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Abstract. A full statement and a rather detailed proof are given of a folklore result describing the category of (unital)

algebras over a finite direct product of commutative rings. Following an extensive survey of some recent work on minimal

ring extensions and chain conditions for (unital) ring extensions such as the FCP and FMC properties, including gener-

alizations of these conditions and the FIP property to ring extensions involving noncommutative rings, a corollary of the

folklore theorem for FIP, FCP and FMC is given for ring extensions A ⊆ Bwhere A is a finite direct product of commutative

rings and B is a (not necessarily commutative) A-algebra.

Key Words: Commutative ring, unital algebra, finite direct product, categorical equivalence, minimal ring extension, FMC,

FCP, FIP.

2010 MSC: Primary 16B50; Secondary 13B99, 18A05.

1 Introduction

All rings considered in this note are associative and unital; all modules, algebras, algebra homomor-
phisms and ring extensions are unital. As usual, Fq denotes a/the finite field of cardinality q (for any
prime-power q); X and Y denote commuting indeterminates over the ambient ring(s); U(A) denotes
the set of units of a ringA; |S| denotes the cardinal number of a set S ; and ⊂ denotes proper inclusion.

For more than 50 years, it has been part of the folklore that if a ring R is a direct product of finitely
many commutative rings Ri , then the category of R-modules (resp., of commutative R-algebras) is
equivalent, as a category, to the product of the categories of the Ri-modules (resp., of the commu-
tative Ri-algebras). A proof of this module-theoretic (resp., algebra-theoretic) fact was given (resp.,
sketched), using constructions involving tensor products, in [8, Propositions 1.2.1 and 1.2.2 and Re-
marks, page 8]. A different proof (not featuring tensor products explicitly) of the algebra-theoretic
fact appeared later in [17, Proposition III.3]). Although the methods of the latter proof do not gen-
eralize at once to the context of arbitrary (not necessarily commutative) algebras, the methods from
[8] that involve tensor products do generalize to the context of arbitrary algebras. This was stated
by Kosters (and a proof was very lightly sketched) in [32, Theorem 2.1]. We revisit that result in
Proposition 2.1 (a), with a statement and (sketch of a) proof which provide more details and which
we hope will serve as a useful reference in the future.

The proof of Proposition 2.1 (a) will provide enough information to enable the reader to construct
any diagram whose commutativity becomes relevant. However, we will typically leave to the reader
the verification that each of those diagrams commute. In doing so, we are endorsing the view that
in most cases, an author should not try to chase another person’s diagrams for them. That view
was more colorfully expressed (but in a gender-specific way that was, unfortunately, common in the
1970s) in Barry Mitchell’s dictum that “one man can only confuse another by trying to do his diagram
chasing for him" [34, page 600]. The background from category theory that is assumed in Section 2 is
minimal (specifically, the definitions of a category, a functor, a natural equivalence of functors, and
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a categorical equivalence).
A concept that plays a natural role in both Section 2 and Section 3 is that of a minimal ring ex-

tension. Suppose that A ⊂ B are (distinct) rings. (Such notation/usage will always mean that A is a
(unital) subring of B; equivalently, that A ⊂ B is a ring extension.) Then A ⊂ B is said to be a minimal
ring extension if there does not exist a ring C such that A ⊂ C ⊂ B. The notion of a minimal ring
extension was introduced in 1970 in [23] by Ferrand and Olivier in case B is commutative. Ferrand
and Olivier characterized, up to isomorphism, the commutative minimal ring extensions of any field
[23, Lemme 1.2]. More generally, they obtained deep information about commutative minimal ring
extensions, building on a fundamental result [23, Théorème 2.2] that established the existence and
uniqueness of a maximal ideal of A that has come to be called the “crucial maximal ideal" of a given
minimal ring extension A ⊂ B. To be complete, one should note that some of the results in [23] can
also be proved by the methods in Section 2 of a 1968 paper of Gilmer and Heinzer [26], who studied
what is now considered to be a special kind of (commutative) minimal ring extension.

Recently, there has been some noticeable work on minimal ring extensions A ⊂ B where A (and,
sometimes, B) is not commutative: cf. [22], [1]. In fact, every nonzero ring has a minimal ring
extension. (This fact was proven by Dorsey and Mesyan [22, Lemma 2.4 and Remark 2.5], who
deftly let the role of a suitable idealization in Dobbs’ proof for the commutative case [9, Theorem
2.4 and Remark 2.9] be played instead by a suitable Dorroh extension.) In view of Proposition 2.1
(a), it is therefore natural to ask if one can reduce the study of the (not necessarily commutative)
algebras that are minimal ring extensions of a finite direct product of commutative rings Ri to the
study, for each i, of the (not necessarily commutative) algebras that are minimal ring extensions of
Ri . The answer, which is affirmative, is established in Proposition 2.1 (c). That, in turn, follows from
the more general consideration in Proposition 2.1 (b) concerning the structure of the (not necessarily
commutative) faithful algebras over a finite direct product of commutative rings.

The details that are provided for the proof of Proposition 2.1 (a) do more than serve as a useful
reference. They also serve to facilitate the statements and proofs of parts (b) and (c) of Proposition
2.1. An application of parts (b) and (c) of Proposition 2.1 is deferred until Section 3. The statement
of that application (Corollary 3.6) has been designed to generalize, to a suitable noncommutative
“algebraic” context, most of the conclusions of [12, Lemma 2.2]. The latter result has played key roles
in some recent studies of minimal ring extensions A ⊂ B where B is commutative. The purpose of
Corollary 3.6 is to extend the potential of applying similar methods to ring extensions A ⊂ Bwhere A
is commutative and B is an A-algebra. Specifically, Corollary 3.6 uses parts (b) and (c) of Proposition
2.1 to study how each of the properties AFMC, FMC, FCP and FIP for finitely many ring extensions
Ai ⊆ Bi , where Ai is commutative and Bi is an Ai-algebra for each i, relates to the corresponding
property for the ring extension

∏
i Ai ⊆

∏
i Bi . Prior to the statement of Corollary 3.6, Section 3 gives

a survey that summarizes enough about the definitions and known results on AFMC, FMC, FCP and
FIP to make Corollary 3.6 (motivated and, modulo Proposition 2.1,) self contained. Suffice it to say
at this point that the definitions of each of AFMC, FMC and FCP involve finite chains of minimal
ring extensions; and studies of the properties of FCP and FIP have often been intertwined.

2 The categorical equivalence

In Proposition 2.1, it will be convenient, for any commutative ring A, to let AlgA denote the category
of (unital but not necessarily commutative) A-algebras and A-algebra homomorphisms; and to let
idA denote the identity map on A.

Proposition 2.1. (a) (cf.Kosters [32, Theorem 2.1]) Let R1, . . . ,Rm be a finite list of nonzero commuta-
tive rings (where possibly Ri � Rj for some i , j), for some integerm ≥ 1. Consider the (commutative)
ring R :=

∏m
j=1Rj . For each i,1 ≤ i ≤ m, use the ith projection map pi : R→ Ri to view Ri as an R-



64 Moroccan Journal of Algebra and Geometry with Applications / D. E. Dobbs

module. Let R denote the category AlgR. Consider the product category

P := AlgR1
× · · · ×AlgRm .

Then R and P are equivalent categories. A categorical equivalence F : R→ P can be defined on objects
by

F(S) := (R1 ⊗R S, . . . ,Rm ⊗R S)

(for any R-algebra S) and on morphisms by

F(h) := (idR1
⊗ h, . . . , idRm ⊗ h)

(for any R-algebra homomorphism h : T → S). A categorical inverse for F is the functor G : P→ R
that is defined on objects by

G(C1, . . . ,Cm) := C1 × · · · ×Cm

(whenever Cj is an Rj-algebra for j = 1, . . . ,m) and on morphisms by

G(f1, . . . , fm) := (f1, . . . , fm)

(whenever fj is an Rj-algebra homomorphism for j = 1, . . . ,m).
(b) Let A = A1 × · · · ×Am be a finite direct product of nonzero commutative rings (where possibly

Ai � Aj for some i , j), for some integerm ≥ 1. Let B be an A-algebra. Then B is A-algebra isomorphic
to B1 × · · · × Bm where, for each j, Bj is an Aj-algebra that is uniquely determined up to Aj-algebra
isomorphism. Moreover, if B is a faithful A-algebra (that is, if we can view A ⊆ B as a ring extension
such that A is contained in the center of B) then, for each j, the above-mentioned Aj-algebra Bj can
be chosen so that Aj ⊆ Bj .

(c) Let A = A1× · · · ×Am as in (b) and let B be a faithful A-algebra. (Once again, view A ⊆ B as a ring
extension such that A is contained in the center of B.) Pick/fix B1, . . . ,Bm as in (b) such that Aj ⊆ Bj
for all j. Then A ⊂ B is a minimal ring extension if and only if there exists a (necessarily unique)
index i such that Ai ⊂ Bi is a minimal ring extension and Aj = Bj for all j , i. If these equivalent
conditions hold, then B is commutative.

Proof. (a) Kosters’ statement and proof of his version of (a) consisted of defining the functor G (on
objects and on morphisms), defining the functor F on objects, and stating “The rest is easy.” If only for
reference purposes, we will say more about this for the benefit of readers interested in carrying out
the pages of relevant (easy but necessary) calculations. Our remaining comments in this sketch of a
proof of (a) are intended to indicate how the analysis of categorical equivalences that was given at the
levels of R-modules and of commutative R-algebras in [8, pages 7-8] extends naturally to the setting
of (not necessarily commutative) R-algebras. In doing so, we will point out a couple of the places
where it is necessary to use hypothesis of “algebra” (and so that hypothesis cannot be weakened to
“ring extension”). The importance and relevance of that will be examined further following Example
3.1.

To save space, we will leave most of the verifications involving morphisms to the reader. (This
will include checking functoriality of F and/or G, the fully faithfulness of F, and the naturality of
the categorical equivalences θ and ϕ that are described below at the level of object assignment.) To
a very large extent, such details related to algebra homomorphisms can be handled by using the
projection maps pj as in the proof of the module-theoretic assertions in [8, Proposition 1.2.2].

We will prove the key fact that any R-algebra S is R-algebra isomorphic to S1 × · · · × Sm where,
for each j, Sj is an Rj-algebra that is uniquely determined up to Rj-algebra isomorphism. An easy
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calculation shows that Ri ⊗R Rj = 0 if i , j. As in the proof of [8, Proposition 1.2.1], one has, for each
j, that the canonical abelian group isomorphisms

S � R⊗R S = (
m⊕
i=1

Ri)⊗R S �
m⊕
i=1

(Ri ⊗R S) =
m∏
i=1

(Ri ⊗R S)

areR-module isomorphisms. One can check that the resultingR-module isomorphism S→
∏m
i=1(Ri⊗R

S) preserves products and 1, and so S �
∏m
i=1(Ri⊗RS) as R-algebras. Note that the preceding assertion

would not even be meaningful without the assumption that S is an R-algebra, since that assumption
is crucial in showing that each Ri ⊗R S is an R-algebra.

We will next show that the above is essentially the only way to express S as a direct product of
Ri-algebras. More precisely put: we will show that if S is R-algebra isomorphic to

∏m
i=1Ci where Ci

is an Ri-algebra for each i, then Cj � Rj ⊗R S as an Rj-algebra, for each j.
First, note that if i , j, then

Rj ⊗R Ci � Rj ⊗R (Ri ⊗Ri Ci) � (Rj ⊗R Ri)⊗Ri Ci = 0⊗Ri Ci = 0.

Next, we claim that for each j, Rj⊗RCj � Cj as Rj-algebras. Indeed, we have Rj-module isomorphisms

Cj � R⊗R Cj = (
m⊕
i=1

Ri)⊗R Cj �
m⊕
i=1

(Ri ⊗R Cj ) � Rj ⊗R Cj ,

and it is clear that the resulting Rj-module isomorphism Cj → Rj ⊗R Cj preserves products and 1.
This proves the above claim. Next, note that we have Rj-module isomorphisms

Rj ⊗R S = Rj ⊗R (
m⊕
i=1

Ci) �
m⊕
i=1

Rj ⊗R Ci � Rj ⊗R Cj .

It is clear that this Rj-module isomorphism Rj ⊗R S → Rj ⊗R Cj preserves products and 1. Since S is
an R-algebra and Cj is an Rj-algebra, it follows that Rj ⊗R S � Cj as Rj-algebras, thus completing the
proof of the above uniqueness assertion.

Another proof of the uniqueness of the Cj (up to Rj-algebra isomorphism) is available by applying
[11, Theorem 2.2]. As [11] was designed to apply to algebras over direct products whose index sets
may be infinite, the notation in (and leading up to) the cited result is rather dense and may seem less
accessible than the argument in the preceding paragraph. Nevertheless, that denseness provided for
a precisely stated corollary that we will cite in the proof of (c) given below.

The upshot of the above isomorphisms is that, for each R-algebra S, we have found an R-algebra
isomorphism θS : S→ (G◦F)(S). With careful attention to the behavior of morphisms, one can verify
that θ is a natural transformation and hence (because of the R-algebra isomorphisms θS ), a natural
equivalence from the identity functor on R to GF. Consequently, GF is naturally equivalent to the
identity functor on R.

We will next sketch the construction of a natural equivalence ϕ from FG to the identity functor on
P. Let C be any object of P; that is, C = (C1, . . . ,Cm), where Cj is an Rj-algebra for j = 1, . . . ,m. With
C := G(C) =

∏m
i=1 Ci , we have

(F ◦G)(C) = F(G(C)) = F(C) = (R1 ⊗R C, . . . ,Rm ⊗R C) � C,

where the R-algebra isomorphism in the last step of the above display is given by (taking S := C in)
the third paragraph of this proof. Let ϕC denote the resulting R-algebra isomorphism (F◦G)(C)→ C.
With careful attention to the behavior of morphisms, one can verify thatϕ is a natural transformation
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and hence (because of the R-algebra isomorphisms ϕC), a natural equivalence from FG to the identity
functor on P. Consequently, FG is naturally equivalent to the identity functor on P. That would
complete a proof of (a).

If one is interested only in showing that F is an equivalence of categories, one can proceed differ-
ently, without any mention of G, FG, GF, and the natural equivalence between GF (resp., FG) and
an identity functor. Indeed, according to a well known characterization of categorical equivalences
[5, Chapter II, 1.2] (whose proof uses a well-ordering of the universe), one need only prove that F
is fully faithful and essentially surjective. The “essentially surjective” assertion means, by defini-
tion, that each object T of P is isomorphic in P to F(W ) for some object W of R. By definition of
P, T = (C1, . . . ,Cm), where Cj is an Rj algebra for each j = 1, . . . ,m. We will show that W :=

∏m
j=1Cj

behaves as desired. Indeed, since we saw (in the above uniqueness proof) that Rj ⊗RCk = 0 whenever
j , k and that Rj ⊗R Cj � Cj , we have the following isomorphisms in P:

F(W ) = (R1 ⊗RW, . . . ,Rm ⊗RW ) � (
m∏
j=1

(R1 ⊗R Cj ), . . . ,
m∏
j=1

(Rm ⊗R Cj ))

� (R1 ⊗R C1, . . . ,Rm ⊗R Cm) � (C1, . . . ,Cm) = T .

This completes the sketch of a second proof of (a).
(b) The first assertion follows from the existence and uniqueness result that was proved in the

third, fourth and fifth paragraphs of the proof of (a). As for the “Moreover” assertion, also observe
from the proof of the uniqueness result in (a) that for each j, we have, up to isomorphism, that the
functor Aj ⊗A − carries the injection A ↪→ B to the morphism Aj → Bj . Thus, we could arrange that
Aj ⊆ Bj by showing that this functor is exact, that is, that Aj is a flat A-module. This, in turn, follows
since each Aj is a projective A-module (and hence is A-flat), a fact that follows from [8, Proposition
1.2.3] but also admits a direct proof since ⊕mi=1Ai = A.

(c) Pick/fix B1, . . . ,Bm as in (b) such that Aj ⊆ Bj for all j. To prove that A ⊂ B is a minimal ring
extension if and only if there exists an index i such that Ai ⊂ Bi is a minimal ring extension and
Aj = Bj for all j , i, one can combine (b) and [11, Theorem 2.2 and Corollary 2.3] with the reasoning
in the first 14 lines of the proof of [10, Theorem 15]. (Note that those 14 lines of that proof did not
use the hypothesis in the cited result that the algebra is commutative.) Finally, the most expeditious
way to establish the uniqueness of the index i is to apply [11, Corollary 2.3]. Finally, suppose that
these equivalent conditions hold. To prove that B is commutative, it is enough to prove that Bi is
commutative. This, in turn, holds because of the following three facts: the minimality of Ai ⊂ Bi
ensures that Bi is the ring generated by Ai ∪{β} for any β ∈ Bi \Ai ; the algebraicity of Ai ⊂ Bi ensures
that αβ = βα for all α ∈ Ai ; and Ai is commutative. The proof is complete.

3 Applications to ring extensions

The fifth paragraph of the Introduction to [15] “involve[d] extending the context for the FIP, FCP and
FMC concepts to noncommutative ring extensions." It will be convenient to repeat, and to augment,
some of that material in this paragraph and the next paragraph. Let A ⊆ B be (possibly noncom-
mutative) rings. Let [A,B] denote the set of intermediate rings of the ring extension A ⊆ B; that is,
[A,B] := {C | C is a ring and A ⊆ C ⊆ B}. We say that A ⊆ B satisfies FIP (the “finitely many inter-
mediate rings" property) if |[A,B]| <∞. According to one version of the classical Primitive Element
Theorem of field theory, a field extension K ⊆ L satisfies FIP if and only if L = K(u) for some element
u ∈ L such that u is integral (i.e., algebraic) over K . For any field K , a characterization of the nonzero
K-algebras T such that K ⊆ T satisfies FIP was obtained for perfect K in [2, Theorem 3.8 (d)] and for
arbitrary fields K in [17, Theorem III.2]. (In [32], an algebra B over a commutative ring Awas called a
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futile A-algebra in case B has only finitely many A-subalgebras; so, if A ⊆ B are nonzero commutative
rings, then B is a futile A-algebra if and only if A ⊆ B satisfies FIP. However, we will not mention
the “futile" terminology again here, for two reasons: our interest is in rings and ring extensions (not
only in algebras over commutative rings and algebra extensions); and we consider the terminology
in question from [32] to be pejorative and hence inappropriate.)

Returning to the ambient rings A ⊆ B, note that [A,B] is a poset under inclusion. We say that
A ⊆ B satisfies FCP (the “all chains are finite" property) if every chain in [A,B] is finite; and we say
that A ⊆ B satisfies FMC (the “existence of a finite maximal chain" property) if there exists a finite
maximal chain, A = A0 ⊂ . . . ⊂ An = B, in [A,B] going from A to B. (Note that in any such chain, each
step Ai−1 ⊂ Ai is a minimal ring extension.) It will be convenient to say that a ring extension satisfies
n-FMC if the preceding condition holds. It is clear that a ring extension satisfies FMC if and only if
it satisfies n-FMC for some integer n ≥ 0. If K is a field and T is a nonzero K-algebra, then perhaps
the most familiar example of such a T for which K ⊆ T satisfies FCP and FMC arises when T is a
(nonzero) finite-dimensional K-algebra (i.e., when T has a nonempty finite K-vector space basis). By
an easy fact about chains in a poset, a ring extensionA ⊆ B satisfies FCP if and only if (the poset) [A,B]
satisfies both the ascending chain condition and the descending chain condition. For arbitrary ring
extensions, it is clear that FIP⇒ FCP⇒ FMC, but neither of these implications has a valid converse.
The classical example of a ring extension that satisfies FCP but not FIP is Fp[Xp,Y p] ⊂ Fp[X,Y ]. An
example showing that FMC ; FCP was given in [7, Example 6.4]. (The latter example is striking. It
features a quasi-local (commutative) integral domain R of Krull dimension 2 and an overring S of R
(contained in the quotient field of R) such that there exists a maximal chain in [R,S] that has length
2 and goes from R to S (so R ⊂ S satisfies FMC) although R ⊂ S does not satisfy FCP. In a sense, this
example is best-possible, because the existence of a maximal chain of rings of length 1 going from A
to B is equivalent to A ⊂ B being a minimal ring extension, and of course, any minimal ring extension
satisfies FCP.)

All rings in this paragraph and the next three paragraphs will, apart from one parenthetical pas-
sage, be commutative. Let A ⊆ B be (commutative) rings, and let A denote the integral closure of A
in B. It is clear that if A ⊂ B is a minimal ring extension, then A ⊂ B is either integrally closed (in
the sense that A = A) or integral (in the sense that A = B). An integrally closed minimal ring exten-
sion A ⊂ B is the same as a minimal ring extension A ⊂ B such that (A,B) is a normal pair. Recall
from [27] that if A ⊂ B are (commutative) rings, then (A,B) is said to be a normal pair if each ring in
[A,B] is integrally closed in B. The most familiar example of a normal pair arises from any Prüfer
domain A by taking B to be the quotient field of A. (In [13], Dobbs and Jarboui recently initiated
a study of normal pairs of noncommutative rings that was based on a notion of integrality due to
Atterton [3] but, as documented in [13, Remark 2.11], noncommutative ring theorists have, for ap-
proximately the last half-century, preferred a number of other notions of “integrality" whose studies
are often restricted to special kinds of extensions of noncommutative rings and whose connections
to the classical concept of integrality are less evident than was Atterton’s.) Because the property of
being a normal pair is a local property (in ways that are made explicit in [21, page 340]), a character-
ization of normal pairs (A,B) would be available if it were achieved in case A is quasi-local. This, in
turn, was accomplished in [20, Theorem 3.1 and Corollary 3.2] by Dobbs and Shapiro with the aid of
Kaplansky transforms. It is fair to say that much of the transform-related work on integrally closed
minimal ring extensions of a commutative ring was motivated by Ayache’s pioneering study on the
possible existence and structure of the integrally closed minimal overrings (inside the quotient field)
of an integrally closed commutative integral domain which is not a field [4, Theorems 2.4 and 3.1].
Many characterizations of integrally closed minimal ring extensions were accomplished (without as-
suming quasi-local base rings) by Cahen, Dobbs and Lucas in [6, Section 3] by using a generalized
notion of the Kaplansky transform of a (commutative) ring extension relative to a non-nil ideal of the
base ring. (For the definition of that generalized notion, see [6, page 1083].) For the construction of
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an earlier generalized Kaplansky transform (of an ideal of an arbitrary commutative ring) that was
used in another approach by Dobbs and Shapiro to the case where the base ring is not quasi-local and
has a total quotient ring that is von Neumann regular [20, Theorem 3.7] and that has an application
to algebraic geometry (for a base ring whose total quotient ring is von Neumann regular), see [37].
As for integral minimal ring extensions, one obtains the following “ramified/decomposed/inert" tri-
chotomy (cf. [17, Corollary II.2]), by combining [23, Lemme 1.2 and Théorème 2.2] with an easy
pullback result [17, Lemma II.3]. An integral ring extension A ⊆ B is a minimal ring extension if and
only if there exists a maximal ideal M of A (which is necessarily both the crucial maximal ideal of
the minimal ring extension A ⊂ B and the conductor (A : B) := {b ∈ B | bB ⊆ A}) such that, if K := A/M,
then B/MB = B/M is K-algebra isomorphic to (exactly) one of the following: K[X]/(X2), K × K , a
minimal field extension of K . The (three) individual types of extensions in this trichotomy have each
been the subject of study in at least one recent paper. Most of those studies are not especially relevant
to the rest of this note, but there will be a role for the trichotomy in a couple of the results from [15]
that will be stated below. Finally, we wish to point out that many characterizations of normal pairs
(of commutative rings) can be found in [31, Theorem 5.2, page 47].

Any summary, no matter how brief it may be, of what is known about FCP and FIP for commu-
tative rings A ⊂ B would be incomplete without mentioning the pioneering work of Robert Gilmer.
(Recall that [26] was mentioned above.) For a (commutative) integral domain R with quotient field
K , Gilmer [25, Theorems 2.3 and 3.1] characterized (using other terminology) when R ⊆ K satisfies
FCP and when R ⊆ K satisfies FIP. This work of Gilmer prompted several individuals to work on FCP
and (without the terminology) FIP for various kinds of extensions of various kinds of commutative
integral domains. (A representative sampling of that work was mentioned in [18, pages 392, 399,
400, 425, 427, 428]; for additional related background, the interested reader can look into sources
cited in the relevant items in the bibliography of [18].) More generally, motivated by the behavior of
minimal ring extensions, Dobbs, Picavet and Picavet-L’Hermitte proved in [18, Theorem 3.13] that
if A ⊆ B are (commutative) rings, then A ⊆ B satisfies FCP (resp., FIP) if and only if both A ⊆ A and
A ⊆ B satisfy FCP (resp., FIP). In this way, the study of the commutative ring extensions satisfying
FCP (resp., FIP) was reduced to the study of the FCP (resp., FIP) property for (commutative) ring
extensions that are either integral or integrally closed. Also, in retrospect, the “FCP" assertion in [18,
Theorem 3.13] makes clear that any commutative ring extension R ⊂ S satisfying FCP but not FMC
would necessarily have, as was the case for the ring extension R ⊂ S in an above-mentioned example
[7, Example 6.4], the property that S is not integral over R.

In [18, Theorem 4.2 (a)], it was shown that if A ⊆ B are commutative rings with B integral over
A, then: A ⊆ B satisfies FCP⇔ B is finitely generated as an A-module and A/((A : B)) is an Artinian
ring ⇔ A ⊆ B satisfies FMC. With this result in hand, a characterization of the integral extensions
that satisfy FIP was then reduced to the context of quasi-local base rings by the following result [18,
Proposition 5.17]: if A ⊆ B are commutative rings with B integral over A, then: A ⊆ B satisfies FIP
⇔ A ⊆ B satisfies FCP and AM ⊆ BA\M satisfies FIP for all maximal ideals M of A ⇔ AM ⊆ BA\M
satisfies FIP for all maximal ideals M of A and there are only finitely many maximal ideals M of A
such that the canonical mapAM → BA\M is not surjective. The final step in characterizing the integral
extensions (involving commutative rings) A ⊆ B that satisfy FIP was completed in [18, Theorem 5.18]
which addressed the case of quasi-local A (and, coincidentally yielded a new proof of the Primitive
Element Theorem). To complete our summary of results from [18], we next state [18, Theorem 6.3
and Proposition 6.9]: if A ⊆ B is an integrally closed extension of commutative rings, then: A ⊆ B
satisfies FIP⇔ A ⊆ B satisfies FCP⇔ A ⊆ B satisfies FMC⇔ (A,B) is a normal pair and there exist
only finitely many prime ideals P of A such that the canonical map AP → BA\P is not surjective. The
preceding result can be viewed as a far-reaching generalization of the following fact that has been
proven often (cf. the corollary in the Corrigendum to [2]): if R is an integrally closed (commutative)
integral domain with quotient field K , then R has only finitely many overrings (inside K) if and only
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if R is a semi-quasi-local Prüfer domain of finite Krull dimension.
In his doctoral dissertation [24], Gilbert introduced the following chain condition as a generaliza-

tion of a minimal ring extension. An extension A ⊆ B of commutative rings is called a λ-extension
if the poset [A,B] is linearly ordered (by inclusion). It is possible to restate [18, Corollary 6.4] as
follows: if A ⊆ B is an integrally closed extension (of commutative rings) such that A is quasi-local
and A ⊆ B satisfies FMC, then A ⊆ B is a λ-extension (and [A,B] is a finite chain). A number of recent
papers have pursued the notion of a λ-extension, especially for (commutative) ring extensions satis-
fying FCP. Among the most recent of these works are [35] and [16]. Since the studies of λ-extensions
do not seem to specifically relate to Corollary 3.6, we will, in the interest of brevity, not comment
further on them here, other than to alert the reader that some authors have decided to refer to a
λ-extension as a “chained extension."

Also in the interest of brevity and with the main goal of motivating Corollary 3.6, this survey is
largely ignoring a considerable amount of research that has been done during the past decade on
some special kinds of commutative ring extensions that satisfy FCP or FIP. Most of that research
has been done jointly by Picavet and Picavet-L’Hermitte, and its has enriched the intersection of
commutative ring theory and lattice theory. The interested reader can access some of that work by
consulting [35] and the papers cited in the bibliography of that paper. We would also suggest that it
may be fruitful to consider generalizations of some of that work to the context of noncommutative
ring extensions (or at least to the context of ring extensions A ⊆ B where A is commutative and B is
an A-algebra).

Before discussing some work on studying FMC for extensions of noncommutative rings, we pause
to restate (without pejorative terminology) five of Kosters’ results concerning the ring extensions
A ⊆ B that satisfy FIP where A is commutative and B is a (possibly noncommutative) A-algebra.
Before stating the first and second of those results, we recall that much of the early work on minimal
ring extensions of commutative integral domains focused on minimal overrings (inside the quotient
field of the given base ring). For instance, before the above-mentioned studies involving Kaplansky
transforms, Dobbs and Shapiro [19, Theorem 2.7] showed that ifA ⊆ B is an integrally closed minimal
ring extension, with A an integral domain and B commutative, then B is (A-algebra isomorphic to)
an overring of A (inside the quotient field of A). More than a decade before that, Sato, Sugatani and
Yoshida [36] showed that if A ⊂ B is a minimal ring extension where B is a commutative integral
domain and A is not a field, then B is an overring of A. In the same vein, in [32, Lemma 5.2], Kosters
showed that if A is a commutative integral domain but not a field and A ⊂ B satisfies FIP, where B is
an A-algebra which is torsion-free as an A-module, then B is an overring of A. In [32, Corollary 5.3],
Kosters noted the consequence that if A ⊆ B satisfies FIP where A is a commutative integral domain
which is distinct from its quotient field K and where B is an A-algebra, then B⊗A K is (isomorphic
to) either 0 or K . In [32, Theorem 1.3], Kosters examined another topic that had not been considered
by the author or his collaborators, by showing that if A is a commutative ring, then A ⊆ B satisfies
FIP for all A-algebras B that contain A if and only if |A/M | <∞ for each maximal ideal M of A. Next,
we mention Kosters’ reduction to the commutative case in [32, Theorem 1.2], where he showed that
if A ⊆ B are rings such that A is commutative and B is an A-algebra and if I denotes the commutator
ideal of the (possibly noncommutative ring) B, then: A ⊆ B satisfies FIP⇔ A/(I∩A) ⊆ B/I satisfies FIP
and |I | <∞. (Note that B/I is commutative in general; and that I = 0 if and only if B is commutative.)
Finally, given the role played by Artinian base rings in [18, Section 5], it seems interesting to mention
the following fragment of Kosters’ [32, Proposition 4.13]: if A ⊆ B satisfies FIP where (A,M) is a
commutative local Artinian ring such that A/M is infinite and where B is an A-algebra, then B is
commutative. As noted in [32], some proofs in [32] use results and methods from [18]. While we
found nothing really new in Kosters’ treatment of the integrally closed commutative ring extensions
that satisfy FIP, we are glad to also note that some of the assertions and methods of proof in [32] do
contain genuine innovations. We invite the reader to compare [32] and [18] more fully.
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The above attention given to defining FIP, FCP and FMC for ring extensions involving arbitrary
(that is, possibly noncommutative) rings allowed Dobbs and Jarboui to state (and prove) the follow-
ing result [15, Theorem 2.2]: if A is a nonzero ring, then: U(A) = {1} and F2 ⊆ A satisfies FIP ⇔
U(A) = {1} and F2 ⊆ A satisfies FCP⇔ U(A) = {1} and F2 ⊆ A satisfies FMC⇔ R is a finite Boolean
ring. (Of course, one considered F2 ⊆ A in the preceding result because any nonzero Boolean ring
has characteristic 2.) It would seem natural to ask if there are any analogues of [15, Theorem 2.2]
for rings of odd prime characteristic. For instance, since it is well known that the finite nonzero
Boolean rings are the same as the (not necessarily commutative) rings which are isomorphic to finite
nonempty direct products of copies of F2, one may ask the following question: in the universe of
(not necessarily commutative) rings of arbitrary prime characteristic p, can one use FMC or FCP to
characterize the rings that are isomorphic to finite nonempty direct products of copies of Fp? In
seeking such a result, it would be natural to argue inductively and to avoid chains involving rings
having nonzero nilpotent elements. Indeed, if Fp = B0 ⊂ B1 is a minimal ring extension, it is easy to
see that B1 is commutative (since B0 is contained in the center of B1, as all ring extensions are unital).
Hence, by [23, Lemme 1.2] (and since we are avoiding nonzero nilpotent elements), we could take
B1 � Fp × Fp. There would then be no harm in identifying B1 with Fp × Fp. If one could handle the
induction step by showing that a nilpotent-free minimal ring extension of B1 must be isomorphic to
a direct product of three copies of Fp, it would be reasonable to expect such an iterative argument
to terminate successfully after invoking FCP. However, no such argument is possible. The fact is
that the structure of an arbitrary minimal ring extension B2 of B1 is not known. After all, one can-
not invoke [12, Lemma 2.2] in this regard, since we do not know, a priori, that B2 is commutative.
(Furthermore, we cannot invoke the above Proposition 2.1 (c) because we do not know that B2 is an
algebra over B1; that is, we do not know if B1 is contained in the center of B2.) In fact, as the next
example shows, B2 need not be commutative!

Example 3.1. (Dobbs and Jarboui [15, Example 2.5]) Consider any integer m ≥ 2. Then there exists a
finite maximal chain of finite rings, A = B0 ⊂ . . . ⊂ Bm = B, such that B0 and B1 are commutative and
Bm is noncommutative. For an example of such data in which |B| is the minimum possible, takem = 2
and A = F2, with B the ring U2(F2) of upper triangular 2 × 2 matrices over F2. A maximal chain of
rings F2 ⊂ B1 ⊂ B2 := U2(F2) going from F2 to U2(F2) can be built using B1 := {0, I ,C, I +C}, where I is
the 2×2 identity matrix and C is the 2×2 matrix whose only nonzero entry is c11 = 1. (In particular,
in this example, Bm−1 ⊂ B is a minimal ring extension, Bm−1 is commutative, B is noncommutative,
and Bm−1 is not contained in the center of B.) To construct an example for any m > 2, it suffices to
prolong the above chain by inductively choosing Bi+1 to be any minimal ring extension of Bi , for
i = 2,3, . . . ,m− 1.

Observe that in Example 3.1, the ring B1 is isomorphic (as an F2-algebra, that is, as a ring) to
F2 × F2; and C is not in the center of B2 (so, B2 is not an algebra over B1), even though B1 ⊂ B2 is a
minimal ring extension. Thus, the “argument" preceding the statement of Example 3.1 does indeed
fail.

Because of Example 3.1, it is natural to discuss minimal ring extensions such that A is commuta-
tive, B is noncommutative and B is not an A-algebra. Classical algebra knew of such examples early
in the 20th century (if not earlier). For instance, let K be any field whose Brauer group, Br(K), is
nonzero. (For instance, take K to be R or Q, but not an algebraically closed field and not a finite
field.) Then there exist K ⊂ L ⊂ D such that D is a central simple division algebra over K (equiv-
alently, a central separable K-division algebra, equivalently an Azumaya K-division algebra) and L
is a maximal subfield of D. (Cf. [28, pages 89-94]. For instance, if K = R, take D as the ring H

of quaternions over K and take L as C (viewed as R + Ri ⊂ H = D). Then L ⊂ D is a minimal ring
extension, L is commutative, D is noncommutative, and D is not an L-algebra since i is not in the
center of H.) More recently, there has been renewed interest in the maximal commutative subrings
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of a given (noncommutative) ring. One such work was [29]. In fact, [29] had reason to consider (and
to generalize) the ring extension that was denoted by B1 ⊂ B2 in Example 3.1, but the minimality
assertion in Example 3.1 seems not to have been noticed prior to the appearance of [15].

Since the “argument" preceding the statement of Example 3.1 fails, we pause to explain a bit of
how [15, Theorem 2.2] was proved. One question that arose in proving [15, Theorem 2.2] was to
know that if A is a finite ring and A ⊂ B is a minimal ring extension, then B is also finite. While this
fact is not difficult to establish for commutative rings (as an application of [10, Proposition 7]), the
proof of it in [15] used a deep noncommutative rng-theoretic result due independently to Klein [30]
and Laffey[33]. The proof of [15, Theorem 2.2] also used the result [14, Corollary 2.5] that a (not
necessarily commutative) ring A is a finite Boolean ring if and only if A is finite and U(A) = {1}.

Any ring of odd prime characteristic has a unit that is distinct from 1 (since this is true of its prime
subring). Therefore, in order to establish analogues of [15, Theorem 2.2], it seemed worthwhile to
adjust the FMC property in order to facilitate induction arguments that could handle the difficulty
that was noted above. To that end, Dobbs and Jarboui introduced the following definitions in [15].
(The rest of this paragraph, as well as all of the next paragraph, is taken nearly verbatim from [15].)
Let A ⊆ B be rings. We will say that A ⊆ B satisfies AFMC (for “Adjusted FMC”) if there exists
(in [A,B]) a finite maximal increasing chain of rings going from A to B whose last step Bm−1 ⊂ B
is such that B is a Bm−1-algebra. If the number of steps in such a chain is relevant, we will say,
for an integer m ≥ 0, that A ⊆ B satisfies m-AFMC if there exists a finite maximal chain (in [A,B]),
A = B0 ⊂ . . . ⊂ Bm = B, such that B is a Bm−1-algebra, and we will call any such chain an m-AFMC
chain (going from A to B).

Some conclusions about the above new concepts are clear. For instance, A ⊆ B satisfies AFMC if
and only if A ⊆ B satisfies m-AFMC for some m ≥ 0. (Recall that A ⊆ B satisfies FMC if and only
if A ⊆ B satisfies m-FMC for some m ≥ 0.) Of course, m-AFMC ⇒ m-FMC, and so AFMC ⇒ FMC.
However, as Example 3.1 shows, FMC ; AFMC; in fact, 2-FMC ; AFMC. A fact (which is central
to the reason for introducing the AFMC property) is that if A ⊆ B satisfies m-AFMC (for some m),
then B is a commutative ring. (Here is a quick proof. By focusing on the last step in an m-AFMC
chain going from A to B, it is enough to prove that if A ⊂ B is a minimal ring extension and B is
an A-algebra (and A is commutative), then B is commutative. This, in turn, can be easily proved by
revisiting the paragraph that preceded the statement of Example 3.1 and adapting the correct part
of the argument that was given in that paragraph to establish commutativity of what was denoted
by B1 in that paragraph.) Though easy, this fact is useful. For instance, it shows the AFMC property
remedies a feature of the FMC property that was revealed by Example 3.1. In a sense, AFMC is
the natural variant of FMC that should be studied by those who are (primarily but not exclusively)
interested in commutative rings, as it is now clear that if A ⊆ B are commutative rings, then A ⊆ B
satisfies m-AFMC (if and) only if A ⊆ B satisfies m-FMC.

We will next state, as items 3.2-3.5, four results whose statements involve the above definitions.
The statements of those results are clearly in the spirit of [15, Theorem 2.2]. Also, those statements
(correctly) indicate that, as has often been the case for proofs involving the FCP and FMC properties,
one can expect that proofs of assertions involving the AFMC property will often make serious use of
minimal ring extensions, especially the “ramified/decomposed/inert" trichotomy.

As usual, we will let Max(R) denote the set of maximal ideals of a ring R.

Proposition 3.2. (Dobbs and Jarboui [15, Theorem 2.7]) Let R be a nonzero ring of characteristic k > 0
and view Z/kZ ⊆ R as usual. Then:

(a) If A is a subring of R such that A ⊆ R satisfiesm-AFMC for somem ≥ 0, then R is a commutative
ring.

(b) If A is a finite subring of R such that A ⊆ R satisfies m-AFMC for some m ≥ 0, then R is a finite
commutative ring.
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(c) Let the prime-power decomposition of k be k =
∏s
j=1 q

αj
j , where q1, . . . ,qs are pairwise distinct

prime numbers and each αj ≥ 1. Using the Chinese Remainder Theorem, identify A = Z/kZ =∏s
j=1Z/q

αj
j Z ⊆ R. Suppose that A ⊆ R satisfies m-AFMC, with A = R0 ⊂ . . . ⊂ Rm = R an m-AFMC

chain. (So, by (b), R is a finite commutative ring.) Then |Max(R)| ≤ s+m. If 0 ≤ ν ≤m, then |Max(R)| =
s + ν if and only if exactly ν of the steps of the form Ri−1 ⊂ Ri are decomposed (minimal ring)
extensions (and the other m − ν steps of the form Ri−1 ⊂ Ri are ramified or inert (minimal ring)
extensions). In particular, |Max(R)| = s +m if and only if Ri−1 ⊂ Ri is a decomposed extension for all
i = 1, . . . ,m. Also, R has no nonzero nilpotent elements if and only if α1 = · · · = αs = 1 and each step
(Ri−1 ⊂ Ri for 1 ≤ i ≤m) is either decomposed or inert.

Corollary 3.3. (Dobbs and Jarboui [15, Corollary 2.8]) Let p be a prime number and let R be a
(necessarily nonzero) ring of characteristic p. View Fp ⊆ R as usual. Then:

(a) Let m be a non-negative integer. Then the following two conditions are equivalent:
(1) R is a (not necessarily commutative) integral domain and Fp ⊆ R satisfies m-AFMC;
(2) R � Fpq1 · ··· ·qm , for some finite list of prime numbers q1, . . . ,qm (possibly with qi = qj for some

i , j).
(b) The following three conditions are equivalent:

(i) R is a (not necessarily commutative) integral domain and Fp ⊆ R satisfies FCP;
(ii) R is a (not necessarily commutative) integral domain and Fp ⊆ R satisfies AFMC;
(iii) R is a finite field.

Corollary 3.4. (Dobbs and Jarboui [15, Corollary 2.9]) Let p be a prime number and let R be a
(necessarily nonzero) ring of characteristic p. View Fp ⊆ R as usual. Then the following conditions
are equivalent:

(1) There exist a non-negative integer m1 and an m1-AFMC chain, Fp = R0 ⊂ . . . ⊂ Rm = R, going
from Fp to R, such that each step Ri−1 ⊂ Ri of that chain is either inert or decomposed;

(2) There exists a non-negative integer m2 such that Fp ⊆ R satisfies m2-AFMC and R has no
nonzero nilpotent elements;

(3) R is isomorphic to a finite direct product of finite fields (of characteristic p);
(4) R is a finite commutative semisimple ring.

Corollary 3.5. (Dobbs and Jarboui [15, Corollary 2.10]) Let R be a nonzero ring of prime character-
istic p > 0 and view Fp ⊆ R as usual. Then:

(a) The following three conditions are equivalent:
(1) Fp ⊆ R satisfies m-AFMC, with an m-AFMC chain Fp = R0 ⊂ . . . ⊂ Rm = R, each of whose

steps Ri−1 ⊂ Ri is decomposed;
(2) Fp ⊆ R satisfies m-AFMC and |Max(R)| =m+ 1;
(3) R is isomorphic (as a ring, equivalently, as a vector space over Fp) to a direct product of

finitely many copies of Fp.
(b) If the equivalent conditions in (a) hold and n := |Max(R)|, then any finite maximal chain going

from Fp to R (that is, any FMC chain going from Fp to R; equivalently, any AFMC chain going from
Fp to R) has length m = n− 1 and the number of subrings of R is Bn, the nth Bell number.

Although the FIP property and the FCP property were each characterized in [18] for ring exten-
sions in which the top ring is (and hence both rings are) commutative, we are not aware of any
characterizations of either of those properties for ring extensions involving arbitrary (that is, possi-
bly noncommutative) rings. Also, apart from the work that was recalled above from [15], we are not
aware of other studies of the FMC property for ring extensions involving arbitrary noncommutative
rings.

With the above background in this section serving as motivation, we close this note with an appli-
cation of Proposition 2.1 to the following four properties: AFMC, FMC, FCP and FIP.
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Corollary 3.6. (a) Let A = A1 × · · · ×Am as in Proposition 2.1 (b) and let B be a faithful A-algebra.
(Once again, view A ⊆ B as a ring extension such that A is contained in the center of B.) Pick/fix
B1, . . . ,Bm as in Proposition 2.1 (b) such that Ak ⊆ Bk for all k. Then A ⊆ B satisfies AFMC if and
only if Ak ⊆ Bk satisfies AFMC for all k = 1, . . . ,m. More precisely put: if µ is a non-negative integer,
then A ⊆ B satisfies µ-AFMC if and only if there exist non-negative integers µ1, . . . ,µm such that∑m
k=1µk = µ and Ak ⊆ Bk satisfies µk-AFMC for all k = 1, . . . ,m. If these equivalent conditions hold,

then B is commutative.
(b) Let A = A1 × · · · ×Am as in Proposition 2.1 (b) and let B be a faithful A-algebra. (Once again,

view A ⊆ B as a ring extension such that A is contained in the center of B.) Pick/fix B1, . . . ,Bm as in
Proposition 2.1 (b) such that Ak ⊆ Bk for all k. Then A ⊆ B satisfies FMC (resp., FCP; resp., FIP) if and
only if Ak ⊆ Bk satisfies FMC (resp., FCP; resp., FIP) for all k = 1, . . . ,m.

Proof. These assertions follow easily from Proposition 2.1 (c).
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