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Abstract. It is proved that if k,m ∈ R and P0 (x0, y0) is a point in the Euclidean plane R
2 with y0 , k and with X denoting

the (horizontal) line with Cartesian equation y = k, then there exists a unique circle, say K, such that the center of K is

on X , P0 lies on K, and the tangent to K at P0 has slope m. An ensuing multi-step algorithmic result that is proved here

for the Euclidean upper half-plane determines the angular measure of any directed angle that is formed by counterclock-

wise rotation from a designated initial side to a designated terminal side, in case each of those “sides" is a hyperbolic line

segment (that is, either a vertical (Euclidean) line segment or an arc of a (Euclidean) circle centered on the x-axis). One

consequence (for the Euclidean upper half-plane) is the construction of (the unique hyperbolic line segment playing the

role of terminal (resp., initial) side of) a unique directed angle having a prescribed vertex, a prescribed measure between 0

and π, and a prescribed hyperbolic line segment as initial (resp., terminal) side. As the only prerequisites assumed here are

related topics in analytic geometry and trigonometry that can be covered in a precalculus course, this paper could be used

as enrichment material for a precalculus course, a calculus course, or a course on the classical geometries that features the

upper half-plane model of hyperbolic plane geometry.
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gent line, inverse tangent function, angle of inclination, inverse cosine function, bowed geodesic, straight geodesic.
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1 Introduction

In the mid-to-late 20th century, undergraduate courses on classical (Euclidean or hyperbolic) geome-
try, based on multi-edition textbooks such as [10] and [7], emphasized an axiomatic approach. Since
1993, a popular alternative for such courses has featured a model-based approach in multi-edition
textbooks by Millman-Parker [9] and Stahl [12]. The viability of studying hyperbolic (plane) geom-
etry via its upper half-plane model was popularized in 1980 by Millman [8]. Such studies are es-
pecially attractive to many undergraduates (and even to some high school students), as the required
background consists only of some high school material (basic algebra, Euclidean plane geometry and
trigonometry) and occasionally basic calculus. Augmenting the verifications of axioms in [8], a rig-
orous proof was given in [4] to show that the upper half-plane model satisfies the axiom concerning
parallel lines that is appropriate for hyperbolic geometry. In addition, the increasing availability
of calculators and computer programs to compute certain definite/line integrals led to a paper [3]
which established that much of [12] could be carried out via a (hyperbolic) distance formula that
is readily implemented on graphing calculators or computers. However, despite all the recent at-
tention that has been given to carrying out the program spearheaded by Millman, Parker and Stahl,
little attention has been given to proving and implementing methodology to measure angles in the
upper half-plane model. The main purpose of this paper is to present, prove and illustrate such al-
gorithmic methodology. As this work is done in the upper half of the Euclidean plane R

2, much of
this paper could serve as enrichment material for a precalculus course, some of this paper could be
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used to enrich a differential calculus course, and all of this paper could be used to enrich a course
that studies hyperbolic geometry via the upper half-plane model.

In hyperbolic geometry (from now on, that will mean “in the upper half-plane model"), when two
curves F and G intersect at a point P , typically four angles having vertex P are thereby created, and
the (hyperbolic) measure of any of these angles is defined to be the usual (Euclidean) measure of the
Euclidean angle having vertex P formed by the corresponding (Euclidean) tangential half-lines to F
and G. In practice, attention is focused on F and G being the “lines" (that is, the hyperbolic geodesics)
of hyperbolic geometry. As is well known (cf. [8, Proposition 1], [12, Theorem 4.2.1]), a “line" in
hyperbolic geometry is of one of two types: a so-called “straight geodesic," which is the intersection
of the upper half-plane with a vertical (Euclidean) line; or a so-called “bowed geodesic," which is the
intersection of the upper half-plane with a (Euclidean) circle whose center is on the x-axis. Of course,
if F and G are (hyperbolic) “lines," one can work with their (Euclidean) tangential (half-)lines at the
precalculus level, where the most relevant concept is that of “slope." For that reason, we begin with
some slope-centered results that could be placed into a unit on the analytic geometry of circles and
lines in a precalculus course. Their upshot for hyperbolic geometry is this: if m ∈ R and P is a point
in the upper half-plane of R2, then there exists a unique bowed geodesic K such that P lies on K and
the tangent to K at P has slope m. Thus, the measurement of angles in hyperbolic geometry (whose
“sides" are portions of straight or bowed geodesics) comes down to measuring the angles formed at
the intersection of a (Euclidean) line with slope m1 with either a (Euclidean) line with slope m2 or a
(Euclidean) vertical line. Formulas to accomplish that, in turn, were given in [5, Theorem 2.2], which
is restated below for convenience as Lemma 2.6.

For the most part, our interest here will be in angles whose measure is between 0 and π (because
of their usefulness in studying triangles), but angles with measures between π and 2π will arise
naturally in Corollary 2.18. As right angles are generally easy to detect (we will say more about this
later), it may seem that the desired methodology for measuring angles would end with an application
of Lemma 2.6. However, in order to apply Lemma 2.6, a user first needs to know (or should be
reasonably confident as to) whether the non-right angle that is being measured is acute or obtuse.
(As usual, if an angle has measure strictly between 0 and π, we say that angle is acute (resp., obtuse) if
its measure is less than (resp., greater than) π/2.) If a user wishes to be certain whether a given non-
right angle (with measure between 0 and π) that is being measured is acute or obtuse, Corollary 2.13
presents a computational 12-step algorithm to find that angle’s measure without the need to have
an opinion as to whether the angle is acute or obtuse. The “acute/obtuse" part of this algorithm is
handled by the usual dot product of (bound) vectors. Familiarity with this concept, which is covered
in only some precalculus courses, is not being assumed here. Indeed, in Example 2.15, the worked
examples (illustrating uses of the algorithm from Corollary 2.13) are sufficiently detailed as to make
the calculations transparent.

In working with an interior angle of a (Euclidean or hyperbolic) triangle, one often does not des-
ignate an “initial side" or a “terminal side" of the angle, perhaps out of a desire that each such angle
have measure strictly between 0 and π. We will definitely not adopt that point of view here. For
us, each “angle" being considered (regardless of whether its study involves a related triangle) will be
understood to be a directed angle (that is, an angle that can be viewed as having arisen via a counter-
clockwise rotation from a designated initial side to a designated terminal side). We believe that the
literature on angles (in both Euclidean and hyperbolic geometry) is often unclear on such matters.
For that reason, we will often include “directed" (and, less often, “counterclockwise") in describing
angles that figure in the statements of results. For more about the time-honored role of (directed)
angles in the teaching of geometry and trigonometry, see Remark 2.4 (a) and Remark 2.11 (a).

Hyperbolic geometry is decidedly non-Euclidean, inasmuch as the open neighborhoods (relative
to the hyperbolic metric) “near" two given points in the upper half-plane may not “look alike" (espe-
cially if the given points have different y-coordinates). Fortunately, our slope-based results that lead
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to the angle-measuring algorithm in Corollary 2.13 can also be used to establish Theorem 2.17 and
Corollary 2.18, which give some ways (involving angles) in which hyperbolic geometry does behave
like Euclidean geometry. For brevity, we state only Theorem 2.17 next. Let G be a given hyperbolic
half-line emanating from a point P in the upper half-plane; let T be the tangential half-line of G
emanating from P ; let ξ ∈ R such that 0 ≤ ξ ≤ π; then there exists a unique hyperbolic half-line
H emanating from P such that the directed angle with initial (resp., terminal) side G and terminal
(resp., initial) side H has measure ξ.

We close with some comments about terminology and notation. Since there is no such thing as
a “vertical angle," students are often uncomfortable with the term “vertical angles." In sympathy
with their unease, we will not use that term, preferring instead the older, more suggestive, term
“vertically opposite angles." Also, given two distinct points P and Q in the upper half-plane, we

will use the notation
−−→
PQ in two different (but time honored) ways: to mean either the (Euclidean

or hyperbolic) half-line that has initial point P and passes through Q; or the (bound) vector (also
known as a directed line segment) with initial point P and terminal point Q, that is likely familiar
from geometry, physics and calculus. We trust that context will always allow the reader to know in
which sense this notation is being used here.

2 Results

We begin with an elementary but useful result in the analytic geometry of the Euclidean plane.
Corollary 2.2 will state its application to a context that is suited to the upper half-plane model of
hyperbolic geometry. While Theorem 2.1 is set in a more general context, we will assume that its line
X is horizontal, in order to avoid unnecessary complications in dealing with the associated analytic
geometry. The interested reader/instructor/student is invited to develop a generalization of Theorem
2.1 in case X is not assumed to be horizontal.

We offer two proofs of Theorem 2.1 which share a common beginning. The conclusion for the first
proof would be accessible early in a precalculus course, whereas the conclusion for the second proof
assumes a familiarity with the basics of differential calculus.

Theorem 2.1. Let k,m ∈ R with m , 0, and let P0 (x0, y0) be a point in the Euclidean plane R
2 such

that y0 , k. Let X denote the (horizontal) line with Cartesian equation y = k. Then there exists a
unique circle, say K, such that the center of K is on X , P0 lies on K, and the tangent to K at P0 has
slope m. A Cartesian equation for this circle K is

x2 − 2[x0 +m(y0 − k)]x+ y2 − 2ky = y2
0 − x

2
0 − 2mx0y0 + 2k(mx0 − y0).

Proof. The circle centered at a typical point C(c,k) on X and having radius r (> 0) has Cartesian
equation

(x − c)2 + (y − k)2 = r2;

and, by the distance formula, this circle passes through P0 if and only if

(x0 − c)2 + (y0 − k)2 = r2.

Thus, to prove the first assertion, it suffices to show that there is a unique c ∈R such that the tangent
to the graph of

(x − c)2 + (y − k)2 = (x0 − c)2 + (y0 − k)2

at the point P0 has slope m.
Let T denote the tangent (line) to the above circle at P0 and let S denote the line segment (radius

vector) from C to P0. By an elementary result about circles in Euclidean plane geometry, T and S are
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perpendicular. As we are given that m , 0, we need only address the case where T is not horizontal;
equivalently, where S is not vertical; equivalently, where the slope of S is defined; equivalently, where
x0 − c , 0. Of course, x0 − c , 0 ⇔ x0 , c ⇔ y0 − k , ±r. Also, the hypotheses now ensure that, for
each circle that we are considering, T does have a slope, that is, T is not vertical; equivalently, S is
not horizontal; equivalently, the slope of S is nonzero; equivalently, (y0 − k)/(x0 − c) , 0; equivalently,
y0 , k (which holds by assumption) and x0 , c (which holds by the above restriction).

Continuation of the first proof: By the reduction in the preceding paragraph, S is not vertical.
Then the slope of S is (y0 − k)/(x0 − c), which is well defined (and nonzero, as noted above). Let µ
denote the slope of T . Recall the elementary result in analytic geometry that two non-vertical lines
are perpendicular if and only of the product of their slopes is −1. Therefore, since T and S are
perpendicular, it follows that µ · [(y0 − k)/(x0 − c)] = −1; that is, µ = [(k − y0)/(x0 − c)]−1. As the above
circle has the desired properties if and only if µ = m, the first assertion will follow by showing that
c is uniquely determined by the condition that (x0 − c)/(k − y0) = m. This is, in fact, the case, with
c = x0 +m(y0−k). Observe that this value of c also satisfies the above condition that x0 , c (sincem , 0
and y0 , k).

It remains only to obtain the asserted Cartesian equation for K. This can be shown by substituting
the above formula for c into the third displayed equation in this proof and then doing some routine
algebraic simplifications. Those details can safely be left to the reader. This completes the first proof.

Continuation of the second proof: Recall from the first paragraph that a Cartesian equation for
K is of the form

(x − c)2 + (y − k)2 = (x0 − c)2 + (y0 − k)2,

and we must find a unique c such that the tangent to the graph of K at the point P0 has slope m. Let
y be one of the functions of x that are implicitly defined by the last displayed equation. (Formulas
for these functions could be found by using the quadratic formula, but we will not need to do so.)
Let y′ denote the derivative of y with respect to x. Apply implicit differentiation to the displayed
equation; that is, equate the derivatives (with respect to x) of the left- and right-hand sides of that
displayed equation. Standard differential calculus leads to 2(x − c) + 2(y − k)y′ = 0. It follows that
y′ = (c− x)/(y − k) for any point on K such that y , k. Basic differential calculus tells us that the slope
of the tangent (line) to the graph of K at the point (x,y) is y′(x) provided that this tangent line is not
vertical. Recall from the second paragraph of this proof that we are assuming that T is not vertical
(and x0 , c). Thus, applying the above reasoning to (x,y) := (x0, y0), we see that the slope of T is y′(x0)
and, therefore, that the first assertion will follow by showing that c is uniquely determined by the
condition that m = (c − x0)/(y0 − k). This is, in fact, the case, with c = x0 +m(y0 − k). Observe that
this value of c also satisfies the above condition that x0 , c (since m , 0 and y0 , k). This completes
the (second) proof of the first assertion. The asserted Cartesian equation for K is then obtained by
repeating the final paragraph of the first proof. This completes the second proof.

Corollary 2.2 states the case of Theorem 2.1 for k := 0 and y0 > 0.

Corollary 2.2. Let m ∈R with m , 0, and let P0 (x0, y0) be a point in the Euclidean plane R
2 such that

y0 > 0. Let X denote the x-axis. Then there exists a unique circle, say K, such that the center of K is
on X , P0 lies on K, and the tangent to K at P0 has slope m. A Cartesian equation for this circle K is

x2 − 2[x0 +my0]x+ y2 = y2
0 − x

2
0 − 2mx0y0.

It will be useful to record that the assertions in Theorem 2.1 and Corollary 2.2 are also valid if one
allows the possibility that m = 0. We do so next for the analogue of Theorem 2.1. Of course, the case
k = 0 of Proposition 2.3 gives the corresponding analogue of Corollary 2.2.



22 Moroccan Journal of Algebra and Geometry with Applications / D. E. Dobbs

Proposition 2.3. Let k ∈ R and let P0 (x0, y0) be a point in the Euclidean plane R
2 such that y0 , k.

Let X denote the (horizontal) line with Cartesian equation y = k. Then there exists a unique circle,
say K, such that the center of K is on X , P0 lies on K, and the tangent to K at P0 is horizontal (that is,
has slope 0). A Cartesian equation for this circle K is

x2 − 2x0x+ y2 − 2ky = y2
0 − x

2
0 − 2ky0.

Proof. Let T and S be as in the proof of Theorem 2.1. As noted in the proof of Theorem 2.1, T and
S are perpendicular. Since m = 0, T is horizontal. Hence, S is vertical. It follows that x0 = c, and
so P0 has coordinates either (x0, k + r) or (x0, k − r). Moreover, C has coordinates (x0, k). A Cartesian
equation for K is

(x − x0)2 + (y − k)2 = [(x0 − x0)2 + (y0 − k)2 =](y0 − k)2,

which simplifies to the asserted equation. Finally, note that in the present context (where m = 0), it
is also true that c = x0 +m(y0 − k). The proof is complete.

Parts (b) and (c) of the next remark will collect some background about the upper half-plane model
of hyperbolic geometry, by slightly elaborating on a fragment of the Introduction. Remark 2.4 (c) will
also explain the role of two results (Lemmas 2.5 and 2.6) in our approach to some significant results
(Theorems 2.8 and 2.9).

Remark 2.4. (a) In the mid-20th century, it was common for precalculus courses (which were then
often called courses on “algebra, trigonometry and analytical geometry") to introduce the concept of
an angle of inclination and to cover its relationship to the slope of a non-vertical line. Such coverage
has declined markedly for several decades, as the teaching of trigonometry has transitioned to an
approach featuring the unit circle rather than the classical approach featuring angles in standard
position. That classical approach viewed an angle as an object obtained by a counterclockwise ro-
tation starting from the initial side of the angle. That point of view naturally led to four kinds of
angles (or angular measures) determined, in case the initial side of the angle has the direction of the
positive x-axis, by the quadrant into which the terminal side of the angle is ultimately pointing. In
addressing many problems, the classical approach consequently leads to analyses that involve many
cases.

One’s first experience with the approach using the unit circle may seem quite different and more
“unified." However, in our opinion, deeper use of the unit circle approach often makes tacit (or
overt) use of the triangles that are classically associated with angles in standard position and their
associated reference/related angles/numbers. (In the proofs and worked examples later in this paper,
we will occasionally mention this auxiliary tool; for its definition and use, the reader may consult
works such as [1, pages 231-233] or [6, pages 276-278].) It is precisely the multitude of cases that the
classical approach identifies which permits the discovery and proof of the lists of answers given in
Theorems 2.8 and 2.9. With those long lists of answers in hand, one may well ask if the unit circle
approach could lead naturally to those answers without tacitly employing the classical approach. As
that set of answers (more precisely, its extension in Corollary 2.13) is clearly related to the titular
object of study in this paper, the case has been made for using the classical approach here (including
the concept of angle of inclination) in studying the question at hand.

(b) We next recall some basic facts about the upper half-plane model of hyperbolic geometry. Its
“points" are the points in the upper-half plane of Euclidean geometry, that is, the points (x,y) ∈ R2

such that y > 0. Its “line segments," which are of two types, are actually the geodesics according to
a certain metric. (We will not need to explicate that metric here, but the interested reader can find
such explanations – and the other facts being recalled in this paragraph – in [8, pages 48-50] or [12,
pages 53-58].) Consider any two “points" P1 (x1, y1) and P2 (x2, y2). If x1 , x2, then the “line segment"
connecting P1 and P2 is the arc, with endpoints P1 and P2, of the (Euclidean) semicircle in the upper
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half plane that is centered on the x-axis and passes through P1 and P2; that “line segment" is called
a “bowed geodesic" (for obvious reasons) and the semicircle containing it is one of the two types
of “lines" in the model. If x1 = x2, then the “line segment" connecting P1 and P2 is the (Euclidean
vertical) line segment with endpoints P1 and P2; that “line segment" is called a “straight geodesic"
(for obvious reasons) and the vertical line containing it, when intersected with the upper half-plane,
gives the second type of “line" in the model.

(c) One application of our results here is in measuring the angles that arise as interior angles in
a hyperbolic triangle (embodied in the upper half-plane model of hyperbolic geometry). That leads
naturally to an interest in measuring the angles formed at a point where a bowed geodesic intersects
either another bowed geodesic or a straight geodesic. By definition, the angles thus formed are the
Euclidean angles (intersected with the upper half-plane) that are formed by the tangent lines (in
the sense of Euclidean geometry) of the intersecting figures at the point in question; and, also by
definition, the (hyperbolic) measure of such an angle (in the model that we are studying) is the same
as the usual Euclidean measure of the angle formed by those tangent lines. Lemma 2.6 will state two
formulas which can be used to calculate that measure when the (tangent) lines in question are not
perpendicular to one another. As in part (a), we will be interested in directed angles (that is, angles
that can be viewed as having arisen via a counterclockwise rotation from an initial side to a terminal
side). However, in order to reduce the number of relevant cases, we will often be concerned with
measuring only angles with measures less than π. This focused concern is appropriate here because
of the following fundamental result in hyperbolic geometry (which actually characterizes hyperbolic
plane geometry up to isomorphism in the universe of so-called neutral or absolute geometries): the
sum of the (radian) measures of the (interior) angles of any hyperbolic triangle is less than π (cf. [12,
Corollary 10.1.4 and Examples 6.1.2 and 6.1.3]).

The proof of Lemma 2.6, as well as the implementation of Lemma 2.6 in proving Theorems 2.8 and
2.9 and Corollary 2.13, depends heavily on the notion of “angle of inclination" that was mentioned
in (a). This notion will be defined next and its relevance will be established in Lemma 2.5. Also
relevant in the proofs of items 2.5-2.9 is the notion of reference/related angle/number mentioned in
(a). This completes the remark.

We next recall the definition of a key tool that was mentioned in Remark 2.4 (a), (c). If L is a line
(in the Euclidean plane), then the angle of inclination of L is defined to be the angle ϕ between L and
the positive x-axis such that 0 ≤ ϕ < π. (As the preceding sentence illustrates, we will occasionally
find it convenient to engage in the time-honored practice of conflating an angle with its (radian)
measure.) If L has positive slope, then 0 < ϕ < π/2. If L has negative slope, then π/2 < ϕ < π. If L has
slope equal to zero, then L is horizontal and it is then conventional to take the angle of inclination of
L to be 0. If (as the last possibility) the slope of L is undefined (that is, if L is vertical), then ϕ = π/2.

One may wish to compare the above notion of “angle of incidence" with what Millman calls the
“horizon angle" [8, pages 50-51] of what we would call a hyperbolic half-line. Although Millman
refers to an angle formed by a given line and the x-axis, it is clear from the figures on [8, page 51]
that he means the positive direction of the x-axis. That stipulation of direction was part of the above
definition of “angle of inclination." One should note the following difference between our treatment
of hyperbolic angles and that in [8]. The measures of horizon angles in [8] lie between −90 and 90
(degrees), whereas our measures of angles of inclination lie between 0 and π (radians).

Lemma 2.5. ([5, Proposition 2.1]) Let L be a non-vertical line having slopem and angle of inclination
ϕ. Then:

(a) tan(ϕ) =m.
(b) If ϕ is an acute angle, then ϕ = tan−1(m).
(c) If ϕ is an obtuse angle, then ϕ = π − tan−1(−m) = π+ tan−1(m).



24 Moroccan Journal of Algebra and Geometry with Applications / D. E. Dobbs

Lemma 2.6. ([5, Theorem 2.2]) Let L1 and L2 be two intersecting non-perpendicular lines in the
Euclidean plane. Then:

(a) Suppose that L1 and L2 are each non-vertical, having slopes m1 and m2, respectively. Then the
(measures of the) two acute angles formed by L1 and L2 at their point of intersection are each given
by tan−1(| m1−m2

1+m1m2
|), and the (measures of the) two obtuse angles formed by L1 and L2 at their point of

intersection are each given by π − tan−1(| m1−m2
1+m1m2

|).
(b) Suppose that L1 is vertical and that L2 has slope m2. If m2 > 0, then the (measures of the) two

acute angles formed by L1 and L2 at their point of intersection are each given by π
2 − tan−1(m2), and

the (measures of the) two obtuse angles formed by L1 and L2 at their point of intersection are each
given by π

2 + tan−1(m2). If m2 < 0, then the (measures of the) two acute angles formed by L1 and L2
at their point of intersection are each given by π

2 + tan−1(m2), and the (measures of the) two obtuse
angles formed by L1 and L2 at their point of intersection are each given by π

2 − tan−1(m2).

In applying Lemma 2.6 (a), it will often be helpful to know the algebraic sign of an expression of
the form 1 +m1m2. Accordingly, it will also be useful to isolate the following lemma. Its easy proof
involves only high school algebra, and so it is left to the reader.

Lemma 2.7. Let m ∈R. Then:
(a) If m > 0, then

1 +mx


> 0 if x > −1/m

= 0 if x = −1/m

< 0 if x < −1/m.

(b) If m < 0, then

1 +mx


< 0 if x > −1/m

= 0 if x = −1/m

> 0 if x < −1/m.

We now give two results that can be of use in measuring a (directed) angle (of some hyperbolic
triangle) in the upper half-plane model of hyperbolic geometry. Indeed, applications of Theorems 2.8
and 2.9 can address situations where the initial side of the angle in question lies along a prescribed
half-line (also known as a “ray") determined by a (bowed or straight) geodesic.

Theorem 2.8. Let P0 (x0, y0) be a point in the upper half-plane. Let L1 be a non-vertical Euclidean
half-line with initial point P0, slope m1 and angle of inclination α. Let L2 be a non-vertical Euclidean
half-line with initial point P0, such that L1 and L2 are not perpendicular and L2 can be obtained by a
counterclockwise rotation of L1 through an angle of radian measure ξ, with 0 < ξ < π (and ξ , π/2).
Let m2 denote the slope of L2. Then:

(a) Suppose that α < π/2. Then m2 is the solution for x in the equation

tan−1( x−m1
1+m1x

) = ξ if ξ < π/2−α;

tan−1( x−m1
1+m1x

) = ξ if π/2−α < ξ < π/2 and ξ , π −α;

tan−1( m1−x
1+m1x

) = π − ξ if π/2 < ξ < π −α;

tan−1( m1−x
1+m1x

) = π − ξ if ξ > π −α;

x = 0 if ξ = π −α.
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(b) Suppose that π/2 < α (< π). Then m2 is the solution for x in the equation

tan−1( x−m1
1+m1x

) = ξ if ξ < π −α;

tan−1( x−m1
1+m1x

) = ξ if π −α < ξ < 3π/2−α and ξ < π/2;

tan−1( m1−x
1+m1x

) = π − ξ if π −α < ξ < 3π/2−α and ξ > π/2;

tan−1( m1−x
1+m1x

) = π − ξ if ξ > 3π/2−α;

x = 0 if ξ = π −α.

Proof. (a) Since α < π/2, Lemma 2.5 (a) gives m1 = tan(α) ≥ 0 (with equality if and only if L1 is
horizontal). If ξ = π − α, then α + ξ = π, and so L2 is horizontal, which means that its slope is
m2 = 0. It remains to prove the first four assertions in (a). For each of these, we will first determine
the algebraic signs of m1 −m2 and 1 +m1m2, and the proof will end by applying one of the two
conclusions in Lemma 2.6 (a). By the way, (a) does not address the “possibility" that ξ = π/2 − α
(resp., ξ = π/2) because that situation cannot arise, in view of the hypothesis that L2 is non-vertical
(resp., the hypothesis that L1 and L2 are not perpendicular).

We next address the first assertion in (a); that is, suppose that ξ < π/2 − α. Then Lemma 2.5 (a)
gives m2 = tan(α +ξ) > 0. Consequently, 1 +m1m2 > 0. As α +ξ > α and tan is an increasing function
over the domain (0,π/2), it follows that m2 = tan(α +ξ) > tan(α) =m1, whence m1 −m2 < 0. Thus, for
this case, |(m1 −m2)/(1 +m1m2)| = (m2 −m1)/(1 +m1m2), and so the assertion follows from the first
conclusion in Lemma 2.6 (a).

Next, suppose that π/2 − α < ξ < π/2 and ξ , π − α. As in the proof of the first assertion, m1 =
tan(α) ≥ 0. Also, π/2 < α+ξ < π/2+π/2 = π. Then Lemma 2.5 (a) givesm2 = tan(α+ξ) < 0. It follows
that m1 −m2 > 0. Moreover, 1 +m1m2 < 0. (This can be seen by carefully applying Lemma 2.7 (a),
the underlying point being that 1+m1x is a continuous function of x which, in case m1 > 0, is strictly
increasing with limit −∞ as x → −∞ and limit 0 as x → 0−.) Therefore, |(m1 −m2)/(1 +m1m2)| =
(m2 −m1)/(1 +m1m2), and so the assertion follows from the first conclusion in Lemma 2.6 (a).

Next, suppose that π/2 < ξ < π − α. Then, as above, m1 = tan(α) ≥ 0. Also, π/2 < ξ ≤ ξ + α < π,
and so by Lemma 2.5 (a), m2 = tan(α + ξ) < 0. Hence, m1 −m2 > 0. In addition, since ξ > π/2, we see,
by tweaking the reasoning in the preceding paragraph, that 1 +m1m2 > 0. Therefore, |(m1 −m2)/(1 +
m1m2)| = (m1 −m2)/(1 +m1m2), and so the assertion follows from the second conclusion in Lemma
2.6 (a).

Lastly, suppose that ξ > π −α ; that is, α + ξ > π. Then ξ > π −π/2 = π/2. Therefore, since ξ < π
and α + ξ < π/2 +π = 3π/2, the angle of inclination of L2 is an acute angle (say θr ) whose measure is
less than that of α. As above, Lemma 2.5 (a) combines with the fact that tan is increasing on (0,π/2)
to show that 0 < tan(θr ) =m2 < tan(α) =m1. It follows that m1 −m2 > 0 and 1 +m1m2 > 0, and so the
assertion follows from the second conclusion in Lemma 2.6 (a).

(b) Since π/2 < α < π, Lemma 2.5 (a) gives m1 = tan(α) < 0. If ξ = π −α, then one can repeat the
proof from (a) that m2 = 0. It remains to prove the first four assertions in (b). For each of these, we
will determine the algebraic signs of m1 −m2 and 1 +m1m2, after which the assertion will follow by
applying one of the two conclusions in Lemma 2.6 (a).

We next address the first assertion in (b); that is, suppose that ξ < π −α. Then ξ < π −π/2 = π/2.
Also, since π/2 < α < α + ξ < π and α + ξ is the angle of inclination of L2, Lemma 2.5 (a) gives
m2 = tan(α + ξ) < 0. Consequently, 1 +m1m2 > 0. Moreover, since tan is an increasing function over
the domain (π/2,π), it follows that m2 = tan(α + ξ) > tan(α) =m1, whence m1 −m2 < 0. Thus, for this
case, |(m1 −m2)/(1 +m1m2)| = (m2 −m1)/(1 +m1m2). Therefore, the assertion follows from the first
conclusion in Lemma 2.6 (a).

We will prove the next two assertions together. Assume that π −α < ξ < 3π/2−α. As π < α + ξ <
3π/2, it follows from Lemma 2.5 (a) that m2 = tan(α + ξ) > 0. Consequently, m1 < 0 < m2, whence
m1−m2 < 0. If ξ < π/2 (resp., ξ > π/2), then a continuity argument (involving 1+m1x, as in the proof
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of the second and third assertions in (a)) shows that 1 +m1m2 > 0 (resp., 1 +m1m2 < 0). Therefore,
the second (resp., third) assertion in (b) follows from the first (resp., second) conclusion in Lemma
2.6 (a).

Lastly, suppose that ξ > 3π/2 −α. Then ξ > 3π/2 −π = π/2. Also, since α + ξ > 3π/2, Lemma 2.5
(a) gives m2 = tan(α + ξ) < 0. Consequently, 1 +m1m2 > 0. It remains only to prove that m1 −m2 > 0
(for the assertion will then follow by applying the second conclusion in Lemma 2.6 (a)). To that end,
note that the angle of inclination of L2 is an obtuse angle (say θ) whose measure is less than that of α
(which is the angle of inclination of L1). Since tan is an increasing function on the domain (π/2,π),
it follows from Lemma 2.5 (a) that m2 = tan(θ) < tan(α) = m1; that is, m1 −m2 > 0, as desired. The
proof is complete.

Our choice of the contexts studied in Theorem 2.8 was motivated by our desire to measure the
angles formed at the point of intersection of two bowed (hyperbolic) geodesics in the upper half-
plane. We assumed in Theorem 2.8 that L1 and L2 are not perpendicular because the “m1m2 =
−1" criterion is the quickest way to detect perpendicularity for a pair of non-vertical (Euclidean)
lines. As for vertical lines (in particular, in regard to measuring the angles formed at the point of
intersection of a straight geodesic and a bowed geodesic), Theorem 2.9 will fully address all such
contexts where the lines in question are not manifestly perpendicular. The proof of Theorem 2.9 will
be self-contained and will use a number of familiar results from analytic trigonometry, including its
basic identities (cofunction, ratio) and the facts that tan and cot are odd functions.

Theorem 2.9. Let P0 (x0, y0) be a point in the upper half-plane. Let L1 and L2 be distinct Euclidean
half-lines that each have initial point P0, such that L2 can be obtained by a counterclockwise rotation
of L1 through an angle of radian measure ξ, with 0 < ξ < π. Then:

(a) Suppose that L1 is an upwardly directed vertical (Euclidean) half-line and that L2 is not vertical.
Let m2 denote the slope of L2. Then

m2 =


−cot(ξ) if ξ < π/2;

0 if ξ = π/2;

−cot(ξ) if ξ > π/2.

(b) Suppose that L1 is a downwardly directed vertical (Euclidean) half-line (and so L2 is not
vertical). Let m2 denote the slope of L2. Then

m2 =


−cot(ξ) if ξ < π/2;

0 if ξ = π/2;

−cot(ξ) if ξ > π/2.

(c) Suppose that L2 is an upwardly directed vertical (Euclidean) half-line (and so L1 is not vertical).
Let m1 denote the slope of L1. Then

m1 =


cot(ξ) if ξ < π/2;

0 if ξ = π/2;

cot(ξ) if ξ > π/2.

(d) Suppose that L2 is a downwardly directed vertical (Euclidean) half-line (and so L1 is not
vertical). Let m1 denote the slope of L1. Then

m1 =


cot(ξ) if ξ < π/2;

0 if ξ = π/2;

cot(ξ) if ξ > π/2.
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Proof. The parenthetical assertions in (a)-(d) all follow because of the assumption that 0 < ξ < π.
Also, if ξ = π/2, then in parts (a) and (b) (resp., in parts (c) and (d)), L2 (resp., L1) is horizontal and
so its slope m2 (resp., m1) is 0.

(a) Suppose first that (L1 is vertical and upwardly directed and) ξ < π/2. Then the angle of incli-
nation of L2 is (that is, has measure) ξ +π/2. Hence, by Lemma 2.5 (a),

m2 = tan(ξ +π/2) = tan(π/2− (−ξ)) = cot(−ξ) = −cot(ξ).

Next, suppose that ξ > π/2. Then, since “vertically opposite" angles are congruent, the angle of
inclination of L2 is ξ −π/2. So, by Lemma 2.5 (a),

m2 = tan(ξ −π/2) = tan(−(π/2− ξ)) = − tan(π/2− ξ) = −cot(ξ).

(b) Suppose first that (L1 is vertical and downwardly directed and) ξ < π/2. Then, by again invok-
ing the fact that “vertically opposite" angles are congruent, the angle of inclination of L2 is π/2 + ξ.
So, by Lemma 2.5 (a), m2 = tan(π/2 + ξ). As we saw above, this simplifies to −cot(ξ).

Next, suppose that ξ > π/2. Observe that the angle of inclination of L2 is ξ −π/2. Then, as in the
proof of the final assertion of (a), it follows that m2 = −cot(ξ).

(c) Suppose first that (L2 is vertical and upwardly directed and) ξ < π/2. Then the angle of inclina-
tion of L1 is the complement of ξ, namely, π/2−ξ. Hence, by Lemma 2.5 (a),m1 = tan(π/2−ξ) = cot(ξ).

Next, suppose that ξ > π/2. Then, once again invoking the congruence of vertically opposite
angles, we see that the angle of inclination of L1 is π/2 + (π − ξ) = 3π/2 − ξ. Hence, by Lemma 2.5
(a), m1 = tan(3π/2 − ξ). By applying several cofunction identities, coupled with the fact that both
tan and cot are odd functions, one can establish the identity tan(3π/2 − ξ) = cot(ξ). That would
finish the proof of (c) and, as was the case for the above arguments in this proof, would be a good
fit for readers/classes whose introduction to trigonometry has been via the unit circle. Perhaps some
readers have noticed that the above arguments could also have been established by more classical
methods. That is also true of the present, probably less familiar, identity. In that spirit, we present
the following sketch of an alternate proof of the identity tan(3π/2 − ξ) = cot(ξ): use the expansion
formulas,

sin(u + v) = (sinu)(cosv) + (cosu)(sinv) and

cos(u+v) = (cosu)(cos(v)−(sinu)(sinv), together with the facts that tan = sin / cos, sin(3π/2) = −1 and
cos(3π/2) = 0. (Of course, one cannot use the corresponding expansion formula for tan(u + v) here
because tan(3π/2) is undefined.)

(d) Suppose first that (L2 is vertical and downwardly directed and) ξ < π/2. Then m1 > 0 and we
see, by considering vertically opposite angles, that the angle of inclination of L1 is (congruent to) a
complement of ξ. Hence, by Lemma 2.5 (a), m1 = tan(π/2− ξ) = cot(ξ).

Lastly, suppose that ξ > π/2. Then m1 < 0 and the angle of inclination of L1 is π − (ξ − π/2) =
3π/2 − ξ. Hence, by Lemma 2.5 (a), m1 = tan(3π/2 − ξ) which, as we showed above, simplifies to
cot(ξ). The proof is complete.

This paragraph identifies some computational skills that will be assumed from Example 2.10 on-
ward, and the next three paragraphs summarize some methods for carrying out those procedures.
Let P1 (x1, y1) and P2 (x2, y2) be distinct points in the upper half-plane (viewed as a subset of the Eu-
clidean plane R

2). Let G denote the (straight or bowed) geodesic connecting P1 and P2. Let T denote
the tangent line to G at P1. The first skill is twofold: to determine whether T is vertical; and, if T is
not vertical, to calculate the slope, say m, of T . The second skill is to find a Cartesian equation for G
(more precisely, for either the vertical line passing through P1 and P2 or the circle that is centered on
the x-axis and passes through P1 and P2).
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Suppose first that x1 = x2. Then G is a straight geodesic. Since G is a (subset of a Euclidean) line L
in this case, T is that line, and so any Cartesian equation of L is also a Cartesian equation of G. Hence,
we can carry out both of the desired skills if x1 = x2, for T is then vertical and a Cartesian equation
for G is x = x1.

Assume for this paragraph and the next paragraph that x1 , x2. Then G is a subset of a (unique,
Euclidean) circle C with center C (c,0) for some c ∈ R. The only (two) points on C where there exists
a vertical tangent are the intersection points of C with the horizontal diameter of C. Of course, P1
cannot be either of these points, since they lie on the x-axis while P1 lies in the upper half-plane.
Therefore, T is not vertical, and so its slopem exists. Observe, by combining either proof of Theorem
2.1 with the proof of Proposition 2.3 (and bearing in mind that k = 0 in the present context), that
c = x1 +my1 (regardless of whether m = 0), whence m = (c − x1)/y1. Thus, since we are given P1,
knowing m is equivalent to knowing c. Next, observe that the (Euclidean) line segment connecting P1
and P2 is not vertical (since x1 , x2), so the (Euclidean) perpendicular bisector of that line segment
is not horizontal, so that perpendicular bisector meets the x-axis at some point, which is C (c,0) by a
fundamental fact about Euclidean geometry (cf. the first proof of Theorem 2.1 or [8, page 49] or [12,
page 58]). With c thus in hand, one Cartesian equation for G is

(x − c)2 + y2 = (x0 − c)2 + y2
0 ,

thereby completing both of the desired skills if x1 , x2.
In the spirit of [3], we wish to point out an alternate (more algebraic) way to complete both of the

desired skills if x1 , x2. First, we find a Cartesian equation for G, this time in the form

x2 + y2 + bx = d.

To do so, substitute the coordinates of P1 and P2 into the last-displayed equation, thus obtaining a
system of two linear equations in the unknowns b and d, solve that system for (the unique solutions
for) b and d, and substitute those values for b and d into the last-displayed equation to obtain the
desired Cartesian equation. Then, by completing squares, we obtain c = −b/2 (and then, as explained
in the preceding paragraphs, we also obtain, thanks to the proofs of Theorem 2.1 and Proposition
2.3, the value of m = (c − x1)/y1).

Next, to make the statement of some of the remaining results more manageable, it will be conve-
nient to agree on relaxing some usages of terminology. Suppose that P and Q are distinct points in
the upper half-plane (viewed as a subset of the Euclidean plane R

2). We know that there is a unique
(hyperbolic) geodesic connecting P and Q, and that geodesic is either bowed or straight. If we want
to stress an interest in one of the two directions of that geodesic (because of an interest in either the
hyperbolic “line" segment that goes from P to Q or the hyperbolic half-line with initial point P and
passing through Q), we will refer to “the geodesic from P to Q." Occasionally, if the context is clear,
we may say either “the geodesic connecting P and Q" or “the geodesic from P to Q" and mean any of
the following three items: the segment (that stays within the upper half-plane) of the geodesic pass-
ing through P and Q; a preferred ordering of the just-named segment, viewed as having initial point
P and terminal point Q; or the intersection of the upper half-plane with either the circle (in the case
of a bowed geodesic) or the vertical line (in the case of a straight geodesic) that contains the given
geodesic passing through P and Q as a subset. Moreover, a Cartesian equation of the just-mentioned
circle or vertical line will be what is meant by a “(Cartesian) equation of the geodesic passing through
P and Q."

Part of our concern in Corollary 2.13 will be (as possibly suggested by the title of this paper)
the construction of a hyperbolic (directed) angle having as its measure a preassigned number from
the interval (0,2π). We know that no Euclidean triangle can have an interior angle with measure
exceeding π. That is, in fact, the case for hyperbolic triangles as well. The next example illustrates
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this strikingly and is intended to enhance the reader’s intuitive understanding of what is meant by
an “interior angle" of a hyperbolic triangle and its measure (and, for that matter, possibly of what is
meant by the similarly named concepts in Euclidean geometry).

Example 2.10. Consider the points A (0,5), B (0,6) and C (3,4) in the upper half-plane. Let η be the
“directed” angle ∠BAC whose initial side is the upwardly directed straight geodesic G1 from A to B
and whose terminal side is the bowed geodesic G2 from A to C. (By “directed," we mean that α is
generated by rotating counterclockwise about the vertex A so that the tangential half-line to G1 at A
is carried to the tangential half-line to G2 at A.) Then:

(a) (The measure of) η = 3π/2.
(b) η is not an interior angle of any hyperbolic triangle (in the upper half-plane model of hyperbolic

geometry).
(c) Consider the hyperbolic triangle 4 := 4ABC and its interior angle α := ∠BAC. Then G1 has

Cartesian equation x = 0, G2 has Cartesian equation x2 + y2 = 25, and the bowed geodesic (say
G) connecting B and C has Cartesian equation x2 + y2 + (11/3)x = 36. If one views the side BC as
having been generated by traveling along G counterclockwise from C to B (resp., clockwise from B
to C), then the interior angle α of 4 is viewed as having initial (resp., terminal) side G1 and terminal
(resp., initial) side G2. Regardless of whether one views the generation of 4 as having arisen in a
counterclockwise or clockwise manner, the measure of α is π/2. In particular, α is not η.

Proof. (a) The tangent line to G1 at A is the y-axis (with Cartesian equation x = 0). Since G1 goes from
A to B (and 5 < 6), it follows that the tangential half-line of G1 at A is the upward directed vertical
ray R1 with initial point A. Next, a Cartesian equation for G2 is x2 + y2 = 25, so the tangent line (say
T ) to G2 at A has slope −0/5 = 0, and so T is the horizontal line with Cartesian equation y = 5. Since
G2 goes from A to C (and 0 < 3), it follows that the tangential half-line of G2 at A is the rightward
directed horizontal ray R2 with initial point A. By definition, η is the minimum (positive) number
such that a counterclockwise rotation of η radians about the vertex A carries R1 to R2. It is evident
that η = 3π/2.

(b) Since each interior angle of a hyperbolic triangle has measure strictly between 0 and π, the
assertion follows from (a).

(c) In view of the above comments, it remains only to prove that the measure of α is π/2. This mea-
sure has two significant properties: it is the measure of an interior angle of a (hyperbolic) triangle;
and it is the measure of an angle formed at the point of intersection of two perpendicular Euclidean
half-lines (namely, R1 and R2). The first of these properties tells us that the measure of α is strictly
between 0 and π. When combined with the second property, this tells us that α is a right angle and
necessarily has measure π/2. The proof is complete.

Remark 2.11. (a) One may wish an explanation for the formulation/placement of the third sentence
in the statement of Example 2.10 (c). In that regard, we would first point to the classical treatment,
especially for less mature audiences, of the notion of “directed" angles (also known as positive angles
and negative angles) in pre-calculus texts such as [1, pages 197-199] and [6, pages 248-249]. Those
treatments relied on their readers having an intuitive understanding of what is meant by a counter-
clockwise (or, for that matter, a clockwise) rotation in the Euclidean plane. This kind of pedagogic
attitude has served its intended audiences well by emphasizing practical applications, while admit-
tedly avoiding a deeper study of some related logical foundations. Such texts offered a similarly
intuitive approach in introducing the notion of a “directed line segment" (cf. [1, pages 11 and 21],
[6, page 403]). The statement of Example 2.10 was formulated in keeping with such a pedagogic
approach.

However, we wish to stress here that, in our opinion, a rigorous development of much of classical
Euclidean or hyperbolic geometry (that is to say, of neutral/absolute geometry) requires attention
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to the notion of a half-line and its related notions, such as that of a “tangential half-line" that was
mentioned in the statement of Example 2.10. The literature suggests that this concept may have
been termed a “tangential ray" in the first edition (which we have not been able to access) of [7],
but it does not seem to be in [7]. There seems to be no explicit mention of this concept in [11], [12]
or [8]. To be fair, [8] does rigorously verify the axioms of the approach to Euclidean geometry of
G. D. Birkhoff (dating from 1940), as revisited in the various editions of Moise’s classic text such as
[10]. It should be noted that a “Warning" was issued by Greenberg [7, page 68] advising readers to
guard against allowing their intuitive beliefs that are based on a familiarity with Euclidean geometry
to subconsciously affect their understanding of hyperbolic geometry. As a segue to the next two
paragraphs and Lemma 2.12, we note that Greenberg also offered a particularly daunting exercise
relating to ordering the points on a line that are “to the left/right of" a given point on the line [7,
Exercise 7, page 86].

A rigorous approach to the concept of a “half-line" and its related concepts must recognize (as
Euclid did not explicitly do) that Euclidean geometry (as well as the study of hyperbolic geometry
within the upper half-plane model) requires some order-theoretic axioms. In axiomatizing Euclidean
(and hyperbolic) geometry, Moise [10] made use of Hilbert’s “plane separation axiom." (For a state-
ment of this axiom and of the related axiom of Pasch, see [7, pages 63 and 66].) Related to such foun-
dational studies was Dobbs’ first contribution to mathematical research [2]. That thesis produced
what was essentially a one-to-one correspondence between certain three dimensional Desarguesian
geometries and ordered division rings. In [2], Dobbs found an order-theoretic axiom [2, Axiom 5.12]
that is (at least for the kind of geometries that were studied in [2]) equivalent to Hilbert’s plane sepa-
ration axiom (as well as Pasch’s Axiom): cf. [2, Theorem 5.12 and Corollary 5.12.3]. That theoretical
development allowed for precise definitions of a “direction" (for the set of points) on a line and of a
“half-line" (see [2, Definitions 5.6 and 5.8]) which, in turn, led to additional results having the flavor
of classical Euclidean geometry. For an approach to the definitions of “direction" and “half-line" that
is more aligned with that of Hilbert, see [7, Definitions 5.6 and 5.8].

As Example 2.10 may have suggested (and as we will see below), a comprehensive method to effec-
tively calculate the measure of an angle, regardless of whether the angle is Euclidean or hyperbolic
(but analyzed within the half-plane model), depends in part on the notion of a “tangential half-line."
As noted above, one can see from the cited texts that related notions have often been assumed to
be self-evident, especially for less mature audiences. While recognizing that an adherence to this
pedagogic attitude has helped to explain some of the formulation of Example 2.10, we should, in the
interest of a more rigorous approach here, make clearer the notion of a “tangential half-line" insofar
as it relates to the angles formed at points of intersection of geodesics in the upper half-plane model
of hyperbolic geometry. While some instructors may prefer to let one’s intuition lead to a determi-
nation of a relevant tangential half-line, we address this skill more rigorously in Lemma 2.12. That
result will also address one related, more practical, skill, which has importance in carrying out cer-
tain calculations effectively. That skill concerns the determination of the coordinates of a point on a
specified half-line of a hyperbolic geodesic.

(b) Example 2.10 illustrated, in part, the fact that a “directed” angle in hyperbolic geometry can
have as its (radian) measure any real number ξ such that 0 < ξ < 2π. Of course, the same is true of
angles in Euclidean geometry; and, in fact, for both geometries, one can allow any real number to
be the measure of some directed angle. Knowing this, one may well be led to ask for an explanation
of the emphasis here (and, to some extent, in [5]) on constructing a directed angle ∠1 having a pre-
assigned vertex A, a presassigned geodesic half-line G1 as the initial (resp., terminal) side of ∠1 (in
regard to a counterclockwise rotation about A), and a preassigned measure ξ such that 0 < ξ < π.
With respect to “constructing,” we will next indicate how, in case π < ξ < 2π, to reduce that problem
to constructing a directed angle ∠2 with vertex A, such that the terminal (resp., initial) side of ∠2 is
G1, the measure of ∠2 is η := 2π − ξ and, of course, the initial (resp., terminal) side of ∠2 is one of the
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geodesic half-lines determined by a to-be-determined geodesic H that passes through A.
As we have assumed that π < ξ < 2π and η := 2π − ξ, we have 0 < η < π. By assumption, we can

construct an angle ∠2 with initial (resp., terminal) side a half-line H1 (which is one of the half-lines
emanating from A that are determined by some geodesic H passing through A), the measure of ∠2 is
η, and the terminal (resp., initial) side of ∠2 is G1. Let G2 andH2 be the half-lines of G andH that are
respectively opposite to G1 andH1, in the sense that G2 andH2 are respectively determined by G and
H while being respectively unequal to G1 andH1. By considering supplementary angles, we see that
the measure of the directed angle with initial (resp., terminal) side G2 and terminal (resp., initial)
side H1 is π − η. Also, it is clear that the measure of the directed angle with initial (resp., terminal)
side G1 and terminal (resp., initial) side G2 is π. It follows that the measure of the directed angle
with initial (resp., terminal) side G1 and terminal (resp., initial) sideH1 is π+ (π−η) = 2π−η = ξ, as
desired. This completes the remark.

We now have almost all the tools that will be needed to state an algorithm that solves a compu-
tational question which was mentioned in the Introduction. In doing so, Corollary 2.13 will use
relaxed terminology, in the manner that was indicated above. It will also use, without specific refer-
ences, the skills that were identified and summarized in the four paragraphs that followed the proof
of Theorem 2.9. First, we pause to give a lemma that addresses how/which data are available when
we are “given" a (hyperbolic) geodesic half-line that is emanating from a given point P0.

Lemma 2.12. Let G be a “given" (hyperbolic) geodesic half-line emanating from a point P0 (x0, y0) in
the Euclidean upper half-plane. Then:

(a) Suppose that G is known to be a straight geodesic (necessarily with Cartesian equation x = x0).
If G is upwardly directed, then P1 (x0,2y0) is another point of G (that is distinct from P0). If G is
downwardly directed, then P1 (x0, y0/2) is another point of G (that is distinct from P0). In each case,

the directed line segment (also known as a bound vector, or more simply, a vector)
−−−−→
P0P1 can play the

role of (an initial part of ) the tangential half-line of G at P0.
(b) Suppose that G is known to be a (portion of a) bowed geodesic. Let K denote the circle (with

center on the x-axis) whose graph contains G as a subset. Obtain a Cartesian equation for K in the
form x2 + y2 + bx = d. Let r1 < r2 be the x-coordinates of the points of intersection of K and the
x-axis. Let (ri ,0) be the coordinates of the point of R2 that is being approached as the limit (in the
Euclidean sense, that is, in the sense of calculus of real-valued functions of several real variables) as
the y-coordinate of a point on G approaches 0 (in the Euclidean sense). Put c := −b/2. Let m denote
the slope of the tangent to K at P0 (that is, m = (c − x0)/y0). Consider the points

P1 (λ,
√
d −λ2 − bλ) and P2 (λ,m(λ− x0) + y0), with λ :=

x0 + ri
2

.

Then P1 is another point (distinct from P0) that is on the geodesic half-line G. Moreover, P2 is a point
of the upper half-plane that is distinct from P0 and the vector

−−−−→
P0P2 can play the role of (an initial

part of ) the tangential half-line of G at P0.

Proof. (a) The assertions follow since y0 > 0 implies that 2y0, y0/2 > 0.
(b) One way to obtain a Cartesian equation forKwould be to begin with the tangent line toK at P0

(and then proceed as in the first proof of Theorem 2.1 or apply Proposition 2.3 with k := 0). Another
way would be to assume as given the coordinates of a point that is distinct from P0 and is situated
on the opposite hyperbolic half-line to G (and then proceed as in either the third or fourth paragraph
that followed the proof of Theorem 2.9). Absent such data, one should not consider G as “given," in
our opinion.

Note that either x0 < λ < ri or ri < λ < x0. It follows that λ is the x-coordinate of some point P1 on
the geodesic half-line G. Since P1 is necessarily in the upper half-plane, its y coordinate is positive.
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That y coordinate can be found by solving for y in the equation

λ2 + y2 + bλ = d.

It is evident that the positive solution for y in the displayed equation is
√
d −λ2 − bλ. This proves the

assertions concerning P1.
We turn next to the determination of a suitable vector serving as an initial portion of a tangential

half-line for the hyperbolic half-line G at P0. By the reasoning in the first sentence of the preceding
paragraph, λ is the x-coordinate of some point, say P , on the tangential half-line of G emanating
from P0. As that tangent(ial) (half-)line has Cartesian equation y =m(x − x0) + y0, it is clear that P2 is
that point P . Hence, P2 lies on the appropriate tangential half-line emanating from P0. The proof is
complete.

Corollary 2.13 presents the algorithm that was promised in the Introduction. The statement of
Corollary 2.13 gives step-by-step instructions for performing the task in question. The interested
reader is invited to convert those instructions into what would generally be considered an “algo-
rithm." We believe that the instructions given in Corollary 2.13 are complete and unambiguous. A
possible caveat may concern the role of the x-intercept ri in our determination of the tangential half-
line in Lemma 2.12 (b). This author would dismiss such a worry. In our opinion, any hyperbolic
half-line that is properly “given" should allow its recipient to determine which x-intercept of the
associated circle K plays the role of ri . The proof of Corollary 2.13 begins with three paragraphs,
which are followed by annotations for some of the steps of instructions in the statement of Corollary
2.13. Those annotations address situations where some relevant justifications are not already in the
statements of those steps. Corollary 2.13 comprehensively addresses (possibly more than) one ques-
tion raised by the title of this paper. We wish to alert the reader that in any effective application of
Corollary 2.13, it must be assumed that we know a priori, for each of the given hyperbolic half-lines,
whether it is a subset of a straight geodesic (and, of course, if the answer is in the negative, then the
hyperbolic half-line in question must be a subset of a bowed geodesic).

For any hyperbolic half-line G emanating from a point P0 ∈ R
2, it will be convenient to let −G

denote the hyperbolic half-line emanating from P0 such that G ∪ −G is a hyperbolic line (that is,
a hyperbolic geodesic) and to call −G the opposite (half-line) of G. It is clear that −(−G) = G, the
angle with initial (resp., terminal) side (an initial portion of) G and terminal (resp., initial) side (an
initial portion of) −G has measure π (when the angle is viewed as a directed angle arising via a
counterclockwise rotation about P0), and G ∩−G = {P0}.

Corollary 2.13. Let G andH be given distinct hyperbolic half-lines emanating from a point P0 (x0, y0) ∈
R

2 such that H , −G. Let ξ be the measure of the angle with initial side (an initial portion of) G and
terminal side (an initial portion of) H (where this angle is viewed as a directed angle arising via a
counterclockwise rotation about P0). Assume that ξ ≤ π (that is, 0 < ξ < π). Let T (resp., U ) be the
tangential half-line of G (resp.,H) at P0 (that is, emanating from P0). It cannot be the case that both T
and U are vertical. In addition, ξ can be determined by performing the following steps in the listed
order.

Step 1: Determine whether T is vertical. Also determine whether U is vertical.
Step 2: For G (resp., H), determine a Cartesian equation for either a vertical Euclidean line or a

Euclidean circle that contains G (resp., H). In the case of a Cartesian equation of a Euclidean circle,
obtain the associated parameters b, d, c and m.

Step 3: If T is not vertical, let m1 denote its slope and determine m1. If U is not vertical, let m2
denote its slope and determine m2.

Step 4: Find the coordinates of a point P1 on T (resp., P2 on U ) that is distinct from P0.
Step 5: Compute the components of the (bound) vectors u :=

−−−−→
P0P1 and v :=

−−−−→
P0P2 . Then compute

the magnitudes (also known as absolute values) |u| and |v|.
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Step 6: Compute the dot product δ := u · v.
Step 7: If δ = 0, then ξ = π/2. If δ > 0, then 0 < ξ < π/2. If δ < 0, then π/2 < ξ < π.
Step 8: Assume henceforth that ξ , π/2 (and δ , 0).
Step 9: Suppose that neither T nor U is vertical (that is, suppose that G and H are each a subset

of a Euclidean circle in R
2). If δ > 0, then ξ = tan−1(| m1−m2

1+m1m2
|). If δ < 0, then ξ = π − tan−1(| m1−m2

1+m1m2
|).

Alternatively, if neither T nor U is vertical, then ξ = cos−1(δ/(|u| |v|)).
Step 10: Assume henceforth that (exactly) one of T , U is vertical.
Step 11: Suppose that T is vertical (and so the slope of U is m2 , 0). If δm2 > 0, then ξ = π/2 −

tan−1(m2). If δm2 < 0, then ξ = π/2 + tan−1(m2).
Step 12: Suppose that U is vertical (and so the slope of T is m1 , 0). If δm1 > 0, then ξ = π/2 −

tan−1(m1). If δm1 < 0, then ξ = π/2 + tan−1(m1).

Proof. We will show first that ξ , 0. Suppose, on the contrary, that ξ = 0. Then T = U . Either T
is vertical or T is the intersection of the upper half-plane with a (uniquely determined) Euclidean
half-line having slope m ∈ R. Note that the tangent line to a bowed geodesic is never vertical (at any
point in the upper half-plane). Consequently, if T (=U ) is vertical, then there exists a Euclidean line
L in R

2 such that G and H are each subsets of L having the same direction, whence G = H, which
contradicts the hypothesis that G andH are distinct. It remains to consider the possibility that T has
slope m. Then, by either Theorem 2.1 (if m , 0) or Proposition 2.3 (if m = 0), there exists a unique
Euclidean circle K in R

2 such that K has its center on the x-axis and the tangent to K at P0 has slope
m. Necessarily, G and H are each equal to the intersection of K with the upper half-plane, whence
G = H, again contradicting the hypothesis that G and H are distinct. This completes the proof that
ξ , 0.

We will show next that ξ , π. Suppose, on the contrary, that ξ = π. If T were vertical, then U
would also be vertical but with the opposite direction from that of T , so that the reasoning in the
above paragraph would show that G (resp., H) would coincide with T (resp., U ), whence H = −G ,
which would contradict a hypothesis. It remains to remains to consider the possibility that neither
T nor U is vertical. Then T and U each have the same slope, say m. It follows from Theorem 2.1 and
Proposition 2.3, as in the above paragraph, that there exists a unique Euclidean circle K in R

2 such
that K has its center on the x-axis and the tangent to K at P0 has slope m, so that G and H are each
a hyperbolic half-line arising from the intersection of K with the upper half-plane. This, however,
gives a contradiction since we have assumed that H , G and H , −G. This completes the proof that
ξ , π.

We will prove next that it cannot be the case that both T and U are vertical. Suppose, on the
contrary, that T and U are each vertical. As T is vertical, then the above reasoning shows that G is a
portion of a uniquely determined straight geodesic, say G. Similarly, as U is vertical, we see that H
is a portion of a uniquely determined straight geodesic, say H. Then, since G andH have the point P0
in common, so do G and H. Consequently, G and H are each subsets of the same vertical Euclidean
line, say L. Thus, G and H are each subsets of L. As G and H each emanate from P0, it follows that
eitherH = G orH = −G, which is the desired contradiction. This completes the proof that at least one
of T ,U is nonvertical.

About step 1: An equivalent task is to determine whether G (resp., H) is a subset of some vertical
Euclidean line. It is fair to assume that step 1 can be carried out if G and H each deserve to be
considered “given."

About step 2: Note that T (resp., U ) is vertical if and only if G (resp., H) is a subset of a straight
geodesic. When this condition holds, the required Cartesian equation is x = x0. When this condition
does not hold, it is fair to assume that we know the coordinates of a point on G (resp., H) that is
distinct from P0. One can then find a Cartesian equation of the Euclidean circle in question by
reasoning as in the fourth paragraph that followed the proof of Lemma 2.9. That paragraph also
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contains the required formulas for b, d, c and m.
About step 3: If T (resp., U ) is not vertical, its slope is the corresponding m that was found in step

2.
About step 4: Apply Lemma 2.12, using the parameters that were found in step 3, together with

the parameters ri and λ that were defined in Lemma 2.12 (b).
About steps 5 and 6: Readers should have the vectorial skills that are assumed in these two steps.

Background for those skills, written at the level of precalculus, can be found in [6, pages 406-407
and page 417].

About steps 7 and 8: A standard fact states that δ = |u| |v|cos(ξ) (cf. [6, page 418]). Note that u and
v are each nonzero vectors (since P0 , P1 and P0 , P2), and so |u| and |v| are positive real numbers. It
follows that δ = 0⇔ cos(ξ) = 0⇔ ξ = π/2. (Remember that 0 < ξ < π.) It also follows that if δ , 0,
then δ has the same algebraic sign as cos(ξ). So, δ > 0 if and only if 0 < ξ < π/2; and δ < 0 if and only
if π/2 < ξ < π.

About step 9: For the first and second statements, see step 7 and Lemma 2.6 (a). For the final
statement, recall the formula for δ in the preceding paragraph and use step 7.

About step 11: As ξ , π/2 (by step 8) and T is assumed vertical, it follows that m2 , 0. Also as
noted in step 8, we have δ , 0. Thus, δm2 is either positive or negative. Four cases arise naturally,
according as to the algebraic signs of the factors (the point being that δ and m2 may have the same
sign or different signs). The impact of the algebraic sign of δ was summarized in the final sentence
in “About steps 7 and 8," while the impact of the algebraic sign of m2 was summarized in the two
statements in Lemma 2.6 (b). The assertions in step 11 follow by using those impacts to examine the
above-mentioned four cases.

About step 12: Repeat the reasoning in “About step 11," with U playing the former role of T and
m1 playing the former role of m2. The proof is complete.

Example 2.15 will collect several examples to illustrate the methodology in Corollary 2.13. First,
in the spirit of step 9 of Corollary 2.13, we pause to collect some additional comments about alternate
methods.

Remark 2.14. (a) One is free to choose from among the methods that were noted in step 9 of Corollary
2.13. Furthermore, in working some examples, many readers will find it possible to omit certain
steps in the list of instructions given in the statement of Corollary 2.13. For instance, in the case of a
bowed geodesic for which one has a Cartesian equation, we saw in the second proof of Theorem 2.1
that the corresponding slope m can be quickly found, using implicit differentiation, as y′(x0) if one
has a Cartesian equation for the Euclidean circle containing the given bowed geodesic (as a subset).
Thus, if both G and H are (subsets of) bowed geodesics, one may be able to find m1 and m2 quickly.
In that situation, if one believes from graphical evidence that it is clear whether ξ is acute or obtuse,
it would be sensible to go directly to step 9 and use the (first) method that appeals to Lemma 2.6 (a).
However, for an example where the reader has carried out all the steps in the instructions, including
the steps with vectorial aspects (if only to be certain whether ξ is acute or obtuse), the reader may find
it more pleasant to use the second, alternate method (that requires one to apply cos−1 to vectorially
obtained data) rather than the first method (which requires one to apply tan−1 to data that involves
absolute values, m1 and m2).

(b) In view of the multitude of cases that were considered in “About step 11" and “About step 12"
in the proof of Corollary 2.13, the reader may have wondered why we did not mention an alternate
method, possibly appealing to Theorem 2.9, for those steps. In particular, by parts (a) and (b) of
Theorem 2.9, we see that if T is vertical, then cot(ξ) = −m2, and so tan(ξ) = −1/m2 ; and by parts (c)
and (d) of Theorem 2.9, if U is vertical, then cot(ξ) =m2, and so tan(ξ) = 1/m2. So, one can fairly ask
if it would be possible to approach steps 11 and 12 of Corollary 2.13 in an alternate way that uses
tan−1(1/m2) and tan−1(−1/m2); and, if so, why such an alternate method was not mentioned earlier.
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My answer is threefold. First, it comes down to asking about a role for tan−1(1/m2), since tan−1

is an odd function. (Indeed, tan−1(−x) = − tan−1(x) for any real number x. An elementary proof
of this fact at the level of precalculus can be given by using reference angles and considering four
cases, determined by the quadrant containing the terminal side of an angle in standard position that
has measure ξ. An accessible proof that assumes calculus uses “integration by substitution" and the
fact that

∫ x
0 1/(1 + t2)dt = tan−1(x) for any real number x.) Second, the above rendering of steps 9

and 12 could have been reformulated in terms of tan−1(1/m2) and tan−1(1/m1), by using the identity
tan−1(m)+tan−1(1/m) equals π/2 (resp., equals −π/2) for allm > 0 (resp., for allm < 0). (This identity
was not familiar to the author, so a quick sketch of some proofs of it would seem to be in order
here. For a proof at the precalculus level, let u := tan−1(x) and v := tan−1(1/x) for some x , 0. It
follows easily from the definition of the inverse tangent function that 0 < u + v < π if x > 0; and
that −π < u + v < 0 if x < 0. Then the conclusion follows because an attempt to express tan(u + v)
by the familiar expansion formula would be illegitimate (since it would involve division by 0.) For
a proof using calculus, consider the function f given by f (x) := tan−1(x) + tan−1(1/x) for all real
nonzero numbers x. It is easy to use differential calculus to check that f ′(x) = 0 for all x , 0. So,
by the Mean Value Theorem, f is a constant function when restricted to the interval (−π/2,0) or
the interval (0,π/2). That constant is ±π/2, since tan−1(1) = π/4 and tan−1(−1) = −π/4, and so the
asserted identity has been proved.) Third, when you use the identity that was just established, that
identity can be used to reformulate the statements of steps 11 and 12 in terms of tan−1(1/m2) and
tan−1(1/m2) and that formulation can be proved directly by a case analysis that uses Theorem 2.9, but
we found that case analysis to be approximately as tedious as the case analysis that was given in the
above proof for steps 11 and 12, so we decided not to provide the full details here for what turned
out to be an equally difficult/easy proof of a logically equivalent statement. The remark is complete.

The next result gives examples illustrating how to use the method(s) and results of this paper,
especially as organized in Corollary 2.13, to calculate the measures of six (different kinds of) angles
in hyperbolic triangles (in the upper half-plane model of hyperbolic geometry). Five of those six
angles were also measured (via other methods and, for one of the angles, with a different result) in
two worked examples appearing in [12, Corollary 6.1.3] and [8, page 52]. The calculations, in both
[12] and [8], were done for the purpose of measuring the interior angles of (hyperbolic) triangles.

Before determining the measures of some angles, it is timely to devote this paragraph and the
next three paragraphs to some remarks about notation, its meaning and its context. These comments
apply to both Euclidean geometry and hyperbolic geometry. Consider the generic nontrivial angle
∠ := ∠XYZ. We take this to be the same as ∠ZYX. It is “nontrivial" in the sense that X, Y and Z are
not collinear; in other words, X, Y and Z do not all lie on the same “line" in the geometry. The vertex
of ∠ is the point Y . The “sides" of ∠ can be described as the half-“lines"

−−−→
YZ and

−−−→
YX ; or as the “line"

segments YZ (from Y to Z) and YX (from Y to X). The former interpretation of “sides" is especially
helpful in our study of hyperbolic geometry, as it facilitates the calculation of the parameter ri that
was introduced in Lemma 2.12 (b) and played an important role in step 4 (and implicitly, for some
vectorial considerations, also in steps 5-9 and 11-12) of Corollary 2.13. The latter interpretation of
“sides" is typical in case one’s interest in ∠ is part of a study of the (Euclidean or hyperbolic) triangle
4 := 4XYZ.

Our point of view here is to consider ∠ and its measure without regard to the existence or relevance
of 4. For that reason, (any) ∠ (under consideration here) must have a designated initial side and
a designated terminal side. Denoting ∠ as ∠XYZ does not automatically identify which side is to
designated as the initial side of ∠. (It could be the “line segment" or half-“line" from Y to/through
X; or it could be the “line segment" or half-“line" from Y to/through Z.) We will always measure
∠ by determining the number of radians needed for a counterclockwise rotation about the vertex Y
to carry the (tangent half-“line" at Y of) the initial side of ∠ to the (tangent half-“line" at Y of) the
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terminal side of ∠.
Since ∠ is nontrivial, there is exactly one way to decide which of its sides is to be designated as

its initial side if one wants the measure of ∠ to be strictly between 0 and π. Such a desire is often
evinced in studies of 4, where there is universal agreement that (for both Euclidean geometry and
hyperbolic geometry) the three interior angles of a triangle must be viewed in a way that ensures that
the sum of their measures does not exceed π. However, as we saw in Example 2.10 (a), it is easy to
produce a (Euclidean or hyperbolic) angle whose measure exceeds π if one uses a “directed angle”
approach that involves counterclockwise rotation and that specifically designates which side of ∠ is
its designated side (without regard to any concerns having to do with the study of a related triangle).
Nevertheless, we will always use that “directed angle” approach here. One consequence is that the
measure of a (directed) angle here will be between 0 and 2π (but not necessarily between 0 and π).

When dealing with the calculation of the measure of an angle in the literature, a reader/user must
use context to determine whether the author of that piece of the literature has specified (as we have)
that the angles are to be measured via counterclockwise rotations from (the tangential half-line, at
the vertex, of) the designated initial side of the angle toward the designated terminal side of the
angle. In the event of an apparent discrepancy (and we will see one in Example 2.15 (f)), the only
possible explanations are the following: someone has made a calculational mistake; someone has not
used the conventions of this paper and/or someone has misapplied our Corollary 2.13; or the author
of that piece of the literature and I may be using different definitions of the measure of an angle. In
regard to the last-mentioned possibility, we believe that our definition of measure, focusing as it does
on tangential half-lines, is fully in the spirit of Stahl’s comment that “The hyperbolic measure of an
angle [whose sides are hyperbolic half-lines] is identical to its Euclidean measure" [12, page 59]. We
would also remind the reader that, as noted in the final sentence before the statement of Lemma 2.5,
Millman’s rigorous definition of angular measure seems to differ from ours (possibly in unimportant
ways); and, as noted in the second paragraph of Remark 2.11 (a) (and amplified in the first paragraph
of [8]), Millman’s rigorous definition seems to have been designed, at least in part, with the specific
goal of verifying certain axioms.

Example 2.15. Consider the following seven points in the upper half-plane of R
2: A (0,1), B (2,1),

C (4,1), D (3,1), E (6,1), F (6,4) and G (2,4
√

2). Then:

(a) Let ∠1 be the (directed) angle whose initial side is
−−→
BC and whose terminal side is

−−→
BA . Then, as

determined using a counterclockwise rotation, the measure of ∠1 is π/2.

(b) Let ∠2 be the (directed) angle whose initial side is
−−→
AB and whose terminal side is

−−→
AC . Then,

as determined using a counterclockwise rotation, the measure of ∠2 is tan−1(1/3).

(c) Let ∠3 be the (directed) angle whose initial side is
−−→
CA and whose terminal side is

−−→
CB . Then,

as determined using a counterclockwise rotation, the measure of ∠3 is tan−1(1/3).
(d) Let ∠4 be the (directed) angle whose initial side is

−−→
EF and whose terminal side is

−−−→
ED . Then,

as determined using a counterclockwise rotation, the measure of ∠4 is π/2 + tan−1(−3/2).

(e) Let ∠5 be the (directed) angle whose initial side is
−−→
FG and whose terminal side is

−−→
FE . Then, as

determined using a counterclockwise rotation, the measure of ∠5 is 3π/4.
(f) Let ∠6 be the (directed) angle whose initial side is

−−→
FD and whose terminal side is

−−→
FE . Then, as

determined using a counterclockwise rotation, the measure of ∠6 is π/2− tan−1(1/4).
.

Proof. Recall the following comment from the paragraph that preceded Theorem 2.9: the “m1m2 =
−1" criterion is the quickest way to detect perpendicularity for a pair of non-vertical (Euclidean)
lines. One reasonable inference is that, whenever there seems to be a good chance that an angle in
question is a right angle, one should determine if m1m2 = −1. If so, we are done. Suppose next that
(m1 and m2 exist but) m1m2 , −1. Also suppose that the measure of the angle in question is less than
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π. If one has reliable evidence (for instance, from a graph) as to whether the angle is acute or obtuse,
one can use Lemma 2.6 (a) to determine the measure of the angle. If one is not sure whether the
angle is acute or obtuse, it would be appropriate to apply the instructions from Corollary 2.13 step
by step.

The preceding overview suggests that it would be helpful to be ready to calculate all the slopes that
will be relevant in any of the parts (a)-(f). Without additional explanation, we will be determining
the slope m of the tangent, at a point (x0, y0), to a bowed geodesic having center (c,0) by the formula
m = (c − x0)/y0, which is familiar from the proofs of Theorem 2.1 and Corollary 2.3. To that end, the
next six paragraphs provide a name and a Cartesian equation for each bowed geodesic that figures
in any of (a)-(f) and, for each such geodesic, we also provide the value of its parameter c.

Let F denote the (bowed) geodesic that passes through the points A and C. Then a Cartesian
equation for F is x2 + y2 − 4x = 1, with parameter c = 2.

Let G denote the (bowed) geodesic that passes through the points A and B. Then a Cartesian
equation for G is x2 + y2 − 2x = 1, with parameter c = 1.

Let H denote the (bowed) geodesic that passes through the points B and C. Then a Cartesian
equation for H is x2 + y2 − 6x = −7, with parameter c = 3.

Let M denote the (bowed) geodesic that passes through the points D and E. Then a Cartesian
equation forM is x2 + y2 − 9x = −17, with parameter c = 9/2.

Let N denote the (bowed) geodesic that passes through the points D and F. Then a Cartesian
equation forN is x2 + y2 − 14x = −32, with parameter c = 7.

Let C denote the (bowed) geodesic that passes through the points F and G. Then a Cartesian
equation for C is x2 + y2 − 4x = 28, with parameter c = 2.

(a) A graph suggests that there is a good chance that ∠1 is a right angle. So, we proceed to calculate
the product of the relevant slopes. The slope of the tangent line to H at B is (3− 2)/1 = 1. The slope
of the tangent line to G at B is (1− 2)/1 = −1. The product of these two slopes is −1, and so these two
tangent lines are perpendicular. Thus, the measure of ∠1 is π/2 (equivalently, 90◦).

To be complete, we should note that Corollary 2.13 assumed that the angle in question at hand has
measure at most π. Whenever an assertion of perpendicularity has been confirmed (as it was in the
preceding paragraph) then, before one can conclude that the relevant measure is π/2 (and not 3π/2,
as in Example 2.10 (a)), one must be certain that the initial and terminal sides of the angle have been
chosen so that the measure of the angle is at most π. We trust that the reader recognizes that to be
the case for the data in (a).

(b) The slope of the tangent to G at A is (1 − 0)/1 = 1. The slope of the tangent to F at A is
(2 − 0)/1 = 2. So, if ∠2 is acute (as is strongly suggested by the diagram in [12, page 82]), then an
appeal to Lemma 2.6 (a) would show that the measure of ∠2 is

tan−1(| 2− 1
1 + 2 · 1

|) = tan−1(
1
3

) ≈ 0.3217505544(radians) ≈ 18.43494882◦

which agrees nicely with Stahl’s answer of cos−1(3/
√

10) (which Stahl reports as being approximately
18.4◦) [12, page 81]. To confirm the displayed value, it suffices to verify that ∠2 is acute. That veri-
fication is done in the next paragraph, by applying steps 4-7 from Corollary 2.13. In the paragraph
following that, we will confirm that Stahl’s answer for the measure of ∠2 is exactly correct.

We will first find the coordinates of a point P on the tangent half-line to G at A (resp., a point Q on
the tangent half-line to F at A) that is distinct from A. By Lemma 2.12, we find these points to be

P (
1 +
√

2
2

,
3 +
√

2
2

) and Q (
2 +
√

5
2

,3 +
√

5).

(In detail, the coordinates of P are found via Lemma 2.12 (b), using the fact that G has parameter

c = 1 and, for
−−→
AB , ri = r2 = 1 +

√
2, so that λ = (0 + ri)/2, and the y-coordinate for P is found by using



38 Moroccan Journal of Algebra and Geometry with Applications / D. E. Dobbs

m = 1 and (x0, y0) = (0,1). Similarly, the coordinates ofQ are found via Lemma 2.12 (b), using the fact

that F has parameter c = 2 and, for
−−→
AC , ri = r2 = 2 +

√
5, so that λ = (0 + ri)/2, and the y-coordinate

for Q is found by using m = 2 and (x0, y0) = (0,1).) Consider the vectors u :=
−−→
AP and v :=

−−−→
AQ . The

dot product δ := u · v =

(
1 +
√

2
2

)(
2 +
√

5
2

) + (
1 +
√

2
2

)(2 +
√

5) =
6 + 3

√
5 + 6

√
2 + 3

√
10

4
,

which is greater than 0. This confirms that ∠2 is acute and thus completes a proof that the measure
of ∠2 is tan−1(1/3).

We will give a second proof to calculate the measure of ∠2 (this time, without mentioning Lemma
2.6). Using the above notation, it is straightforward to calculate that

|u| =

√
(
1 +
√

2
2

)2 + (
1 +
√

2
2

)2 =
2 +
√

2
2

and

|v| =

√
(
2 +
√

5
2

)2 + (2 +
√

5)2 =
5 + 2

√
5

2
,

so that

cos(∠2) =
δ

|u| · |v|
=

6 + 3
√

5 + 6
√

2 + 3
√

10

(2 +
√

2)(5 + 2
√

5)
.

Fortunately, one can use high school algebra to check that the last-displayed expression equals 3/
√

10.
This completes a proof that the measure of ∠2 is cos−1(3/

√
10). The interested reader is invited to find

a proof (using “right triangle trigonometry" at the precalculus level) to show directly that

tan−1(1/3) = cos−1(3/
√

10).

That confirms the earlier result of our “acute" intuition.
(c) The slope of the tangent to F at C is (2 − 4)/1 = −2. The slope of the tangent to H at C is

(3 − 4)/1 = −1. So, if ∠3 is acute (as is strongly suggested by the diagram in [12, page 82]), then an
appeal to Lemma 2.6 (a) would show that the measure of ∠3 is

tan−1(| −1− (−2)
1 + (−2)(−1)

|) = tan−1(
1
3

) ≈ 0.3217505544 ≈ 18.43494882◦

which agrees nicely with Stahl’s answer of cos−1(3/
√

10) (which Stahl reports as being approximately
18.4◦) [12, page 81]. To confirm the displayed value, it suffices to verify that ∠2 is acute. That
verification is done in the next paragraph.

We will first find the coordinates of a point P on the tangent half-line to F at C (resp., a point Q
on the tangent half-line toH at C) that is distinct from C. By Lemma 2.12, we find these points to be

P (
6−
√

5
2

,3 +
√

5) and Q (
7−
√

2
2

,
3 +
√

2
2

).

(In detail, the coordinates of P are found via Lemma 2.12 (b), using the fact that F has parameter

c = 2 and, for
−−→
CA , ri = r1 = 2−

√
5, so that λ = (4 + ri)/2, and the y-coordinate for P is found by using

m = −2 and (x0, y0) = (4,1). Similarly, the coordinates of Q are found via Lemma 2.12 (b), using the

fact thatH has parameter c = 3 and, for
−−→
CB , ri = r1 = 3−

√
2, so that λ = (4+ri)/2, and the y-coordinate

for Q is found by using m = −1 and (x0, y0) = (4,1).) Consider the vectors u :=
−−→
CP and v :=

−−−→
CQ .
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Observe that u (resp., v) has the negative of the first component and the same second component as
the vector that was denoted by v (resp., u) in the proof of (b). Consequently, the values of δ and of
|u| · |v| are the same as the correspondingly denoted quantities in the proof of (b). In particular, δ > 0,
whence ∠3 is acute, and this completes the proof that the measure of ∠3 is tan−1(1/3). Perhaps more
elegantly, one should simply note now that

cos(∠3) =
δ

|u| · |v|
= cos(∠2)

and repeat the last part of the proof of (b) verbatim, thus completing the proof that the measure of ∠3
is the same as Stahl’s answer of cos−1(3/

√
10).

(d) The slope of the tangent to M at E is (9/2 − 6)/1 = −3/2 < 0. So, if ∠4 is acute (as is strongly
suggested by the diagram in [8, page 52]), then an appeal to Lemma 2.6 (b) would show that the
measure of ∠4 is

π/2 + tan−1(−3/2) ≈ 0.5880026035(radians) ≈ 33.69006753◦.

The just-displayed value agrees well with Millman’s finding that the measure of ∠4 is 33.7◦. To
confirm the displayed value, it suffices to verify that ∠4 is acute. That verification is done in the next
paragraph, by applying steps 4-7 from Corollary 2.13.

We will first find the coordinates of a point P on
−−→
EF (resp., Q on the tangent half-line toM at E)

that is distinct from E. By Lemma 2.12, we can take P to be (6,2) and Q to be ((21 −
√

13)/4, (17 +
3
√

13)/8). (In detail, the coordinates of Q are found via Lemma 2.12 (b), using the fact thatM has
parameter c = 9/2 and, for

−−−→
ED , ri = r1 = (9−

√
13)/2, so that λ = (6 + ri)/2, and the y-coordinate for Q

is found by using m = −3/2 and (x0, y0) = (6,1).) Consider the vectors u :=
−−→
EP and v :=

−−−→
EQ . The dot

product

δ := u · v = 0 · (−3−
√

13
4

) + 1 · (9 + 3
√

13
8

) =
9 + 3

√
13

8
,

which is greater than 0. This confirms that ∠4 is acute and thus completes a proof that the measure
of ∠4 is π/2 + tan−1(−3/2).

We will give a second proof to calculate the measure of ∠4 (this time, without mentioning Lemma
2.6). Using the above notation, it is straightforward to calculate that |u| = 1 and

|u| = 1 and |v| =

√
286 + 78

√
13

8
,

so that

cos(∠4) =
δ

|u| · |v|
=

9 + 3
√

13√
286 + 78

√
13
.

Fortunately, one can use high school algebra to (tediously) check that the last-displayed expression
equals 3/

√
13. Hence, the measure of ∠4 is cos−1(3/

√
13). This completes a second proof calculating

that measure. The interested reader is invited to find (at least two) proofs at the precalculus level to
show directly that

π/2 + tan−1(−3/2) = cos−1(3/
√

13).

That confirms the earlier result of our “acute" intuition.
(e) The slope of the tangent to C at F is (2 − 6)/4 = −1 (< 0). So, if ∠4 is obtuse (as is strongly

suggested by a diagram), then an appeal to Lemma 2.6 (b) would show that the measure of ∠5 is

π/2− tan−1(−1) = π/2− (−π/4) = 3π/4 = 135◦.
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To confirm the displayed value, it suffices to verify that ∠5 is obtuse. That verification is done in the
next paragraph, by applying steps 4-7 from Corollary 2.13.

We will first find the coordinates of a point P on the tangent half-line to C at F (resp., Q on
−−→
FE )

that is distinct from F. By Lemma 2.12, we can take Q to be (6,2) and P to be (4− 2
√

2,6 + 2
√

2). (In
detail, the coordinates of P are found via Lemma 2.12 (b), using the fact that C has parameter c = 2

and, for
−−→
FG , ri = r1 = 2 − 4

√
2, so that λ = (6 + ri)/2, and the y-coordinate for Q is found by using

m = −1 and (x0, y0) = (6,4).) Consider the vectors u :=
−−→
FP and v :=

−−→
FQ . The dot product

δ := u · v = (−2− 2
√

2) · 0 + (2 + 2
√

2) · (−2) = −4− 4
√

2,

which is less than 0. This confirms that ∠5 is obtuse and thus completes a proof that the measure of
∠5 is 3π/4 (radians) = 135◦.

We will give a second proof to calculate the measure of ∠5 (for a class/reader that chose to not use
Lemma 2.6). Using the above notation, it is straightforward to calculate that

|u| = 4 + 2
√

2 and |v| = 2,

so that

cos(∠5) =
δ

|u| · |v|
=
−4− 4

√
2

2(4 + 2
√

2)
= − 1
√

2
.

Hence, the measure of ∠5 is cos−1(−1/
√

2) = 3π/4. This completes a second proof calculating that
measure and confirms the earlier result of our “obtuse" intuition.

(f) The slope of the tangent to N at F is (7 − 6)/4 = 1/4 (> 0). So, if ∠6 is acute (as is strongly
suggested by the diagram in [8, page 52]), an appeal to Lemma 2.6 (b) would show that the measure
of ∠6 is

π/2− tan−1(1/4) ≈ 1.325817664(radians) ≈ 75.96375653◦,

which appears to be incompatible with Millman’s finding that the measure of ∠6 is 104◦. So, we must
address (f) by applying steps 4-7 from Corollary 2.13.

We will first find the coordinates of a point P on the tangent half-line to N at F (resp., Q on
−−→
FE )

that is distinct from E. By Lemma 2.12, we can take Q to be (6,2) and P to be ((13 −
√

17)/2, (33 −√
17)/8). (In detail, the coordinates of Q are found via Lemma 2.12 (b), using the fact that N has

parameter c = 7 and, for
−−→
FD , ri = r1 = 7 −

√
17, so that λ = (6 + ri)/2, and the y-coordinate for Q is

found by using m = 1/4 and (x0, y0) = (6,4).) Consider the vectors u :=
−−→
FP and v :=

−−→
FQ . The dot

product

δ := u · v = (
1−
√

17
2

) · 0 + (
1−
√

17
8

)(−2) =
−1 +

√
17

4
,

which is greater than 0. This confirms that ∠6 is acute and thus completes a proof that the measure
of ∠6 is π/2− tan−1(1/4).

Using the above notation, it is straightforward to calculate that

|u| = 17−
√

17
2

and |v| = 2,

so that

cos(∠6) =
δ

|u| · |v|
=

−1+
√

17
4

17−
√

17
= 1/
√

17.
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Hence, the measure of ∠6 is cos−1(1/
√

17). This completes a second proof calculating that measure.
The interested reader is invited to find (at least two) proofs at the precalculus level to show directly
that

π/2− tan−1(1/4) = cos−1(1/
√

17).

That completes a rigorous proof of (f) and confirms the earlier result of our “acute" intuition. Yet
another proof of our assertion in (f) will be given in Remark 2.16 (d). The proof is complete.

The reader may have noticed that only one of the angles that were measured in Example 2.15
was obtuse. Our analysis of some related data in Example 2.19 will continue to use the methodology
from Corollary 2.13 and that work will naturally include the determination of the measure of another
obtuse angle.

Remark 2.16 collects some comments about alternate methods.

Remark 2.16. (a) For each of parts (b)-(f) of Corollary 2.15, we offered more than one proof. This
illustrates the fact that alternate methods abound in analytic geometry and trigonometry. In that
regard, it is interesting to compare Lemma 2.6 with one of the lesser results in this paper, Theorem
2.9. Let us mention here only the fact that, while these results do not have the same focus, they are
compatible. For instance, suppose, in the context of Theorem 2.9 (a), that ξ < π/2. Then Theorem 2.9
(a) asserts that m2 = −cot(ξ). On the other hand, for this context (when ξ < π/2 and m2 < 0), Lemma
2.6 (b) asserts that ξ = π/2 + tan−1(m2). These assertions are compatible, since the fact that tan is an
odd function gives that

−cot(π/2 + tan−1(m2)) = − tan(− tan−1(m2)) = tan(tan−1(m2)) =m2.

The interested reader is encouraged to check the compatibility of Theorem 2.9 with Lemma 2.6 in all
the other contexts.

(b) In view of the different roles that tan−1 and cos−1 played in Corollary 2.13, one may ask if one
of these functions is more useful than the other. We believe that a fair answer is that each of them
is best suited to certain purposes. We have often found the functions tan and tan−1 to be helpful
in giving modern analytic proofs of results from classical Euclidean plane geometry. On the other
hand, cos and cos−1 are more directly helpful when one is using the dot product of two vectors to
study the undirected angle between those vectors. This is to be contrasted with the fact that it was
quicker to apply tan−1 in calculating the measure of a (directed) angle that was known to be either
acute or obtuse. No doubt, the above choices/uses are related to the identities

cos(2π −θ) = cos(−θ) = cos(θ)and tan(2π −θ) = tan(−θ) = − tan(θ).

(c) While we have striven to use familiar and standard tools from Euclidean analytic geometry in
developing the formulas and methods in this paper, one should note that in [12, Proposition 6.1.1],
Stahl gives some elegant formulas that can be used to calculate the measure of angles that can appear
as interior angles of hyperbolic triangles. To be frank, the author and his students have found those
formulas difficult to memorize, and we are not aware of their widespread use in other contexts.
Nevertheless, we wish to point out that an application of [12, Proposition 6.1.1] would lead to the
same answer for the measure of ∠6 in Example 2.15 (f) as we gave in the statement of Example 2.15
(f).

In detail, we use the notation from Example 2.15 (f) and adapt the notation from [12] accordingly.
Consider the tangent to the bowed geodesic N at F. The (Euclidean) perpendicular to that tangent
line meets the x-axis at the center C (7,0) of N . By [12, Proposition 6.1.1], ∠6 is congruent to the
acute (undirected) angle, say ∠S , between the (Euclidean) line segment FC and (the negative direc-
tion of) the x-axis. Hence, tan(∠6) = tan(∠S ). Consider the point D (6,0). Applying “right triangle



42 Moroccan Journal of Algebra and Geometry with Applications / D. E. Dobbs

trigonometry" to 4FCD, we get that tan(∠S ) =DF/DC = (4−0)/(7−6) = 4. Thus tan(∠6) = 4 and, since
∠6 is acute, it follows that the measure of ∠6 is tan−1(4). This finding is compatible with the value
that we calculated for that measure in Corollary 2.15 (f), since

tan−1(4) + tan−1(1/4) = π/2.

This ends our third proof that the measure of ∠6 is π/2− tan−1(1/4).
(d) Recall that in Example 2.15 (f), we gave two proofs that the measure of ∠6 is π/2 − tan−1(1/4)

(radians) ≈ 75.96375653◦. A third proof of this fact is now available, thanks to (c) above. In regard
to Millman’s having calculated that measure as 104◦, it seems relevant to note that

π/2 + tan−1(1/4) ≈ 1.81577499(radians) ≈ 104.0362435◦.

We will not comment further on the fact that Millman and we seem to have made different uses of
the same reference/related angle with measure tan−1(1/4). As to possible reasons that a different
answer for the measure of ∠6 was given in [8], I would direct the reader to the final paragraph that
preceded the statement of Example 2.15.

(e) For a class that has emphasized neutral geometry, the calculations in [12, page 81] of the mea-
sures of what we have called ∠2 and ∠3 in Example 2.15 are noteworthy. While our proof observed
that our vectorial approach gave the same answer(s) as in [12] for those (equal) measures, Stahl?s
approach used different tools, specifically, the above-mentioned [12, Proposition 6.1.1] and the (Eu-
clidean) Law of Cosines. We believe that Stahl’s proof calculating the measures of ∠2 and ∠3 is slightly
less accessible to most undergraduate classes than the approach given above in Example 2.15.

Still another proof for the measure of ∠3 is available, once the measure of ∠2 has been found. To
wit, it suffices to show that ∠2 is congruent to ∠3 (for then these angles would have the same mea-
sure). That congruence, in turn, holds because these angles are the “base angles” of the hyperbolically
isosceles triangle 4BAC. (This invocation of the classical Pons Asinorum for hyperbolic geometry is
valid because the SAS (Side-Angle-Side) criterion for congruence of triangles holds in neutral geom-
etry.) To establish that “isosceles” assertion (specifically that the hyperbolic line segments AB and
BC have the same hyperbolic lengths), one need only apply the formulas for calculating hyperbolic
distance along a bowed geodesic in [12] or [3].

(f) The final comment in (b) underscores the fact that 2π −θ should not be confused with θ when
applying the function tan. Put differently, if one knows only that ∠ is a (directed) angle whose
measure is “close to” but not equal to π, then the algebraic sign of tan(∠) is unknown. If Corollary
2.13 is to be viewed as the key tool in a comprehensive algorithm to calculate the measure of a
“typical” directed angle (whose measure, for all practical purposes, is “typically” between 0 and
2π), one needs to also answer the following question. If ∠ is a directed angle whose initial side is
the hyperbolic geodesic F , whose terminal side is the hyperbolic geodesic G, and whose measure
ξ is such that |ξ − π| is a “small” positive number, how can one determine whether ξ < π? An
examination of cases shows that the answer to this question can be summarized as follows (and,
happily, the answer is slope-theoretic).

Let the angle ∠ be as above; let P be the vertex of ∠; and for the generic bowed geodesic C passing
through P , let µC denote the slope of the tangent to C at P . Then:
(i) If both F and G are bowed, then ξ < π if and only if µG < µF .
(ii) If F is bowed and G is straight, then ξ < π if and only if µF < 0.
(iii) If F is straight and G is bowed, then ξ < π if and only if µG > 0.
This completes the remark.

The next result was suggested by – and generalizes – some material in [12, page 81]. Indeed, one
upshot of Theorem 2.17 and Corollary 2.18 is that if P0 is any point of the upper half-plane, with
G a given hyperbolic half-line emanating from P0 and η ∈ R such that 0 ≤ η ≤ 2π, then there exists
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a hyperbolic angle having G as one of its sides, vertex P0, and measure η. As was the case with
Corollary 2.13, the proofs of Theorem 2.17 and Corollary 2.18 depend in part on Theorem 2.1 and
Corollary 2.3. It would be straightforward to convert the proofs of Theorem 2.17 and Corollary 2.18
into algorithms, but they are written in a rather conversational tone because these results are easier
than Corollary 2.13. Nevertheless, one motivation for Theorem 2.17 and Corollary 2.18 is that they
solve a natural question that is analogous to the question that was answered in Corollary 2.13. In
fact, the title of this paper was chosen in the hope that it would lead some readers to expect results
such as Corollary 2.13 and Theorem 2.17. In Example 2.19 (some of whose details depend on parts
of Example 2.15 which, in turn, depended on Corollary 2.13) and Remark 2.21, we show how to use
the methodology in these three results to expeditiously answer some other natural questions.

Theorem 2.17. Let G be a given hyperbolic half-line emanating from a point P0 (x0, y0) ∈R2. Let T be
the tangential half-line of G at P0 (that is, emanating from P0). Let ξ ∈ R such that 0 ≤ ξ ≤ π. Then
there exists a unique hyperbolic half-line H emanating from P0 such that the directed angle with
initial (resp., terminal) side G and terminal (resp., initial) side H has measure ξ.

Proof. Any hyperbolic half-line emanating from P0 is uniquely determined by its tangential half-
line at P0. (Indeed, this is evident for straight geodesics; and for bowed geodesics, it follows from
Theorem 2.1 and Corollary 2.3.) Consequently, the assertion is clear in case ξ = 0 (resp., ξ = π), with
H := G (resp., H := −G). Hence, without loss of generality, 0 < ξ < π.

Let U be the Euclidean half-line obtained by rotating T counterclockwise about P0 through an
angle with radian measure ξ (resp., 2π − ξ). It is enough to show that there exists a (necessarily
unique) hyperbolic half-line H emanating from P0 such that the tangential half-line of H at P0 is U .
This, in turn, is clear if U is vertical, for H can then be taken to be U itself. Hence, without loss of
generality, U is not vertical. Let m denote the slope of U . By Theorem 2.1 and Corollary 2.3, there
exists a unique bowed geodesic (that is, a unique nonvertical hyperbolic “line") H passing through P0
such that the tangent line to H at P0 has slope m. It is clear that exactly one of the (two) hyperbolic
half-lines that are determined by H and emanate from P0 is such that its tangential half-line at P0 is
U , and that hyperbolic half-line is the desired H. The proof is complete.

Corollary 2.18. Let G be a given hyperbolic half-line emanating from a point P0 (x0, y0) ∈ R
2. Let

ξ ∈R such that 0 ≤ ξ ≤ π. Then there exists a unique hyperbolic geodesic (that is, a unique hyperbolic
“line;" that is, a unique entity that is either a straight geodesic or a bowed geodesic) H which passes
through P0 and for which the (two) hyperbolic half-lines that are determined by H and emanate from
P0 can be labeled as H1 and H2 in such a way that a counterclockwise rotation of ξ radians about P0
carries the tangential half-line of G at P0 to the tangential half-line ofH1 at P0 and a counterclockwise
rotation of π−ξ radians about P0 carries the tangential half-line ofH2 at P0 to the tangential half-line
of G at P0; that is, in such a way that the directed angle with initial side G and terminal side H1 has
measure ξ and the directed angle with initial side H2 and terminal side G has measure π − ξ .

Proof. By Theorem 2.17, there exists a unique hyperbolic half-line, sayH1, such that a counterclock-
wise rotation of ξ radians about P0 carries the tangential half-line of G at P0 to the tangential half-line
ofH1 at P0. PutH2 := −H1; and let H denote the union ofH1 andH2 . It is clear that H is a hyperbolic
geodesic that passes through P0 and that H1 and H2 are the hyperbolic half-lines that emanate from
P0 and are determined by H. We have that a counterclockwise rotation of ξ radians about P0 carries
the tangential half-line of G at P0 to the tangential half-line of H1 at P0. It remains only to show that
a counterclockwise rotation of π − ξ radians about P0 carries the tangential half-line of H2 at P0 to
the tangential half-line of G at P0. These conclusions can, in turn, be easily established by using the
following two standard facts about Euclidean (in fact, neutral) geometry: if two angles are supple-
mentary, the sum of their measures is π; and vertically opposite angles are congruent (and hence
have the same measure). The proof is complete.
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It would be desirable to have a construction of bowed geodesics F and G that meet, but are not
perpendicular, at a point A (in the upper half-plane) and of points P , Q and R such that all the

following conditions hold: P , Q and R are each distinct from A; the hyperbolic half-lines
−−→
AP and

−−−→
AQ are the (two distinct) hyperbolic half-lines that are determined by F (and emanate from A);

the hyperbolic half-line
−−→
AR is a specific one of the hyperbolic half-lines that are determined by G

(emanating from A); and, when measures of angles (with vertex A) are determined with respect to
counterclockwise rotations (about A) of the designated initial side of the angle toward the designated

terminal side of the angle, the angle with initial side
−−→
AR and terminal side

−−→
AP is acute and the angle

with initial side
−−−→
AQ and terminal side

−−→
AR is obtuse. By reexamining and augmenting some data

from Example 2.15 (a), we present a construction of the desired kind in Example 2.19. Part (f) of this
result essentially states that all the above conditions are satisfied by the assembled data.

The interested reader is encouraged to use the methods from this paper to produce a construction
showing that the phenomenon exhibited in Example 2.19 can be illustrated for any given vertex in
the upper half-plane and for any given bowed hyperbolic half-line as a “side" emanating from the
given vertex. The proof of Example 2.19 makes rather efficient use of the proof of Example 2.15 (a),
but one finds that for other data, additional methods from this paper may also be helpful. In that
regard, some readers/classes will likely find uses for Theorem 2.8, especially in conjunction with the
SOLVER function of a modern graphing calculator.

Example 2.19. Observe that the bowed geodesic G with Cartesian equation x2 + y2 − 2x = 1 passes
through the points A (0,1) and B (2,1). Let G1 be the hyperbolic half-line that is determined by G,
emanates from A and passes through B. Put η := π − tan−1(1/3). Observe that π/2 < η < π. By The-
orem 2.17, there exists a unique hyperbolic geodesic F which passes through A and for which the
(two) hyperbolic half-lines that are determined by F and emanate from A can be labeled as F1 and F2
in such a way that a counterclockwise rotation of η radians about A carries the tangential half-line of
F2 at A to the tangential half-line of G1 at A; that is, such that the directed angle with initial side F2
and terminal side G1 has measure η. (Consequently, this angle is obtuse.) Consider the points P (1,2),
Q (−0.1,

√
0.599), and R (1,

√
2). Then:

(a) The directed angle with initial side G1 and terminal side F1 (when measured using a counter-
clockwise rotation about A from G1 toward F1) has measure tan−1(1/3).

(b) A Cartesian equation for F is x2 + y2 − 4x = 1.
(c) One point on F1 (which is distinct from A) is P .
(d) One point on F2 (which is distinct from A) is Q.
(e) One point on G1 (which is distinct from A) is R.
(f) The points P and Q are each distinct from A and lie on distinct hyperbolic half-lines emanating

from A (namely, F1 and F2, respectively) that are determined by F and emanate from A. The point
R is distinct from A and lies on the hyperbolic half-line G1 that emanates from A in a northeasterly
direction. The directed angle with initial side F2 and terminal side G1 is obtuse, with measure η. The
directed angle with initial side G1 and terminal side F1 is acute, with measure tan−1(1/3).

Proof. (a) A supplement of the angle in question has measure η, supplementary angles have measures
adding to π, and π − η = tan−1(1/3).

(b), (c): As stated, Theorem 2.17 ensures that F is uniquely determined. Therefore, since 2π − (π −
η) , η, it follows that F1 is uniquely determined, and hence so is F2. Thus, by Example 2.15 (a), it
follows that a Cartesian equation for F (and hence also for F1 and F2) is x2 +y2−4x = 1; and that F1 is
the hyperbolic half-line which is determined by F and emanates from A in a northeasterly direction.
This completes the proof of (b). Moreover, as the coordinates of P satisfy x2 + y2 − 4x = 1, (c) is now
clear as well.

(d) It follows from the preceding paragraph that F2 is the hyperbolic half-line which is determined
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by F and emanates from A in a southwesterly direction. Thus, to find the coordinates of a suitable
point on F2, it suffices to choose a negative value of x for which there exists a positive value y such
that x2 + y2 − 4x = 1. Setting x := −0.1 in this equation and solving for y, we get y =

√
0.599, thus

completing the proof of (d).
(e) Recall from Example 2.15 (a) that x2 + y2 −2x = 1 is a Cartesian equation for G1. As A (0,1) and

B (2,1) are on the (hyperbolic) half-line G1, so is the point with coordinates (1,ν) such that 12 + ν2 −
2 · 1 = 1. Solving this equation for ν > 0 gives ν =

√
2, thus proving (e).

(f) By the second sentence in the proof of (b), F1 , F2. The “obtuse" and “acute" assertions hold
because π/2 < π − tan−1(1/3) = η and 0 < tan−1(1/3) < π/2. The rest of the statement of (f) collects
previous observations in the proof to this point. The purpose of the “summary" aspect of the state-
ment of (f) is to record the fact that we have fulfilled a promise that was made prior to the statement
of this example. The proof is complete.

Although Corollary 2.13 was stated for application to the upper half-plane, it is clear that its
methodology can be extended to the more general context in Theorem 2.1. Apart from such minor
generalizations, one should not expect this paper’s results to extend much further. This fact is due
to the relatively uncomplicated nature of the graphs of circles and lines. The next remark gives an
instance where such a putative slope-based extension would fail.

Remark 2.20. (a) The following example is inspired by a comment of Stahl [12, page 59]. For n = 2,3,
define a real-valued function fn by fn(x) = 1 + x2n(1 + sin(1/x)) if x , 0 and fn(0) = 1. Then fn(x) > 0
for all x ∈R and fn is a differentiable function with f ′n(0) = 0 (for each n). Moreover, f ′2 (0) = 0 = f ′3 (0).
Also, consider the real-valued function h defined by h(x) = 1. Of course, h′ is identically 0. Let F ,
G and H denote the respective graphs of f2, f3 and h (all of which lie in the upper half-plane). For
this set of data, one cannot use the slopes of the tangent lines at the point P0 (0,1) to distinguish
among the graphs of F , G and H. In particular, one cannot use the slopes of the tangent lines at P0
to distinguish between the angles ∠1 and ∠2, where ∠1 and ∠2 each have vertex P0 and initial side the
rightward-pointing half-line of H while ∠1 (resp., ∠2) has terminal side the northeasterly-pointing
tangential half-line of F (resp., of G). Note that, while h shares the property of being an analytic
function with the functions whose graphs are bowed geodesics (of course, these functions do not
have domain R), the same cannot be said of the functions f2 and f3. Indeed, neither f2 nor f3 is a C(2)

function. In fact, f ′2 is not continuous at 0 and f ′′3 is not continuous at 0.
(b) We next illustrate another kind of obstacle that would face a putative generalization of Corol-

lary 2.13. Consider the (infinitely differentiable) real-valued functions f and g defined, for 0 ≤ x ≤ π,
by f (x) = 1 + x sin(x) and g(x) = 1 + x, with their graphs (which lie in the upper half-plane) being de-
noted by F and G, respectively. These graphs intersect at P0 (0,1) and have the same tangent line
(with slope 1) at P0. One may ask if the angles formed by F and G with vertex P0 could be measured
in the spirit of Corollary 2.13. Consider, for instance, the angle formed by the northeasterly- pointing
tangent line(s). By definition (cf. [12, page 59], the measure of that angle is the measure of the angle
between (in this case, identical) tangential half-lines, and so that angle has measure 0. However, in
our opinion, the enterprise of measuring that angle by using the usual definition of angular measure
lacks any relevance to the geometric nature of the relationship between F and G in any open (Eu-
clidean or hyperbolic) neighborhood of P0, because F and G intersect at (1/(2nπ),0) for each positive
integer n. This completes the remark.

Our closing result will point out a sense in which Corollary 2.18 is best possible.

Remark 2.21. Let G be a given nonvertical hyperbolic half-line emanating from a point P0 (x0, y0) ∈
R

2. Let α be the measure of the angle of inclination of the tangent to G at P0. Let ξ ∈ R such that
0 < ξ < π and

ξ < {π/2, π/2−α, 3π/2−α, α +π/2, α −π/2}.
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Then by Corollary 2.18, there exists a unique hyperbolic geodesic H which passes through P0 and for
which the (two) hyperbolic half-lines that are determined by H and emanate from P0 can be labeled as
H1 andH2 in such a way that the (directed) angle with initial side G and terminal sideH1 has measure
ξ and the (directed) angle with initial sideH2 and terminal side G has measure π−ξ; and there exists
a unique hyperbolic geodesic K which passes through P0 and for which the (two) hyperbolic half-
lines that are determined by K and emanate from P0 can be labeled as K1 and K2 in such a way that
the (directed) angle with initial side G and terminal side K1 has measure π − ξ and the (directed)
angle with initial side K2 and terminal side G has measure ξ. Since ξ , π/2, we have ξ , π − ξ (and
conversely). Also, by the above-displayed restrictions on ξ, neither α + ξ nor α + (π − ξ) is a member
of the set {π/2,3π/2}; nor do α + ξ and α + (π− ξ) differ by π. It follows that the tangential half-lines
of H1 and K1 (resp., of H2 and K2) at P0 are distinct; and that neither H nor K has a vertical tangent
at P0. Hence, the tangents to H and K at P0 are each nonvertical and have unequal slopes. Therefore,
by the uniqueness assertions in Theorem 2.1 and Corollary 2.3, H , K. This reasoning identifies
the following sense in which Corollary 2.18 is best possible: using the notation and hypotheses of
Corollary 2.18, if one places the above-displayed five restrictions on ξ, then one cannot interchange
the roles that are played by ξ and π − ξ in the statement of Corollary 2.18. While this fact (and its
analogue for Euclidean geometry) may seem intuitively obvious, it is pleasant to close by observing
that a rigorous proof of it was facilitated in part by our attention to measuring directed angles and
focusing on the counterclockwise rotations which produced them. This completes the remark.

3 Appendix

The rest of this paper was completed on April 8, 2021. The next day, the author was able to access
a copy of [9] for the first time. (In fact, a used book vendor provided us with online access to a
large portion of [9].) Having read that material, we are composing this appendix and submitting this
manuscript on April 10, 2021.

The second sentence of the Introduction mentioned [9] because this textbook is famous for having
aroused interest in a models-based approach to the undergraduate course on geometry that is taken
by many majors in mathematics education and by some other mathematics majors. The purpose of
this appendix is to record our views on some parts of [9] and on the present paper’s relationship to
[9].

As was the case with [8], a main purpose of [9] was to verify that the upper half-plane model sat-
isfies the axioms of hyperbolic (plane) geometry. However, unlike [8], [9] is a textbook and, as such,
it slowly introduces the concept of a neutral geometry by introducing a succession of increasingly
complicated axiomatic structures. Reading the process from end to (nearly the) start, we see on [9,
page 127] that a neutral geometry is a protractor geometry that satisfies SAS; on [9, page 91] that a
protractor geometry is a Pasch geometry with an angle measure; on [9, page 76] that a Pasch geome-
try is a metric geometry that satisfies Pasch’s Axiom; on [9, pages 90-91] that an angle measure (on a
Pasch geometry) is a function from the set of all angles in the geometry to R satisfying three certain
axioms (one of which stipulates that if one is using radian measure, then the measure of each angle
is strictly between 0 and π); on [9, page 30] that a metric geometry is an incidence geometry, together
with a distance function, such that every line in the geometry has a ruler; etc. We stop the list here
because the concepts of “incidence geometry," “distance function" and “ruler" are likely known or
easily accessible to most readers.

It is clear from the above explication that the attention that is paid to “angle measure" in [9], as it
applies to the upper half-plane model, is largely restricted to whatever may be needed to verify the
relevant axioms of hyperbolic geometry. In particular, [9] does not consider the possibility of angles
with measures of 0, π, or a (real) number strictly between π and 2π. This observation is not intended
as negative criticism, but it is simply intended to indicate that the decision of Millman and Parker
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to focus in [9] on angles having measures strictly between 0 and π is perfectly in accord with the
goal in [9] to verify that a certain model satisfies certain celebrated axioms. It is generally a fool’s
errand to complain that a book or paper which is being reviewed was not written in order to satisfy a
goal, or the taste, of a reviewer. In addition, the author has too much respect for Millman and Parker
to suggest that their choice of material was inappropriate or lacking in some regard. We do hope,
however, that our comments are starting to make clear to the reader that substantial differences exist
between the goals/coverage in [9] and the goals/coverage in this paper.

Since one goal in [9] is to construct something (that is, some one thing) that would satisfy the
axioms of an angle measure on the upper half-plane model, Miller and Parker, quite sensibly, give
only one way to measure angles. Their formula for doing so, on [9, pages 94-95], is equivalent to
the last formula (involving cos−1) in step 9 in our Corollary 2.13. Corresponding to the vectors u
and v in that step, one finds certain positive scalar multiples of u and v in the angle-measuring
formula of Millman and Parker. Different readers may decide differently as to whose formulation is
more “geometrically intuitive." While [9] does not mention a role for either tan−1 or the “m1m2 = −1"
criterion in regard to measuring angles, that is perfectly in accord with their main goals.

One should note that [9, Proposition 5.4.16 “Angle Construction"] has essentially the same state-
ment as our Theorem 2.17. Although [9] does not explicitly discuss directed angles, Millman and
Parker get around that drawback by stipulating that the required geodesic half-line (in [9, Proposi-
tion 5.4.16]) must point into a specified one of the (two) half-planes determined by the given geodesic
half-line. We find it regrettable that, in our opinion, the proof of [9, Proposition 5.4.16 ] is lacking in
rigor (or, at least, in detail) to some extent. Specifically, the proof of [9, Proposition 4.16 ] depends on
[9, Proposition 4.15 ], but the proof of the latter result is left to an exercise [9, Exercise A6, page 123].
What is, perhaps, worse is that the statement of [9, Proposition 4.15] is vague. Our opinion about
this is supported by the inclusion of “(See figure 5-26.)" in the statement of [9, Proposition 4.15].
That figure is intended to convey what is meant by a particular “side" of a bowed geodesic. To clarify
what is meant by the “top" and “bottom" sides of a bowed geodesic, Millman and Parker write that
these notions “have intuitive meaning. This terminology could be made formal if needed." As one
who endeavored to make Theorem 2.17 clear, I had hoped for a clear and more rigorous presentation
of [9, Proposition 5.4.16]. We hope that it will not be seen as mean-spirited for us to note that [9]
does not seem to have followed up on [9, Proposition 5.4.16] with anything having the flavor of any
of our Corollary 2.18, Example 2.19 or Remark 2.21.

Perhaps the greatest strength of this paper, as compared with [9], is our emphasis on directed
angles having measures between 0 and 2π. While angles with measures between π and 2π are
irrelevant to the main goals in [9], they are very much the stuff of real mathematics that is used
and studied every day. So are the specification of sides and the directions of circulation of fluids.
Specifying the direction of an (outer normal) vector is part of the study of the Divergence Theorem
in advanced calculus. Traversing bounding curves consistently in a counterclockwise direction is
fundamental in working with Cauchy’s integral formula in a complex analysis course. It is important
to take care in addressing such concepts rigorously. By addressing angular measures from 0 to 2π,
our work here makes available a broader range of examples and activities for classes, whether they
be at the precalculus or the “beyond" level.

Just as the authors of [9] progressively worked toward their goals, so have we. After beginning with
a slope-focused program in results 2.1-2.3, we used those results in the proofs of our main results
(items 2.13, 2.17 and 2.18). The algorithm in Corollary 2.13 is comprehensive and unambiguous. In
cases where it is clear whether the (directed) angle being measured is acute or obtuse, the algorithm
couples slopes with tan−1 to make short work of calculating the measure of the angle. In cases where
one is unsure if the angle is acute or obtuse, following the 12 steps in Corollary 2.13 is decisive,
leaving nothing to intuition or guesswork. When one couples Corollary 2.13 with Remark 2.16 (f),
one effectively has an algorithm to measure any directed angle (with measure between 0 and 2π).
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Finally, we would hope that students and instructors alike will welcome Examples 2.15 and 2.19 as
useful additions to the literature.
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