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Abstract. In this paper , we present the concept of module over a generalized ring which we call a “generalized module”

and discuss some interesting properties of generalized modules together with examples. Further, we define generalized

module groupoid and describe the categorical relations between the category gM of generalized modules and the category

gMG of generalized module groupoids.
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1 Introduction

The generalized groups introduced by Molaei is an interesting generalization of groups[4]. It is well
known that identity element in a group is unique, but in a generalized group there exists an identity
element for each element. Clearly every group is a generalized group. A groupoid is another gener-
alization of a group is a small category in which every morphism is invertible and was first defined
by Brandt in the year 1926. Groupoids are studied by many mathematicians with different objec-
tive, one of the different approach is the structured groupoid which is obtained by adding another
structure in such a way that the added structure is compatible with the groupoid operation.

In this paper we introduce the module action on a generalized group and we call the resulting
structure as a generalized module and then we discuss some interesting examples and properties of
generalized modules. Further, in an analogous way to generalized group groupoid we describe the
generalized module groupoid over a generalized ring and obtain a relation between the category of
generalized module and the category of generalized module groupoids.

2 Preliminaries

In this section we briefly recall all basic definitions and the elementary concepts needed in the sequel.
In particular we recall the definitions of categories, groupoids, generalized groups with examples and
discuss some interesting properties of these structures. For a more detailed discussion, the reader is
referred to the book of S.Maclane [3] and [4].

A category C is a class of objects denoted vC together with a collection of disjoint classes, denoted
by C(a,b); one for each pair (a,b) of objects in vC. An element f of C(a,b) is called a morphism from a
to b. For each triple (a,b,c) of objects in C, a composition function C(a,b)×C(b,c)→C(a,c) is defined.
Given morphisms f : a→ b and g : b→ c, their composition will be written f g. The associativity of
composition and existence of identities are assumed in a category. Existence of identity means that
for each object a ∈ vC there exists 1a ∈ C(a,a) such that f 1a = f and 1ag = g for all f ∈ C(b,a) and
g ∈ C(a,c). We shall often identify the identity morphism 1a at an object a ∈ vC with the object a.



Generalized module groupoids 77

With this convention, the morphisms of a category C completely determine C, having this in mind,
we shall denote the class of all morphisms of C by C itself.

A category C is called small if both vC and C are sets rather than proper classes. A morphism
f : a→ b is called an isomorphism if there exists a morphism g : b→ a such that f g = 1a and gf = 1b.
A small category in which every morphisms are isomorphisms is called a groupoid. For a category C,
a subcategory of C is a category D whose objects are objects in C and morphisms are morphisms in C,
with the same identities and composition of morphisms.

Given two categories C and D, a functor F : C → D consists of two functions: the object function
denoted as vF which assigns to each object a of C, an object F(a) of the category D and the morphism
function denoted by F itself which assigns to each morphism f : a→ b of C, a morphism F(f ) : F(a)→
F(b) in D which should preserves identities and composition, ie., F(1c) = 1F(c) and F(f g) = F(f )F(g).

Example 2.1. A group G can be regarded as a category C in the following way;
the object set of C say νC = G. Define C(G,G) = G and composition in C is the binary operation in G.
Identity element in the group will be the identity morphism on the vertex G.

Example 2.2. Every group can be regarded as a groupoid with only one object.

Example 2.3. For a set X the Cartesian product X × X is a groupoid over X with morphisms are
the elements in X × X with the composition (x,y) · (u,v) exists only when y = u and is given by
(x,y)(u,v) = (x,v). In particular (x,x) is the unique left identity and (y,y) is the unique right identity.

We denote by Gpd the category of groupoids in which objects are the groupoids and morphisms
are the functors.

2.1 Generalized group and generalized group groupoids

In this section, we recall the elementary concepts of the generalized group theory. Moreover, we
recall some basic properties of generalized group-groupoid which is a generalized group object in
the category of groupoids.

Definition 2.4 ([4]). A generalized group G is a non-empty set together with a binary operation
called multiplication subject to the set of rules given below:

1. (ab)c = a(bc) for all a,b,c ∈ G.

2. For each a ∈ G there exists unique e(a) ∈ G with ae(a) = e(a)a = a.

3. For each a ∈ G there exists a−1 ∈ G with aa−1 = a−1a = e(a).

It is seen that for each element a in a generalized group the inverse is unique and both a and a−1

have the same identity. Every abelian generalized group is a group.

Definition 2.5 ([4]). A generalized group G is said to be normal generalized group if e(ab) = e(a)e(b)
for all elements a,b ∈ G.

Definition 2.6 ([4]). A non-empty subset H of a generalized group G is a generalized subgroup of G
if and only if for all a,b ∈H, ab−1 ∈H.

Example 2.7. G =

A =
(
a b
0 0

)
: a , 0, a, b ∈R


Then, G is a generalized group and for all A ∈ G,
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e(A) =
(
1 b/a
0 0

)
and A−1 =

(
1/a b/a2

0 0

)
where e(A) and A−1 are the identity and the inverse of a matrix A, respectively. Also e(AB) = e(B)
for all A,B ∈ G.

Example 2.8. Let G be a generalized group with the multiplication m. Then, G ×G with the multi-
plication as follows

m1((a,b), (c,d)) = (m(a,c),m(b,d))

is a generalized group. For any element (a,b) ∈ G ×G, the identity element is e1(a,b) = (e(a), e(b)) and
the inverse element is (a,b)−1 = (a−1,b−1).

Definition 2.9 ([4]). Let G and H be two generalized groups. A generalized group homomorphism
from G to H is a map f : G→H such that

f (ab) = f (a)f (b).

Theorem 2.10 ([4]). Let f : G→H be a homomorphism of generalized groups G and H. Then

(a) f (e(a)) = e(f (a)) is an identity element in H for all a ∈ G.

(b) f (a−1) = f (a)−1.

(c) If K is a generalized subgroup of G then f (K) is a generalized subgroup of H.

Now we recall the definition of generalized group groupoid which is a generalized group object in
the category of groupoids.

Definition 2.11. [2]. A generalized group groupoid G is a groupoid endowed with a structure of
generalized group such that the following maps:

1. + : G ×G→ G, (f ,g)→ f + g,

2. u : G→ G, f →−f ,

3. e : G→ G, f → e(f ),

are functorials.

Since + is a functorial we have,

(f ◦ g) + (h ◦ k) = +(f ◦ g,h ◦ k)

= +[(f ,h) ◦ (g,k)]

= +(f ,h) ◦+(g,k)

= (f + h) ◦ (g + k).

(f ◦ g) + (h ◦ k) = (f + h) ◦ (g + k).

Thus the interchange law
(f ◦ g) + (h ◦ k) = (f + h) ◦ (g + k)

exists between groupoid composition and generalized group operation.
In other words, a generalized group groupoid is a groupoid endowed with a structure of generalized
group such that the structure maps of groupoid are generalized group homomorphisms.
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Example 2.12 ([2]). Let G be a generalized group. Then G ×G is a generalized group groupoid with
object set G. It follows from the example 2.3 that G ×G is a groupoid with object set G. For each
morphism (x,y) ∈ G ×G the identity arrow of (x,y) is (e(x), e(y)) and the inverse is (−x,−y) and the
interchange law also holds. For,

[(f ,g) ◦ (g,h)] + [(f ′ , g ′) ◦ (g ′ , k′)] = (f ,h) + (f ′ ,h′)

= (f + f ′ ,h+ h′)

[(f ,g) + (f ′ , g ′)] ◦ [(g,h) + (g ′ ,h′)] = (f + f ′ , g + g ′) ◦ (g + g ′ ,h+ h′)

= (f + f ′ ,h+ h′)

[(f ,g) ◦ (g,h)] + [(f ′ , g ′) ◦ (g ′ , k′)] = [(f ,g) + (f ′ , g ′)] ◦ [(g,h) + (g ′ ,h′)].

Now we give the definition of a generalized ring.

Definition 2.13 ([5]). A generalized ring R is a nonempty set Rwith two different operations addition
and multiplication denoted by ‘ + ‘ and ‘ × ‘respectively in which (R,+) is a generalized group and
satisfies the following conditions.

1. multiplication is an associative binary operation.

2. For all x,y,z ∈ R, x(y + z) = xy + xz and (x+ y)z = xz+ yz.

Example 2.14 ([6]). R2 with the operations (a,b)+(c,d) = (a,d) and (a,b)(c,d) = (ac,bd) is a generalized
ring.

A generalized ring with its operations is a ring if and only if e is a constant function. If there is
1 ∈ R such that x ·1 = 1 ·x = x, for all x ∈ R, then R is called a generalized ring with identity. Also one
can easily prove that identity of a generalized ring is unique.

3 Generalized module and generalized module groupoid

In this section we present the concept of generalized module and generalized module groupoid.
We will consider these concepts under two headings: generalized module and generalized module
groupoid.

3.1 Generalized module

Let M be a generalized group and R be a generalized ring, in the following we proceed to define a
generalized module using the generalized group M.

Definition 3.1. Let R be a generalized ring with unity. A generalized group M is said to be (left)
generalized R module if for each element r in R and each m in M we have a product rm in M such
that for r, s ∈ R and m,n ∈M,

1. (r + s)m = rm+ sm.

2. r(m+n) = rm+ rn.

3. r(sm) = (rs)m.

4. 1.m =m.

Lemma 3.2. IfM is a generalized R module then
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(1) e(rm) = re(m) for all r ∈ R,m ∈M.

(2) (rm)−1 = r(m−1).

Proof. Let r ∈ R and m ∈M, then

rm+ re(m) = r(m+ e(m)) = rm.

Similarly consider,
re(m) + rm = r(e(m) +m) = rm.

Hence e(rm) = re(m).
Also,

rm+ rm−1 = r(m+m−1) = re(m).

rm−1 + rm = r(m−1 +m) = re(m).

Thus (rm)−1 = r(m−1).

Example 3.3. Every generalized ring R can be considered as a generalized module over itself. The
action of r ∈ R on x ∈ R is given by r · x = rx the product obtained by using the multiplication in R.

Example 3.4. Let M = R ×R where R is the set of all real numbers. Then M with the operation +
defined by (x,y) + (m,n) = (x,y + n) is a generalized group in which for all (m,n) ∈M, e(m,n) = (m,0)
and (m,n)−1 = (m,−n).
Indeed,

(m,n) + (m,0) = (m,n+ 0) = (m,n).

(m,0) + (m,n) = (m,0 +n) = (m,n).

On the other hand,
(m,n) + (m,−n) = (m,n−n) = (m,0).

And,
(m,−n) + (m,n) = (m,−n+n) = (m,0).

Moreover M is a generalized R-module with the scalar multiplication r · (m,n) = (m,rn). We have the
map · : R×M →M, r(m,n)→ (m,rn) satisfying the conditions in Definition3.1. For if, let r ∈ R and
(m,n), (x,y) ∈M we have

(r + s)(x,y) = (x, (r + s)y) = (x,ry + rs).

r(x,y) + s(x,y) = (x,ry) + (x,rs) = (x,ry + rs).

T hus (r + s)(x,y) = r(x,y) + s(x,y).
On the other hand,

r[(x,y) + (m,n)] = r[(x,y +n)] = (x,r(y +n)) = (x,ry + rn).

And
r(x,y) + r(m,n) = (x,ry) + (m,rn) = (x,ry + rn).

Hence r[(x,y) + (m,n)] = r(x,y) + r(m,n). Moreover we have,

rs(x,y) = (x,rsy) = (x,r(sy)) = r(x,sy) = r(s(x,y))

and 1 · (x,y) = (x,1.y) = (x,y). Thus we proved that M = R×R is a generalized R- module.
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Proposition 3.5. LetM be an R- module thenM ×M is a generalized R module with the operations

(x,y) + (m,n) = (x,y +n)

r(x,y) = (x,ry)

and for each x ∈M the subsetMx = {(x,y) : y ∈M} is an R module.

Proof. (M,+) is a generalized group in which for all m,n ∈M, e(m,n) = (m,0) and (m,n)−1 = (m,−n).
Moreover M is a generalized R module since for r, s ∈ R and (x,y), (m,n) ∈M ×M,

(r + s)(x,y) = (x, (r + s)y) = (x,ry + rs).

r(x,y) + s(x,y) = (x,ry) + (x,rs) = (x,ry + rs).

Thus (r + s)(x,y) = r(x,y) + s(x,y).

r[(x,y) + (m,n)] = r[(x,y +n)] = (x,r(y +n)) = (x,ry + rn).

r(x,y) + r(m,n) = (x,ry) + (m,rn) = (x,ry + rn).

Hence r[(x,y) + (m,n)] = r(x,y) + r(m,n).

rs(x,y) = (x,rsy) = (x,r(sy)) = r(x,sy) = r(s(x,y))

and
re(x,y) = r(x,0) = (x,r0) = (x,0) = e(x,y).

Hence re(x,y) = e(x,y).

1 · (x,y) = (x,y) ∀(x,y) ∈M.

To show that for each x ∈M the subset Mx = {(x,y) : y ∈M} is an R module it is enough to show
that Mx is an abelian group and the scalar multiplication is closed. Let m = (x,y) and n = (x,z) be
elements in Mx then

m+n = (x,y) + (x,z) = (x,y + z)

and
n+m = (x,z) + (x,y) = (x,z+ y) = (x,y + z).

Therefore
m+n = n+m

and + is a commutative binary operation on Mx. For every m ∈Mx, (x,y) + (x,0) = (x,0) + (x,y) = (x,y)
and (x,y)−1 = (x,−y). Thus Mx is an abelian subgroup of M and for any r ∈ R r(x,y) = (x,ry) ∈ Mx.
Hence Mx is a R- module.

Definition 3.6. Let M and N be two generalized R-modules. A function f : M → N is called gener-
alized module homomorphism if

f (m+n) = f (m) + f (n) for all m,n ∈M.

f (rm) = rf (m), for all r ∈ R, m ∈M.

Definition 3.7. Let M be a generalized R module and N ⊆M is said to be generalized submodule of
M if N is a generalized subgroup of G and for each r ∈ R and m ∈N , rm ∈N.
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Proposition 3.8. LetM be a generalized R module which is also a normal generalized group. Then the set
of identity elements inM is a submodule ofM and we call it as the zero submodule or trivial submodule.

Proof. We denote the set of identity elements in M by

e(M) = {e(x) : x ∈M}.

First we show that e(M) is a generalized subgroup of M. For if, m,n ∈ e(M) there exists x,y ∈M such
that m = e(x) and n = e(y). Now consider,

mn−1 = e(x)e(y)−1 = e(x)e(y) = e(xy).

Hence mn−1 ∈ e(M) and e(M) is a generalized subgroup of M.
Let r be an element in the ring R and

rm = re(x) = e(rx).

Hence rm ∈ e(M) for all r ∈ R andm ∈M. Thus e(M), set of identity elements ofM form a generalized
submodule of M.

Every nonzero generalized module M contains at least one submodule M itself.

Theorem 3.9. Let R is a generalized ring and M and N are normal generalized R- modules. If f :
M→N is a generalized R- module homomorphism, then

kerf = {x ∈M : f (x) ∈ e(N )}

where e(N ) denotes the set of identity elements of N, is a submodule of M and Imf = {f (x) : x ∈M}
is a submodule of N.

Proof. Let M and N be two generalized modules over the generalized ring R and f be a homo-
morphism between M and N. To show that kerf is a submodule of M it is suffices to prove that
it is a generalized subgroup of M and is closed under scalar multiplication. Let x,y ∈ kerf then
f (x) = e(n) and f (y) = e(n′) for some n, n′ ∈N. Now consider,

f (xy−1) = f (x)f (y−1)

= f (x)(f (y))−1

= e(n)e(n′)−1

= e(n)e(n′)

= e(nn′).

Hence xy−1 ∈ kerf and kerf is a generalized subgroup of M. For any r ∈ R,m ∈M,

f (rx) = rf (x) = re(n) = e(rn).

Therefore rx ∈ kerf and is a submodule of M for every m ∈M. Similarly we can prove that Imf is
a submodule of N. For; let x,y ∈ Imf then there exists m,n ∈M such that f (m) = x and f (n) = y. Now
consider,

xy−1 = f (m)f (n)−1

= f (m)f (n−1)

= f (mn−1) and mn−1 ∈M.
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Hence xy−1 ∈ Imf and Imf is a generalized subgroup of N and for any r ∈ R,

rx = rf (m) = f (rm).

Hence rx ∈ Imf , for any r ∈ R and x ∈M. Therefore Imf is a generalized submodule of N.

The generalized modules and their homomorphisms form a category in which objects are the gen-
eralized modules and morphisms are their homomorphisms denoted by GM.

Product of generalized modules If M and N be two generalized modules over a ring R then their
Cartesian product M ×N defined by

M ×N = {(m,n) : m ∈M, n ∈N }

is a generalized module overRwith respect to the component wise operations. ie; for any (m,n), (x,y) ∈
M ×N and r ∈ R the addition and scalar multiplication is given by

(m,n) + (x,y) = (m+ x,n+ y) and r(m,n) = (rm,rn).

Definition 3.10. let G be a groupoid and R be a generalized ring. A groupoid G is said to be gen-
eralized module groupoid over R if it has a generalized module structure over R and it satisfies the
following conditions.

(1) G is a generalized group groupoid.

(2) For each r ∈ R the mapping
ηr : G → G

defined by ηr(g) = rg is a functor on G.
ie; for any composable morphisms g,h in G and any r ∈ R we should have

r(g ◦ h) = rg ◦ rh.

Example 3.11. Let M be a generalized module over a ring R. Then M ×M is a generalized module
groupoid over R with object set M. It follows from the example 2.12 that M ×M with the operation
(x,y) + (m,n) = (x +m,y + n) is a generalized group groupoid. Also we have seen that the Cartesian
product of two generalized modules are again a generalized module. ThereforeM×M has a structure
of both groupoid and generalized module. In order to show that M ×M is a generalized module
groupoid over R it is suffices to prove that for any r ∈ R, the map ηr : M ×M → M ×M defined by
ηr(x,y) = (rx, ry) is a functor. For, let x ∈M be any object in the category M ×M then

ηr(1x) = ηr(x,x) = (rx, rx) = 1ηr (x).

Consider two composable morphisms (x,y), (y,z) in M ×M then,

ηr [(x,y) ◦ (y,z)] = ηr [(x,z)] = (rx, rz)

and
ηr(x,y) ◦ ηr(y,z) = (rx, ry) ◦ (ry, rz) = (rx, rz).

Thus,
ηr [(x,y) ◦ (y,z)] = ηr(x,y) ◦ ηr(y,z).

Hence M ×M is a generalized module groupoid over R.
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Definition 3.12. Let M and N be two generalized module groupoids over a ring R. A homomor-
phism f : M → N of generalized module groupoids is a functor of underlying groupoids preserving
generalized module structure.

Thus the generalized module groupoids and their homomorphisms form a category denoted by
GMG

Theorem 3.13. Let gM be the category of generalized modules and gMG be the category of general-
ized module groupoids. Then F : gM→ gMG defined by

F(M) =M ×M

and for any generalized module homomorphism f :M1→M2

F(f ) :M1 ×M1→M2 ×M2

such that
F(f )(m,n) = (f (m), f (n))

is a functor.

Proof. LetM be a generalized module over a ringR. Then the cartesian productM×M is a generalized
module over R. If f : M1 → M2 is a homomorphism of generalized modules then define F : gM →
gMG by

F(M) =M ×M

and
F(f ) :M1 ×M1→M2 ×M2,

F(f )(m,n) = (f (m), f (n)).

It can be seen that F(f ) between M1 ×M1 and M2 ×M2 is a morphism in the category of generalized
module groupoids. It can be seen that F is a functor between the category of generalized modules
and the category of generalized module groupoids. For, M ∈ gM we have,

F(1M )(m,n) = (m,n).

F(1M ) = 1F(M).

And for f :M→N,g :N → P the two composable homomorphisms in gM, for all m,n ∈M, we have

F(f g)(m,n) = (f g(m), f g(n))
= ((g(f (m)), g(f (n))).

F(f )F(g)(m,n) = F(g)(F(f )(m,n))
= F(g)(f (m), f (n))
= (g(f (m)), g(f (n))).

F(f g)(m,n) = F(f )F(g)(m,n).

Hence, F(f g) = F(f )F(g).

Proposition 3.14. Let {Mi}i∈I be a family of generalized module groupoids over the generalized ring R.
ThenM =

∏
Mi is a generalized R-module groupoid.
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Proof.
∏
νMi has elements (mi)i∈I wheremi ∈ νMi morphisms ofM are all tuples (fi)i∈I from (domfi)

to (codfi) in Mi . The compositon of morphisms is

(fi)i∈I · (gi)i∈I = (figi)i∈I

whenever fi and gi are composable morphisms in Mi . Since each Mi is a groupoid each morphism
fi admits an inverse fi

−1 in Mi , hence (f −1
i )i∈I is the inverse of the morphism (fi)i∈I in M. Thus the

product M = (
∏
νMi ,

∏
Mi)i∈I is a groupoid. Moreover the product M =

∏
Mi has a structure of

generalized module with respect to component wise operations,

(fi)i∈I + (gi)i∈I = (fi + gi)i∈I and r(fi)i∈I = (rfi)i∈I .

It is easily proved that M is a generalized group groupoid. It remains to show that the map ηr :M→
M by

ηr(fi)i∈I = (rfi)i∈I

is a functor on M. For; for each (mi)i∈I ∈ νM consider,

ηr(1(mi ))i∈I = (r1(mi ))i∈I
= (1(rmi ))i∈I (eachMi is a generalized module groupid)

= 1ηr (mi )i∈I .

Let (fi)i∈I , (gi)i∈I are two composable morphisms in M, then

ηr((fi)i∈I ◦ (gi)i∈I ) = r((fi)i∈I ◦ (gi)i∈I )

= r(fi ◦ gi)i∈I
= (r(fi ◦ gi))i∈I
= (rfi ◦ rgi)i∈I
= (rfi)i∈I ◦ (rgi)i∈I .

ηr(fi)i∈I ◦ ηr(gi)i∈I = (rfi)i∈I ◦ (rgi)i∈I .

ηr((fi)i∈I ◦ (gi)i∈I ) = ηr(fi)i∈I ◦ ηr(gi)i∈I .
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