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1 Introduction

The generalized Fibonacci numbers Gi , i ≥ 0, with which we are mainly concerned in this paper, are
defined through the second order recurrence relation Gi+1 = Gi +Gi−1, where the seeds G0 and G1
need to be specified. As particular cases, when G0 = 0 and G1 = 1, we have the Fibonacci numbers,
denoted Fi , while when G0 = 2 and G1 = 1, we have the Lucas numbers, Li .

I. J. Good [4] proved the symmetry property:

Fq

n∑
k=1

(−1)k

GkGk+q
= Fn

q∑
k=1

(−1)k

GkGk+n
, (1)

where q and n are non-negative integers, and all the numbers G1, G2, . . . , Gn+q are non-zero.

The identity (1) is a particular case (corresponding to setting p = 1) of the following result, to be
proved in this present paper:

Fpq

n∑
k=1

(−1)pk

GpkGpk+pq
= Fpn

q∑
k=1

(−1)pk

GpkGpk+pn
, (2)

where q, p and n are non-negative integers, and all the numbers Gp, G2p, . . . , Gpn+pq are non-zero.

In the limit as n approaches infinity, and specializing to Fibonacci numbers, the identity (2) gives

∞∑
k=1

(−1)pk

FpkFpk+pq
=

1
Fpq

q∑
k=1

{
(−1)pk

Fpk
lim
n→∞

(
Fpn
Fpk+pn

)}

=
1
Fpq

q∑
k=1

(−1)pk

φpkFpk
,

(3)

where φ = (1 +
√

5)/2 is the golden ratio.
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The identity (3) generalizes the result of Bruckman and Good [3, Identity (19)], which corresponds
to setting q = 1 in (3)).

In sections 3.1 – 3.3 we will prove identity (2) and discover more symmetry properties of sums
involving generalized Fibonacci numbers.

Finally, in section 3.4 we shall extend the discussion to Horadam sequences Wi and Ui by proving

Upq

n∑
k=1

Qpk

WpkWpk+pq
=Upn

q∑
k=1

Qpk

WpkWpk+pn
(4)

and

U2pq

2n∑
k=1

(±Qp)k

WpkWpk+2pq
=U2pn

2q∑
k=1

(±Qp)k

WpkWpk+2pn
, (5)

for integers p, q, Q and n, thereby extending André-Jeannin’s result (Theorem 1 of [2]) and further
generalizing the identity (2).

2 Required identities

2.1 Telescoping summation identities

The following telescoping summation identities are special cases of the more general identities proved
in [1].

Lemma 2.1. If f (k) is a real sequence and u, v and w are positive integers, then
w∑
k=1

[f (uk +uv)− f (uk)] =
v∑
k=1

[f (uk +uw)− f (uk)] .

Lemma 2.2. If f (k) is a real sequence and u, v and w are positive integers such that v is even and w is
even, then

w∑
k=1

(±1)k−1 (f (uk +uv)− f (uk)) =
v∑
k=1

(±1)k−1 (f (uk +uw)− f (uk)) .

Lemma 2.3. If f (k) is a real sequence and u, v and w are positive integers such that vw is odd, then
w∑
k=1

(−1)k−1 (f (uk +uv) + f (uk)) =
v∑
k=1

(−1)k−1 (f (uk +uw) + f (uk)) .

2.2 Product of a Fibonacci number and a generalized Fibonacci number

Lemma 2.4 (Howard [6, Corollary 3.5]). For integers a, b, c,

FaG2b+a+c =

Fa+bGa+b+c −FbGb+c if a is even,
Fa+bGa+b+c +FbGb+c if a is odd.

2.3 Product of a Lucas number and a generalized Fibonacci number

Lemma 2.5 (Vajda [7, Formula 10a]). For integers a, b,

LaGb =

Gb+a +Gb−a if a is even,
Gb+a −Gb−a if a is odd.
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2.4 Difference of products of a Fibonacci number and a generalized Fibonacci number

Lemma 2.6 (Vajda [7, Formula 21]). For integers a, b,

FbGa −FaGb = (−1)aG0Fb−a .

3 Main Results: Symmetry properties

3.1 Sums of products of reciprocals

Theorem 3.1. If n and q are non-negative integers and p is a non-zero integer, then,

Fpq

n∑
k=1

(−1)pk

GpkGpk+pq
= Fpn

q∑
k=1

(−1)pk

GpkGpk+pn
.

Proof. Dividing through the identity in Lemma 2.6 by GaGb and setting b = pk + pq and a = pk, we
have:

Fpk+pq

Gpk+pq
−
Fpk
Gpk

= (−1)pk
G0Fpq

GpkGpk+pq
. (6)

Similarly,
Fpk+pn

Gpk+pn
−
Fpk
Gpk

= (−1)pk
G0Fpn

GpkGpk+pn
. (7)

We now use the sequence f (k) = Fk/Gk in Lemma 2.1 with u = p, v = q and w = n, while taking into
consideration identities (6) and (7).

Theorem 3.2. If n and q are non-negative even integers and p is a non-zero integer, then

Fpq

n∑
k=1

(±1)k(p−1)

GpkGpk+pq
= Fpn

q∑
k=1

(±1)k(p−1)

GpkGpk+pn
.

Proof. We use the sequence f (k) = Fk/Gk in Lemma 2.2 with u = p, v = q and w = n.

3.2 First-power sums

Theorem 3.3. If p, q, n and t are integers such that pqn is odd, then

Lpq

2n∑
k=1

(±1)k−1Gpk+pq+t = Lpn

2q∑
k=1

(±1)k−1Gpk+pn+t , (8)

Lpq

n∑
k=1

G2pk+pq+t = Lpn

q∑
k=1

G2pk+pn+t . (9)

Proof. Consider the generalized Fibonacci sequence f (k) = Gk+t. If we choose u = p, v = 2q and
w = 2n, then Lemma 2.2 gives

2n∑
k=1

(±1)k−1
(
Gpk+2pq+t −Gpk+t

)
=

2q∑
k=1

(±1)k−1
(
Gpk+2pn+t −Gpk+t

)
. (10)
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But from the second identity of Lemma 2.5 we have

Gpk+2pq+t −Gpk+t = LpqGpk+pq+t , pq odd , (11)

and
Gpk+2pn+t −Gpk+t = LpnGpk+pn+t , pn odd . (12)

Using (11) and (12) in (10), identity (8) is proved.

The proof of identity (9) is similar, we use the sequence f (k) = G2k+t in Lemma 2.1 with u = 2p,
v = q and w = n.

Theorem 3.4. If p, q, n and t are integers such that pqn is odd or q and n are even, then

Fpq

n∑
k=1

(−1)k−1G2pk+pq+t = Fpn

q∑
k=1

(−1)k−1G2pk+pn+t .

Proof. Consider the sequence f (k) = FkGk+t. If we choose u = p, v = q and w = n, then Lemma 2.3
gives

n∑
k=1

(−1)k−1
(
Fpk+pqGpk+pq+t +FpkGpk+t

)
=

q∑
k=1

(−1)k−1
(
Fpk+pnGpk+pn+t +FpkGpk+t

)
.

(13)

From the second identity of Lemma 2.4 we have

Fpk+pqGpk+pq+t +FpkGpk+t = FpqG2pk+pq+t , pq odd , (14)

and
Fpk+pnGpk+pn+t +FpkGpk+t = FpnG2pk+pn+t , pn odd . (15)

The theorem then follows from using (14) and (15) in (13). If q and n are even then we use f (k) =
FkGk+t with u = p, v = q and w = n in Lemma 2.2 together with the first identity of Lemma 2.4.

Theorem 3.5. If p, q, n and t are integers such that p is even or q and n are even, then

Fpq

n∑
k=1

G2pk+pq+t = Fpn

q∑
k=1

G2pk+pn+t .

Proof. Consider the sequence f (k) = FkGk+t. Lemma 2.1 with u = p, v = q and w = n gives
n∑
k=1

(
Fpk+pqGpk+pq+t −FpkGpk+t

)
=

q∑
k=1

(
Fpk+pnGpk+pn+t −FpkGpk+t

)
.

(16)

From the first identity of Lemma 2.4 we have

Fpk+pqGpk+pq+t −FpkGpk+t = FpqG2pk+pq+t , pq even , (17)

and
Fpk+pnGpk+pn+t −FpkGpk+t = FpnG2pk+pn+t , pn even . (18)

Using (17) and (18) in (16), Theorem 3.5 is proved.
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Theorem 3.6. If p, q, n and t are integers such that p is even, then

Fpq

2n∑
k=1

(±1)k−1Gpk+pq+t = Fpn

2q∑
k=1

(±1)k−1Gpk+pn+t .

Proof. Consider the sequence f (k) = FkGk+t. Lemma 2.2 with u = p, v = 2q and w = 2n gives

2n∑
k=1

(±1)k−1
(
Fpk+2pqGpk+2pq+t −FpkGpk+t

)
=

2q∑
k=1

(±1)k−1
(
Fpk+2pnGpk+2pn+t −FpkGpk+t

)
.

(19)

From identities (17) and (18) we have

Fpk+2pqGpk+2pq+t −FpkGpk+t = F2pqG2pk+2pq+t , (20)

and
Fpk+2pnGpk+2pn+t −FpkGpk+t = F2pnG2pk+2pn+t . (21)

Using (20) and (21) in (19), Theorem 3.6 is proved.

Theorem 3.7. If p, q, n and t are integers such that p is even and nq is odd, then

Lpq

n∑
k=1

(−1)k−1G2pk+pq+t = Lpn

q∑
k=1

(−1)k−1G2pk+pn+t ,

Proof. Consider the sequence f (k) = G2k+t. If we choose u = 2p, v = q and w = n, then Lemma 2.3
gives

n∑
k=1

(−1)k−1
(
G2pk+2pq+t +G2pk+t

)
=

q∑
k=1

(−1)k−1
(
G2pk+2pn+t +G2pk+t

)
, nq odd .

(22)

From the first identity in Lemma 2.5, we have

G2pk+2pq+t +G2pk+t = LpqG2pk+pq+t , pq even , (23)

and
G2pk+2pn+t +G2pk+t = LpnG2pk+pn+t , pn even . (24)

Using (23) and (24) in (22), Theorem 3.7 is proved.

3.3 More sums involving products of reciprocals

Theorem 3.8. If p, q, n and t are positive integers such that pnq is odd, then

Lpq

2n∑
k=1

(±1)k−1Gpk+pq+t

Gpk+tGpk+2pq+t
= Lpn

2q∑
k=1

(±1)k−1Gpk+pn+t

Gpk+tGpk+2pn+t
, (25)

Lpq

n∑
k=1

G2pk+pq+t

G2pk+tG2pk+2pq+t
= Lpn

q∑
k=1

G2pk+pn+t

G2pk+tG2pk+2pn+t
. (26)
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Proof. Use of f (k) = 1/Gk+t in Lemma 2.2 with u = p, v = 2q and w = 2n, noting the identites (11)
and (12) proves identity (25). To prove identity (26), we use f (k) = 1/G2k+t in Lemma 2.1 with u = p,
v = q and w = n, together with the second identity in Lemma 2.5.

Theorem 3.9. If p, q, n and t are positive integers such that p is even and nq is odd, then

Lpq

n∑
k=1

(−1)k−1G2pk+pq+t

G2pk+tG2pk+2pq+t
= Lpn

q∑
k=1

(−1)k−1G2pk+pn+t

G2pk+tG2pk+2pn+t
.

Proof. Use f (k) = 1/G2k+t in Lemma 2.3 with u = p, v = q and w = n, employing the identities (23)
and (24).

Theorem 3.10. If p, q, n and t are positive integers such that p is even or n and q are even, then

Fpq

n∑
k=1

G2pk+pq+t

FpkGpk+tFpk+pqGpk+pq+t
= Fpn

q∑
k=1

G2pk+pn+t

FpkGpk+tFpk+pnGpk+pn+t
.

Proof. Use f (k) = 1/(FkGk+t) in Lemma 2.1 with u = p, v = q and w = n, while taking cognisance of
the following identities which follow from identities (17) and (18):

1
FpkGpk+t

− 1
Fpk+pqGpk+pq+t

=
FpqG2pk+pq+t

FpkGpk+tFpk+pqGpk+pq+t
, pq even , (27)

and
1

FpkGpk+t
− 1
Fpk+pnGpk+pn+t

=
FpnG2pk+pn+t

FpkGpk+tFpk+pnGpk+pn+t
, pn even . (28)

Theorem 3.11. If p, q, n and t are positive integers such that p is odd or n and q are even, then

Fpq

n∑
k=1

(−1)k−1G2pk+pq+t

FpkGpk+tFpk+pqGpk+pq+t
= Fpn

q∑
k=1

(−1)k−1G2pk+pn+t

FpkGpk+tFpk+pnGpk+pn+t
.

3.4 Symmetry properties of finite sums involving the terms of the Horadam sequence

Some of the above results can be extended to the Horadam sequence [5], {Wi} = {Wi(a,b;P ,Q)} defined
by

W0 = a,W1 = b,Wi = PWi−1 −QWi−2 , (i > 2) , (29)

where a, b, P , and Q are integers, with PQ , 0 and ∆ = P 2 − 4Q > 0. We define the sequence {Ui}
(Lucas sequence of the first kind) by Ui = Wi(0,1;P ,Q) and note also that our sequence {Gi} is given
by Gi =Wi(G0,G1;1,−1). It is readily established that [5, 2]:

Wi =
Aαi −Bβi

α − β
, (30)

where α = (P +
√
∆)/2, β = (P −

√
∆)/2, A = b − βa and B = b −αa.

Theorem 3.12. If n and q are non-negative integers and p is a non-zero integer, then

Upq

n∑
k=1

Qpk

WpkWpk+pq
=Upn

q∑
k=1

Qpk

WpkWpk+pn
.
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Note that when p = 1, Theorem 3.12 reduces to Theorem 1 of [2].

Proof. Since n and k in identity (4.1) of [2] are arbitrary non-negative integers, we substitute pk for n
and pq for k in the identity, obtaining

βpk

Wpk
−
βpk+pq

Wpk+pq
=

AQpkUpq
WpkWpk+pq

. (31)

The theorem now follows by choosing f (k) = βk/Wk in Lemma 2.1 with w = n, u = p and v = q while
making use of (31).

Theorem 3.13. If n and q are non-negative even integers and p is a non-zero integer, then

Upq

n∑
k=1

(±Qp)k

WpkWpk+pq
=Upn

q∑
k=1

(±Qp)k

WpkWpk+pn
.

Proof. The statement of the theorem follows from choosing f (k) = βk/Wk in Lemma 2.2 with w = n,
u = p and v = q, while making use of (31).
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