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Abstract. A right R-module M is called a D4-Module if for any two direct summands A and B of M with M = A+B and

M/A �M/B, we have A∩B ⊆⊕ M. The module M is called a Dual-Utumi-Module (DU -module) if M is a D4-module and

for any two proper submodules A and B of M with M/A �M/B and A+B = M, both A and B lie over direct summands of

M. The notion of DU -modules is a simultaneous and strict generalization of both the quasi-discrete as well as the dual-

square-free modules. In this paper, we study the modules whose factors are DU -modules (D4-modules), extending some

of the known results on quasi-discrete modules and obtaining new ones.
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1 Introduction

In [23], Osofsky showed that rings whose cyclic modules are injective are precisely the semisimple
artinian rings. Subsequently, and motivated by Osofsky’s result, several authors studied the rings
whose cyclic modules are quasi-injective, quasi-continuous, auto-invariant, or extending. In [11],
the notion of Utumi modules (U -modules for short) was introduced as a strict and simultaneous
generalization of the quasi-continuous, auto-invariant and square-free modules. In [16], rings whose
cyclics are U -modules were introduced and thoroughly investigated, extending many of the known
results on the subject and providing new ones. Dually, in [13], the notion of Dual-Utumi modules
(DU -modules for short) was introduced as a strict and simultaneous generalization of the quasi-
discrete, pseudo-discrete and dual-square-free modules. In [5], an attempt was made to study the
rings whose cyclic modules are DU -modules. In this paper, we investigate thoroughly the rings R
whose cyclic right R-modules are DU -modules (CDU -rings for short).

We start our work in section 2, by investigating the more general notions ofD4- and FD4-modules,
where a right R-moduleM is calledD4 if, wheneverA1 andA2 are submodules ofM withM = A1⊕A2
and f : A1 → A2 is an R-homomorphism with Imf ⊆⊕ A1, we have kerf ⊆⊕ A2. The module M is
called FD4-module if every factor of M is a D4-module. In section 3, we provide an interesting
decomposition for FD4-modules. More precisely, we prove in Theorem 3.1, that if M is an FD4-
module whose local summands are summands, then M =Q⊕P where Q is a summand-dual-square-
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free, P = D ⊕A⊕B is semisimple with A � B, and D embeds in A⊕B, P and Q are factor-orhogonal,
Hom(Q,P ) = 0, and if g ∈Hom(P ,Q), then Img �Q.

In section 4, we turn our attention to the rings whose cyclics are DU -modules, which is the main
topic of this paper. We start by considering the more general notion of FDU -modules, where M is
called FDU -module if every factor of M is a DU -module. We prove in Theorem 4.5, that M is an
FDU -module iff whenever M = A + B with M/A � M/B, then A ∩ B ⊆⊕ M, iff every epimorphism
f : M −→ N2 splits, where N2 := N ⊕N . In Theorem 4.12, we show that if M is an FDU -module
whose local summands are summands, then M =Q⊕P , where Q and P retain the same properties as
those in the above mentioned decomposition of FD4-modules with the additional attribute that Q is
indeed a dual-square-free module.

Throughout, all rings R are associative with unity and all modules are unitary R-modules. For a
module M, we use rad(M), E(M) and End(MR) to denote the Jacobson radical, the injective hull and
the endomorphism ring of M, respectively. If M = R, we write J(R) = rad(R). We write N ⊆M if N is
a submodule of M, N ⊆ess M if N is an essential submodule of M, N ⊆⊕M if N is a direct summand
of M, and N �M if N is a small submodule of M. A submodule N of M is called proper if N $M.
An element a of R is called proper if aR is a proper submodule of RR. A submodule N of a right
R-moduleM is said to lie over a direct summand ofM if, there is a decompositionM =M1⊕M2 with
M1 ⊆N and N ∩M2�M.

2 Rings whose cyclics are D4-modules

In [6], the notion of C4-modules was introduced as a strict and simultaneous generalization of the
well-known C3- and square-free modules, where a right R-moduleM is called a C4-module if, when-
ever A1 and A2 are submodules of M with M = A1⊕A2 and f : A1→ A2 is an R-homomorphism with
kerf ⊆⊕ A1, we have Imf ⊆⊕ A2. Dually, in [7], a right R-module M is called a D4-Module if, when-
ever A1 and A2 are submodules of M with M = A1 ⊕ A2 and f : A1 → A2 is an R-homomorphism
with Imf ⊆⊕ A1, we have kerf ⊆⊕ A2. The notion of D4-modules is a strict and simultaneous gener-
alization of both the D3- and the dual-square-free modules. The next lemma was established in [7,
Theorem 2.2] and will be used frequently throughout the paper.

Lemma 2.1. The following statements are equivalent for a module M:

1. M is a D4-module.

2. If A and B are submodules of M with A ⊆ B and M/B � A ⊆⊕M, then B ⊆⊕M.

3. If A and B are submodules of M with M = A+B, A ⊆⊕M and M/A �M/B, then A∩B ⊆⊕M.

4. If A and B are direct summands of M with M = A+B and M/A �M/B, then A∩B ⊆⊕M.

5. If A and B are submodules of M with M = A+B, A ⊆⊕M and M/A �M/B, then B ⊆⊕M.

6. IfM = A⊕A′ = B⊕B′ = A+B = A+B′, where A,A′ ,B and B′ are submodules ofM, then A∩B ⊆⊕M.

7. If A and B are direct summands of M with M = A+B and A � B, then A∩B is a direct summand of
M.

Definition 2.2. A right R-module M is called an FD4-module, if every factor of M is a D4-module.
A ring R is called a right CD4-ring if R, as a right R-module, is an FD4-module.

Remark 2.3. Observe that since any factor module of a summand of M is again a factor of M, it is
not difficult to prove that every direct summand of an FD4-module is again an FD4-module.
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Proposition 2.4. Let M be a right FD4-module. If N = A⊕B is a factor module of M with A � B, then N
is semisimple. In particular, if M = A⊕B is a right FD4-module with A � B, then M is semisimple.

Proof. Let K be a submodule of A. By the hypothesis, since the factor module A
K ⊕A �

A
K ⊕B �

A⊕B
K is

a D4-module, the natural epimorphism A −→ A/K splits; that is K ⊆⊕ A. This shows that the module
A is semisimple, and since A � B, it follows thatN = A⊕B is semisimple.

Recall that two right R-modulesM andN are called (summand-)orthogonal, if they do not contain
non-zero isomorphic (summands) submodules. The modules M and N are called factor-orthogonal
if, no nonzero factor module of M is isomorphic to a factor module of N .

Lemma 2.5. IfM = A⊕B is a D4-module with A semisimple, then the following conditions are equivalent:

1. A and B are factor-orthogonal.

2. A and B are summand-orthogonal.

Proof. 1⇒ 2. Clear.

2⇒ 1. Let A
K

σ
� B
L be an isomprphsim, where K ⊆ A and L ⊆ B. Since A is semisimple, K ⊆⊕ A, and

so K ⊕B ⊆⊕M. Clearly, M = A⊕B = (K ⊕B) + (L⊕A) with

M
K ⊕B

�
A
K
�
B
L
�

M
L⊕A

Since M is a D4-module, we infer from Lemma 2.1, that L⊕A ⊆⊕ M. Consequently, L ⊆⊕ B. Since A
and B are summand-orthogonal, K = A and L = B, as required.

The above lemma can be strengthened if we assume that the module M to be an FD4-module.

Lemma 2.6. If M = A⊕B is an FD4-module, then the following conditions are equivalent:

1. A and B are factor-orthogonal.

2. A and B are summand-orthogonal.

Proof. 1⇒ 2. Clear.

2 ⇒ 1. Let A
K

σ
� B

L be an isomprphsim. Since A
K ⊕ A � B

L ⊕ A � A⊕B
L is a D4-module, the natural

epimorphism A −→ A/K splits; that is K ⊆⊕ A. Similarly, L ⊆⊕ B. Since A and B are summand-
orthogonal, K = A and L = B, as required.

A module M is called square-free (SF-module) if it contains no non-zero isomorphic submodules
A and Bwith A∩B = 0. The moduleM is called summand-square-free (SSF for short) if the submod-
ules A and B are summands of M. Dually, M is called dual-square-free (DSF) if M has no proper
submodules A and B with M = A + B and M/A � M/B. The module M is called summand-dual-
square-free (SDSF for short) if the submodules A and B are summands of M. A ring R is called right
DSF-ring (SDSF-ring), if it is a DSF-module (SDSF-module) as a right R-module. Clearly, every
DSF-module is a D4-module.

Corollary 2.7. If M =Q⊕ P is both an SDSF- and an FD4-module, then P and Q are factor-orthogonal.

Proposition 2.8. Let M = A⊕B is an FD4-module and h : A −→ B be a non-zero homomorphism. Then
the following hold:

1. Either Imh� B or there exist two non-zero direct summands K ⊆⊕ A and L ⊆⊕ B with K � L.
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2. If M is an SDSF-module, then Imh� B.

3. If A and B are indecomposable, then either Imh� B or A � B.

4. If A and B are indecomposable and rad(M) = 0, then A � B and M is semisimple.

Proof. (1) If we assume to the contrary that Imh is not small in B, then there exists a proper submod-
ule L ⊆ B with Imh+L = B. Now, the following epimorphism

A
h−→ Imh

η
−→ Imh

Imh∩L
θ
�
B
L
→ 0

induces the isomorphism A
kerθηh � B/L. Therefore, both B⊕B/L and A⊕ A

kerθηh are factor modules

of M = A⊕B. By the hypothesis, both B⊕B/L and A⊕ A
kerθηh are D4-modules. This implies that both

of the natural epimorphisms B −→ B/L and A −→ A
kerθηh split. That is L ⊆⊕ B and kerθηh ⊆⊕ A. Write

B = L⊕E and A = kerθηh⊕C, for submodules E ⊆ B and C ⊆ A. Clearly, E � C and both are nonzero,
as required.

(2) & (3). Clear from (1).
(4). Follows from (3) and Proposition 2.4.

Corollary 2.9. Let e and f be indecomposable orthogonal idempotents of a right CD4-ring R. If h : eR −→
f R is an R-homomorphism, then either h is an isomorphism or Imh� f R. In particular, if rad(R) = 0 and
h is non-zero, then eR � f R.

Proof. Since eR and f R are orthogonal direct summands, eR⊕ f R = (e + f )R is a direct summand of
R. Therefore, N := eR⊕ f R is a right FD4-module with rad(N )� N . Now the result follows directly
from Proposition 2.8. The last statement is clear.

Since the class of DSF-modules is closed under factors, and every DSF-module is a D4-module,
the next corollary is an immediate consequence of Proposition 2.8 above and extends [12, Corollary
2.19].

Corollary 2.10. If M = A⊕B is a right FD4- and an SDSF-module with rad(M) = 0, then Hom(A,B) =
Hom(B,A) = 0. In particular, if M = A⊕B is a DSF-module then Hom(A,B) =Hom(B,A) = 0.

A ring R is called abelian if all of its idempotents are central.

Lemma 2.11. [11, Lemma 3.20] If e is a non-central idempotent of a ring R, then either eR or (1− e)R is
not a two-sided ideal of R.

Proposition 2.12. If R is both a right CD4- and a right SDSF-ring with J(R) = 0, then R is abelian.

Proof. Assume to the contrary that R is not abelian, and let e ∈ R be a non-central idempotent of R. By
Lemma 2.11, either eR or (1−e)R is not a two-sided ideal of R. Without loss of generality, assume that
eR is not a two sided ideal of R. Therefore, Re * eR and (1−e)Re , 0. Let 0 , (1−e)ae ∈ (1−e)Re, a ∈ R,
and define h : eR −→ (1−e)R by h(er) = (1−e)aer, for all r ∈ R. Clearly h is a non-zero homomorphism,
a clear contradiction to Corollary 2.10 above.

Corollary 2.13. If R is a right CD4-ring such that R/J is a right SDSF-ring, then R/J is abelian. In
particular if R is a right DSF-ring, then R/J is abelian.
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A ring R is called I-finite, if it contains no infinite sets of orthogonal idempotents. A non-zero
idempotent e of a ring R is called primitive if eRe has no non-trivial idempotents, equivalently, (eR)R
is indecomposable. A non-zero idempotent e of a ring R is called local if eRe is a local ring. Clearly,
every local idempotent is primitive. A ring R is called semiperfect if 1 is the sum of local orthogonal
idempotents; equivalently if R/J(R) is semisimple artinian and idempotents lift modulo J(R). Every
primitive idempotent of a semiperfect ring is local.

Lemma 2.14. Let R = R1 ×R2 × · · · ×Rn be a finite direct product of rings. Then R is a right CD4-ring if
and only if every Ri is a right CD4-ring.

Proof. Routine.

Proposition 2.15. Let R be an I-finite ring with J(R) = 0. Then R is a right CD4-ring if and only if
R = R1 ×R2, where R1 is a semisimple artinian ring and R2 is a finite direct product of right CD4-rings
with no nontrivial idempotents

Proof. The sufficiency follows from Lemma 2.14. For the necessity, let R be a right CD4-ring. Since
R is I-finite, RR has an indecomposable decomposition R = e1R⊕ e2R⊕ · · · ⊕ enR, where the set {ei}ni=1
consists of pairwise orthogonal primitive idempotents. Let [etR] = ⊕i∈It {eiR : eiR � etR}. Renumber-
ing if necessary, we may write R = [e1R]⊕ [e2R]⊕ · · · ⊕ [ekR]. Clearly each homogeneous component
[etR] = eR for some idempotent e of R, and R = eR ⊕ (1 − e)R where (1 − e)R = ⊕k,t[ekR]. We claim
that each [etR] is a two-sided ideal of R. Assume to the contrary that the following homogeneous
component [eiR] = eR is not a two-sided ideal of R. In this case, Re * eR and (1 − e)Re , 0. Let
0 , (1 − e)ae ∈ (1 − e)Re and define h : eR −→ (1 − e)R by h(er) = (1 − e)aer. Clearly h is a non-zero
R-homomorphism, and so h(ejR) , 0 for some j ∈ I . Let g := h|ejR : ejR −→ (1 − e)R. Now, since
(1− e)R = ⊕k,t[ekR], there is an s , t such that if πs : (1− e)R −→ [esR] is the natural projection map,
then α := πsg : ejR→ [esR] is a non-zero R-homomorphism. Again, if [esR] = ⊕i∈Is {eiR : eiR � esR},

there is an r ∈ Is such that β := ηrh : ejR
α−→ [esR]

ηr−→ erR is a non-zero R-homomorphism, where
ηr : [esR]→ erR is the natural projection. Now, since J(R) = 0, we infer from Corollary 2.9 that the
map β : ejR→ erR is an isomorphism, a clear contradiction. This shows that eR = [eiR] is a two-sided
ideal of R, proving the claim. Now, if [eiR] contains more than one direct summand, then by Propo-
sition 2.4, [eiR] is a semisimple artinian ring. If [eiR] consists of exactly one direct summand, then
[eiR] = eiR = eiRei is a right CD4-ring with no nontrivial idempotents, completing the proof.

Corollary 2.16. Let R be an I-finite ring such that idempotents lift modulo J(R). Then R̄ := R/J is a right
CD4-ring if and only if R̄ = R1×R2, where R1 is a semisimple artinian ring and R2 is a finite direct product
of right CD4-rings with no nontrivial idempotents.

Proof. Since R is an I-finite ring with idempotents lift modulo J , R/J is an I-finite ring. Hence the
result follows from Corollary 2.16.

3 A Decomposition Theorem For FD4-Modules

Recall that a local summand of a module M is a direct sum L := ⊕i∈IXi of submodules of M such that
⊕i∈FXi is a summand ofM for any finite subset F of I . A moduleM is said to satisfy the (full) internal
exchange property if for every internal direct sum decomposition M = ⊕i∈IMi and every summand
N ⊆⊕M, there exist submodules M ′i ⊆Mi , i ∈ I , such that M = ⊕i∈IM ′i ⊕N .

Theorem 3.1. Let M be a right FD4-module whose local summands are summands. Then M =Q⊕P
where
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1. Q is an SDSF-module.

2. P =D ⊕A⊕B is semisimple with A � B, and D embeds in A⊕B.

3. P and Q are factor-orthogonal.

4. Hom(Q,P ) = 0.

5. If f ∈Hom(P ,Q), then Imf �Q.

Proof. Consider the set

z = {(A,B,f ) : A⊕B ⊆⊕MandA
f
� B}.

Order z as follows: (A,B,f ) 6 (C,D,g) if A ⊆ C, B ⊆ D and g extends f . Clearly, z is a non-empty
inductive set. Let (A1,B1, f1) 6 (A2,B2, f2) 6 · · · be a chain of elements in z. Since local summands of
M are summands, we infer, from [20, Lemma 2.16], that ∪i∈IAi , ∪i∈IBi and ∪i∈IAi ⊕ ∪i∈IBi = ∪i∈I (Ai
⊕Bi) are direct summands ofM. Now, if we define f : ∪i∈IAi −→∪i∈IBi by f (a) = fi(a) if a ∈ Ai , then f
is an isomorphism that extends fi , i ∈ I . Therefore, < ∪i∈IAi ,∪i∈IBi , f > is an upper bound of the given
chain, and by Zorn’s Lemma, z has a maximal element < A,B,f >, say. Write M = K ⊕A⊕B = K ⊕ L,
where L := A ⊕ B and K ⊆ M. By Proposition 2.4, clearly L is semisimple. We claim that K is an
SDSF-module. Otherwise, there exist two proper direct summands X and Y of K with K = X + Y
and K/X � K/Y . Since direct summands of D4-modules are again D4, it follows from Lemma 2.1
that X ∩ Y ⊆⊕ K . Write, K = (X ∩ Y )⊕ T , for a submodule T ⊆ K . Clearly, X = (X ∩ Y )⊕ (X ∩ T ) and
Y = (X∩Y )⊕(Y ∩T ). Also, K = X+Y = [(X∩Y )⊕(X∩T )]+[(X∩Y )⊕(Y ∩T )] = (X∩Y )⊕(X∩T )⊕(Y ∩T ).

Now, (X ∩ T ) � K/[(X ∩ Y )⊕ (Y ∩ T )] = K/Y � K/X = K/[(X ∩ Y )⊕ (X ∩ T )] � (Y ∩ T ). Let (X ∩ T )
g
�

(Y ∩ T ) be such an isomorphism. If we define:

α : [(X ∩ T )⊕A] −→ [(Y ∩ T )⊕B]

by α(x + a) = g(x) + f (a) for all x ∈ (X ∩ T ) and a ∈ A, then α is a well-defined isomorphism. Now, if
we set V = (X ∩ T )⊕A and W = (Y ∩ T )⊕B, then:

M = K ⊕A⊕B = (X ∩Y )⊕ (X ∩ T )⊕ (Y ∩ T )⊕A⊕B = (X ∩Y )⊕V ⊕W.

This shows that V ⊕W ⊆⊕ M. Inasmuch as V �W , we infer that (V ,W ,α) ∈ z. But since (A,B,f ) 6
(V ,W ,α), we infer from the maximality of (A,B,f ), that (X ∩ T )⊕A = A and (Y ∩ T )⊕B = B. But this
implies that (X ∩ T ) = (Y ∩ T ) = 0, which in turn gives X = X ∩Y = Y = K , a contradiction. So far, we
have proved that M = K ⊕L, where K is an SDSF-module and L := A⊕B is semisimple.

Now, consider the set:

Ω = {(C,D,h) : C ⊆⊕ K ,D ⊆⊕ L andC
h
�D}.

Order Ω as follows: (C,D,h) 6 (C1,D1,h1) if C ⊆ C1, D ⊆ D1 and h1 extends h. Clearly, Ω is a
non-empty inductive set. Again with an argument similar to the one provided in the first part of the
proof we can show that every chain of elements in Ω has an upper bound, and so by Zorn’s lemma,
Ω has a maximal element (C,D,h), say. Write M = Q ⊕C ⊕A⊕ B where K = Q ⊕C and Q ⊆M. Set
P = C ⊕A⊕B. Clearly, Q is an SDSF-module; and since C � D ⊆⊕ A⊕B, we infer that P = C ⊕A⊕B
is semisimple, completing the proof of both (1) & (2).

Next, we will show that Q and P are factor-orthogonal. By the Lemma 2.6, we only need to show
that Q and P are summand-orthogonal. To see this, let X � Y with X ⊆⊕ Q and Y ⊆⊕ P . Write,
L = A⊕ B = D ⊕ E for a submodule E of L. Thus P = C ⊕D ⊕ E with C � D. Since P is an exchange
module, it satisfies the internal exchange property, and so we can write P = Y ⊕C1 ⊕D1 ⊕ E1 where
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C = C1⊕C2,D =D1⊕D2 and E = E1⊕E2. Clearly, Y � C2⊕D2⊕E2, and so we can write Y = YC⊕YD⊕YE
with YC � C2 YD � D2 and YE � E2. Since C � D, we can also write C = C3 ⊕C4 with YD � D2 � C3.
Now, as X � Y , write X = XC ⊕XD ⊕XE with XC � YC � C2, XD � YD � D2 � C3 and XE � YE � E2.
Since XC and C2 are isomorphic direct summands of the SDSF-module K = Q ⊕ C, it follows that
XC = C2 = 0. Similarly, XD = C3 = 0. Therefore, XC = YC = C2 = XD = YD = D2 = C3 = 0, from which

it follows that X = XE , Y = YE , C = C1 and D = D1. Now, since X � E2 and C
h
� D, there is an obvious

isomorphism g : X ⊕C → E2 ⊕D extending h. Inasmuch as X ⊕C ⊆⊕ K and E2 ⊕D ⊆⊕ L, it follows
that (X ⊕C,E2 ⊕D,g) ∈Ω. Now, since (C,D,h) is a maximal element of Ω, we must have X ⊕C = C,
and so X = 0, completing the proof of (3).

Now, to establish (4), let g :Q −→ P be a homomorphism. Therefore,Q/ kerg � Img ⊆⊕ P since P is
semisimple. SoQ/ kerg � P /T for a submodule T of P . Since P andQ are factor orthogonal, kerg =Q
and hence g = 0, as required.

Finally, to prove (5), let f ∈ Hom(P ,Q) and assume to the contrary that Imf is not small in Q. Let
L be a proper submodule ofQ withQ = Imf +L. Clearly, QL �

Imf
Imf ∩L and so the obvious epimorphism

P −→ Imf −→ Imf
Imf ∩L �

Q
L → 0 induces an isomorphism P

K � Q
L for some submodule K of P , a clear

contradiction to (3). This shows that Imf �Q, as required.

Corollary 3.2. Let M be a right FD4-module whose local summands are summands. If rad(M) = 0, then
in addition to the aforementioned decomposition of M in Theorem 3.1 above, we also have Hom(P ,Q) = 0.

Corollary 3.3. LetM be a right FD4-module whose local summands are summands. IfM is a C4-module,
then in addition to the aforementioned decomposition of M in Theorem 3.1 above, we also have Q is an
SSF-module and Hom(P ,Q) = 0.

Proof. Since M is a C4-module, Q is a C4-module. Inasmuch as Q is both a C4- and an SDSF-
module, we infer form [2, Proposition 5.13], that Q is an SSF-module. Now, let f ∈ Hom(P ,Q).
Since P is semisimple, kerf ⊆⊕ P and so Imf � T ⊆⊕ P . Since M is a C4-module, Imf ⊆⊕ Q. By (3)
of Theorem 3.1, Imf = T = 0, and so Hom(P ,Q) = 0, as required.

Corollary 3.4. Let R be a ring. If R/J is a right CD4-ring whose local summands are summands, then R/J
is a direct product if a semisimple artinian ring and a right SDSF-ring.

4 Rings whose cyclics are DU -modules

In [11], a right R-module M is called U -module (after the well-known mathematician Utumi) if,
whenever A and B are submodules of M with A � B and A∩B = 0, there exist two summands K and
T of M such that A ⊆ess K , B ⊆ess T and K ⊕ T ⊆⊕ M. A ring R is called a right U -ring if RR is a
U -module. In [16], a ring R is called right CU -ring if every cyclic right R-module is a U -module.

In [13], a right R-module M is called Dual-Utumi module (DU -module for short) if, for any two
proper submodules A and B of M with M/A �M/B and A+B =M, there exist two summands K and
L of M such that A lies over K , B lies over L and K ∩L ⊆⊕M. A ring R is called a right DU -ring if RR
is a DU -module.

Definition 4.1. A right R-module M is called an FDU -module, if every factor of M is a DU -module.
A ring R is called a right CDU -ring if R, as a right R-module, is an FDU -module.

Example 4.2. Since the class of DSF-modules is closed under factors, and every DSF-module is a
DU -module, then clearly every DSF-module is an FDU -module.

Lemma 4.3. If M = X +Y with X ∩Y ⊆⊕M, then X ⊆⊕M and Y ⊆⊕M.
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Proof. Write, K = (X ∩ Y )⊕ T . Therefore, clearly, X = (X ∩ Y )⊕ (X ∩ T ) & Y = (X ∩ Y )⊕ (Y ∩ T ) and
M = X +Y = [(X ∩Y )⊕ (X ∩T )] + [(X ∩Y )⊕ (Y ∩T )] = (X ∩Y )⊕ (X ∩T )⊕ (Y ∩T ). Hence X ⊆⊕M and
Y ⊆⊕M, as required.

Lemma 4.4. If A ⊆⊕M and K ⊆ A, then A/K ⊆⊕M/K .

Proof. Write, M = A⊕ T for a submodule T of M. Consequently, M/K = A/K + (T +K)/K , and we are
done since A/K ∩ (T +K)/K = 0.

A module M is called lifting if every submodule N of M lies over a direct summand of M, and in
[13], M is called a Generalized Lifting Module (GL-module) if for any two proper submodules A and
B of M with M/A �M/B and A+B =M, both A and B lie over direct summands of M.

Theorem 4.5. The following are equivalent for a right R-module M:

1. M is an FDU -module.

2. M is both a GL-module and an FD4-module.

3. If M = A+B with M/A �M/B, then A∩B ⊆⊕M.

4. If M = A+B with M/A �M/B, then A ⊆⊕M and B ⊆⊕M.

5. Every epimorphism f :M −→N2 splits, where N2 :=N ⊕N .

Proof. (1)⇒ (2). Clear.
(2)⇒ (3). LetM = A+BwithM/A �M/B, where A and B are submodules ofM. By the hypothesis,

sinceM is aDU -module, there exist two direct summands K and L ofM such thatA lies over K , B lies
over L; that is, A/K �M/K and B/L�M/L with M = L+K , M/K �M/L and K ∩L ⊆⊕M. Now, since
M/K∩L � (K/K∩L)⊕(L/K∩L) is an FD4-module withM/L � (K/K∩L) � (L/K∩L) �M/K , it follows
from Proposition 2.4, that M/K ∩ L is semisimple. Therefore, both M/K and M/L are semisimple.
This means that, A/K ⊆⊕ M/K and B/L ⊆⊕ M/L. Inasmuch as A/K �M/K and B/L�M/L, we infer
that A/K = B/L = 0. Thus A = K and B = L, and consequently A∩B = K ∩L ⊆⊕M, as required.

(3)⇒ (4). This follows from Lemma 4.3
(4)⇒ (1). LetM/K = A/K+B/K with M/K

A/K � M/K
B/K . Clearly,M = A+Bwith M

A � M
B . By the hypothesis,

A ⊆⊕ M and B ⊆⊕ M. Now, by Lemma 4.4 A/K ⊆⊕ M/K , B/K ⊆⊕ M/K and A
K ∩

B
K = A∩B

K ⊆⊕ M
K . This

shows that M
K is a DU -module, and so M is an FDU -module.

(3)⇒ (5). Let f : M → K1 ⊕K2 be an epimorphism with K1 � K2. Then M = f −1(K1) + f −1(K2) =
A1 +A2 where Ai := f −1(Ki), 1 ≤ i ≤ 2. Clearly, A1 ∩A2 = kerf . Thus:

M/A1 = (A1 +A2)/A1 � A2/kerf � f (A2) = K2 � K1 � A1/kerf �M/A2.

Now, by (3), kerf = A1 ∩A2 ⊆⊕M, as required.
(5)⇒ (3). Let A and B are submodules of M with M = A+B and M/A 'M/B. Clearly,

M/(A∩B) = A/(A∩B)⊕B/(A∩B) �M/B⊕M/A � (M/A)2.

Therefore, there exists an obvious epimorphism f : M −→ (M/A)2 with kerf = A∩ B. Now, by (4),
kerf = A∩B ⊆⊕M, as required.

Example 4.6. [12, Example 2.9] If {pi}i∈I is a finite set of distinct prime numbers, then the following
are examples of FDU -modules:

1. M
Z

:= ZP∞ ⊕ (⊕i∈IZpi );
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2. M
Z

:= Q⊕ (⊕i∈IZpi );

3. M
Z

:= Q/Z⊕ (⊕i∈IZpi ).

Example 4.7. For any prime p, the Z-module M := Q ⊕Zp is an FDU -module that is not quasi-
discrete, where a lifting module is called quasi-discrete if it is also a D3-module.

Proposition 4.8. Being FDU is a Morita invariant property of modules.

Proof. Let R and S be two Morita equivalent rings. Assume that F : Mod-R→Mod-S and G : Mod-
S→Mod-R are two category equivalences. Let MR be an FDU -module and f : F (M)→ T ⊕ T be an
epimorphism with T ∈Mod-S. Now we have the exact sequence

0→ kerf →F (M)→ T ⊕ T → 0.

By [1, Proposition 21.4],

0→G(kerf )→M→G(T ⊕ T ) � G(T )⊕G(T )→ 0

is exact in Mod-R. Since MR is a FDU -module, G(kerf ) ⊆⊕M, and so kerf ⊆⊕ F (M). By Theorem
4.5, F (M) is an FDU -module, as reqiured.

Proposition 4.9. For n > 1, the following conditions on a ring R are equivalent:

1. R is a semisimple artinian ring.

2. Mn(R) is a right CDU -ring.

3. Mn(R) is a right CD4-ring.

4. M2(R) is a right CD4-ring.

Proof. 1⇒ 2. Clear, since Mn(R) is a semisimple artinian ring.
2⇒ 3⇒ 4. Clear.

4 ⇒ 1.Since Mn(R) =
[
R R
R R

]
=

[
R R
0 0

]
⊕
[

0 0
R R

]
is a direct sum of two isomorphic right

ideals, we infer from the hypothesis and Proposition 2.4, that Mn(R) is semisimple artinian. Thus R
is semisimple artinian.

Remark 4.10. Being a CDU -ring or a CD4-ring is not a Morita Invariant property for rings. For, the
ring of integers Z is a CDU -ring (in particular a CD4-ring) that is not semisimple artinian; and so
by Proposition 4.9, Mn(Z) is neither a CDU -ring nor a CD4-ring.

Proposition 4.11. IfM is a right R-module with Soc(M) = 0, then the following statements are equivalent:

1. M is a DSF-module;

2. M is an FDU -module;

3. M is both a DU -mdule and an FD4-module.

Proof. 1⇒ 2⇒ 3. Clear.
3⇒ 1. Let A and B be submodules of M with M = A + B and M/A �M/B. By [13, Theorem 3.6],

since M is a DU -module, there exist two summands T and L of M such that A lies over T , B lies
over L, M/T � M/L, M = T + L and T ∩ L ⊆⊕ M. Now, by proposition 2.4, both M/T and M/L are
semisimple. If we write M = T ⊕ T ′, for a submodule T ′ ⊆ M, then T ′ is semisimple. But, since
soc(M) = 0, T ′ = 0. This shows that M = T = A, and M is a DSF-module, as required.
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Theorem 4.12. IfM is an FDU -module whose local summands are summands, thenM =Q⊕P where

1. Q is a DSF-module.

2. P = C ⊕A⊕B is semisimple with A � B and C isomorphic to a direct summand of A⊕B.

3. P and Q are factor-orthogonal.

4. Hom(Q,P ) = 0.

5. If f ∈Hom(P ,Q), then Imf �Q.

Moreover, if in addition M is a C4-module, then Hom(P ,Q) = 0.

Proof. From Theorem 3.1 and Corollary 3.3, we only need to prove (1). But this follows from [13]
and the fact that Q is both an SDSF-module and a DU -module.

Since in a quasi-discrete module, local summands are summands, see [20, Corollary 4.13], the next
corollary is an immediate consequence of Theorem 4.12.

Corollary 4.13. Let M be a right R-module whose factors are quasi-discrete modules, then every factor
module N of M can be written as N = Q ⊕ P where Q and P satisfy the conditions (1) through (5) of
Theorem 4.12.

Lemma 4.14. If R = R1 ×R2, then R is a right CDU -ring if and only if both R1 and R2 are right CDU -
rings.

Proof. (=⇒). This is clear.
(⇐=). We use a similar argument to the one provided in [21, Lemma 3.6.] with some modifications.

Let I be a right ideal of R. ThenM := R1/IR1×R2/IR2 is a right R-module, where (r1 +IR1, r2 +IR2)r =
(r1r + IR1, r2r + IR2) for r1 ∈ R1, r2 ∈ R2 and r ∈ R. Define the R-isomorphism θ : R/I →M by letting
θ(r + I) = (e1r + IR1, e2r + IR2), where e1 = 1R1

and e2 = 1R2
. Suppose that K/I,L/I are two submodules

of (R/I)R with R/I = K/I + L/I and R/K � R/I
K/I �

R/I
L/I � R/L. Then θ(K/I) = (e1K/IR1, e2K/IR), θ(L/I) =

(e1L/IR1, e2L/IR) and thier sum isM. It follows that, as R1-modules, e1K/IR1, e1L/IR1 are submodules
of R1/IR1 with R1/IR1 = e1K/IR1+e1L/IR1 and that, as R2-modules, e2K/IR2, e2L/IR2 are submodules
of R2/IR2 with R2/IR2 = e2K/IR2 + e2L/IR2. Since θ : R/I → M is an R-isomorphism, we have an
ismorphisms f : R/I

K/I →
M

θ(K/I) and g : R/IL/I →
M

θ(L/I) given by f [(r + I) + K/I] = θ(r + I) + θ(K/I) and

g[(r+I)+L/I] = θ(r+I)+θ(L/I), respictively. Now, since R/K � R/I
K/I �

R/I
L/I � R/L, we have M

θ(K/I) �
M

θ(L/I) .

But M
θ(K/I) = R1/IR1×R2/IR2

(e1K/IR1,e2K/IR) = R1/IR1×R2/IR2
e1K/IR1×e2K/IR

� R1/IR1
e1K/IR1

× R2/IR2
e2K/IR

� R1
e1K
× R2
e2K

, and similarly, M
θ(L/I) �

R1
e1L
× R2
e2L

.

Thus R1
e1K
× R2
e2K

� R1
e1L
× R2
e2L

. Let ϕ : R1
e1K
× R2
e2K
−→ R1

e1L
× R2
e2L

be the obtained isomorphsim and define

λ : R1
e1K
−→ R1

e1L
by λ(r1 + e1K) = r ′1 + e1K where ϕ(r1 + e1K , 0 + e1L) = (r ′1 + e1K , 0 + e1L) (Note that if

ϕ(r1 +e1K , 0+e1L) = (r ′1 +e1K , r2 +e1L), then ϕ(r1 +e1K , 0+e1L) = ϕ(r1e1 +e1K , 0.e1 +e1L) = ϕ(r1 +e1K ,
0 + e1L)e1 = (r ′1 + e1K,r2 + e1L)e1 = (r ′1e1 + e1K,r2e1 + e1L) = (r ′1 + e1K,0 + e1L)). Now, clearly, λ is
an R1-isomorphism. Inasmuch as R1/IR1 = e1K/IR1 + e1L/IR1, R1/IR1

e1K/IR1
� R1

e1K
� R1

e1L
� R1/IR1

e1L/IR1
and R1

is a CDU -ring, we infer that e1K/IR1 ∩ e1L/IR1 is a direct summand of R1/IR1 by Theorem 4.5.
Similarly, e2K/IR2 ∩ e2L/IR2 is a summand of R2/IR2.Therefore, θ(K/I ∩ L/I) = θ(K/I)∩ θ(L/I) is a
direct summand of M. Thus K/I ∩L/I is a direct summand of (R/I)R. Consequently, by Theorem 4.5,
(R/I)R is a DU -module and Hence R is a CDU -ring.

Theorem 4.15. If R is a right C4-ring whose local summands are summands, then the following are
equivalent:
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1. R is a right CDU -ring.

2. R is a direct product of a semisimple artinian ring and a right DSF-ring.

Proof. (2)⇒ (1) . Follows from Lemma 4.14.
(1)⇒ (2) . By Theorem 4.12, R = eR⊕ (1 − e)R with eR semisimple artinian and (1 − e)R is a right

DSF-ring. Moreover, Hom(eR, (1− e)R) =Hom((1− e)R,eR) = 0. The later statement says that both eR
and (1− e)R are ideals, completing the proof.

Recall that a ring R is called right quasi-duo if maximal right ideals of R are two-sided. It was
shown in [12, Corollary 2.17] that, R is right quasi-duo iff R is right DSF-ring.

Corollary 4.16. If R is a semiperfect right C4-ring, then the following are equivalent:

1. R is a right CDU -ring.

2. R is a right CD4-ring.

3. R is a direct product of a semisimple artinian ring and a right quasi-duo ring.

4. R is a direct product of a semisimple artinian ring and a left quasi-duo ring.

Moreover, in this case R is also a left CDU -ring.

Proof. (1)⇒ (2) . Clear.
(2)⇒ (3) . By Corollary 3.3, R = eR⊕ (1 − e)R, where eR is semisimple artinian, (1 − e)R is a right

SDSF-ring and Hom(eR, (1− e)R) = Hom((1− e)R,eR) = 0. Since R is semiperfect, (1− e)R is a lifting
module. Now, by [7, Lemma 5.5], (1−e)R is a right DSF-module. Inasmuch as eR & (1−e)R are ideals
of R, we infer that eR is a semisimple artinian ring and (1 − e)R is a right DSF-ring. Now, by [12,
Corollary 2.17], (1− e)R is right quasi-duo.

(3)⇒ (1) . By Lemma 4.14.
(3)⇔ (4). By [12, Corollaries 2.17 and 3.7 ], a semiperfect ring is right quasi-duo if and only if it

is left quasi-duo.
Now, by (4) and Lemma 4.14, R is also a left CDU -ring.
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