

Moroccan Journal of Algebra and Geometry with Applications Supported by Sidi Mohamed Ben Abdellah University, Fez,

Volume 1, Issue 1 (2022), pp 132-138

Title :

Formal power series rings with one absorbing factorization

Author(s):

Sana Hizem

Supported by Sidi Mohamed Ben Abdellah University, Fez, Morocco

Formal power series rings with one absorbing factorization

Sana Hizem

Department of Mathematics, Faculty of Sciences, University of Monastir, Tunisia e-mail: *hizems@yahoo.fr*

Communicated by Najib Mahdou (Received 01 December 2021, Revised 02 February 2022, Accepted 05 February 2022)

Abstract. Let *R* be a commutative ring with identity. A proper ideal *I* of *R* is said to be 1- absorbing prime ideal if whenever $xyz \in I$ for some nonunit elements $x, y, z \in R$, then either $xy \in I$ or $z \in I$. The ring *R* is called a 1- absorbing prime factorization ring (OAF - ring) if every proper ideal has an OA - factorization. In this note, we characterize commutative rings *R* (respectively, ring extensions $A \subset B$) for which the ring of formal power series R[[X]] (respectively, the ring A + XB[X] or A + XB[[X]]) is an OAF - ring.

Key Words: OA - ideals - OAF - rings - formal power series rings. **2010 MSC**: 13A15; 13B25; 3F25; 13F15; 13B99.

1 Introduction

All rings considered in this paper are commutative with identity. In [10], Yassine et al. introduced the concept of 1- absorbing prime ideal in the following way: a proper ideal *I* of a commutative ring *R* is a 1- absorbing prime ideal (OA - ideal) if whenever x, y, z are nonunit elements of *R* such that $xyz \in I$, then either $xy \in I$ or $z \in I$. Note that a prime ideal is 1- absorbing prime. They prove that if *R* admits a 1- absorbing prime ideal that is not a prime ideal, then *R* is a quasilocal ring. They also prove that the radical of a 1- absorbing prime ideal is a prime ideal and characterize 1- absorbing prime ideal of *R* is a 2- absorbing ideal if whenever $x, y, z \in R$ and $xyz \in I$, then $xy \in I$ or $xz \in I$ or $yz \in I$, so any 1- absorbing prime ideal is a 2- absorbing ideal. TA- factorization rings that is rings in which every proper ideal can be written as a finite product of 2- absorbing ideal were investigated in [7].

In [3], El Khalfi et al. studied commutative rings whose proper ideals have an OA - factorization. If *I* is a proper ideal of *R*, then an OA - factorization of *I* is an expression of *I* as a finite product $\prod_{i=1}^{n} I_i$ of OA - ideals. The ring *R* is called a 1- absorbing prime factorization ring (OAF - ring) if every proper ideal has an OA - factorization. They prove that if *R* is a non local ring then *R* is a general Z.P.I ring if and only if *R* is an OAF - ring. Recall that a general Z.P.I ring *R* is a ring whose proper ideals can be written as a product of prime ideals which is by [9] equivalent to the fact that *R* satisfies

the following two conditions:

1. *R* is Noetherian.

2. Each maximal ideal *M* of *R* is simple that is there exist no ideals properly between M^2 and *M*.

In case of a local domain (R, M), they show that R is OAF if and only if R is atomic such that M^2 is universal.

Moreover, they investigate rings whose proper principal ideals have an OA - factorization and rings whose proper (principal) ideals are OA - ideals.

In the first section of this paper, we characterize commutative rings R such that the ring of formal power series R[[X]] is an OAF - ring. More precisely, we prove that R[[X]] is OAF if and only if R is a finite product of fields.

In the second (respectively, third) part of this paper, we consider composite rings of the form A + XB[X] (respectively, A + XB[[X]]) where $A \subset B$ is an extension of commutative rings. Recall that $A + XB[X] = \{f \in B[X] \mid f(0) \in A\}$ (respectively, $A + XB[[X]] = \{f = \sum_{i=0}^{+\infty} a_i X^i \in B[[X]] \mid a_0 \in A\}$). These rings which are special cases of pullbacks are very useful in order to construct examples and counterexamples in commutative algebra.

We prove that if $A \subset B$ is an extension of commutative rings, then the ring A + XB[X] is OAF if and only if A = B and A is a finite product of fields. For the formal power series case, we show that if A is a local ring, then A + XB[[X]] is OAF if and only if $A \subset B$ is an extension of fields and if A is not local then A + XB[[X]] is OAF if and only if $A \subset B$ is a finite direct product of fields.

Let *R* be a commutative ring, dim(*R*) denotes the Krull dimension of *R*, Max(R) denotes the set of maximal ideals of *R*, Spec(R) denotes the set of prime ideals of *R*, Nil(R) denotes the nilradical of *R* and R[[X]] denotes the ring of formal power series over *R*.

2 OAF formal power series rings.

Let *R* be a commutative ring and R[[X]] be the ring of formal power series in one indeterminate. It is clear by [[3], Proposition 2.2] that if R[[X]] is OAF then so is the ring *R* as $R \sim R[[X]]/XR[[X]]$.

In the next theorem, we characterize those rings for which R[[X]] is OAF.

Theorem 2.1. Let *R* be a commutative ring. The ring R[[X]] is OAF if and only if *R* is a finite direct product of fields.

Proof. 1. First case: Suppose that R is a non local ring, so R[[X]] is also a non local ring and $Max(R[[X]]) = \{M + XR[[X]] \mid M \in Max(R)\}$. By [[3], Remark 2.4], R[[X]] is an OAF - ring if and only if R is a general Z.P.I ring, which is also equivalent by [D], Theorem 3 to the fact that R[[X]] is Noetherian and for every $M \in Max(R)$, the ideal M + XR[[X]] is a simple ideal that is there exists no ideal properly between $(M + XR[[X]])^2$ and M + XR[[X]]. Note that the ring R[[X]] is Noetherian if and only if R is. On the other hand, if $M \in Max(R)$ then $(M + XR[[X]])^2 = M^2 + XM + X^2R[[X]]$. Let $I = M + XM + X^2R[[X]]$ then I is an ideal of R[[X]] and $(M + XR[[X]])^2 \subset I \subseteq M + XR[[X]]$, so if M + XR[[X]] is simple then $M^2 = M$. Consequently, if R[[X]] is an OAF - ring then R is Noetherian and for each $M \in Max(R)$, $M^2 = M$ which implies that R is isomorphic to a finite direct product of fields by [8], Theorem 3.2]. Conversely, we prove that if for each $M \in Max(R)$, $M^2 = M$ then the ideals M + XR[[X]] are simple. In fact, let I be an ideal of R[[X]] such that $(M + XR[[X]])^2 \subset I \subset M + XR[[X]]$ and let $I_1 = \{a \in R \mid \text{there}\}$ The an ideal of $R_{[[X]]}$ such that $(M + AR_{[[X]]}) \in I \in M + AR_{[[X]]}$ and $I \in I_1 \in R$. As M is a maximal exists $f = \sum_{i=0}^{+\infty} a_i X^i \in I$ with $a_1 = a$. Then I_1 is an ideal of R and $M \subset I_1 \subset R$. As M is a maximal ideal of R then $I_1 = M$ or $I_1 = R$. If $I_1 = M$ then we show that $I = M + XM + X^2R[[X]]$. In fact $M + XM + X^2R[[X]] \subset I$. Conversely, let $f = \sum_{i=0}^{+\infty} a_i X^i \in I \subset M + XR[[X]]$, then $a_1 \in I_1 = M$ so $f \in M + XM + X^2R[[X]]$. If $I_1 = R$, then we show that I = M + XR[[X]]. In fact, $I \subset M + XR[[X]]$. Conversely, $M + XM + X^2R[[X]] \subset I$, so $M \subset I$ and $X^2R[[X]] \subset I$. We prove that $X \in I$. As $I_1 = R$, then $1 \in I_1$, so there exists $g = \sum_{i=0}^{+\infty} b_i X^i \in I$ with $b_1 = 1$, which implies that $X = g - b_0 - \sum_{i=2}^{+\infty} b_i X^i \in I$. So $XR \subset I$ and $M + XR[[X]] \subset I$.

In conclusion, if R is not local then R[[X]] is an OAF - ring if and only if R is a finite direct product of fields.

2. Second case: Suppose that *R* is a local ring, so R[[X]] is also local. We prove that R[[X]] is an OAF - ring if and only if *R* is a field. Suppose that R[[X]] is an OAF - ring, as dim $R[[X]] \ge 1$ then

by [[3], Proposition 3.3], R[[X]] is an integral domain, so R is an integral domain. Moreover, by [[3], Theorem 3.5], we have dim $R[[X]] \le 1$. So dim R[[X]] = 1. As dim $R[[X]] \ge 1 + \dim R$ then dim R = 0. So R is an integral domain with Krull dimension equal to zero and then it is a field. Conversely, if R is a field then the set of ideals of R[[X]] is $\{0\} \cup \{X^n R[[X]] \mid n \in \mathbb{N}\}$ and $Spec(R[[X]]) = \{(0), XR[[X]]\}$. So every proper ideal of R[[X]] is a finite product of prime ideals. As each prime ideal is an OA - ideal then every proper ideal of R[[X]] is a finite product of OA - ideals and R[[X]] is an OAF - ring.

From the preceding proof, we can conclude that for a non local commutative ring R, the ring R[[X]] is general Z.P.I if and only if R is a finite direct product of fields. Note that the proof is also available in the case of a local ring R. So we get the following proposition.

Proposition 2.2. Let R be a commutative ring with identity. The ring R[[X]] is general Z.P.I if and only if R is a finite direct product of fields.

Remark 2.3. We finish this section with some remarks on 1- absorbing prime ideals of the form I[[X]] and I + XR[[X]] of R[[X]], where I is a proper ideal of the ring R.

- 1. Note that if *R* is not local then I[[X]] (respectively, I + XR[[X]]) is 1- absorbing prime if and only if it is a prime ideal which is equivalent to the fact that *I* is a prime ideal of *R*.
- 2. If (R, M) is a local ring then I[[X]] is 1- absorbing prime if and only if I[[X]] is prime or $(M + XR[[X]])^2 \subset I[[X]] \subset M + XR[[X]]$. But I[[X]] is prime if and only if I is prime. On the other hand $(M + XR[[X]])^2 \subset I[[X]]$ implies that $X^2R[[X]] \subset I[[X]]$ which is impossible as I is a proper ideal of R. So in the case of a local ring, the ideal I[[X]] is 1- absorbing prime if and only if I is prime.
- 3. If (R, M) is a local ring then I + XR[[X]] is 1- absorbing prime if and only I + XR[[X]] is prime or $(M + XR[[X]])^2 \subset I + XR[[X]] \subset M + XR[[X]]$ which is equivalent to the fact that *I* is a prime ideal of *R* or $M^2 \subset I \subset M$ that is *I* is a 1- absorbing ideal of *R*.

3 OAF - rings of the form A + XB[X].

In [3], the authors prove that for a commutative ring R, the ring R[X] is an OAF - ring if and only if R is a finite direct product of fields. In this section we investigate OAF - rings of the form A + XB[X], where $A \subset B$ is an extension of commutative rings. Note that the ring A + XB[X] is never local since X and 1 + X are nonunit elements of A + XB[X]. So A + XB[X] is OAF if and only if it is general Z.P.I which is equivalent to the fact that A + XB[X] is Noetherian and each maximal ideal of A + XB[X] is simple. By [[5], Proposition 2.1] the ring A + XB[X] is Noetherian if and only if A is Noetherian and B is a finitely generated A- module.

Proposition 3.1. Let $A \subset B$ be an extension of commutative rings. If A + XB[X] is OAF then A is a finite direct product of fields.

Proof. By the preceding remarks, if A + XB[X] is OAF then A is Noetherian. We prove first that dim A = 0. Note that if A + XB[X] is OAF then it is general Z.P.I, so by [[6], Exercice 10, Page 225], it is also a multiplication ring so dim $(A + XB[X]) \le 1$, by [[6], Page 210]. If $p_1 \subset p_2 \subset ... \subset p_n$ is a chain of prime ideals of A then $p_1 + XB[X] \subset p_2 + XB[X] \subset ... \subset p_n + XB[X]$ is a chain of prime ideals of $A + XB[X] \subset p_2 + XB[X] \subset ... \subset p_n + XB[X]$ is a chain of prime ideals of then $p_1 + XB[X] \subset p_2 + XB[X] \subset ... \subset p_n + XB[X]$ is a chain of prime ideals of A + XB[X] which implies that dim $A \le \dim(A + XB[X])$ then dim $A \le 1$. Let $m \in Max(A)$ and suppose that there exists $p \in Spec(A)$ such that $p \subsetneq m$, then $M = m + XB[X] \in Max(A + XB[X])$, $P = p + XB[X] \in Max(A + XB[X])$.

Spec(A + XB[X]) and $P \subsetneq M$. By [[6], Proposition 9.15], $P = \bigcap_{n=1}^{\infty} M^n \subset M^2 = m^2 + mBX + X^2B[X]$, so $B \subset mB$. But $A \subset B$ is an integral extension of rings as B is a finitely generated A- module. So there exists $q \in Spec(B)$ such that $m \subset q$, then $mB \subset q \subsetneq B$ which is a contradiction. So dim A = 0. As A is Noetherian we deduce that A is artinian. Moreover, for each $m \in Max(A)$ the maximal ideal M = m + XB[X] of A + XB[X] is simple. Take $I = m + mBX + X^2B[X]$, then I is an ideal of A + XB[X] and $M^2 \subset I \subsetneq M$, so $M^2 = I$ and then $m^2 = m$. By [[8], Theorem 3.2], A is isomorphic to a finite direct product of fields.

Remark 3.2. Let $A \subset B$ be an integral extension of commutative rings such that *A* is isomorphic to a finite direct product of fields and *A* is not local.

- 1. For each $m \in Max(A)$, $mB \in Max(B)$. In fact as $A \subset B$ is an integral extension then there exists $M \in Spec(B)$ such that $M \cap A = m$ so $mB \subset M$ and $mB \cap A \subset M \cap A = m$. As $m \subset mB \cap A$, then $mB \cap A = m$. So $A/m \subset B/mB$ is an extension of integral domains. As A/m is a field then B/mB is a field and then $mB \in Max(B)$.
- 2. We show that $Max(B) = \{mB \mid m \in Max(A)\}$. In fact, if $M \in Max(B)$ then $M \cap A \in Spec(A) = Max(A)$ (as *A* is artinian). So there exists $m \in Max(A)$ such that $M \cap A = m$, then $m \subset M$ and $mB \subset M$. As $mB \in Max(B)$, by 1, then mB = M. Note that if *m* and *m'* are two distincts maximal ideals of *A* then $mB \neq m'B$ (as $m = mB \cap A$ and $m' = m'B \cap A$).
- For each m∈ Max(A), there exists an idempotent a∈ A\(0) such that m = eA.
 Moreover, if m₁ and m₂ are two distincts maximal ideals of A and e₁,e₂ are two idempotents of A such that m₁ = e₁A and m₂ = e₂A then e₁e₂ = 0 (in fact A is isomorphic to a finite direct product of fields).
- 4. As *A* is artinian and $A \subset B$ is an integral extension then *B* is also artinian.
- 5. Note also that *B* is a reduced ring. In fact, let $Max(A) = \{m_1, ..., m_n\}$ with $n \ge 2$ and for each $i \in \{1, ..., n\}$ there exists an idempotent $e_i \in A$ such that $m_i = e_iA$, then $Max(B) = \{e_1B, ..., e_nB\}$. So $Nil(B) = e_1B \cap ... \cap e_nB$. Let $x \in Nil(B)$, then for each $i \in \{1, ..., n\}$ there exists $b_i \in B$ such that $x = e_ib_i$. As $n \ge 2$, then $x = e_1b_1 = e_2b_2$ so $e_1x = e_1e_2b_2 = 0$ and $e_2x = e_1e_2b_1 = 0$. As $e_1A + e_2A = A$ there exists $(a_1, a_2) \in A^2$ such that $1 = e_1a_1 + e_2a_2$ so $x = xe_1a_1 + xe_2a_2 = 0$. So *B* is a reduced ring.
- 6. Consequently, B is an artinian reduced ring so B is isomorphic to a finite direct product of fields.
- 7. Let $A = K_1 \times ... \times K_n$ $(n \ge 2)$ and $B = L_1 \times ... \times L_m$ as card(Max(A)) = card(Max(B)) then m = n.

Theorem 3.3. Let $A \subset B$ be an extension of commutative rings. The ring A + XB[X] is OAF if and only if A = B and A is a finite direct product of fields.

Proof. Suppose that A = B and A is a finite direct product of fields. By [[3], Corollary 2.6], A+XB[X] = A[X] is an OAF - ring. Conversely, Suppose that A + XB[X] is an OAF - ring. By the preceding proposition and remarks, A and B are finite direct products of fields so we can suppose that $A = K_1 \times ... \times K_n$ and $B = L_1 \times ... \times L_n$ where K_i and L_i are commutative fields and $K_i \subset L_i$, for each $i \in \{1, ..., n\}$. We prove that A = B. For each $m \in Max(A)$, m + XB[X] is a simple ideal of A + XB[X]. Note that if N is an A- submodule of B containing mB then $I = m + NX + X^2B[X]$ is an ideal of A + XB[X] such that $m + mBX + X^2B[X] \subset I \subset m + XB[X]$. So as m + XB[X] is simple then there exists no A- submodule N of B such that $mB \subsetneq N \subsetneq B$. Let $i \in \{1, ..., n\}$ and $m_i = K_1 \times ... \times K_{i-1} \times \{0\} \times K_{i+1} \times ... \times K_n \in Max(A)$ then $m_iB = L_1 \times ... \times L_{i-1} \times \{0\} \times L_{i+1} \times ... \times L_n \in Max(B)$. Let $x \in L_i \setminus \{0\}$ then $N = L_1 \times ... \times L_{i-1} \times xK_i \times L_{i+1} \times ... \times L_n$

is an *A*- submodule of *B* containing strictly $m_i B$ so N = B which implies that $xK_i = L_i$, so there exists $y \in K_i \setminus \{0\}$ such that xy = 1 that is $x = \frac{1}{v} \in K_i$ so $L_i = K_i$ and A = B.

We can now recover Corollary 2.6 of [10].

Corollary 3.4. Let R be a commutative ring. The following statements are equivalent.

- 1. R[X] is an OAF ring.
- 2. R is a Noetherian von Neumann regular ring.
- 3. *R* is a finite direct product of fields.

4 OAF - rings of the form A + XB[[X]].

Let $A \subset B$ be an extension of commutative rings. In this section we characterize OAF - rings of the form A + XB[[X]]. More precisely we prove that if A is a local ring then A + XB[[X]] is OAF if and only if $A \subset B$ is an extension of fields and if A is not local then A + XB[[X]] is OAF if and only if A = B and A is a finite direct product of fields.

In this section some proofs are inspired from the case of composite polynomial rings A + XB[X] but for the sake of completeness these proofs are included here.

Theorem 4.1. Let $A \subset B$ be an extension of commutative rings and suppose that A is local. Then A + XB[[X]] is an OAF - ring if and only if $A \subset B$ is an extension of fields.

Proof. Note that if *A* is local then *A* + *XB*[[*X*]] is local. Moreover as dim(*A* + *XB*[[*X*]]) ≥ 1, then by [[3], Proposition 3.3], if *A* + *XB*[[*X*]] is OAF then it is an integral domain so *A* and *B* are also integral domains. By [[3], Theorem 3.5], dim(*A* + *XB*[[*X*]]) ≤ 1, which implies that dim(*A* + *XB*[[*X*]]) = 1. As 1 + max(dim *B*[[*X*]]][*X*⁻¹], dim *A* + $\lambda_{A,B}$) ≤ dim(*A* + *XB*[[*X*]]), by [[2], Theorem 1.1], where $\lambda_{A,B}$ = sup{dim *B*[[*X*]]]_{*q*[[*X*]]} | *q* ∈ *spec*(*B*) and *q* ∩ *A* = (0)}, we get max(dim *B*[[*X*]][*X*⁻¹], dim *A* + $\lambda_{A,B}$) = 0. Then dim *A* = dim *B*[[*X*]][*X*⁻¹] = 0. As *A* is an integral domain we deduce that *A* is a field. The equality dim *B*[[*X*]][*X*⁻¹] = 0 implies also that dim *B* = 0 and then *B* is a field. Conversely, from [[3], Page 2698], if *A* ⊂ *B* is an extension of fields then *A* + *XB*[[*X*]] is an OAF - ring as it is a local one dimensional domain with maximal ideal *M* = *XB*[[*X*]] and (*M* : *M*) = *B*[[*X*]] which is a DVR with maximal ideal *M*.

Proposition 4.2. Let $A \subset B$ be an extension of commutative rings such that A is not local. If the ring A + XB[[X]] is OAF then A is a finite direct product of fields and B is a finitely generated A-module.

Proof. Note that if *A* is not local then *A* + *XB*[[*X*]] is not local and *Max*(*A* + *XB*[[*X*]]) = {*m* + *XB*[[*X*]] | $m \in Max(A)$ }. So *A* + *XB*[[*X*]] is an OAF - ring if and only if it is general Z.P.I which is equivalent to the fact that *A* + *XB*[[*X*]] is Noetherian and for each $m \in Max(A)$, m + XB[[X]] is simple. Suppose then that *A* + *XB*[[*X*]] is OAF. By [[4], Theorem 4], *A* + *XB*[[*X*]] is Noetherian if and only if *A* is Noetherian and *B* is a finitely generated *A*- module. On the other hand, let $m \in Max(A)$ then m + XB[[X]] is simple that is there exist no ideals of *A* + *XB*[[*X*]] properly between $(m + XB[[X]])^2$ and m + XB[[X]]. Note that $(m + XB[[X]])^2 = m^2 + mBX + X^2B[[X]]$ and that $I = m + mBX + X^2B[[X]]$ is an ideal of *A* + *XB*[[X]] such that $(m + XB[[X]])^2 \subset I \subset m + XB[[X]]$. So $m^2 = m$ or mB = B. But *B* is a finitely generated *A*- module so the extension $A \subset B$ is an integral extension of rings which implies that there exists $P \in Spec(B)$ such that $P \cap A = m$. So $m \subset P$ and $mB \subset P \subsetneq B$ then $m^2 = m$ for each maximal ideal *m* of *A*. As *A* is Noetherian then *A* is isomorphic to a finite direct product of fields by [[8],Theorem 3.2].

In the next lemma, we characterize all ideals *I* of A + XB[[X]] such that $m + mBX + X^2B[[X]] \subset I \subset m + XB[[X]]$, where *m* is a maximal ideal of *A*.

Lemma 4.3. Let $A \subset B$ be an extension of commutative rings. Let m be a maximal ideal of A and I be an ideal of A + XB[[X]] such that $m + mBX + X^2B[[X]] \subset I \subset m + XB[[X]]$. Set $I_1 = \{b \in B \mid \text{there exists} f = \sum_{i=0}^{\infty} b_i X^i \in I$ with $b_1 = b\}$. Then I_1 is an A- submodule of B and $I = m + I_1 X + X^2B[[X]]$.

Proof. It is clear that *I*₁ is an *A*- submodule of *B* and *mB* ⊂ *I*₁. We prove that $I = m + I_1X + X^2B[[X]]$. As I ⊂ m + XB[[X]] and using the definition of *I*₁, it is obvious that $I ⊂ m + I_1X + X^2B[[X]]$. Conversely, as $m + mBX + X^2B[[X]] ⊂ I$ then m ⊂ I and $X^2B[[X]] ⊂ I$. We show that $I_1X ⊂ I$. Let $b ∈ I_1$, there exists $f = \sum_{i=0}^{\infty} b_i X^i ∈ I$ such that $b = b_1$, so $bX = f - b_0 - \sum_{i=2}^{\infty} b_i X^i ∈ I$. Note that $I_1 = \{b ∈ B | bX ∈ I\}$.

Proposition 4.4. Let $A \subset B$ be an extension of commutative rings such that A is not local and A + XB[[X]] is an OAF - ring, then A = B.

Proof. By the preceding proposition and remark 3.2, if A + XB[[X]] is OAF then A and B are finite direct products of fields and we can suppose that $A = K_1 \times ... \times K_n$ and $B = L_1 \times ... \times L_n$ with $n \ge 2$. Moreover for each $m \in Max(A)$, m + XB[[X]] is a simple ideal of A + XB[[X]]. Note that if N is an A- submodule of B containing mB then $I = m + NX + X^2B[[X]]$ is an ideal of A + XB[[X]] such that $m + mBX + X^2B[[X]] \subset I \subset m + XB[[X]]$. So as m + XB[[X]] is simple then there exists no A- submodule N of B such that $mB \subsetneq N \subsetneq B$. Let $i \in \{1, ..., n\}$ and $m_i = K_1 \times ... \times K_{i-1} \times \{0\} \times K_{i+1} \times ... \times K_n \in Max(A)$ then $m_i B = L_1 \times ... \times L_{i-1} \times \{0\} \times L_{i+1} \times ... \times L_n \in Max(B)$. Let $x \in L_i \setminus \{0\}$ then $N = L_1 \times ... \times L_{i-1} \times xK_i \times L_{i+1} \times ... \times L_n$ is an A- submodule of B containing strictly $m_i B$ so N = B which implies that $xK_i = L_i$, so there exists $y \in K_i \setminus \{0\}$ such that xy = 1 that is $x = \frac{1}{y} \in K_i$ so $L_i = K_i$ and A = B.

Now we can state our second theorem of this section.

Theorem 4.5. Let $A \subset B$ be an extension of commutative rings such that A is not local then A + XB[[X]] is OAF if and only if A = B and A is a finite direct product of fields.

Proof. By the preceding propositions if A + XB[[X]] is OAF then A = B and A is a finite direct product of fields. The converse is true by Theorem 1.

We can now recover Theorem 2.1.

Corollary 4.6. Let R be a commutative ring. R[[X]] is an OAF - ring if and only if R is a finite direct product of fields.

References

- A. Badawi, On 2-absorbing ideals of commutative rings, Bull. Austral. Math. Soc. 75 (3) (2007), 417-429.
- [2] D. E. Dobbs and M. Khalis, On the prime spectrum, Krull dimension and catenarity of integral domains of the form *A* + *XB*[[*X*]], J. Pure Appli. Algebra. 159 (1) (2001), 57-73.
- [3] A. El Khafi, M. Issoual, N. Mahdou and A. Reinhart, Commutative rings with one absorbing factorization, Commun. Algebra. 49 (2021), 2689-2703.
- [4] S. Hizem and A. Benhissi, When is A + XB[[X]] Noetherian ? C. R. Math. Acad. Sci. Paris. 340 (1) (2005), 5-7.

- [5] S. Hizem, Chain conditions in rings of the form A + XB[X] and A + XI[X], Commutative Algebra and its Applications: Proceedings of the Fifth International Fez Conference on Commutative Algebra and Applications, Fez, Morocco, June 23-28, 2008, edited by Marco Fontana, Salah-Eddine Kabbaj, Bruce Olberding and Irena Swanson, Berlin, New York: De Gruyter, (2009), 259-274.
- [6] M. Larsen and P. Mccarthy, Multiplicative theory of ideals, Pure. Appl. Math. New York, Academic press (1971).
- [7] M. Mukhtar, M. Ahmed and T. Dumitrescu, Commutative rings with two-absorbing factorization, Commun. Algebra. 46 (3) (2018), 970-978.
- [8] M. Satyanarayana, Rings with primary ideals as maximal ideals, Math. Scand. 20 (1967), 52-54.
- [9] C. A. Wood, On general Z.P.I.-rings, Pac. J. Math. 30 (1969), 837-846.
- [10] A. Yassine, M. J. Nikmehr and R. Nijandish, On 1-absorbing prime ideals of commutative rings, J. Algebra Appl. 20 (10) (2021), 2150175.