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Abstract. Let R be a commutative ring with identity. A proper ideal I of R is said to be 1- absorbing prime ideal if

whenever xyz ∈ I for some nonunit elements x,y,z ∈ R, then either xy ∈ I or z ∈ I. The ring R is called a 1- absorbing prime

factorization ring ( OAF - ring) if every proper ideal has an OA - factorization. In this note, we characterize commutative

rings R (respectively, ring extensions A ⊂ B) for which the ring of formal power series R[[X]] (respectively, the ring A +

XB[X] or A+XB[[X]]) is an OAF - ring.
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1 Introduction

All rings considered in this paper are commutative with identity. In [10], Yassine et al. introduced
the concept of 1- absorbing prime ideal in the following way: a proper ideal I of a commutative ring
R is a 1- absorbing prime ideal (OA - ideal) if whenever x,y,z are nonunit elements of R such that
xyz ∈ I, then either xy ∈ I or z ∈ I. Note that a prime ideal is 1- absorbing prime. They prove that if
R admits a 1- absorbing prime ideal that is not a prime ideal, then R is a quasilocal ring. They also
prove that the radical of a 1- absorbing prime ideal is a prime ideal and characterize 1- absorbing
prime ideals of PID’s, valuation domains and Prüfer domains. Recall also from [1], that an ideal I
of R is a 2- absorbing ideal if whenever x,y,z ∈ R and xyz ∈ I, then xy ∈ I or xz ∈ I or yz ∈ I, so any
1- absorbing prime ideal is a 2- absorbing ideal. TA- factorization rings that is rings in which every
proper ideal can be written as a finite product of 2- absorbing ideal were investigated in [7].

In [3], El Khalfi et al. studied commutative rings whose proper ideals have an OA - factorization.
If I is a proper ideal of R, then an OA - factorization of I is an expression of I as a finite product
n∏
i=1
Ii of OA - ideals. The ring R is called a 1- absorbing prime factorization ring ( OAF - ring) if every

proper ideal has an OA - factorization. They prove that if R is a non local ring then R is a general
Z.P.I ring if and only if R is an OAF - ring. Recall that a general Z.P.I ring R is a ring whose proper
ideals can be written as a product of prime ideals which is by [9] equivalent to the fact that R satisfies
the following two conditions:

1. R is Noetherian.

2. Each maximal ideal M of R is simple that is there exist no ideals properly between M2 and M.

In case of a local domain (R,M), they show that R is OAF if and only if R is atomic such that M2 is
universal.

Moreover, they investigate rings whose proper principal ideals have an OA - factorization and
rings whose proper ( principal) ideals are OA - ideals.

In the first section of this paper, we characterize commutative rings R such that the ring of formal
power series R[[X]] is an OAF - ring. More precisely, we prove that R[[X]] is OAF if and only if R is a
finite product of fields.
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In the second (respectively, third) part of this paper, we consider composite rings of the form
A + XB[X] (respectively, A + XB[[X]]) where A ⊂ B is an extension of commutative rings. Recall

that A + XB[X] = {f ∈ B[X] | f (0) ∈ A} (respectively, A + XB[[X]] = {f =
+∞∑
i=0
aiX

i ∈ B[[X]] | a0 ∈ A}).

These rings which are special cases of pullbacks are very useful in order to construct examples and
counterexamples in commutative algebra.
We prove that if A ⊂ B is an extension of commutative rings, then the ring A+XB[X] is OAF if and
only if A = B and A is a finite product of fields. For the formal power series case, we show that if A is
a local ring, then A+XB[[X]] is OAF if and only if A ⊂ B is an extension of fields and if A is not local
then A+XB[[X]] is OAF if and only if A = B and A is a finite direct product of fields.

Let R be a commutative ring, dim(R) denotes the Krull dimension of R, Max(R) denotes the set of
maximal ideals of R, Spec(R) denotes the set of prime ideals of R, Nil(R) denotes the nilradical of R
and R[[X]] denotes the ring of formal power series over R.

2 OAF formal power series rings.

Let R be a commutative ring and R[[X]] be the ring of formal power series in one indeterminate. It is
clear by [[3], Proposition 2.2] that if R[[X]] is OAF then so is the ring R as R ∼ R[[X]]/XR[[X]].

In the next theorem, we characterize those rings for which R[[X]] is OAF.

Theorem 2.1. Let R be a commutative ring. The ring R[[X]] is OAF if and only if R is a finite direct
product of fields.

Proof. 1. First case: Suppose that R is a non local ring, so R[[X]] is also a non local ring and
Max(R[[X]]) = {M + XR[[X]] | M ∈ Max(R)}. By [[3], Remark 2.4], R[[X]] is an OAF - ring
if and only if R is a general Z.P.I ring, which is also equivalent by [[9], Theorem 3] to the
fact that R[[X]] is Noetherian and for every M ∈ Max(R), the ideal M + XR[[X]] is a simple
ideal that is there exists no ideal properly between (M + XR[[X]])2 and M + XR[[X]]. Note
that the ring R[[X]] is Noetherian if and only if R is. On the other hand, if M ∈ Max(R) then
(M+XR[[X]])2 =M2+XM+X2R[[X]]. Let I =M+XM+X2R[[X]] then I is an ideal of R[[X]] and
(M +XR[[X]])2 ⊂ I (M +XR[[X]], so if M +XR[[X]] is simple then M2 = M. Consequently, if
R[[X]] is an OAF - ring then R is Noetherian and for each M ∈Max(R), M2 = M which implies
that R is isomorphic to a finite direct product of fields by [[8],Theorem 3.2]. Conversely, we
prove that if for each M ∈Max(R), M2 =M then the ideals M +XR[[X]] are simple. In fact, let
I be an ideal of R[[X]] such that (M +XR[[X]])2 ⊂ I ⊂ M +XR[[X]] and let I1 = {a ∈ R | there

exists f =
+∞∑
i=0
aiX

i ∈ I with a1 = a}. Then I1 is an ideal of R and M ⊂ I1 ⊂ R. As M is a maximal

ideal of R then I1 = M or I1 = R. If I1 = M then we show that I = M +XM +X2R[[X]]. In fact

M + XM + X2R[[X]] ⊂ I. Conversely, let f =
+∞∑
i=0
aiX

i ∈ I ⊂ M + XR[[X]], then a1 ∈ I1 = M so

f ∈M +XM +X2R[[X]]. If I1 = R, then we show that I =M +XR[[X]]. In fact, I ⊂M +XR[[X]].
Conversely, M +XM +X2R[[X]] ⊂ I, so M ⊂ I and X2R[[X]] ⊂ I. We prove that X ∈ I. As I1 = R,

then 1 ∈ I1, so there exists g =
+∞∑
i=0
biX

i ∈ I with b1 = 1,which implies that X = g−b0−
+∞∑
i=2
biX

i ∈ I.

So XR ⊂ I and M +XR[[X]] ⊂ I.
In conclusion, if R is not local then R[[X]] is an OAF - ring if and only if R is a finite direct
product of fields.

2. Second case: Suppose that R is a local ring, so R[[X]] is also local. We prove that R[[X]] is an
OAF - ring if and only if R is a field. Suppose that R[[X]] is an OAF - ring, as dimR[[X]] ≥ 1 then
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by [[3], Proposition 3.3], R[[X]] is an integral domain, so R is an integral domain. Moreover,
by [[3], Theorem 3.5], we have dimR[[X]] ≤ 1. So dimR[[X]] = 1. As dimR[[X]] ≥ 1 + dimR
then dimR = 0. So R is an integral domain with Krull dimension equal to zero and then it is a
field. Conversely, if R is a field then the set of ideals of R[[X]] is {0} ∪ {XnR[[X]] | n ∈ N} and
Spec(R[[X]]) = {(0),XR[[X]]}. So every proper ideal of R[[X]] is a finite product of prime ideals.
As each prime ideal is an OA - ideal then every proper ideal of R[[X]] is a finite product of OA
- ideals and R[[X]] is an OAF - ring.

From the preceding proof, we can conclude that for a non local commutative ring R, the ring R[[X]]
is general Z.P.I if and only if R is a finite direct product of fields. Note that the proof is also available
in the case of a local ring R. So we get the following proposition.

Proposition 2.2. Let R be a commutative ring with identity. The ring R[[X]] is general Z.P.I if and only if
R is a finite direct product of fields.

Remark 2.3. We finish this section with some remarks on 1- absorbing prime ideals of the form I[[X]]
and I +XR[[X]] of R[[X]], where I is a proper ideal of the ring R.

1. Note that if R is not local then I[[X]] ( respectively, I +XR[[X]]) is 1- absorbing prime if and
only if it is a prime ideal which is equivalent to the fact that I is a prime ideal of R.

2. If (R,M) is a local ring then I[[X]] is 1- absorbing prime if and only if I[[X]] is prime or (M +
XR[[X]])2 ⊂ I[[X]] ⊂ M +XR[[X]]. But I[[X]] is prime if and only if I is prime. On the other
hand (M+XR[[X]])2 ⊂ I[[X]] implies that X2R[[X]] ⊂ I[[X]] which is impossible as I is a proper
ideal of R. So in the case of a local ring, the ideal I[[X]] is 1- absorbing prime if and only if I is
prime.

3. If (R,M) is a local ring then I +XR[[X]] is 1- absorbing prime if and only I +XR[[X]] is prime
or (M +XR[[X]])2 ⊂ I +XR[[X]] ⊂M +XR[[X]] which is equivalent to the fact that I is a prime
ideal of R or M2 ⊂ I ⊂M that is I is a 1- absorbing ideal of R.

3 OAF - rings of the form A+XB[X].

In [3], the authors prove that for a commutative ring R, the ring R[X] is an OAF - ring if and only if
R is a finite direct product of fields. In this section we investigate OAF - rings of the form A+XB[X],
where A ⊂ B is an extension of commutative rings. Note that the ring A+XB[X] is never local since
X and 1 +X are nonunit elements of A+XB[X]. So A+XB[X] is OAF if and only if it is general Z.P.I
which is equivalent to the fact that A+XB[X] is Noetherian and each maximal ideal of A+XB[X] is
simple. By [[5], Proposition 2.1] the ring A+XB[X] is Noetherian if and only if A is Noetherian and
B is a finitely generated A- module.

Proposition 3.1. Let A ⊂ B be an extension of commutative rings. If A+XB[X] is OAF then A is a finite
direct product of fields.

Proof. By the preceding remarks, if A + XB[X] is OAF then A is Noetherian. We prove first that
dimA = 0. Note that if A+XB[X] is OAF then it is general Z.P.I, so by [[6], Exercice 10, Page 225], it
is also a multiplication ring so dim(A+XB[X]) ≤ 1, by [[6], Page 210]. If p1 ⊂ p2 ⊂ ... ⊂ pn is a chain
of prime ideals of A then p1 + XB[X] ⊂ p2 + XB[X] ⊂ ... ⊂ pn + XB[X] is a chain of prime ideals of
A+XB[X] which implies that dimA ≤ dim(A+XB[X]) then dimA ≤ 1. Let m ∈Max(A) and suppose
that there exists p ∈ Spec(A) such that p  m, then M =m+XB[X] ∈Max(A+XB[X]), P = p+XB[X] ∈
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Spec(A +XB[X]) and P  M. By [[6], Proposition 9.15], P =
∞⋂
n=1

Mn ⊂ M2 = m2 +mBX +X2B[X], so

B ⊂ mB. But A ⊂ B is an integral extension of rings as B is a finitely generated A- module. So there
exists q ∈ Spec(B) such that m ⊂ q, then mB ⊂ q  B which is a contradiction. So dimA = 0. As
A is Noetherian we deduce that A is artinian. Moreover, for each m ∈ Max(A) the maximal ideal
M = m+XB[X] of A+XB[X] is simple. Take I = m+mBX +X2B[X], then I is an ideal of A+XB[X]
and M2 ⊂ I  M, so M2 = I and then m2 = m. By [[8],Theorem 3.2], A is isomorphic to a finite direct
product of fields.

Remark 3.2. Let A ⊂ B be an integral extension of commutative rings such that A is isomorphic to a
finite direct product of fields and A is not local.

1. For each m ∈Max(A), mB ∈Max(B). In fact as A ⊂ B is an integral extension then there exists
M ∈ Spec(B) such that M ∩A = m so mB ⊂M and mB∩A ⊂M ∩A = m. As m ⊂ mB∩A, then
mB∩A =m. So A/m ⊂ B/mB is an extension of integral domains. As A/m is a field then B/mB is
a field and then mB ∈Max(B).

2. We show that Max(B) = {mB | m ∈ Max(A)}. In fact, if M ∈ Max(B) then M ∩ A ∈ Spec(A) =
Max(A) ( as A is artinian). So there exists m ∈Max(A) such that M ∩A = m, then m ⊂M and
mB ⊂M. As mB ∈Max(B), by 1, then mB =M.
Note that if m and m′ are two distincts maximal ideals of A then mB ,m′B ( as m =mB∩A and
m′ =m′B∩A).

3. For each m ∈Max(A), there exists an idempotent a ∈ A\(0) such that m = eA.
Moreover, if m1 and m2 are two distincts maximal ideals of A and e1, e2 are two idempotents
of A such that m1 = e1A and m2 = e2A then e1e2 = 0 ( in fact A is isomorphic to a finite direct
product of fields).

4. As A is artinian and A ⊂ B is an integral extension then B is also artinian.

5. Note also that B is a reduced ring. In fact, let Max(A) = {m1, ...,mn} with n ≥ 2 and for each
i ∈ {1, ..,n} there exists an idempotent ei ∈ A such that mi = eiA, then Max(B) = {e1B, ..., enB}. So
Nil(B) = e1B ∩ ... ∩ enB. Let x ∈ Nil(B), then for each i ∈ {1, ...,n} there exists bi ∈ B such that
x = eibi . As n ≥ 2, then x = e1b1 = e2b2 so e1x = e1e2b2 = 0 and e2x = e1e2b1 = 0. As e1A+ e2A = A
there exists (a1, a2) ∈ A2 such that 1 = e1a1 + e2a2 so x = xe1a1 +xe2a2 = 0. So B is a reduced ring.

6. Consequently, B is an artinian reduced ring so B is isomorphic to a finite direct product of
fields.

7. Let A = K1 × ...×Kn (n ≥ 2) and B = L1 × ...×Lm as card(Max(A)) = card(Max(B)) then m = n.

Theorem 3.3. Let A ⊂ B be an extension of commutative rings. The ring A+XB[X] is OAF if and only
if A = B and A is a finite direct product of fields.

Proof. Suppose thatA = B andA is a finite direct product of fields. By [[3],Corollary 2.6], A+XB[X] =
A[X] is an OAF - ring. Conversely, Suppose that A + XB[X] is an OAF - ring. By the preceding
proposition and remarks, A and B are finite direct products of fields so we can suppose that A =
K1×...×Kn and B = L1×...×Ln where Ki and Li are commutative fields and Ki ⊂ Li , for each i ∈ {1, ...,n}.
We prove that A = B. For each m ∈Max(A), m+XB[X] is a simple ideal of A+XB[X]. Note that if N
is an A- submodule of B containing mB then I =m+NX +X2B[X] is an ideal of A+XB[X] such that
m+mBX +X2B[X] ⊂ I ⊂m+XB[X]. So as m+XB[X] is simple then there exists no A- submodule N
of B such that mB  N  B. Let i ∈ {1, ...,n} and mi = K1 × ...×Ki−1 × {0} ×Ki+1 × ...×Kn ∈Max(A) then
miB = L1× ...×Li−1×{0}×Li+1× ...×Ln ∈Max(B). Let x ∈ Li\{0} thenN = L1× ...×Li−1×xKi×Li+1× ...×Ln
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is an A- submodule of B containing strictly miB so N = B which implies that xKi = Li , so there exists
y ∈ Ki\{0} such that xy = 1 that is x = 1

y ∈ Ki so Li = Ki and A = B.

We can now recover Corollary 2.6 of [10].

Corollary 3.4. Let R be a commutative ring. The following statements are equivalent.

1. R[X] is an OAF - ring.

2. R is a Noetherian von Neumann regular ring.

3. R is a finite direct product of fields.

4 OAF - rings of the form A+XB[[X]].

Let A ⊂ B be an extension of commutative rings. In this section we characterize OAF - rings of the
form A+XB[[X]].More precisely we prove that if A is a local ring then A+XB[[X]] is OAF if and only
if A ⊂ B is an extension of fields and if A is not local then A+XB[[X]] is OAF if and only if A = B and
A is a finite direct product of fields.

In this section some proofs are inspired from the case of composite polynomial rings A +XB[X]
but for the sake of completeness these proofs are included here.

Theorem 4.1. Let A ⊂ B be an extension of commutative rings and suppose that A is local. Then
A+XB[[X]] is an OAF - ring if and only if A ⊂ B is an extension of fields.

Proof. Note that if A is local then A +XB[[X]] is local. Moreover as dim(A +XB[[X]]) ≥ 1, then by
[[3], Proposition 3.3], if A+XB[[X]] is OAF then it is an integral domain so A and B are also integral
domains. By [[3], Theorem 3.5], dim(A + XB[[X]]) ≤ 1, which implies that dim(A + XB[[X]]) = 1.
As 1 + max(dimB[[X]][X−1],dimA + λA,B) ≤ dim(A + XB[[X]]), by [[2], Theorem 1.1], where λA,B =
sup{dimB[[X]]q[[X]] | q ∈ spec(B) and q∩A = (0)}, we get max(dimB[[X]][X−1],dimA+λA,B) = 0. Then
dimA = dimB[[X]][X−1] = 0. As A is an integral domain we deduce that A is a field. The equality
dimB[[X]][X−1] = 0 implies also that dimB = 0 and then B is a field. Conversely, from [[3], Page 2698],
if A ⊂ B is an extension of fields then A +XB[[X]] is an OAF - ring as it is a local one dimensional
domain with maximal ideal M = XB[[X]] and (M : M) = B[[X]] which is a DVR with maximal ideal
M.

Proposition 4.2. Let A ⊂ B be an extension of commutative rings such that A is not local. If the ring
A+XB[[X]] is OAF then A is a finite direct product of fields and B is a finitely generated A- module.

Proof. Note that if A is not local then A+XB[[X]] is not local and Max(A+XB[[X]]) = {m+XB[[X]] |
m ∈Max(A)}. So A+XB[[X]] is an OAF - ring if and only if it is general Z.P.I which is equivalent to the
fact that A+XB[[X]] is Noetherian and for eachm ∈Max(A), m+XB[[X]] is simple. Suppose then that
A+XB[[X]] is OAF. By [[4], Theorem 4], A+XB[[X]] is Noetherian if and only if A is Noetherian and
B is a finitely generated A- module. On the other hand, let m ∈Max(A) then m +XB[[X]] is simple
that is there exist no ideals of A+XB[[X]] properly between (m+XB[[X]])2 andm+XB[[X]].Note that
(m+XB[[X]])2 =m2 +mBX+X2B[[X]] and that I =m+mBX+X2B[[X]] is an ideal of A+XB[[X]] such
that (m+XB[[X]])2 ⊂ I ⊂ m+XB[[X]]. So m2 = m or mB = B. But B is a finitely generated A- module
so the extension A ⊂ B is an integral extension of rings which implies that there exists P ∈ Spec(B)
such that P ∩A = m. So m ⊂ P and mB ⊂ P  B then m2 = m for each maximal ideal m of A. As A is
Noetherian then A is isomorphic to a finite direct product of fields by [[8],Theorem 3.2].

In the next lemma, we characterize all ideals I of A+XB[[X]] such that m+mBX +X2B[[X]] ⊂ I ⊂
m+XB[[X]], where m is a maximal ideal of A.
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Lemma 4.3. Let A ⊂ B be an extension of commutative rings. Let m be a maximal ideal of A and I be
an ideal of A +XB[[X]] such that m +mBX +X2B[[X]] ⊂ I ⊂ m +XB[[X]]. Set I1 = {b ∈ B | there exists

f =
∞∑
i=0
biX

i ∈ I with b1 = b}. Then I1 is an A- submodule of B and I =m+ I1X +X2B[[X]].

Proof. It is clear that I1 is an A- submodule of B and mB ⊂ I1. We prove that I = m+ I1X +X2B[[X]].
As I ⊂m+XB[[X]] and using the definition of I1, it is obvious that I ⊂m+I1X+X2B[[X]]. Conversely,
as m+mBX +X2B[[X]] ⊂ I then m ⊂ I and X2B[[X]] ⊂ I. We show that I1X ⊂ I. Let b ∈ I1, there exists

f =
∞∑
i=0
biX

i ∈ I such that b = b1, so bX = f − b0 −
∞∑
i=2
biX

i ∈ I.

Note that I1 = {b ∈ B | bX ∈ I}.

Proposition 4.4. Let A ⊂ B be an extension of commutative rings such that A is not local and A+XB[[X]]
is an OAF - ring, then A = B.

Proof. By the preceding proposition and remark 3.2, if A +XB[[X]] is OAF then A and B are finite
direct products of fields and we can suppose that A = K1 × ... × Kn and B = L1 × ... × Ln with n ≥ 2.
Moreover for each m ∈ Max(A), m + XB[[X]] is a simple ideal of A + XB[[X]]. Note that if N is an
A- submodule of B containing mB then I = m +NX +X2B[[X]] is an ideal of A +XB[[X]] such that
m+mBX +X2B[[X]] ⊂ I ⊂m+XB[[X]]. So as m+XB[[X]] is simple then there exists no A- submodule
N of B such that mB  N  B. Let i ∈ {1, ...,n} and mi = K1× ...×Ki−1×{0}×Ki+1× ...×Kn ∈Max(A) then
miB = L1× ...×Li−1×{0}×Li+1× ...×Ln ∈Max(B). Let x ∈ Li\{0} thenN = L1× ...×Li−1×xKi×Li+1× ...×Ln
is an A- submodule of B containing strictly miB so N = B which implies that xKi = Li , so there exists
y ∈ Ki\{0} such that xy = 1 that is x = 1

y ∈ Ki so Li = Ki and A = B.

Now we can state our second theorem of this section.

Theorem 4.5. LetA ⊂ B be an extension of commutative rings such thatA is not local thenA+XB[[X]]
is OAF if and only if A = B and A is a finite direct product of fields.

Proof. By the preceding propositions if A+XB[[X]] is OAF then A = B and A is a finite direct product
of fields. The converse is true by Theorem 1.

We can now recover Theorem 2.1.

Corollary 4.6. Let R be a commutative ring. R[[X]] is an OAF - ring if and only if R is a finite direct
product of fields.
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