsion-free R-module, TorF(T,N) =0
for each i > 1. Thus

0>T®RB—->T®rP,.1—> - —>TP >TR P —>TRN —0

is an exact sequence. By Theorem fd7(T ®g N) < n+1. Since FFD(T) < n, it follows that T ®g B
is a flat T-module. Since D is a field, D g B = B/MB is naturally a flat D-module. By [22, Theorem
8.2.1], Bis a flat R-module. Therefore FFD(R) < n. O

Theorem 7.15. Let (RDTF,M) be a Cartesian square, where D is a field and T is a domain. If
FFD(R) < 1 and M is a flat R-module, then T is a flat R-module.

Proof. By [23, Lemma 3.3], f{dg T < 1. By Theorem T is a flat R-module. O

Theorem 7.16. Let (RDTF,M) be a Cartesian square, where D, F are fields. Then fPD(R) = 0 if and
only if fPD(T) = 0.

Proof. Assume that fPD(R) = 0. Let A be a finitely generated proper ideal of T. Then there exists
a finitely generated proper ideal I of R such that A = IT. By [22| Theorem 3.10.11], there exists a
nonzero a € R such that al = 0. Thus aA = 0. By [12, Theorem 3.3.16] (or |22, Theorem 3.10.8 and
Theorem 3.10.11]), fPD(T) = 0.

Conversely, assume that fPD(T) = 0. Let I be a finitely generated proper ideal of Rand set A=1T.
Assume by way of contradiction that A = T. By [22} Proposition 8.3.2], M C I. Since D is a field,
I = R, a contradiction. Thus A = T. Hence there exists t € T such that tA=0,andsotI =0. If t ¢ R,
then t ¢ M. Take a quasi-inverse t’ of ¢ such that a := t't € R and a # 0. In this case, al = t't] = 0. By
[12, Theorem 3.3.16], fPD(R) = 0. O]

Lemma 7.17. Let (RDTF,M) be a Cartesian square, where D is a field. Let B be an R-module and set
N =T®gB. If Torl (F,N)=0and fdrN < 1, then fdgB < 1.
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Proof. Let 0 > A — P — B — 0 be an exact sequence, where P is a flat R-module. Thus we have the
following exact sequence:

0—>A > D®rP—>D®B—>0 and 0—5A, > T®rP—->TQ®rB—0,

where A} = Ker(D®g P — D ®g B) and A, = Ker(T g P — T ®g B). By [22}, Proposition 8.1.10], we
can set P = (D®g P, T ®g P,0p). Since D is a field, A; is a flat D-module. Since fdtN <1, A, is a
flat T-module. Since F is naturally a flat D-module, 0 - F®p A > F®g P - F Qg B — 0 is an exact
sequence. Since TorlT(F,N) =0, it follows that 0 > F®7 Ay > F®r P —» F®g B — 0 is also an exact
sequence. Therefore we have the following diagram with exact rows:

0——=F@pA, FQP——>F®rB—>0

o || ||

0——FQ®rA) ——F®rP——FQ@rB—0

where h; is the induced homomorphism from the right square. By [22, Theorem 1.9.9], h; : FQpA; —
F®r A, is an isomorphism.
Consider the following commutative diagram:

0 0 0
| | |

0 Iz. AL DA, FerA; ——0
| }

0 Ij (D®rP)®(TQ®QP)——=FQrP—0
l i

0 B (D®rB)®(T®rB)——=F®rB——10
| | i
0 0 0

where three columns and two bottom rows are exact sequences. By [22, Theorem 1.9.12], the first
row is also exact. It follows that A = (A1, A,,hy). By [22, Theorem 8.2.2], A is a flat R-module. Thus
fdgB< 1. O

Theorem 7.18. Let (RDTF, M) be a Cartesian square, where D, F are fields. Then FFD(R) = 0 if and
only if FFD(T) = 0.

Proof. Suppose that FFD(R) = 0. Let N be a T-module with fd7N < 1. By Proposition [7.13} there
exist a D-module I and an F-isomorphism h: F®p I — F®r N such that B=(I,N,h) and T®gz B=N.
First assume that T is a local ring, so that R is a local ring. By Theorem fPD(T) = 0. By
Theorem F is a 1-torsion-free T-module, and so TorlT(F,N) = 0. By Lemma fdgB < 1.
Since FFD(R) = 0, B is a flat R-module. Thus N = T ®g B is a flat T-module. Therefore FFD(T) = 0.

Now consider the general case. Let Q be a maximal ideal of T and set P := QNR. If Q = M,
then [22, Proposition 8.3.1] and Theorem FFD(Tg) = FFD(Rp) = 0. If M = Q and set S := R\ M,
then (RgDTsF,MTs) is a Cartesian square. By [22, Lemma 8.3.8], Tg = T);. It is proved by the local
situation that FFD(Ty,) = 0. By Theorem FFD(T) = 0.

Conversely, assume that FFD(T) = 0. By Theorem fPD(R) = 0. First assume that T is a local
ring. By Theorem|[7.12} D is a 1-torsion-free R-module. Since D is a field, F is a direct sum of copies
of D. Thus F is also a 1-torsion-free R-module. From the exact sequence 0 > M - T - F - 0
and the fact that M is a 1-torsion-free R-module, it follows that T is a 1-torsion-free R-module. By

Theorem FFD(R) = 0.
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Now consider the general case. Let P be a maximal ideal of R and set Q = Q(P) as [22, Theorem
8.3.17]. If P # M, then by [22] Theorem 8.3.17], Q is a maximal ideal of T and Q # M. At this time,
FFD(Rp) = FFD(Tg) = 0. If P = M, then (RgDTsF, MTs) is a Cartesian square. It has been proved by
the above that FFD(Rp) = 0. Again by Theorem 7.3} FFD(R) = 0. O

Proposition 7.19. Let (RDTF, M) be a Milnor square. If FFD(R) < 1, then FFD(D) < 1.

Proof. The situation where D is a field is obvious. Now suppose that D is not a field. First assume
that (T, M) is a local ring. Let u € D be a nonzero nonunit. Take x € R such that 7(x) = u. Then x € R,
x ¢ M, and x is not a unit. By [22 Theorem 8.3.6], M C xR. In this case, R/(x) = D/(u). By Theorem
[7.10} FFD(D/(u)) = 0. Again by Theorem[7.10} FFD(D) < 1.

Now consider the general situation. Let p be a maximal ideal of D. Then there is a maximal ideal
P of R such that 7t(P) = p. Set S; = R\ P and S; = T\ M. Then D, = Ds,. By [22, Lemma 8.3.8],
Ts, = Ts, is a local ring. Since (Rg Ds, Ts, F,MTs, ) is a Milnor square, it follows from the above that
FED(D,) < 1. By Theorem [7.3) FED(D) < 1. O

Theorem 7.20. Let (RDTF, M) be a Milnor square of type I. Then FFD(R) < 1 if and only if FFD(D) <
1 and FFD(T) < 1.

Proof. Assume that FFD(R) < 1. By [22, Theorem 8.3.10], T = Ry is a flat R-module, where S = R\ M.
By Theorem 7.2, FFD(T) < 1. By Proposition[7.19, FFD(D) < 1.

Conversely, let A be an R-module with fdgkA < 2. Let 0 - B - P — A — 0 be an exact sequence,
where P is a flat R-module. Since T is a flat R-module and FFD(T) < 1, T ®g B is a flat T-module,
and by Theorem|[7.10land Theorem[6.23]2), M is both a 2-torsion-free T-module and a 2-torsion-free
R-module. Thus Torf(M,A) = Torlzz(D,A) = Torf(D,B) =0. Let 0 > B; > P, > B — 0 be an exact
sequence, where P, is a flat R-module. Since fdgB < 1, By is a flat module. Note that 0 — B;/MB; —
Pi/MP;, — B/MB — 0 is a D-module exact sequence. Thus fdp(B/MB) < 1. It follows from [22]
Proposition 8.2.8] that B/MB is a torsion-free D-module. Since FFD(D) < 1, applying Theorem
we get that B/MB is a flat D-module. It follows from [22 Theorem 8.2.1] that B is a flat R-module.
So fdgA < 1, and thus FFD(R) < 1. O

Theorem 7.21. Let (RDTF, M) be a Milnor square of type II.
(1) Assume that t,drF < 1. If FFD(R) < 1, then FFD(T) < 1.
(2) Assume that T is a 2-torsion-free R-module. If FFD(D) < 1 and FFD(T) < 1, then FFD(R) < 1.

Proof. (1) First assume that D is a field. Let N be a torsion-free T-module with fd;N < 1. By
Proposition we can let N = T ®g B, where B is the pullback of N and a certain D-module I.
By the hypothesis, t,drF < 1, and so TorlT(F,N) =0. By Lemma fdgB < 1. Since B is a torsion-
free module, B is a flat module. Hence N is a flat T-module. Therefore FFD(T) < 1.

Now consider the general case. Let L be the quotient field of D. Split the original Milnor square
into the following two Milnor squares:

b

Since L is the quotient field of D, we have FFD(T;) < 1. Since L is a field, FFD(T) < 1.
(2) First assume that D is a field. By the hypothesis, T is a 2-torsion-free R-module. By applying
Theorem we know that FFD(R) < 1.

335
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Now consider the general case. Let L be the quotient field of D. Split the original Milnor square
into the following two Milnor squares:

R T, T
) ! !
D L F

By Proposition T is a 2-torsion-free T,-module. Thus FFD(T,) < 1. Since L is the quotient field
of D, we get that FFD(R) < 1. O

Lemma 7.22. Let (RDTF,M) be a Milnor square, where D is a field. Then:

(1) There exists an exact sequence
0—M-—>P—>C—0,

where P is a finitely generated free R-module, C is a finitely generated torsion-free R-module. Thus
M is a 2-torsion-free R-module.

(2) If M is a flat ideal of T with M? = M, then M is also a flat R-module.

Proof. (1) By [22 Theorem 8.5.5], there exists a finitely generated fractional ideal I of R such that

M = I7!. Take an exact sequence 0 — A L Q — I — 0, where Q is a finitely generated projective

R-module. Thus we have an exact sequence 0 — [* — Q* i) A*. Set P = Q" and C =Im(f”). Now the

proof follows immediately from I* = 7! = M.
(2) Since M? = M, we have F® M = 0. Computation gets the pullback (0,M,0) = M. By [22,
Theorem 8.2.2], M is a flat R-module. O

Theorem 7.23. Let (RDTF, M) be a Milnor square, where D is a field and T is a local ring.
(1) If T as an R-module is not a 2-torsion-free module, then M is a flat T-module and M = M?.

(2) If FED(T) < 1 and M is a flat ideal of T with M = M?, then T as an R-module is not a 2-torsion-
free module.

Proof. (1) Assume that T as an R-module is not a 2-torsion-free module. By Proposition 1),
there exists a torsion-free R-module B such that fdgB < 1 and T ®g B is not a torsion-free T-module.
Since T is a 1-torsion-free R-module, it follows from Theorem that fd7(T ®g B) < 1. Take an
exact sequence 0 » B— P — N — 0, where P is a flat R-module. Let 0 : T®g B — T ®g P be a natural
homomorphism and write I = Im(0) and L = Ker(0). Then I is a submodule of a flat T-module
T ®g P, and thus a torsion-free T-module. By Lemma 1), tp,dgD <1, and so Torlf(D,B) =0. By
[22], Exercise 3.46], M ®g B = M B. Note that MB C B C I. Thus we have the following commutative
diagram with exact rows:

0 L TeoxB———=I 0
H ‘1’ A/g// lﬁ
0 L F®gB—2~I/MB——0

Thus L is an F-vector space. Since the bottom row in the above diagram is an exact sequence of
F-vector spaces, it is split. Hence we have a homomorphism h: I — F ® B such that hg = 5. By [22]
Exercise 1.60], the top row is split. Thus T®g B= L@ I. Hence fdrI <1 and fdrL < 1.

Since T ®g B is not a torsion-free T-module, it follows that L = 0. Since L is an F-vector space, L is
the direct sum of some copies of F. From this we have fdrF =fdrL <1, so that M is a flat T-module.
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If M # M?, by [22, Theorem 2.5.22] M is a principal ideal, and so M = Tu. Thus T = M. By Lemma
1), T as an R-module is 2-torsion-free, which contradicts the known conditions. Thus M = M2.

(2) Assume on the contrary that T as an R-module is a 2-torsion-free module. By Lemma 2),
M is a flat ideal of R. By Theorem [7.21} FFD(R) < 1. By Theorem [7.15 T as an R-module is flat. By
[22, Theorem 8.3.10], F is the quotient field of D, a contradiction. Therefore T as an R-module is not
2-torsion-free. O

7.4 Weak global dimension and weak finitistic dimension of pseudo-valuation rings

Let R be a pseudo-valuation ring. By [22, Corollary 11.8.9], there is a Milnor square (RDTF, M),
where (T, M) is a valuation ring and D is a field.

Lemma 7.24. Let (R, M) be a pseudo-valuation ring and A be a finitely generated proper ideal of R. Then
there is an exact sequence
0—M"1 SR'—A—0,

where n is an appropriate positive integer.

Proof. Let {xq,x5,...,x,} be a minimal generating set of A. The situation of n = 1 is obvious, and
so we may assume that n > 1. Let ¢ : R — A be a projective cover. Then Ker(¢p) C M". Let z =
(mq,my,...,my,) € Ker(p). Define g(z) = (my,ms,...,m,). If g(x) =0, then mp = --- = m, = 0. Thus
myx; = 0. Since A is a torsion-free module, it follows that m; = 0. Thus g is a monomorphism.
Againlet my,...,m, € M. Set I = Rx,+---+Rx,, and ] = Rx;. By minimality of a generating set, ] £ I.
By [22, Theorem 11.8.6], IM C JM = Mx;. Thus there exists m; € M such that mx; + myx; +--- +
m,x, =0, and so (my,m,,...,m,) € Ker(¢). Thus g is an epimorphism. Therefore Ker(¢p) = M= O

Proposition 7.25. Let (R, M) be a pseudo-valuation ring, but not a valuation ring. Then:
(1) M = M? if and only if M is a flat ideal of R.
(2) If M # M?, then there exists an exact sequence
0—Mb RO M0,

where L, Ly are appropriate index sets.

Proof. (1) Assume that M = M?. By Lemma 2), M is a flat ideal of R. Conversely, assume that M
is a flat ideal of R. If M = M2, then by [22, Theorem 2.5.22], M is a principal ideal, which contradicts
[22, Theorem 8.3.3 (2)]. Thus M = M?.

(2) Let X = {x; | i € L} C R such that {x;} is an R/M-basis of T/M. We may assume that x; = 1. By
[22, Theorem 2.5.22], M = Tu, where u € M\ M?. Define ¢ : RY) — M by @(e;) = x;u, where {¢; | i € L}
is the standard basis of R\Y). Thus Im(¢p) =Y Rx;u =Y Rxju+Mu = (Y Rx;+M)u = Tu = M, and so ¢

i i i
is an epimorphism. It is easy to see that Ker(¢) C M1, Set L; =L—{1}and I = Y Rxju, ] = Ru. Then
JE3!
J € I. Similarly to the proof of Lemma we have Ker(q) = M), O

Let (R, M) be a pseudo-valuation ring, but not a valuation ring. In [8], Dobbs proved that if M = M?
holds, then w.gl.dim(R) = 2; when M # M?, one has w.gl.dim(R) = +co. We now provide a more
precise form of Dobbs’ theorem.

Theorem 7.26. Let (R, M) be a pseudo-valuation ring, but not a valuation ring, then FFD(R) < 2.
More specifically:

(1) If M = M?, then w.gl.dim(R) = 2.
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(2) If M = M?, then FFD(R) = 1, at this time w.gl.dim(R) = +co.

Proof. (1) Since M = M?, by Proposition M is a flat ideal of R. Let A be a finitely generated
proper ideal of R. By Lemma fdrR/A < 2, and so w.gl.dim(R) < 2. Since R is not a valuation
ring, w.gl.dim(R) = 2.

(2) Since M is a flat ideal of T, by applying Theorem T as an R-module is 2-torsion-free.
It follows by Theorem that FFD(R) < 1. Assume on the contrary that f{dgM = n < +co. Then
it follows by Proposition that n > 0. By Proposition and [22, Theorem 3.6.6], we get that
n=n+1, a contradiction. Thus fdgxM = +o0, and so w.gl.dim(R) = +co. O

8 Matlis cotorsion modules and Matlis domains

This section uses the Matlis domain as an example to show some methods of cotorsion theory for de-
scribing the structure of the ring. The Matlis domain is the domain class to which Matlis is primarily
concerned [20]. For the domain R, K is always used below to indicate the quotient field of R.

8.1 h-divisible modules and Matlis cotorsion modules

Definition 8.1. Let R be a domain and let D be an R-module.

(1) D is called an h-divisible module if it is a factor module of an injective module (i.e., 0-th
cosyzygy module). Denote by Dy, the class of h-divisible modules.

(2) D is called a reduced module (resp., an h-reduced module) if it does not contain any nonzero
divisible (resp., h-divisible) submodule.

Theorem 8.2. Let R be a domain and let D be an R-module. Then the following are equivalent:
(1) D is h-reduced.
(2) 0 > Homg(K/R,D) — Homg(K,D) - Homg(R, D) — 0 is an exact sequence.
(3) D is a factor module of a torsion-free divisible module (i.e., a K-vector space).
(4) For any x € D, there exists a homomorphism g: K — D such that g(1) = x.

Proof. (1)=(2) Since D is h-reduced, there exists an epimorphism E — D, where E is an injective
module. Consider the following commutative diagram:

Hompg (K, E) Homg (K, D)
J J
Hompg(R, E) Hompg(R, D)

where all mappings are natural homomorphisms. Since E is injective, the left vertical map is an
epimorphism. Since R is a free module, the second row is an epimorphism. Therefore the right
vertical map is an epimorphism.

(2)=(3) Note that Homy(K, D) is trivially a K-vector space. Now this follows from the fact that
D = Homg(R, D).

(3)=(1) By [22, Theorem 2.4.7], every torsion-free divisible module is injective, and so D is h-
divisible.

(2)=(4) This is trivial. O

Example 8.3. Let R be a domain.
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(1) Every factor module of an h-divisible module is h-divisible and any direct product of h-divisible
modules is h-divisible.

(2) Since every factor module of a divisible module is divisible, every h-divisible module is divisi-
ble. Denote by D the class of divisible modules. Then D;, C D.

(3) By Zorn’s lemma and Exercise any module has a maximal divisible (resp., h-divisible) sub-
module. Denote by d(X) (resp., d;(X)) a maximal divisible submodule (resp., maximal k-
divisible submodule) of a module X. Trivially a module M is reduced (resp., h-reduced) if and
only if Homg(D, M) = 0 for any divisible (resp., h-divisible) module D.

(4) Any submodule of a reduced module (resp., an h-reduced module) is naturally reduced (resp.,
h-reduced).

Proposition 8.4. Let R be a domain and let M be an R-module. Then pdxM < 1 if and only if ExtR(M, D) =
0 for any h-divisible module D. In other words, P, = +D,.

Proof. Note that for a ring R and a positive integer n, pdgM < n if and only if Exty(M, X) = 0 for any
(n—1)-th cosyzygy module X. Now the assertion follows by taking n = 1. O

Proposition 8.5. Let R be a domain and let M be an R-module. Then M is h-reduced if and only if
Hompg (K, M) = 0. In particular, if R is not a field, then R is an h-reduced module; more generally every free
module is h-reduced.

Proof. Assume that Homg(K, M) # 0. Then there is a nonzero homomorphism f : K — M. Thus f(K)
is a nonzero h-divisible submodule of M. Hence M is not h-reduced.

Conversely, assume that M is not h-reduced. Then M has a nonzero h-divisible submodule D.
By Theorem there exists a homomorphism g : K — D such that g(1) #0. Let A : D — M be an
embedding. Then Ag: K — M is a nonzero. Thus Hompg(K, M) # 0. O

Proposition 8.6. Let R be a domain and let D be an h-divisible module. Then the total torsion submodule
tor(D) is a direct summand of D. In particular, tor(E) of an injective module E is a direct summand of E,
and so is an injective module.

Proof. Let E be a K-vector space and let g : E — D be an epimorphism. Set T :=tor(D) and N := D/T.
Then N is a torsion-free divisible module, and so a K-vector space. Let {x;} C D such that {x;} is
a K-basis of N. For any i, choose ¢; € E such that g(e;) = x;. Then it is clear that {e;} in E is K-
linearly independent. Let M be a K-vector space in E generated by {e;}. Then we have the following
commutative diagram with exact rows:

0 A E N 0
Lk
0 T D N 0

where 7t is a natural homomorphism. By Exercise [9) h is a K-homomorphism, and so A is also a
K-vector space. For k € K and x € M, define kg(x) = g(kx). Since Ker(g) C A, it follows that g(M) has
been made into a K-vector space, which is a torsion-free module as an R-module. Thus T N g(M) = 0.
It follows by direct verification that D = T + g(M). Therefore D = T & g(M). O

Definition 8.7. Let R be a domain and let M, W be R-modules.

(1) W is called a Matlis cotorsion module if Extllz(K,W) = 0. Denote by MC the class of Matlis
cotorsion modules.
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(2) Wis called a Lee cotorsion module if Ext}{(K/R, W) = 0. Denote by LC the class of Lee cotorsion
modules.

(3) M is called a strongly flat module if M € 1 MC. Denote by SF the class of strongly flat mod-
ules.

(4) Write SF; =+LC.
Proposition 8.8. Let R be a domain. Then:

(1) C € MC and Cy C LC. In other words, every cotorsion module is Matlis cotorsion and every 1-
cotorsion module is Lee cotorsion.

(2) LC C MCNDy. That is, every Lee cotorsion module is both h-divisible and Matlis cotorsion.

(3) PCSFCFand P, CSF, CH.

(4) SFCSF;.

(5) Let G be an R-module. If there exists u € R\ {0} such that uG = 0, then G € MC.

(6) The quotient field K of R is trivially a strongly flat R-module.
Proof. Exercise. O
Theorem 8.9. Let R be a domain. Then (SF, MC) and (SF 1, LC) are all complete cotorsion theories.
Proof. This follows by taking S = {K} and S = {K/R} respectively in Theorem 3.11] O
Lemma 8.10. Let R be a domain.

(1) Let 0 > A — B — C — 0 be an exact sequence. If Be€ MC and C is h-reduced, then A € MC.

(2) Let A be a torsion module. Then Hompg(A, X) is an h-reduced Matlis cotorsion module for any R-
module X. In particular, Homg(K/R, X) is an h-reduced Matlis cotorsion module.

(3) Let D be an h-divisible module. Then there exists an exact sequence 0 - M — E — D — 0, where E
is a K-vector space and M is an h-reduced Matlis cotorsion module.

(4) Let M be a torsion-free module. Then Extllz(K/R,M) is always an h-reduced Matlis cotorsion module..

Proof. (1) Since C is h-reduced, Homg(K, C) = 0. Thus there exists an exact sequence 0 — Extllz(K,A) —
Ext}h(K, B) = 0. Therefore Exty(K,A) = 0, and so A € MC.

(2) Since A is a torsion module, by [22, Theorem 2.2.16] Homg (K, Hompg(A, X)) = 0. By Proposition
[8.5 Hompg(A, X) is an h-reduced module.

Let 0 > X - E — Y — 0 be an exact sequence, where E is an injective module. Then there
exists an exact sequence 0 — Hompg(A, X) — Homg(A,E) - Hompg(A,Y). By [22, Theorem 3.4.11],
Extllz(K, Hompg(A,E)) = HomR(Torf(K,A), E) = 0. Thus Hompg(A, E) is a Matlis cotorsion module. Since
Hompg(A,Y) is an h-reduced module, it follows by (1) that Homg(A, X) is a Matlis cotorsion module.

(3) This follows from Theoremby taking E = Homy(K,D) and M = Homg(K/R, D).

(4) By [22], Theorem 3.6.12] there exists an exact sequence 0 > M — K®r M — (K/R)®@r M — 0.
Since M and K ® M are torsion-free, K ®z M is an injective R-module. Hence there is an exact
sequence:

0 — Homg(K/R, (K/R)®g M) — Exty(K/R, M) — Ext(K/R,K ® M) = 0.

Therefore Homyz(K/R, (K/R) ®g M) = Extllz(K/R,M). Now the assertion follows by (2). O
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Lemma 8.11. Let R be a domain and let M be an h-reduced module.
(1) M € MC if and only if M = Ext}(K/R, M).
(2) If M is a torsion-free module, then there exists an exact sequence
0—-M-—->C—E-—>DQO,
where E is a K-vector space and C is an h-reduced Matlis cotorsion module.

Proof. (1) Since M is h-reduced, Homg(K, M) = 0, and hence there exists an exact sequence
0 — M = Hompg(R, M) — Exty(K/R,M) — Ext(K, M) — 0.

Thus M € MC if and only if M = Exty(K/R, M).
(2) This follows immediately by taking C = Exty(K/R, M) and E = Ext}(K, M) in the exact sequence
in (1) and by applying Lemma O

Theorem 8.12. Let R be a domain and let M be an R-module. Then the following are equivalent:
(1) M is a strongly flat module.

(2) M is a direct summand of a certain module N, where N fits into an exact sequence 0 —» F —
N — E — 0, where F is a free module and E is a K-vector space.

[S an xt , = or an ern .
(3) M € F and Extp(M,C) =0 f yCeFnMC
(4) M e F and Extllz(M, C) = 0 for any reduced Matlis cotorsion module C.

Proof. (1)=(2) Let 0 > H - F - M — 0 be an exact sequence, where F is a free module. Since F is
a torsion-free h-reduced module, H is also torsion-free h-reduced. By Lemma 2), there exist a
Matlis cotorsion module C and an embedding map i : H — C such that E := Coker(i) is a K-vector
space. Consider the following commutative diagram with exact rows:

0 H F M 0
ol
0 C N M 0

where the left square is a pushout diagram. Note that Coker(g) = E. Since C is a Matlis cotorsion
module, the second row is split. Thus M is a direct summand of N.

(2)=(1) Since F and E are strongly flat modules, N is strongly flat, and so M is strongly flat.

(1)=(4) Trivial.

(4)=(3) Since C is a flat module, C is torsion-free. Let D be a maximal divisible submodule of C.
Then D is injective, and hence we have a direct sum decomposition C = D@ C;. Thus C; is a reduced
Matlis cotorsion module. By the hypothesis, Extllz(M, C)= Extllg(M, Cy)=0.

(3)=(1) Let C be a Matlis cotorsion module. Since (F,C) is a perfect cotorsion theory, there is an
exact sequence 0 - X — G — C — 0, where G is a flat module and X is a cotorsion module. Thus G €
F N MC. By the hypothesis, Extllg(M,G) = 0. By the exact sequence 0 = Extllz(M,G) — Extllz(M, C)—
Ext%{(M,X) and Ext%z(M,X) =0, it follows that Extllz(M, C) = 0. Therefore M is a strongly flat module.

O

Theorem 8.13. Let R be a domain, P be a projective module, and F be a strongly flat submodule of
P. Then F is a projective module.

341
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Proof. Let D be an h-divisible module. By Lemma there is an exact sequence 0 > M — E —
D — 0, where E is a K-vector space and M € MC. Thus Extllz(P/F,D) = Extlzz(P/F,M) = Extllz(F,M) =0.
By Proposition 8.4, pdzP/F <1, and so F is projective. O

Theorem 8.14. Let R be a domain, S be a multiplicative subset of R, and C be a Matlis cotorsion
R-module. Then:

(1) CS:=Homg(Rg,C)is a Matlis cotorsion Rg-module.

(2) If C is also an h-reduced module, then C° is an h-reduced Matlis cotorsion Rg-module and
CS = Exty(K/Rs, C).

Proof. (1) Let £ : 0 - C - E - N — 0, where E is an injective R-module. Then we have an exact
sequence:

0 — Hompg(Rg, C) i> Homg(Rg,E) > H — 0,

where H := Coker(f). Thus we have the following commutative diagram with exact rows:

Hompg, (K, Homg(Rs, E)) Homg, (K, H) Extll{S(K, Hompg(Rg,C)) ——0

|: |o It

Hompg (K ®g, Rs, E) Hompg (K ®g, Rs,N) Exty(K ®g, Rs,C) ———0

Since H € Hompg(Rg,N), 0 is a monomorphism, and so 7 is a monomorphism. Since C is a Matlis
cotorsion module, Extlles (K,Homg(Rg, C)) = 0, and thus Homp(Rg, C) is a Matlis cotorsion Rg-module.

(2) Since Homp (K, Homg(Rg, C)) = Homg(K ®g, Rs,C) =0, CS is a reduced Rg-module. From the
exact sequence 0 - Rg — K — K/Rg — 0, we have an exact sequence:

0 = Homg(K, C) — Homg(Rs, C) — Extk(K/Rs, C) — Exty(K,C) = 0.
Now the last assertion follows. O

Theorem 8.15. Let R be a domain, S be a multiplicative subset of R, and M be a strongly flat R-
module. Then Mg is a strongly flat Rg-module.

Proof. By Theorem [8.12) M is a direct summand of a module N, where N fits in an exact sequence
0 - F - N — E — 0 with F a free module and E a K-vector space. Thus Mg is a direct summand of
Ng and 0 — Fg — Ng — E — 0 is an exact sequence. It follows by Theorem [8.12]that Mg is a strongly
flat Rg-module. O

8.2 Characterizations of Matlis domains
Definition 8.16. A domain R is called a Matlis domain if pd;K < 1, equivalently, pd,K/R < 1.
Trivially every Dedekind domain is a Matlis domain.
Theorem 8.17. The following are equivalent for a domain R:
(1) Ris a Matlis domain.
(2) Dy, = LC, that is, every h-divisible module is a Lee cotorsion module.
(3) Every factor module of a Lee cotorsion module is a Lee cotorsion module.

(4) P =SF;.
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(5) (SF, MC) is a hereditary cotorsion theory.
(6) The projective dimension of any strong flat module is at most 1.

Proof. (1)=(2) Let D be an h-divisible module. By Proposition Ext}z(K/R,D) =0. Thus DisaLee
cotorsion module.

(2)=(3) Obviously, because LC C Dy, every factor module of a Lee cotorsion module is h-divisible.
(3)=(1) Let D be any h-divisible module. By the hypothesis, D is a Lee cotorsion module, and so
Ext}(K/R,D) = 0. By Proposition pdrK/R <1, that is, R is a Matlis domain.

(2)=(4) By the hypothesis, D}, = LC. By Proposition[8.4, P, = +D;, = +LC = SF;.

(4)=(1) This follows from the fact that K/Re SF; =P;.

(1)=>(5) Let 0 > A - B — C — 0 be an exact sequence, where A, B are Matlis cotorsion modules.
Then by an exact sequence 0 = Ext}(K, B) — Extg (K, C) — Ext%(K,A) = 0 it follws that Ext}(K, C) = 0.
Thus C is a Matlis cotorsion module. By Theorem and Theorem (SF,MCQ) is a hereditary
cotorsion theory.

(5)=(1) Let D be an h-divisible module. By Lemma there exists an exact sequence 0 - M —
E — D — 0, where E is a K-vector space and M is an h-reduced Matlis cotorsion module. By the
hypothesis, D is a Matlis cotorsion module, and so Ext}h(K, D) = 0. By Proposition pdrK <1, that
is, R is a Matlis domain.

(1)=(6) Let M be a strongly flat module and 0 - N — P — M — 0 be an exact sequence, where P
is a projective module. By Theorem [8.17] (SF, MC) is a hereditary cotorsion theory. By Theorem 3.5
N is a strongly flat module. By Theorem N is a projective module, and so pdyM < 1.

(6)=(1) This is obvious because K is a strongly flat module. O

=
=

Let R be a Matlis domain. By Theorem & = (SF, MC) is a hereditary cotorsion theory. From
Section 5 one can define the strongly flat dimension of a module M to be oo, or the shortest length
of strongly flat resolutions of M, denoted by SfdgxM. By Theorem fdrM < SftdgrM < pdy M.

Proposition 8.18. Let R be a Matlis domain and M be a torsion-free R-module. Then the following are
equivalent:

(1) M is a strongly flat R-module.
(2) pdr((K/R)®r M) < 1.
(3) Sfdr((K/R)®@r M) < 1.

Proof. (1)=(2) By tensoring K/R with the exact sequence of Theorem 2), we have the following
exact sequence
0 —> (K/R)®g F —> (K/R)®x N —> (K/R)®g E —> 0.

Since (K/R)®g F and (K/R)®g E are direct sums of some copies of K/R respectively,
pdr((K/R)®g N) < max{pdr((K/R)®g F),pdr((K/R)®r E)} < 1.

Thus pdi((K/R)®gr N) < 1. Therefore pd;((K/R)®r M) < 1.

(2)=(3) This is trivial.

(3)=(1) Consider the exact sequence 0 - R — K — K/R — 0. Since M is a torsion-free module, it
follows by [22, Exercise 3.6] that

0—M-—>K®yM — (K/R)@g M — 0

is an exact sequence. Since Sfdg((K/R)®r M) < 1, it follows that M is a strongly flat module. O

343
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Lemma 8.19. Let ay,...,a,,... be a sequence of nonzero elements of R and let F be a free R-module with
its basis xp,X1,...,Xy,.... Set

Yy =Xy — i1 Xn+1s n=0,1,2,....

Letn>1andy=ryxg+rx;+--+1r,x, €F. Then

,_\

n—

Y= Z] Ajy1 yk+(7 Tyt T Ay Ay oAy Ay) Xy,
0 j=0

o~
I

where if j = k, regard aj,y---a; = 1.

Proof. If n =1, then vy = rgxg + r1x1 = royo + (11 + r9a;)x1. Thus the assertion is true. Assume that n > 1
and set z = rgxg + 11Xy + -+ + 1,_1X,_1. By the induction hypothesis,

n-2 k n—1
(erﬂjﬂ“'ﬂk)yk+(erﬂj+1“'ﬂn71)xn71-
k=0 j=0 =0
Therefore
Vo= Z+TyXy
n=2 k n-1 n—-1
= Y(Lr %1 )Yk + ( Z Tidji1 0 1)Yn-1+ an( 2 TiAjy1 - “A)Xy + TyXy
k= 0] 0 j=0 j=0
n—1 n
= Z(Z j+1 @)k + (X Tjjar )Xy, O
aj 177
k=0 j= 0 j=0

Lemma 8.20. Let R be a domain, ay,...,a,,... be a sequence of nonzero elements of R, and A be an R-

submodule of K generated by

1 1

{t,—,..., FEEESS
al al--.an

Then pdzA < 1. In particular, if u € R\ {0}, then pdzR, <1

Proof. Let F be a free module with its basis xg, x1,...,%,,... and let ¢ : F — A be an epimorphism such
that ¢(xg) =1 and ¢(x,) = all—an, n>1. Set P =Ker(¢) and y,, := x,, — a,,,1x,,41, 1 > 0. Below we prove
that P is a submodule of F generated by v, 91,92,...,9,.... Then by [22, Theorem 3.10.19(1)], P is a
free module, and so pdzA < 1.

By a direct verification, one has ¢(yy) = 1- al - =0,and if n > 1, then ¢(y,) = ﬁ—anﬂ m =
0. Thus y,, € P. On the other hand, for any y € P we can write y = roxg+r1 X1 +---+7,X,. Since ¢(y) =0,
we have rgay ---a, +ray---a,+---+r,_1a,+r,=0.1f n=0, then y = ryx(. Since ¢(y) = ry = 0, we have
n-1

y=0.Letn>1. By Lemmal|8.19) v = royo + 2 (rx + rg_1ax + -+ roay - -~ ax) k-

. 1

The last assertion follows from the fact that 1,1,..., 1., is as an R-module a generating system
of R,,. O

Theorem 8.21. Let R be a domain. If K as an R-module is countably generated, then R is a Matlis
domain. In particular, every umbrella ring is a Matlis domain.

@‘

2 > 1. Note that {1,+, 1, 1}

s s ’
“n 7 ay’ aya, =y

Proof. Suppose that K is generated by {x,};~,. Write x,, =
is also a generating system of K. By Lemma“ 8.20}, pdRrK <
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Lemma 8.22. Let R be a domain, S be a multiplicative set of R, and T be a multiplicative subset of S. If
pdrRs <1 and pdgyRs/Rt <1, then we have:

(1) Rrp/sRr is a projective R/sR-module for any s € S.
(2) Let me Max(R). If TNm =@, then (Ry)y = Ry. If TNm = @, then (R7)y = (Rg) -
(3) Rp/Ris a direct summand of Rg/R.

Proof. (1) Obviously pdgRr < 1. Write R = R/sR. Since pdgRs < 1 and Ry is a torsion-free module,
pdzRr/sRt < 1. Since sRg = Rg, we have Rg/Rr = sRg/sRt = Rg/sRy. From the exact sequence
0 — Ryp/sRt — Rg/sRy — Rg/Rr — 0 we know that pdyRy/sRy < 1. It follows by [22, Theorem
3.8.13] that pdgRy/sRt = 0.

(2) If Tnm = @, then obviously (R7)y = Ry, which is true for any domain. If T Nm # @, then
over the ring R, by (1), (R7)w/S(R7)y is a free Ry,/sRy,-module. Since t(R7)y, = (R7)y if t € TN, it
follows that (R7)y/s(Rt)y is a t-divisible module. Since t is not a unit of R, but (R7)yu/s(R7)y is a
free R,/sRy,-module, there can only be (R7)y,/s(R7)y = 0, that is, (R),, is a divisible R;-submodule
of K. Therefore (R7),; = K.

(3) Let m be a maximal ideal of R. If T Nm = @, then (R7)y = Ry Thus (R7/R)y = Ryy/Ryy = 0.
If TNm = @, then (R7)y = K, and so (R7/R), = K/Ry,. Therefore (R7/R)y, is a divisible R;-module.
Note that for a domain R, an R-module X is divisible if and only if X, is a divisible R,,-module for
any m € Max(R). Then R7/R is a divisible module. Thus Ry = sRy + R for any s € R\ {0}. Hence
R/(sRt NR) = Ry/sRr is a cyclic projective R/sR-module. Therefore the natural homomorphism £ :
R/sR — R/(sRy NR) is a split epimorphism, and it is easy to get Ker(h) = (sR NR)/sR = (R Ns~'R)/R.
Thus

R/sR=s"'R/R=(RrNs"'R)/R&C,  where C=Rp/sRr. (8.1)

Write I} = {m e Max(R) | TNm =@} and I, = {m € Max(R) | T N m = @}. And set

A= ﬂRm, B= ﬂRm.

mel; mel,

ThenANB= () Ry =R. Thus A/R+B/R=A/R®B/R. Since Ry C A, it follows that Rt/R+B/R =
meMax(R)
Rr/R®B/R.
In the direct sum decomposition of (8.1), the first term (Ry Ns~'R)/R € Rp/R. Now we come to
prove C C B/R.
If m eI}, then by (2), Cy € (R7/R)yy @ (B/R)yy = (B/R) . If m €15, then

Cm = (RT/SRT)m = (RT)III/S(RT)IH =K/K=0¢C (B/R)m'

Therefore C C B/R.
Based on the above, it has been proved that s7'R/R C Rt/R@® B/R, and so s™! + R € Ry/R® B/R.
From the arbitrariness of s, we get Rg/R = Rp/R@® B/R. O

Lemma 8.23. Let R be a Matlis domain and u € R be a nonzero nonunit element. Then there is a multi-
plicative set T of countable elements of R such that u € T and Rp/R is a direct summand of K/R, and so
R7/R is an h-divisible module.

Proof. Let 7; be the set of submodules of the form Ry/R of K/R. Then 7; is a weak tight system of
K/R, that is, the set of submodules that satisfy the following conditions (a), (b):

(a) 0,K/R €7y and 7 is closed under unions of chains;



346 Moroccan Journal of Algebra and Geometry with Applications/F. Wang and H. Kim

(b) If A € 7; and X is a countable subset of K/R, then there exists B € 77 such that A, X C B and B/A
is countably generated.

By Lemma K/R has a weak tight system 7. Obviously a tight system is a weak tight system,
and the intersection of a tight system and a weak tight system is a tight system. Set 7, =7; N7 . Then
T, is a tight system. Thus if Rp/R € T, then pdzxK/Rr < 1. By Lemma each Ry/R €7, is a direct
summand of K/R. Now the assertion follows immediately by taking A = 0 and X = {1} in Lemma

[B.19(1)(c). O
Theorem 8.24. The following are equivalent for a domain R:

(1) Ris a Matlis domain.

(2) D =Dy, that is, every divisible module is h-divisible.

(3) D= LC, that is every divisible module is a Lee cotorsion module.

(4) (SF1,D) is a cotorsion theory.

(5) (SF1,Dy)is a cotorsion theory.

Proof. (1)=(2) Let D be a divisible module. First assume that D is a torsion module. For any x € D
with x # 0, there exists u € R with u # 0 such that ux = 0. Set xy = x. By Lemma there exists a
multiplicative set T with countable elements of R such that u € T and R,/R is an h-divisible module.

Write T = {1,s9 = u,s, | n > 1}. For n > 1, recursively take x,, € D satisfying s,x,, = x,,_1. Note

that the elements in Ry can be expressed as = = 221 Define f : R — D by flts) = axy,

S0S1 S

ae€ R, n>0. Itis easy to see that f is a well-defined homomorphism. Since f(1) = uf(%) =ux =0,
we have R C Ker(f). By [22, Theorem 1.2.18], f induces a homomorphism g : R,/R — D such that
g(SOS“msn + R) = ax,. So any element in D is contained in an h-divisible submodule, and thus D is an
h-divisible module.

Now consider the general situation. Set Dy = tor(D). Then 0 — Dy — D — D/Dy — 0 is an exact
sequence. Since D/D is a torsion-free divisible module. Therefore it is a K-vector space, that is, the
direct sum of some copies of K. Obviously Dj is also a divisible module. From the above proof, Dy is
an h-divisible module. Since pdzK < 1, by Proposition Ext}(D/Dy, Dy) = 0. Therefore the exact
sequence is split, so that D is also an h-divisible module.

(2)=(1) By Proposition it suffices to prove that Extllz(K,D) = 0 for any h-divisible modulus D.

By Proposition M we may assume that D is a torsion module. Let £ : 0 - D — G %, K - 0bean
exact sequence. For x € G and s € R\ {0}, since K is divisible, there exists y € G such that g(x) = sg(p).
Thus x —sy € D. So there exists z € D such that x —sy = sz. Thus x = s(y + z), that is, G is a divisible
module. By the hypothesis G is an h-divisible module. Obviously D = tor(G). By Proposition [8.6} &
is a split exact sequence. It follows by [22], Theorem 3.3.5] that Extll{(K,D) =0.

(2)=(3) This follows immediately from Theorem

(3)=(4) By the hypothesis, D = LC. Then (SF, LC) is a cotorsion theory.

(4)=(5) By the hypothesis, D = LC = SF{. Since LC C D), C D, it follows that D), = LC.

(5)=(1) By the hypothesis, SF; = +D;, = P;. Now the assertion follows immediately from Theorem
B.I7 O

Proposition 8.25. Let R be a Matlis domain and N be an R-module. Then N/d(N) is a reduced module.

Proof. By Proposition and Theorem Exth(K,d(N)) = 0. Thus we have the following exact
sequence:
0 — Hompg(K,d(N)) — Hompg (K, N) — Homg(K,N/d(N)) — 0.
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Let f € Homg(K,N). Then f(K)is a divisible submodule of N, and so f(K) € d(N). Thus Homg(K,d(N)) =
Hompg(K,N). Therefore Homg(K,N/d(N)) = 0, that is, N/d(N) is reduced. O]

Theorem 8.26. (Kaplansky) Let (R, m) be a local domain. Then R is a Matlis domain if and only if K
as an R-module is a countably generated module.

Proof. Suppose that R is a Matlis domain. Take any u € m with u # 0. By Lemma 3), (Ry)m =
R, = K. Thus K is a countably generated R-module. The converse follows immediately from Theorem

8211 O

Definition 8.27. Let R be a domain. The R is called an h-local ring if R satisfies the following two
conditions:

(1) For any nonzero element a € R, a is contained in only a finite number of maximal ideals;
(2) Each nonzero prime ideal is only contained in one maximal ideal.

Obviously every local integral domain is an h-local ring. In addition, an integral domain with
Krull dimension 1 that satisfies the above condition (1) is also an h-local ring.

Theorem 8.28. Let R be a h-local ring. Then:
(1) If m; and m; are two distinct maximal ideals of R, then R, ®g Ry, = K.

(2) Let m be a maximal ideal of R and let B be a torsion R-module. Then the natural homomor-
phism 6 : B — By, is an epimorphism.

(3) Let m be a maximal ideal of R, B be a torsion R,;-module, and A be an R-submodule of B. Then
A is also an R;-module.

(4) Let m be a maximal ideal of R and let B be a countably generated torsion R,;-module, Then B
as an R-module is also countably generated.

(5) For any R-torsion module B, B= (P By, In particular,
meMax(R)

K/R= 5 (K/Ry)

meMax(R)

Proof. (1) Set S; = R\my, S, =R\mjy, S =5;55,and Sy = R\ {0}. Then K = Rg,. Trivially Ry, ®g Ry, =
Rg CK.If Rg # K, then S # Sj. By [22], Theorem 1.4.7], there exists a nonzero prime ideal p satisfying
the condition that pNS = @. Since S1,S5, C S, we have p C m; Nm,. Since R is assumed to be an h-local
ring, there is no such p. So S = Sy, and thus Rg = K.

(2) From the exact sequence 0 - R — R; — R;/R — 0, we have an exact sequence B — B, —
(Rw/R)®r B — 0. Set X = (Ry/R) ® B and let m’ be any maximal ideal of R. Note that for a multi-
plicative subset consisting of non-zero-divisors of a ring R, Rg ® (Rs/R) = 0. Thus if m’ = m, then
X = 0. If m” # m, then it follows by (1) that R;; ®g Ry ®g B = 0. From the exact sequence

Rm/ ®r B— Rmr ®r Rm ®r B— Rm/ ®r (Rm/R) ®Rr B— 0,

it follows that X,y = 0. Thus X = 0. Therefore 0 is an epimorphism.
(3) From the commutative diagram below, we can see that the natural homomorphism 6 : A — A,
is an isomorphism:
0 A B

o
0 Am B
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(4) Let {x;};2, be a generating system of B as an Ry-module. Set A = } Rx;. Then A is an R-
i=1
submodule of B. It follows by (3) that A = A, = B. Therefore B as an R-module is also countably
generated.

(5) For any x € B, since B is a torsion module, there exists u € R\ {0} such that ux = 0. Since u
is contained in only finitely many maximal ideals of R, it follows that if u is not contained in these
maximal ideals, then ¥ = 0. Define ¢ : B—> &5 By by ¢(x) = [§]. Then ¢ is a well-defined

meMax(R)
R-homomorphism. For any m € Max(R),

Rm ®Rr ( @ Bm) = (Rm ®Rr Bm) @( @ (Rm ®R Rm') ®Rm/ Bm’) = Bm

meMax(R) m’#m
Therefore ¢ is an isomorphism. O

Theorem 8.29. Let R be a domain with dim(R) < 1. If Ris of finite character, i.e., satisfying Definition

1), then we have:

(1) Let u € R be a nonzero element, m be a maximal ideal of R, and u € m. Then K/R; = (R,/R) -

k
(2) Let u € R be a nonzero nonunit element. Then R,,/R = @(K/le_), where my,..., my are all the
i=1
maximal ideals of R containing u.

(3) Ris a Matlis domain.

Proof. (1) Since (R,,)y = (Ryy),, we may assume that (R,m) is a local ring. Let x € R with x = 0. If x is
a unit, then u € Rx. If x is not a unit, then, since VRx = m, there exists # such that u” € Rx, and so
x~! € Ru™" CR,,. It follows that K = R,,.

(2) If u ¢ m, then (R,/R)y, = 0. Now the assertion follows by taking B = R,/R in Theorem [8.28|5)
and applying (1).

(3) Let m be a maximal ideal of R. Take any u € m \ {0}. By (2) and Lemma [8.20} K/R,, is a direct
summand of R, /R, and so pdzK/R; < 1. It follows from the second isomorphism in Theorem 5)
that pdRK/R< 1. O

9 Almost perfect domains

Similarly to the Matlis domains discussed in the previous section, this section uses almost perfect
domains as an example to show some methods of cotorsion theory for describing the structure of
the ring. For a study of almost perfect domains, please refer to [1}, 13 4} 5, [10} 21]]. To this end, the
so-called 1-perfect domain will be described first.
9.1 Characterizations of 1-perfect domains

Definition 9.1. Let n > 0 be an integer. A ring R is called an n-perfect ring if gld,(R) < n.

By Theorem the 0-perfect ring is exactly the perfect ring. In this subsection, we will charac-
terize 1-perfect domains.

Theorem 9.2. Let R be a 1-perfect domain. Then R is a Matlis domain.
Proof. By Theorem pdrK <gld,(R) < 1. O

Theorem 9.3. The following statements are equivalent for an integral domain R.
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(1) Risa 1-perfect domain.

(2) D CC, that is, every divisible module is a cotorsion module.

(3) Dy, CC, that is, every h-divisible module is a cotorsion module.

(4) Every factor module of a cotorsion module is a cotorsion module.

(5) Every pure submodule of a projective module is a projective module.
(6) The projective dimension of a flat module is at most 1.

Proof. (5) & (6) This is trivial.

(1) © (2) © (3) © (4) The proofs of these equivalences are similar to those of Theoremm

(1) = (5) Let A be a pure submodule of a projective module P. By Proposition [1.17} P/A is a flat
module. By Theorem pdr(P/A) < 1. Therefore A is a projective module.

(5) = (1) Let F be a flat module and let 0 > A — P — F — 0 be an exact sequence, where P is a
projective module. Thus A is a pure submodule of P. By hypothesis, A is a projective module. Thus
pdg(F) < 1. By Theorem|[6.16} R is a 1-perfect domain. O

Theorem 9.4. Let (RDTF, M) be a Milnor square. Then R is a 1-perfect domain if and only if both D
and T are 1-perfect domains.

Proof. Assume that both D and T are 1-perfect domains. Let A be a flat R-module and let 0 - B —
P — A — 0 be an exact sequence, where P is a projective R-module. Then T ®g A is a flat T-module
and D ®g A is a flat D-module. Since Torlf(T,A) = 0 and Torlf(R/M,A) = 0, it follows that both
0>T®RB—>T®RP—->TRA—>0and 0 > D®;B—> D®rP — D®rA — 0 are exact sequences.
Since both D and T are 1-perfect domains, T Qg B is a flat T-module and D ®g B is a flat D-module.
By Theorem [22], Theorem 8.2.3], B is a projective R-module. It follows that pd(A) < 1, and hence R
is a 1-perfect domain.

Conversely, assume that Ris a 1-perfect domain. Let Q be a flat T-module. Since F is a field, F®7 Q
is a free F-module. Therefore there exist a free D-module P and an isomorphism h: F®p P — FQ71 Q.
Construct a pullback A = (P, Q, h) over h. By [22, Theorem 8.2.2], A is a flat R-module, and DQgrA = P
and T ®r A = Q. Since R is a 1-perfect domain, pdz(M) < 1. Let 0 - A} - Ay - M — 0 be an
exact sequence, where Ay and A are projective R-modules. Since TorX(T,M) = 0, it follows that
0—->T®rA; = T®rAy— Q — 0is an exact sequence. Thus pd(Q) < 1. Therefore T is a 1-perfect
domain. Similarly we can prove that D is a 1-perfect domain. O]

Theorem 9.5. Let (RDTF,M) be a Milnor square. Then R is a Matlis domain if and only if T is a
Matlis domain.

Proof. Assume that T is a Matlis domain. Let 0 - B — P — K — 0 be an exact sequence, where P is
a projective R-module. Note that R and T have the common quotient field K, and D as an R-module
is a torsion module. Thus D®g K = 0 is a projective D-module. Similarly to the proof of Theorem[9.4]
it can be proved that B is a projective R-module. Thus pd;(K) < 1. Therefore R is a Matlis domain.
Conversely, assume that R is a Matlis domain. Againlet 0 - B — P — K — 0 be an exact sequence,
where P is a projective R-module. Then B is a projective R-module. Since TorX(T,K) = 0, we have
0->T®rB—->T®rP —T®r K=K — 0isan exact sequence. It follows that pd;(K) <1, and so T is
a Matlis domain. O
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9.2 Characterizations of almost perfect domains

Definition 9.6. A domain R is called an almost perfect domain if any nontrivial factor ring of R is a
perfect ring.

Theorem 9.7. Let R be an almost perfect domain. Then:
(1) dim(R) <1, that is, every nonzero prime ideal is maximal.

(2) R has finite character, that is, every nonzero x € R is contained in only finitely many maximal
ideals.

(3) If I is a nonzero ideal of R, then R/I contains a simple submodule.
(4) Ris a Matlis domain.

Proof. (1) Let p be a nonzero prime ideal of R. Then R/p is a perfect domain. Thus R/p is a field.
Therefore p is a maximal ideal of R.

(2) Since R/(x) is a perfect ring, it follows by [22, Theorem 3.10.22] that R/(x) is a direct product of
a finite number of local rings, and hence is a semilocal ring. Therefore x is contained in only finitely
many maximal ideals.

(3) Since R/I is a perfect ring, this follows from [22, Theorem 3.10.22].

(4) This follows from Theoremm O

Theorem 9.8. The following are equivalent for a domain R:
(1) Ris an almost perfect domain.
(2) FPD(R/(u)) = 0 for any nonzero nonunit u € R, in other words, R/(u) is a perfect ring.
(3) Every divisible module is an n-cotorsion module for any n > 2.
(4) Every h-divisible module is an n-cotorsion module for any n > 2.
(5) Every factor module of an n-cotorsion module is an n-cotorsion module for any n > 2.
(6) glde (R)<1foranyn>2.
(7) gld¢ (R) < 1.
(8) FPD(R) < 1.
(9) P, =P forany n > 1.
(10) Ris of finite character, and Ry, is an almost perfect domain for any maximal ideal m of R.
(11) gldg (R) <1
(12) D C(Cy, that is, every divisible module is 1-cotorsion.
(13) Dy, CCy, that is, every h-divisible module is 1-cotorsion.
(14) Every factor module of a 1-cotorsion module is 1-cotorsion.
(15) P = A.

(16) MC =C, that is, every Matlis cotorsion module is a cotorsion module.
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(17) (Bazzoni-Salce) F = SF, that is, every flat module is a strongly flat module.

Proof. We first prove that one step from (1) to (10) are equivalent, and one step from (11) to (17) are
equivalent. Then we prove that the two steps are equivalent.

The proof of (3)=(4)=(5)<(6) is similar to that of Theorem while for (6)=(7)<=(8), see
Theorem [Z.7]

(1)=(2) Trivial.

(2)=(1) Let I be a nonzero proper ideal of R. Take u € I with u # 0. By the hypothesis, R/(u) is a
perfect domain. Since R/I is a factor ring of R/(u), it follows from [22], Corollary 3.10.23] that R/I is
a perfect ring. Therefore R is an almost perfect domain.

(8)=(2) Let A be any nonzero R := R/(u)-module with pdgA < co. By [22, Theorem 3.8.13], pdzA =
pdzA + 1 < 1. Thus pdgA = 0. Therefore FPD(R) = 0.

(1)&(2)=(8) By Theorem R is a Matlis domain. Let M be an R-module with pdyM < oo.
We may assume that pdyM < 2. To prove that pdyM < 1, we will prove that for any R-module C,
Ext%(M,C) = 0.

Let 0 > B— F - M — 0 be an exact sequence, where F is a projective R-module. Thus pdzB < 1.
Taking any exact sequence 0 - A — P — B — 0, where P is a projective module, we know that
A is also a projective module. Note that B is a torsion-free module. Then there exists an exact
sequence 0 — A/uA — P/uP — B/uB — 0. By the hypothesis, FPD(R/uR) = 0. Hence B/uB is a
projective R/uR-module. By [22, Theorem 3.8.13], pdgB/uB < 1. Thus Extlze(B/uB,C) = 0. Since

0> B B— B/uB — 0 is an exact sequence, there is an exact sequence
Exth(B/uB, C) — Extk(B, C) = Extk(B, C) — Ext2(B/uB,C) = 0.

Thus Exty(B, C) = uBxtg(B, C), that is, Exty (B, C) is a u-divisible module. Since u is arbitrary, Exty(B, C)
is a divisible module. Hence Extlzz(M, C) is a divisible module. By Theoremm Ext%{(M, C)isaLee
cotorsion module. Thus Exty(K/R, Extlz{(M, C))=0.

For any free module F = ) R, we have natural isomorphisms

Hompg/(F,Ext3(M, C)) = [TExt%(M, C) = Ext4(F ®x M, C).

Since a K-vector space K ® M is isomorphic to a direct sum of copies of K, we have pdy(K ®r M) =
pdzK < 1. Therefore Ext;‘z(K ®rM,C)=0.Let 0 » F; —» Fy — K — 0 be an exact sequence, where F,
F; are free R-modules. Then we have the following commutative diagram with exact rows:

0 = Ext(K ®g M, C) — Ext3(Fy @z M, C) Ext3(F; @ M, C)

i - -

0 — Hompg(K, Ext%(M, C)) — Hompg(F, Ext4(M, C)) — Hompg(F;, Ext3(M, C))
Thus Hompg(K, Ext%{(M, C)) = 0. It follows from the exact sequence
0 = Homg(K,Ext(M, C)) — Hompg(R, Ext4(M, C)) — Extk(K/R,Ext4(M,C)) = 0,

that Ext(M, C) = 0.

(8)=(9) By the hypothesis, P, C P, for any n > 1, and thus P, = P;.

(9)=(8) This is trivial.

(1)=(10) By Theorem[9.7} R has finite character.

Let m be a maximal ideal of R and let I be a nonzero proper ideal of R. Then R/I is a perfect
ring. By [22, Theorem 3.10.22], R,/Iy = (R/I)y is a perfect ring. Therefore R, is an almost perfect
domain.
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(10)=(2) Let m € Max(R). Since Ry, is an almost perfect domain, dim(R,,) < 1. Thus dim(R) < 1.
Let u € R\ {0}. By the hypothesis, there are only finitely many maximal ideals my,..., m; containing
S

u. By Theorem8.28(5), R/(1) = P Ryy/Ryyu. Therefore R/(u) is a perfect ring.
i=1

The proof of (11)&(12)<(13)<(14) is similar to that of the above corresponding cases, while
(16)=(17) is trivial.

(11)=(15) Let M € F. By Theorem@‘ pdpM < gldc1 (R) < 1. Therefore M € P;.

(15)=(12) Since K € /; = P}, R is a Matlis domain. By Theorem [8.24, D = Dj,. Let D € D. Then
Extll{(M,D) =0 for any M € F; = P,. Therefore D € C;.

(15)=(6) Let M be a Matlis cotorsion module and let F be a flat module. Set Q = K®g F. Then Q
is a flat module, and A := Q/F € /4 = P;. Thus it follows from the exact sequence 0 = Extllz(Q,M) —
Ext}z(F,M) - Extlzz(A,M) = 0 that Extllz(F,M) = 0. Therefore M is a cotorsion module.

(17)=(12) Let M € F. Then there exists an exact sequence 0 - F - P - M — 0, where P is
a projective module. Thus F is a flat module. By the hypothesis, F is a strongly flat module. By
Theorem [8.13} F is a projective module. Therefore pdyM < 1.

(7)=(11) This follows immediately from Example[6.15]

(15)=(2) Let u be a nonzero nonunit of R and write R = R/(u). Let A be a flat R-module. By
(22, Theorem 3.8.15], fdrA < 1. By hypothesis, pdzA < 1. Thus there exists an exact sequence
0—>Q—>F—>A—0, where Q and F are projective R-modules. Since uA = 0, we have uP C Q.
Hence we have an R-module exact sequence 0 - B — F/uF — A — 0, where B = Q/uF, and exact
sequence 0 > A — Q/uQ - B— 0. Thus0 > A®B - Q/uQ@®P/uP - A®B — 0 is an R-module
exact sequence. Trivially B is a flat R-module. By [6, Theorem 2.5], A® B, and hence A is a projective

R-module. Hence R is a perfect ring, that is, FPD(R) = 0. O

Corollary 9.9. If R is an almost perfect domain, then R is a 1-perfect domain.

Theorem 9.10. Let R be a coherent domain. Then R is an almost perfect domain if and only if R is a
Noetherian domain with dim(R) < 1.

Proof. Assume that R is an almost perfect domain. For any nonzero nonunit u of R, we have R/(u)
is a coherent domain, and is a perfect ring. By [22, Theorem 4.1.10], R is an Artinian ring. By [22|
Theorem 4.3.20], R is a Noetherian ring. By Theorem[9.7, dim(R) < 1. The converse follows from [22,
Theorem 4.3.21] and Theorem [9.8} O

Theorem 9.11. Let (RDTF, M) be a Milnor square. Then R is an almost perfect domain if and only if
D is a field and T is an almost perfect domain.

Proof. Assume that D is a field and T is an almost perfect domain. Let A be a flat submodule of
a projective R-module P and write B = P/A. Thus fdgB<1and 0 - A — P — B — 0 is an exact
sequence. Since T is a torsion-free module, Torlf(T,B) =0. Thus0 > TQQrA—>TQ®rP—>T®zB—0
is an exact sequence. Hence T ®y A is a flat submodule of a projective T-module T ®x P. Since
FPD(T) < 1, it follows that T ® A is a projective T-module. Since D is a field, D ®g A is trivially a
projective D-module. By [22] Theorem 8.2.3], A is a projective R-module. Therefore FPD(R) < 1.

Conversely, assume that FPD(R) < 1. Since D = R/M is a proper factor ring of R, it follows that D
is a perfect domain, and so is a field. To prove that T is an almost perfect domain, it is sufficient to
show that foru e T, u #0, T/uT is a perfect domain. Take a € M, a # 0. Since auT C aT, the natural
homomorphism T/auT — T/uT is an epimorphism, and so we prove that T/auT is a perfect domain.
Thus we may assume that u € M. In this case, uT € M C R, and the commutative diagram

R/uT ——T/uT

l l

D F
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is a Cartesian square.

Let Q be a flat T/uT-module. Since F is a field, F ®1/, 1 Q is a free F-module. Thus there exist a
free D-module P and an F-isomorphism h: F®p P — F ®7/,7 Q. Construct a pullback A = (P,Q, h).
By [22, Theorem 8.2.2], A is a flat R/uT-module and (T/uT)®g/,v7 A = Q. Since R/uT is a perfect
ring, A is a projective R/uT-module. So Q is a projective T/uT-module. Therefore T/uT is a perfect
ring. O

9.3 Characterizations of Priifer domains and G-Dedekind domains

The Priifer domain is a natural extension of the Dedekind domain. Although there are many ways
to characterize Prifer domains, we now look at how to use cotorsion theories to characterize Priifer
domains.

Denote by FPZT the class of all FP-injective modules.

Theorem 9.12. The following are equivalent for a domain R:
(1) Ris a Prifer domain.
(2) C=WC, that is, each cotorsion module is Warfield cotorsion.
(3) D =FPI,thatis, every divisible module is FP-injective.
(4) D, € FPI, thatis, every h-divisible module is FP-injective.
(5) Every factor module of an FP-injective module is FP-injective.
(6) LC C FPI,thatis, every Lee cotorsion module is FP-injective.
(7) C4 € FPIL, thatis, every 1-cotorsion module is FP-injective.
(8) C; =Z, that is, every 1-cotorsion module is injective.

Proof. (1)=(2) By [22, Theorem 3.7.13], F =7 . Thus WC =C.

(2)=(1) By the hypothesis, WC =C. Thus 7 = YWC = 1C = F, that is, each torsion-free module is
flat. Therefore it follows from [22, Theorem 3.7.13] that R is a Prifer domain.

(1)=(3) Let I = (ay,...,ax) be a finitely generated ideal of R. Without loss of generality, we assume
that a; # 0. By the hypothesis, I is invertible. Thus there exist x;,...,x, € ! such that a;x; +---+agx; =
1. Let D be a divisible module and let f : I — D be a homomorphism. Then there exists y; € D such

k

that a;v; = f(a;), i = 1,...,k. Since a;x; € R, we have y = } a;x;y; € D. Then for any b € I, we have
i=1

bx; € R, and so

k k k k
f(b) = f(;1 bajx;) = ; bx;f(a;) = ;1 bajxjy; =b ; a;x;y; = by.

Define g: R — D by g(r) =ry,y € R. Then for any b e, g(b) = bg(1) = by = f(b). Thus Homg(R,D) —
Hompg(I, D) is an epimorphism. Therefore it follows by Exercise[24]that D is an FP-injective module.

(3)=(4) = (6) =(7) and (5)=(4) These are trivial.

(7)=(1) Let A be a torsion-free module. By Theorem A" is a 1-cotorsion module. By the
hypothesis, A* is an FP-injective module. Let M be a finitely presented module. Then Tork(M, A)* =
Exth(M,A*) = 0. Thus Torlf(M,A) = 0. Therefore A is a flat module. Hence it follows by [22], Theorem
3.7.13] that R is a Prifer domain.

(3)=(5) This follows from the fact that every FP-injective module over a domain is divisible.

(1)=(8) This follows from Theorem O

353
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Since the G-Dedekind domain is a generalization of the Dedekind domain, one can use divisibility
to characterize the G-Dedekind domain.

Theorem 9.13. Let R be a G-Dedekind domain. Then R is an almost perfect domain, and so a Matlis
domain.

Proof. This follows immediately from [22, Theorem 11.4.8] and Theorem O
Theorem 9.14. The following are equivalent for a domain R:

(1) Ris a G-Dedekind domain.

(2) Every divisible module is a G-injective module.

(3) Every h-divisible module is a G-injective module.

Proof. (1) = (2) Let D be a divisible module. Since R is a Matlis domain, D is an h-divisible module.
Thus there exists an exact sequence 0 —» X — E — D — 0, where E is an injective module. By [22]
Corollary 11.4.5], D is a G-injective module.

(2) = (3) This is trivial.

(3) = (1) For any module X, take an exact sequence 0 - X — E — D — 0, where E is an injective
module. By hypothesis, D is a G-injective module. Again by [22, Corollary 11.4.5], R is a G-Dedekind
domain. O]

Example 9.15. By Theorem every completely integrally closed valuation domain (valuation
domain with Krull dimension 1) is a Matlis domain. By [22, Theorem 8.6.2(2)] and Theorem 9.5
there exists a Matlis valuation domain with any Krull dimension.

Example 9.16. (1) An almost perfect domain is not necessarily a Dedekind domain. For example, set
R = Q+XR[[X]]. Note that R[[X]] is a DVR. By Theorem|[9.11} R is an almost perfect domain. By [22]
Theorem 8.5.17], R is not a coherent domain. Naturally R is not a Dedekind domain.

(2) A 1-perfect domain is not necessarily an almost perfect domain. For example, set R = Z +
XR[[X]]. By Theorem R is a 1-perfect domain. By Theorem R is not an almost perfect
domain.

(3) A Matlis domain is not necessarily a 1-perfect domain. For example, let D be a valuation
domain with gl.dim(D) = 3. Let F be the quotient field of D and set R = D + XF[X]. By Exercise[26} D
is not a 1-perfect domain. By Theorem[9.5] R is a Matlis domain. By Theorem[9.4} R is not a 1-perfect
domain.

10 Exercise
1. For any module M, the canonical homomorphism

p:M— M"™ =Hom(Hom(M,Q/Z),Q/Z)
is a pure monomorphism.

2. Let£:0— A — B— C — 0 be an exact sequence, where C is a finitely presented module. Then & is pure if
and only if £ is split.

3. Let M be an R-module and let I be an index set. Then M) is a pure submodule of M.

4. Let R be a PID and let A be a submodule of a module B. Then A is a pure submodule of B if and only if
ANrB=rA for any nonzero r € R.
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5. Let A and B be submodules of N such that A C B.
(1) If Bis a pure submodule of N, then B/A is a pure submodule of N/A.
(2) If Ais a pure submodule of N and B/A is a pure submodule of N/A, then B is a pure submodule of N.

6. If E is a pure injective module, then Homg(M, E) is a pure injective module for any R-module M.

7. Let £ be a class of modules. Then:
(1) LSH( L) N (L), (H(LE)*E =L+, and H((FL)H) =+L.
(2) LC(LT)Tand (LT)T)T =LT.

8. Let 0 > A — B — C — 0 be a pure exact sequence and let E be a pure injective module. Then
0 — Homg(C,E) — Hompg(B,E) — Hompg(A,E) — 0
is a split exact sequence.

9. Let R be a domain with quotient field K, let A, B be K-modules, and let f : A — B be an R-homomorphism.
Then f is also a K-homomorphism, and so Homg(A, B) = Homg (A, B).

10. If L is an FP-injective and pure injective module, then L is injective.

11. (1) Let {M;, ¢;;} be a direct system over a directed set I'. Then 0 > N — PM; - limM; — 0 is pure
exact. !
(2) Let £ be a class of modules which is closed under direct sums and pure quotient modules (i.e., if 0 —
B — C — 0is apure exact and B € £, then C € £). Then £ is closed under direct limits.

12. Let (A, B) be a Tor-torsion theory and let 0 > L — Q — N — 0 be a pure exact sequence. If M € A, then
L NeA

13. Let R be an integral domain. Then:
(1) Any direct sum of h-divisible modules is again h-divisible.

(2) If Ris not a field, then R is an h-reduced module.

14. An R-module A is called a strongly copure flat module if TorF(A, E) =0 for any injective R-module E and
any i > 1. Then every module has a strongly copure flat cover.

15. An R-module A is called a strongly copure injective module if Ext}'z(A,E) = 0 for any injective R-module
E and any i > 1. Then:

(1) Every module has a strongly copure injective special preenvelope.

(2) If Ris an n-Gorenstein ring, then every module has a G-injective special preenvelope.

16. Let R be a domain and let M be an R-module. If Dy, D, are divisible (resp., h-divisible) submodules of M,
then D; + D, is also a divisible (resp., an h-divisible) submodule of M.

17. Let R be a domain and let D be a pure injective R-module. Then the following are equivalent.
(1) D is a Lee cotorsion module.
(2) D is h-divisible.
(3) D is divisible.

18. Let L be a field and let R=L[Xq,..., Xy,...]| be a polynomial ring in countably infinite indeterminates, and
M =R/(Xy,...,X,,...). Then:

(1) fdgM = 0.

(2) Let -+ > F, > F,_1 > - > F] > F) > M — 0 be a flat resolution of M and let K,, be its n-th weak
syzygy. Then K,, is an (n + 1)-torsion-free module, but not an (n + 2)-torsion-free module.

(3) The above K;' is an (n + 1)-cotorsion module, but not an (n + 2)-cotorsion module.
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19. The following are equivalent for a module L.

(1) L is FP-injective.

(2) If L is a submodule of an R-module B, then L is a pure submodule of B (thus in many literature, an
FP-injective module is also called an absolutely pure module).

(3) L is a pure submodule of E(L).

20. A ring Ris called an IF ring if every injective R-module is flat. Then:
(1) Every QF ring is IE.
(2) Every IF ring R is coherent and FFD(R) = 0.
(3) If Ris a perfect ring which is also an IF ring, then R is a QF ring.

21. Let n be nonnegative integer. Then (P,, P;) is a hereditary complete cotorsion theory.

22. Let R be a domain. Then:

(1) Any direct sum of h-divisible modules is again h-divisible, and so any direct limit of h-divisible modules
over a directed set is also h-divisible.

(2) Let {D;} be a chain of a family of h-divisible submodules of a module M. Then | D; is also an h-divisible
submodule of M.

23. Let M be an R-module and set T := torgy(M). If ¢ : F —» M/T is a weak w-projective cover of M/T.
Consider a pullback diagram:

0 F F 0
H Jo o
0 T M © . M/T 0

Then o : F; — M is a weak w-projective cover of M.

24. Let R be a coherent domain. Then an R-module E is an FP-injective module if and only if ExtllQ(R/I ,E)=0
for any finitely generated ideal I of R, equivalently any homomorphism f : I — E can be extended to R for any
finitely generated ideal I of R

25. Let R be a domain and let M be an R-module. Then:
(1) M is a torsion h-divisible module if and only if M = K/R® Homg(K/R, M).
(2) M is a Warfield cotorsion module if and only if M is a Matlis cotorsion module and idgM < 1.

(3) M is a Lee cotorsion module if and only if M is an h-divisible Matlis cotorsion module.
26. Let R be a Prifer domain. Then R is a 1-perfect domain if and only if gl.dim(R) < 2.

27. Let ¢ : R — T be a ring homomorphism and let L be a cotorsion T-module. Then L is also a cotorsion
R-module.

28. Let £ be a class of modules which is closed under extensions. Consider the following commutative dia-
gram:

A -~

B
f;//h/ lg

X—M
¢

where A is a submodule of B and ¢ is an L-cover of M. If C := B/A € L, then there exists a homomorphism
h:B— X such that hep = g.

29. The following are equivalent for a domain R:

(1) Every h-divisible module is a Warfield cotorsion module.
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2) Every factor module of a Warfield cotorsion module is a Warfield cotorsion module.
3
4

The projective dimension of any torsion-free module is at most 1.

(2)
(3)
(4) Ris a Matlis domain with gl.dim(R) < 2.

(5) Every divisible module is a Warfield cotorsion module.
30. Let R be a domain and set H := Homg(K/R, K/R). Then:
(1) H is a commutative ring and H as an R-module is a torsion-free module.
(2) There exists an exact sequence 0 > R — H — ExtllQ(K,R) — 0.

(3) If each proper submodule of K/R is h-reduced, then H is a domain.

(4)

4) If R is a valuation domain, then H is also a valuation domain.

31. Let M be an R-module and A be a submodule of M. Then there exists a continuous ascending chain of
pure submodules of M:
A=MycM;CM,C---CM,CMy,1C----CM; =M

such that each M, /M, is countably generated.

32. Let A be a class of modules which is closed under w-isomorphisms, M be an R-module, and ¢ : P — M be
an A-cover. Then:

(1) If M is a GV-torsion-free module, then so is P.

(2) If @ is a special A-cove and M is a w-module, then P is a w-module.
33. Let F be an R-module. Then F is a w-flat module if and only if Extllz(F,N) =0forany N € F} nW.

34. Let 7y denote the class of GV-torsion modules and let M € 7y . Then:
(1) If M is a GV-torsion module and N is a submodule with N € 7gy+, then N is a direct summand of M.
(2) torgy(M) € Tgy™. Bspecially torgy(E) € Zgy ™ for any injective module E.
(3) Set T :=torgy(E(M)). Then T C M, and thus torgy (M) = torgy(E(M)).
(4)

4) If M is a GV-torsion module, then there exists an injective module E such that M = torgy(E).

35. Let M be an R-module and set E := E(M). Then the following are equivalent.
(1) MeTgy™
(2) torgy(E) €M and Exth(R/J,M) = 0 for any ] € GV(R).
(3) If Jx € M, where ] € GV(R) and x € E, then x € M.
(4)
(5) If J is an ideal of R with J,, = R, then ExtR(R/], )=

E/M is a GV-torsion-free module.

36. Let M be an R-module. Then M € 1\ if and only if M = P& T, where P is a projective module and T is a
GV-torsion module.

37. Let D := R[[X, Y]] and set R := D[Z]/(Z* - XY). Then:
(1) Risa 2-Gorenstein ring.
(2) Ris an integrally closed domain, and thus a Krull domain.
(3) gl.dim(R) = 2, and thus gl.dim(R) =

38. Let M be a GV-torsion-free R-module. Then M has a weak w-projective cover if and only if M, has a weak
w-projective cover. If B is a weak w-projective cover, then B is a GV-torsion-free R-module.

39. Let M be an R-module with w.w-pdy(M) = n > 0. Then there exists P € WPwﬁP,:S” such that Extp(M, P) # 0.



358 Moroccan Journal of Algebra and Geometry with Applications/F. Wang and H. Kim

40. Let £: 0 > A — B — C — 0 be a w-exact sequence and let E be an injective w-module. Then Homg(¢, E) is
an exct sequence.

41. Let £ : 0 > A — B — C — 0 be a w-exact sequence. Then ¢ is called a w-pure exact sequence if M Qg  is a
w-exact sequence for any module M. Let £ : 0 - A — B — C — 0 be a w-pure exact sequence, M an R-module,
E be an injective w-module. Then Homg(&, Homg(M, E)) is an exact sequence.

Let A be a class of modules. Define
w-AT ={DeMm| Torlf(A,D) is a GV-torsion module for any A € A}.
Let A, B be classes of modules. Then (A, B) is called a w-Tor-torsion theory if w-AT = B and w-BT = A.

42. Let & = (A, B) be a hereditary w-Tor-torsion theory. Then
(1) Set £ ={Hompg(B,E)|Be€ B and E is an injective w-module}. Then £ C A+,
(2) *L=A,and so +(A+) = A.
(3) (A, A1) is a perfect cotorsion theory.

(

4) Ais closed under direct limits.

43. Let & = (A, B) be a hereditary cotorsion theory and £ be a class of modules cogenerated by a w-module,
where N € £ satisfies: If £ is a w-pure exact sequence, then Hompg(&, N) is an exact sequence. Then

(1) Ais closed under direct limits.

(2) & is a perfect cotorsion theory.

Here we correct the errors in the authors’ book [22]]. The authors would like to thank all readers for pointing
out the error.

o (Jesse Elliott) There are some errors in [22, Section 5.7] on valuation methods in rings with zero-divisors.
Unfortunately [22, Theorem 5.7.4(2)] is wrong. R[, doesn’t have to be a pseudo-local ring. In fact, [p],
doesn’t have to be a maximal ideal. See [14, Example 7, p. 182]. The problem is that, if R isn’t Marot,
then R can have several maximal ideals containing the same regular elements, so just because [p],
contains all of the regular nonunits of R, doesn’t mean that [p],) is the unique regular maximal ideal
of Ry, (unless R is Marot). Consequently, [22, Proposition 5.7.13(1)] is also incorrect. This means that
the proof of [22, Theorem 5.7.21] should also be fixed, and there may also be other proofs that need to
be fixed.

Also, the relation > defined on [22} p. 315, line 1] isn't transitive in general and is therefore not an
equivalence relation. If we define v(x) < v(y) iff xz € p implies yz € p for all z € K, then < is a partial
ordering, but not necessarily a total ordering.

. 318: line -11, replace “subring” with “overring".

. 346: line 7, replace “Coker(f)" with “Coker(g)".

. 372: line 14, replace “F > M — C —» 0" with “F - M — 0".
430: line 3, add "Let R be an H-domain." after "(2)".

. 444: line 10, replace “over R" with “over T".

. 447: line 8, replace “of T" with “of T".

. 470: line -1, replace “F = P/Rp" with “F = Rp/PRp".

. 620: line 9, replace “Im(Py — P;)" with “Im(Py — P_;)".

e p. 632: line -14, replace “this L;" with “this L ".

[}

e pp. 685-691: During the editorial process of the publisher, the first letter of the person’s name in the
titles of articles in the References was erroneously changed to lowercase.
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