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1 Introduction

Throughout this article, all rings considered are assumed to be commutative rings with an identity
and R denotes such a ring. All modules are unital. We denote respectively by Spec(R), Max(R) and
Min(R) the set of all prime ideals of R, the set of all maximal ideals of R and the set of all minimal
prime ideals of R. The nilradical of R and the Jacobson radical of R are denoted by Nil(R) and
J(R), respectively. Let M be an R-module and let x ∈ M. By AnnR(x) and AnnR(M) we denote the
annihilator of x and M, respectively; i.e. AnnR(x) = {r ∈ R | rx = 0} and AnnR(M) = {r ∈ R | rM = 0}.
The notation N ⊆M means that N is a subset of M; N ≤M means that N is a submodule of M; and
N ⊆ess M means that N is an essential submodule of M. By Q and Z we denote the ring of rational
and integer numbers, respectively.

An R-module M is called CS (or extending) if every submodule of M is essential in a direct sum-
mand of M and a ring R is called CS if the R-module R is CS. By [11, Theorem 6], R is CS if and only
if for any ideals I and J of R with I ∩ J = 0, AnnR(I) +AnnR(J) = R. In our attempt to characterize CS
trivial extensions, we were lead to introduce two types of CS modules. The first one comes form the
above characterization of CS rings. For considerA = R ∝M, the trivial extension of R by an R-module
M, and let φ : M → A be the natural monomorphism. Assume that A is a CS ring. Then given two
submodules N and L of M such that N ∩L = 0, it is clear that φ(N ) and φ(L) are two ideals of A such
that φ(N )∩φ(L) = 0. Thus AnnAφ(N ) +AnnAφ(L) = A which implies that AnnR(N ) +AnnR(L) = R.
Recall that a ring R is called an Ikeda-Nakayama ring (or IN ring) if for any two ideals T and T ′ of
R, we have AnnR(T ∩ T ′) = AnnR(T ) +AnnR(T ′) (see [13, p. 148]). Call an R-module M weakly IN if
AnnR(N )+AnnR(L) = RwheneverN and L are submodules ofM such thatN ∩L = 0. The second type
is due to the definition itself of CS rings. Suppose that A is a CS ring and let N be a submodule of M.
Then φ(N ) is an ideal of A and hence φ(N ) is essential in f A for some idempotent f of A. But f is of
the form (e,0) for some idempotent e of R, soN is essential in eM. Call an R-moduleM strongly CS if
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for every submoduleN ofM, there exists an idempotent e of R such thatN is an essential submodule
of eM. The above discussion justifies our choice of the title and motivates our study in this paper.

In Section 2, we study some properties of weakly IN modules and strongly CS modules. We in-
vestigate the connection between these two classes of modules. It is shown that an R-module M
is strongly CS if and only if M is weakly IN and idempotents lift modulo AnnR(M) (Theorem 2.8).
Then we characterize the class of rings R over which every cyclic R-module is weakly IN (strongly
CS) (Theorems 2.11 and 2.12).

In section 3, we focus on when a finite direct sum of weakly IN (strongly CS) modules is also
weakly IN (strongly CS). Let an R-module M = M1 ⊕M2 ⊕ · · · ⊕Mn be a direct sum of submodules
M1,M2, . . . ,Mn. We show that M is weakly IN if and only if each Mi is weakly IN and AnnR(Mi) +
AnnR(Mj ) = R for all distinct i, j in {1, . . . ,n} (Theorem 3.1). It is also shown that M is a strongly CS
R-module if and only if R = R1×R2×· · ·×Rn such thatMi is a strongly CS Ri-module for all i ∈ {1, . . . ,n}
(Theorem 3.3). As an application, we prove that R is a clean ring (i.e. every element of R is a sum
of a unit and an idempotent) if and only if every weakly IN R-module is strongly CS if and only if
R/m⊕R/m′ is a strongly CS R-module for every distinct maximal ideals m and m′ of R (Theorem 3.5).
Also, we characterize the class of rings R for which R/p ⊕ R/p′ is a strongly CS R-module for every
distinct minimal prime ideals p and p′ of R as that of the purified rings (Theorem 3.9). Recall that a
ring R is said to be a purified (or coclean) ring if for every distinct minimal prime ideals p and q of R,
there exists an idempotent e of R such that e ∈ p and 1− e ∈ q.

In section 4, we characterize weakly IN and strongly CS modules over Dedekind domains. In
particular, we show that if R is a Dedekind domain and M is an R-module, then M is weakly IN if
and only if M is cyclic, or M � E(R/m) for some maximal ideal m of R, or M is isomorphic to an
R-submodule of the quotient field K of R (Theorem 4.3).

The last section is devoted to the study of CS trivial extensions. Let A = R ∝M denotes the trivial
extension of a ring R by an R-module M. In the main result of this section, we show that A is a
CS ring if and only if M is weakly IN (or strongly CS) and there exists an idempotent e of R such
that AnnR(M) = eR and eR is a CS ring if and only if M ⊕AnnR(M) is a weakly IN (or strongly CS)
R-module (Theorem 5.4). When M is a flat R-module, we prove that A is a CS ring if and only if R
and M are weakly IN (or strongly CS) R-modules and AnnR(M) is a direct summand of R (Corollary
5.6).

2 Weakly IN and Strongly CS Modules

Recall that an R-module M is called CS if every submodule of M is essential in a direct summand
of M. A ring R is called CS if R is a CS R-module. Using [11, Theorem 6], we obtain the following
proposition.

Proposition 2.1. The following are equivalent for a ring R:
(1) R is a CS ring;
(2) For any ideal I of R, there exists e = e2 ∈ R such that I ⊆ess eR;
(3) For any ideals I and J of R with I ∩ J = 0, AnnR(I) +AnnR(J) = R.

A ring R is called an Ikeda-Nakayama ring (or an IN-ring) if AnnR(I∩J) = AnnR(I)+AnnR(J) for all
ideals I and J of R (see [8]). Using the endomorphism ring, Wisbauer, Yousif and Zhou generalized
this notion to a module theoretic version in 2002 [17]. Here, we will consider another generalization.
We will call an R-module M an s.IN-module (scalar IN-module) if AnnR(N ∩ L) = AnnR(N ) +AnnR(L)
for all submodules N an L of M. Next, we introduce two notions. The first one is weaker than that of
s.IN-modules and the latter one is stronger than that of CS modules.

Definition 2.2. Let M be an R-module.
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(1)M is called weakly IN if for any submodules N and L ofM with N ∩L = 0, AnnR(N )+AnnR(L) = R.
(2) M is called strongly CS if for any submodule N of M, there exists e = e2 ∈ R such that N ⊆ess eM.
(3) A ring R is called weakly IN (strongly CS) if R, as an R-module, has the corresponding property.

Remark 2.3. (1) From Proposition 2.1, it follows easily that a ring R is CS if and only if R is weakly
IN if and only if R is strongly CS.

(2) Consider the ring Z2[x1,x2, . . .] where x3
i = 0 for all i, xixj = 0 for all i , j and x2

i = x2
j , 0 for all

i and j. It was shown in [8, Example 6] that R is a CS ring and hence R is weakly IN, but R is not an
IN ring. It follows that the R-module R is weakly IN, but it is not an s.IN-module.

(3) If M is a uniform R-module, then clearly M is strongly CS. If R is indecomposable or M is
indecomposable, then the converse also holds.

Proposition 2.4. Any submodule of a strongly CS (weakly IN) module is strongly CS (weakly IN).

Proof. Let M be a strongly CS module and let N be a submodule of M. Let L be a submodule of
N . Then L ⊆ess eM for some idempotent e of R. Hence L ⊆ess eM ∩N = eN . The other assertion is
evident.

Proposition 2.5. A free R-module F is weakly IN if and only if rank(F) = 1 and R is a CS ring.

Proof. Let F be a weakly IN free R-module. Suppose that rank(F) ≥ 2. Then F contains a submodule
isomorphic to R⊕R. Therefore AnnR(R) +AnnR(R) = R, a contradiction. So rank(F) = 1 and hence R
is a CS ring (Remark 2.3(1)). The converse is clear.

From the preceding proposition, one can directly infer that over a field K , a module M is weakly
IN if and only if M � K .

Recall that a module M is called quasi-continuous if M is CS and, for any two direct summands
M1, M2 with M1 ∩M2 = 0, M1 ⊕M2 is also a direct summand (see [12]). From [17, Corollary 4], it
follows that a faithful R-module M is weakly IN if and only if M is a quasi-continuous R-module
and for any f 2 = f ∈ EndR(M), there exists r ∈ R such that f (x) = rx for any x ∈M. This fact can be
extended to the general case as shown in the following characterization of weakly IN modules.

Proposition 2.6. Let R be a ring and let M be a nonzero R-module. Then the following are equivalent:
(1) M is a weakly IN R-module;
(2) M is a weakly IN R/AnnR(M)-module;
(3)M is a quasi-continuous R-module and for any f 2 = f ∈ EndR(M), there exists r ∈ R such that f (x) = rx
for any x ∈M;
(4) M is a CS R-module and for any direct summand N of M, there exists r ∈ R such that N = rM and
r − r2 ∈ AnnR(M);
(5) For any submodule N of M, there exists r ∈ R such that N ⊆ess rM and r − r2 ∈ AnnR(M);
(6) M is strongly CS as an R/AnnR(M)-module.

Proof. (1)⇔ (2) This is clear.
(2)⇒ (3) Let R = R/AnnRM. It is easy to see that M has a natural structure of (R,R)-bimodule and

M is a faithful left R-module. Moreover, the R-submodules and the R-submodules ofM are the same.
Using [17, Corollary 4], we see thatM is a quasi-continuous R-module and for any f 2 = f ∈ EndR(M),
there exists r = r +AnnR(M) ∈ R such that f (x) = rx = rx for all x ∈M.

(3) ⇒ (4) It is clear that M is a CS R-module. Let N and K be two submodules of M such that
M = N ⊕K . Let f be the projection on N along K . Then f 2 = f and so there exists r ∈ R such that
f (x) = rx for any x ∈M. Hence, N = f (M) = rM. But f 2 = f , so r − r2 ∈ AnnR(M).

(4)⇒ (5) Let N be a submodule of M. Since M is CS, there exists a direct summand K of M such
that N ⊆ess K . Moreover, by assumption, K = rM for some r ∈ R with r − r2 ∈ AnnR(M).
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(5)⇒ (1) Let N and L be two submodules of M with N ∩ L = 0. Then there exist r and s in R such
that N ⊆ess rM, L ⊆ess sM, r − r2 ∈ AnnR(M) and s − s2 ∈ AnnR(M). Thus N ∩ L ⊆ess rM ∩ sM. Since
N ∩ L = 0, we have rM ∩ sM = 0. This implies that rsM ⊆ rM ∩ sM = 0 and hence rs ∈ AnnR(M).
Moreover, since r − r2 ∈ AnnR(M) and s − s2 ∈ AnnR(M), we have (1 − r) ∈ AnnR(rM) ⊆ AnnR(N ) and
(1− s) ∈ AnnR(sM) ⊆ AnnR(L). It follows that

1 = (1− r) + (1− s)r + sr ∈ AnnR(N ) +AnnR(L).

Therefore, R = AnnR(N ) +AnnR(L). Thus, M is weakly IN.
(5)⇔ (6) This is immediate.

In the next example, we present a CS module which is not weakly IN, and some CS modules which
are not strongly CS. More examples are provided in the next two sections.

Example 2.7. (1) Let R be a self injective ring. Then clearly the R-module M = R⊕R is CS. However,
M is not weakly IN by Proposition 2.5.

(2) Let R be an indecomposable ring (e.g., R is a local ring or a domain).
(a) Consider the R-module M = S1 ⊕S2 where S1 and S2 are simple modules. It is clear that M is a

CS module. On the other hand, M is not strongly CS (see Remark 2.3(3)).
(b) Let M be an injective R-module which is not indecomposable (e.g., we can take the Z-module

M = Q⊕Q or M = Z(p∞1 )⊕Z(p∞2 ) for some prime numbers p1 and p2). Then M is CS, but M is not
strongly CS by Remark 2.3(3).

Let R be a ring and let I be a proper ideal of R. We say that idempotents lift modulo I if whenever
r is an element of R such that r − r2 ∈ I , then there exists e = e2 ∈ R such that r − e ∈ I .

Theorem 2.8. Let R be a ring and let M be a nonzero R-module. Then the following are equivalent:
(1) M is a strongly CS R-module;
(2) For any submodules N and L of M with N ∩ L = 0, there exists an idempotent e ∈ R such that
e ∈ AnnR(N ) and 1− e ∈ AnnR(L);
(3) M is a weakly IN R-module and idempotents lift modulo AnnR(M);
(4) M is a CS module and for every direct summand K of M, there exists an idempotent e of R such
that K = eM.

Proof. (1) ⇒ (2) Let N and L be two submodules of M with N ∩ L = 0. Then there exist e = e2 and
f = f 2 in R such that N ⊆ess f M and L ⊆ess eM. Using the fact that N ∩ L = 0, we get f M ∩ eM = 0.
Hence, ef M ⊆ f M ∩ eM = 0. So e ∈ AnnR(f M) ⊆ AnnR(N ) and 1− e ∈ AnnR(eM) ⊆ AnnR(L).

(2) ⇒ (3) Let N and L be two submodules of M with N ∩ L = 0. By hypothesis, there exists an
idempotent e ∈ R such that e ∈ AnnR(N ) and 1−e ∈ AnnR(L). But e+1−e = 1, soAnnR(N )+AnnR(L) = R.
It follows that M is weakly IN. Now let r ∈ R such that r − r2 ∈ AnnR(M) and let rx = (1 − r)y ∈
rM ∩ (1− r)M where x,y ∈M. Then r2x = (r − r2)y = 0 since r − r2 ∈ AnnR(M). Using once again the
fact that r − r2 ∈ AnnR(M), we get rx = 0. Therefore rM ∩ (1 − r)M = 0. Hence, by (2), there exists
f = f 2 ∈ R such that 1− f ∈ AnnR(rM) and f ∈ AnnR((1− r)M). This means that r − f r ∈ AnnR(M) and
f − f r ∈ AnnR(M). Consequently,

f − r = (f − f r)− (r − f r) ∈ AnnR(M).

This shows that idempotents lift modulo AnnR(M).
(3)⇒ (1) Let N be a submodule of M. Since M is a weakly IN R-module, there exists r ∈ R such

that N ⊆ess rM and r − r2 ∈ AnnR(M) (see Proposition 2.6). But idempotents lift modulo AnnR(M),
so there exits an idempotent e of R such that r − e ∈ AnnR(M). Therefore rM = eM and consequently
N ⊆ess eM.

(1)⇔ (4) This is clear.
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The preceding theorem shows that the class of weakly IN modules contains that of strongly CS
modules. Next, we present an example illustrating that this inclusion is proper, in general.

Example 2.9. Let p and q be two different prime numbers and consider the ring R = {m/n ∈Q | p - n
and q - n (m/n in lowest terms)}. It is well known that pR and qR are the only maximal ideals in R.
Moreover, idempotents do not lift modulo J(R) = pR∩ qR. Let M = R/pR⊕R/qR. Clearly, AnnR(M) =
J(R). From Corollary 3.4, we infer that M is a weakly IN R-module which is not strongly CS.

Let R be a ring. Recall that the socle of R, denoted by Soc(R), is the sum of all its minimal ideals.
In the following corollary, we provide sufficient conditions for a weakly IN module to be strongly CS.

Corollary 2.10. Let M be a nonzero R-module such that AnnR(M) satisfies any one of the following con-
ditions:
(1) AnnR(M) is a nil ideal of R (i.e., AnnR(M) ⊆Nil(R));
(2) AnnR(M) is a direct summand of R (for instance, M is faithful);
(3) AnnR(M) = Soc(R).
Then M is a weakly IN R-module if and only if M is strongly CS.

Proof. The sufficiency follows from Theorem 2.8. Conversely, suppose that M is a weakly IN R-
module. Applying again Theorem 2.8, we only need to show that idempotents lift modulo AnnR(M).

(1) This follows from [2, Proposition 27.1].
(2) We will show that idempotent lift modulo every direct summand of R. Let e = e2 ∈ R and let

r ∈ R such that r − r2 ∈ eR. Then (1 − e)(r − r2) = 0 and hence ((1 − e)r)2 = (1 − e)r. Thus (1 − e)r is an
idempotent of R. Moreover, we have r − ((1− e)r) = er ∈ eR.

(3) This follows from [18, Lemma 1.2].

Let n ≥ 2. By Proposition 2.5, there exists no ring R for which every n-generated R-module is
weakly IN. This fact should be contrasted with [9, Corollary 13.8]. On the other hand, take a valua-
tion ring R. It is easily seen that every cyclic R-module is uniform. Therefore every cyclic R-module
is strongly CS and weakly IN (see Remark 2.3(3) and Theorem 2.8). Next, we will characterize the
class of rings R for which every cyclic R-module is weakly IN (strongly CS).

A ring R is called a CF-ring if every R–module M which is a direct sum of finitely many cyclic
R–modules has a canonical form decomposition, i.e. M � R/I1⊕ · · · ⊕R/In where the ideals Ij (1 ≤ j ≤ n)
of R satisfy I1 ⊆ I2 ⊆ · · · ⊆ In  R (see [15]). For the definitions of the other types of rings used in the
following two results, we refer the reader to [7].

Theorem 2.11. The following are equivalent for a ring R:
(1) Any cyclic R-module is weakly IN;
(2) R/I is a CS ring for every proper ideal I of R;
(3) R is a CF-ring;
(4) R is a finite direct product of valuation rings, h-local Prüfer domains and torch rings.

Proof. Let I be a proper ideal of R and consider the R-module M = R/I . By Proposition 2.6, M is a
weakly IN R-module if and only if M is a strongly CS R/AnnR(M)-module. This is equivalent to the
condition that R/I is a CS ring (Remark 2.3(1)). Now use [11, Theorem 9].

Recall that a ring R is called clean if every element of R is a sum of a unit and an idempotent.

Theorem 2.12. The following are equivalent for a ring R:
(1) Any cyclic R-module is strongly CS;
(2) R is a clean CF-ring;
(3) R is a finite direct product of valuation rings.
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Proof. (1)⇔ (2) From Theorem 2.8, it follows that the assertion (1) is equivalent to the condition that
for any ideal I of R, R/I is a weakly IN R-module and idempotents lift modulo AnnR(R/I) = I . Now
using Theorem 2.11 and the fact that R is a clean ring if and only if idempotents lift modulo every
ideal of R (see [1, Theorem 5.1]), we obtain the desired equivalence.

(2)⇒ (3) Since R is a CF-ring, we have R = R1 ×R2 × · · · ×Rn where each Ri is an indecomposable
ring which is either a valuation ring or an h-local Prüfer domain or a torch ring ([15, Theorems 3.10
and 3.12]). Let i ∈ {1, . . . ,n}. Since R is clean, it follows that Ri is also clean by [3, Proposition 2].
Moreover, Ri is a local ring by [3, Theorem 3]. Hence Ri could not be a torch ring since every torch
ring has at least two maximal ideals ([7, page 38]). In addition, note that any local Prüfer domain is
a valuation ring.

(3)⇒ (2) By Theorem 2.11, R is a CF-ring. Moreover, note that any valuation ring is local. Thus,
using [3, Proposition 2(1)-(3)], we conclude that R is a clean ring.

3 Finite Direct Sums of Weakly IN (Strongly CS) Modules

We begin by providing necessary and sufficient conditions for a finite direct sum of modules to be
weakly IN.

Theorem 3.1. Let M = M1 ⊕M2 ⊕ · · · ⊕Mn be a direct sum of submodules Mi(1 ≤ i ≤ n). Then the
following are equivalent:
(1) M is weakly IN;
(2) (a) Mi is a weakly IN R-module for all i ∈ {1, . . . ,n}, and

(b) AnnR(Mj ) +AnnR(Mk) = R for all j , k ∈ {1, . . . ,n}.

Proof. (1)⇒ (2) (a) follows from Proposition 2.4 and (b) follows from the definition of a weakly IN
module.

(2)⇒ (1) Let N and L be two submodules of M such that N ∩L = 0. Using (b) and [6, Lemma 2.6],
we get N = ⊕ni=1(N ∩Mi) and L = ⊕ni=1(L∩Mi). Fix i ∈ {1, . . . ,n}. As N ∩ L = 0, we have (N ∩Mi)∩
(L ∩Mi) = 0. Since Mi is weakly IN, we have AnnR(N ∩Mi) +AnnR(L ∩Mi) = R. Moreover, using
(b), it follows that for any i , j ∈ {1, . . . ,n}, we have AnnR(N ∩Mi) +AnnR(L∩Mj ) = R as AnnR(Mi) ⊆
AnnR(N ∩Mi) and AnnR(Mj ) ⊆ AnnR(L∩Mj ). So (∩ni=1AnnR(N ∩Mi)) + (∩ni=1AnnR(L∩Mi)) = R by
[19, Theorem 31]. Consequently, AnnR(N ) +AnnR(L) = R. This completes the proof.

In the next theorem, we provide a characterization of when a finite direct sum of modules is
strongly CS. We need the following lemma.

Lemma 3.2. Let R1 and R2 be two rings and let Mi be an Ri-module (i = 1,2). Then the following hold
true:
(1) M1 ×M2 is a strongly CS R1 ×R2-module if and only if Mi is a strongly CS Ri-module for each i = 1,2.
(2) R = R1 ×R2 is a CS ring if and only if so are R1 and R2.

Proof. (1) We will use the following elementary property: (∗) given an R1-submodule N1 of M1 and
an R2-submodule N2 of M2, N1 ×N2 ⊆ess M1 ×M2 if and only if N1 ⊆ess M1 and N2 ⊆ess M2.

Now suppose that M1 ×M2 is a strongly CS R1 × R2-module and let N1 be an R1-submodule of
M1 and N2 an R2-submodule of M2. Then there exists (e1, e2) = (e1, e2)2 = (e2

1, e
2
2) ∈ R1 ×R2 such that

N1 ×N2 ⊆ess (e1, e2)(M1 ×M2) = e1M1 × e2M2. By (∗), it follows that N1 ⊆ess e1M1 and N2 ⊆ess e2M2.
This clearly implies that each Mi (i = 1,2) is a strongly CS Ri-module. Conversely, let N be an
R1 ×R2-submodule of M1 ×M2. Then N = N1 ×N2, where N1 is an R1-submodule of M1 and N2 is
an R2-submodule of M2. Let e2

1 = e1 ∈ R1 and e2
2 = e2 ∈ R2 such that N1 ⊆ess e1M1 and N2 ⊆ess e2M2.

Again by (∗), we haveN1×N2 ⊆ess e1M1×e2M2 = (e1, e2)(M1×M2). Since (e1, e2)2 = (e1, e2), we conclude
that M1 ×M2 is a strongly CS R1 ×R2-module.
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(2) Apply (1) for M1 = R1 and M2 = R2 (see Remark 2.3(1)).

Theorem 3.3. Let M = M1 ⊕M2 ⊕ · · · ⊕Mn be a direct sum of submodules Mi(1 ≤ i ≤ n). Then the
following are equivalent:
(1) M is strongly CS;
(2) M satisfies the following two conditions:
(a) Mi is a strongly CS R-module for every i ∈ {1, . . . ,n}, and
(b) There exists a complete set of orthogonal idempotents {e1, . . . , en} of R such that eiMi = Mi for all
i ∈ {1, . . . ,n};
(3) R = R1 ×R2 × · · · ×Rn such that Mi is a strongly CS Ri-module for all i ∈ {1, . . . ,n}.

Proof. (1) ⇒ (2) (a) follows by using Proposition 2.4. Let us show (b) by induction on n. Suppose
that M =M1 ⊕M2 is strongly CS. By Theorem 2.8, there exists an idempotent e of R such that 1− e ∈
AnnR(M1) and e ∈ AnnR(M2). This implies that M1 = eM and M2 = (1− e)M. Therefore (b) is true for
n = 2. Now assume (b) holds for n; we will prove it for n+1. LetM =M1⊕· · ·⊕Mn⊕Mn+1 be strongly
CS. From the case n = 2, we infer that there exists an idempotent e of R such that e(M1 ⊕ · · · ⊕Mn) =
M1⊕· · ·⊕Mn and (1−e)Mn+1 =Mn+1. ButM1⊕· · ·⊕Mn is a strongly CS R-module as it is a submodule
of M, so, by induction hypothesis there exists a complete set of orthogonal idempotents {f1, . . . , fn} of
R such that Mi = fiMi for all i ∈ {1, . . . ,n}. It is easy to see that {ef1, . . . , efn,1 − e} is a complete set of
orthogonal idempotents of R such that efiMi = eMi =Mi for all i ∈ {1, . . . ,n} and (1− e)Mn+1 =Mn+1.

(2) ⇒ (3) By (b), R = R1 × R2 × · · · ×Rn where Ri = eiR for all i ∈ {1, . . . ,n}. Fix j ∈ {1, . . . ,n}. Since
ejMj =Mj , Mj has a natural structure of an Rj-module. Let N be an Rj-submodule of Mj . By (a), Mj

is a strongly CS R-module. So there exists e2 = e ∈ R such that N ⊆ess eMj = eejMj as R-modules and
also as ejR-modules. Note that eej is an idempotent of Rj . Thus Mj is a strongly CS Rj-module.

(3)⇒ (1) This follows from Lemma 3.2(1).

As an application of the preceding two theorems, we have the following corollary.

Corollary 3.4. Let p and q be two prime ideals of a ring R. Then the following hold true:
(1) The R-module R/p⊕R/q is weakly IN if and only if p+ q = R.
(2) The following are equivalent:
(a) The R-module R/p⊕R/q is strongly CS;
(b) There exists an idempotent e of R such that e ∈ p and 1− e ∈ q;
(c) p+ q = R and idempotents lift modulo p∩ q.

Proof. Since the R-modules R/p and R/q are uniform, they are strongly CS (and hence also weakly
IN).

(1) Use Theorem 3.1 and the fact that R/p and R/q are weakly IN.
(2) (a)⇔ (c) Use (1), Theorem 2.8 and the fact that AnnR(R/p⊕R/q) = p∩ q.
(a) ⇒ (b) By Theorem 2.8, there exists an idempotent e of R such that e ∈ AnnR(R/p) = p and

1− e ∈ AnnR(R/q) = q.
(b) ⇒ (a) Let e be an idempotent of R such that e ∈ p and 1 − e ∈ q. Then (1 − e)(R/p) = R/p and

e(R/q) = R/q. Now using Theorem 3.3((2) ⇒ (1)) and the fact that R/p and R/q are strongly CS R-
modules, we deduce that R/p⊕R/q is a strongly CS R-module.

In contrast to Example 2.9, we characterize in the next theorem the class of rings R for which every
weakly IN R-module is strongly CS.

Theorem 3.5. The following are equivalent for a ring R:
(1) Any weakly IN R-module is strongly CS;
(2) R/m⊕R/m′ is a strongly CS R-module for every distinct maximal ideals m and m′ of R;
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(3) Idempotents of R lift modulo m∩m′ for every distinct maximal ideals m and m′ of R;
(4) Idempotents lift modulo every ideal of R;
(5) For every distinct maximal ideals m and m′ of R, there exists an idempotent e of R such that e ∈m
and 1− e ∈m′;
(6) R is a clean ring.

Proof. The equivalences (4)⇔ (5)⇔ (6) follow from [1, Theorem 5.1].
The equivalences (2)⇔ (3)⇔ (5) follow from Corollary 3.4(2).
(4)⇒ (1) Use the equivalence (1)⇔ (3) in Theorem 2.8.
(1)⇒ (2) Let M = R/m⊕R/m′ where m and m′ are two distinct maximal ideals of R. By Corollary

3.4(1), M is a weakly IN R-module and so it is strongly CS by (1).

In the same vein of Example 2.9, we exhibit the following examples.

Example 3.6. (1) Let R be a ring which is not clean. By Theorem 3.5, there exists an R-module M
such that M is weakly IN but not strongly CS. To construct an explicit example of such a ring R and
such a module M, consider the ring R =Z and the Z-module M =Z/2Z⊕Z/3Z. Since 2Z+ 3Z =Z,
M is a weakly IN Z-module (Corollary 3.4(1)). However, note that M is not uniform. Then M can
not be a strongly CS R-module since R is indecomposable (Remark 2.3(3)).

(2) Let R =Z and consider the R-moduleN =Q/Z(2Z). By [15, Example 3.13], A = R ∝N is a Torch
ring. Thus, every cyclic A-module is weakly IN by Theorem 2.11. On the other hand, since R is not
a clean ring, A is not clean by [4, Theorem 6.4]. Therefore the ring A has a cyclic A-module which is
not strongly CS by Theorem 2.12.

Recall that a ring R is called zero-dimensional if every prime ideal of R is maximal.

Proposition 3.7. For a ring R the following statements are equivalent:
(1) R/p⊕R/p′ is a weakly IN R-module for every distinct prime ideals p and p′ of R;
(2) R/p⊕R/p′ is a strongly CS R-module for every distinct prime ideals p and p′ of R;
(3) R is a zero-dimensional ring.

Proof. (1)⇒ (3) Suppose that R has a nonmaximal prime ideal p and let m be a maximal ideal con-
taining p. By hypothesis, R/p ⊕ R/m is a weakly IN R-module and hence p + m = R (see Corollary
3.4(1)). Thus m = R, which is a contradiction. Therefore R is a zero-dimensional ring.

(3)⇒ (2) Let p and p′ be two distinct prime ideals of R. Since R is zero-dimensional, p and p′ are
maximal. Moreover, note that R is a clean ring by [3, Corollary 11]. So R/p ⊕ R/p′ is a strongly CS
R-module by Theorem 3.5.

(2) ⇒ (1) This follows from the fact that any strongly CS R-module is weakly IN (see Theorem
2.8).

Recall that a ring R is called an mp-ring if every prime ideal contains a unique minimal prime
ideal; equivalently, every maximal ideal of R contains a unique minimal prime ideal.

Replacing the term “prime" in Proposition 3.7 by “minimal prime", we obtain the following char-
acterizations.

Proposition 3.8. The following are equivalent for a ring R:

(1) R/p⊕R/p′ is a weakly IN R-module for every distinct minimal prime ideals p and p′ of R;

(2) p+ p′ = R for every distinct minimal prime ideals p and p′ of R;

(3) R is an mp-ring.



116 Moroccan Journal of Algebra and Geometry with Applications / F. Kourki and R. Tribak

Proof. (1)⇔ (2) Use Corollary 3.4(1).
(2)⇔ (3) see [1, Theorem 6.2].

Following [1, Definition 8.1], a ring R is said to be a purified ring if for every distinct minimal
prime ideals p and p′ of R, there exists an idempotent e of R such that e ∈ p and 1 − e ∈ p′. Note that
every purified ring is an mp-ring.

Theorem 3.9. For a ring R the following are equivalent:
(1) R/p⊕R/p′ is a strongly CS R-module for every distinct minimal prime ideals p and p′ of R;
(2) R is an mp-ring and idempotents lift modulo p∩ p′ for every distinct minimal prime ideals p and
p′ of R;
(3) R is a purified ring.

Proof. This follows by combining Corollary 3.4(2) with Proposition 3.8.

4 Modules over Dedekind Domains

This short section is devoted to the description of the structure of both weakly IN and strongly CS
modules over Dedekind domains. Recall that for an R-module M, Ass(M) denotes the set of prime
ideals of R associated to M, that is, Ass(M) = {p ∈ Spec(R) | p = AnnR(x) for some 0 , x ∈M}.

Theorem 4.1. LetR be a Dedekind domain with field of fractionsK and letM be a nonzeroR-module.
Then the following are equivalent:
(1) M is a strongly CS R-module;
(2) M is a uniform R-module;
(3) M is isomorphic to an R-submodule of K or there exists a maximal ideal p of R such that M �
E(R/p) or M � R/pn for some positive integer n.

Proof. (1)⇔ (2) This follows from the fact that R is indecomposable (see Remark 2.3(3)).
(2)⇒ (3) Let M be a nonzero uniform R-module. Since R is noetherian, E(M) � E(R/p) for some

prime ideal p of R (see [14, Corollary of Theorem 2.32]). Hence M is isomorphic to a submodule of
E(R/p) and Ass(M) = {p}. If p = 0, then M is isomorphic to an R-submodule of E(R) � K . Now assume
that p , 0. Then p is a maximal ideal of R as R is a Dedekind domain. Clearly, E = E(R/p) is a torsion
R-module. Moreover,M is indecomposable since E is uniform. Using [10, Theorem 10], we infer that
M � E(R/p) or M � R/qn for some maximal ideal q of R and some positive integer n. In the latter case
we have q ∈ Ass(M) and consequently q = p.

(3)⇒ (2) Let p be a nonzero prime ideal of R. It is clear that K and E(R/p) are uniform R-modules.
Also, R/pn is uniform since it is a uniserial R-module by [14, Lemma 6.8].

Let R be a Dedekind domain with field of fractions K . Recall that an R-submodule F of K is called
a fractional ideal of R if there is a nonzero element r of R such that rF ⊆ R. Note that every finitely
generated R-submodule of K is a fractional ideal of R (see [14, Lemma 6.15]). It is well known
that every injective R-module has no maximal submodules. The following corollary is an immediate
consequence of the preceding theorem.

Corollary 4.2. Let R be a Dedekind domain and let M be a nonzero finitely generated R-module. Then the
following are equivalent:
(1) M is strongly CS;
(2)M � I where I is a nonzero fractional ideal of R or there exists a maximal ideal p of R such thatM � R/pn

for some positive integer n.
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Theorem 4.3. LetR be a Dedekind domain with field of fractionsK and letM be a nonzeroR-module.
Then the following are equivalent:
(1) M is a weakly IN R-module;
(2) M is isomorphic to an R-submodule of K or M � E(R/p) for some maximal ideal p of R or M �
R/pn1

1 ⊕ · · · ⊕R/p
nk
k for some positive integers ni (1 ≤ i ≤ k) and distinct maximal ideals p1, . . . ,pk of R.

Proof. (1) ⇒ (2) Let M be a nonzero weakly IN R-module. If AnnR(M) = 0, then M is strongly CS
by Corollary 2.10. From Theorem 4.1, it follows that M is isomorphic to an R-submodule of K or
M � E(R/p) for some maximal ideal p of R. Now suppose that AnnR(M) , 0. By [14, Theorem 6.11],
there exists a family {pi ,ni}i∈I such that pi (i ∈ I) are maximal ideals of R and there are only finitely
many distinct ones, ni (i ∈ I) are positive integers and M = ⊕i∈IMi where Mi � R/p

ni
i for every i ∈ I .

Let j , k ∈ I . Since Mj ∩Mk = 0 and M is weakly IN, we have AnnR(Mj ) + AnnR(Mk) = R. Thus,

p
nj
j + p

nk
k = R. So pj , pk for all j , k in I . Consequently, I is a finite set.

(2)⇒ (1) This follows from Theorems 3.1 and 4.1.

Remark 4.4. Let R be a Dedekind domain and let I be a nonzero ideal of R. By [14, Lemma 6.12
and Theorem 6.14], I = p

n1
1 p

n2
2 . . .p

nk
k = p

n1
1 ∩ p

n2
2 ∩ · · · ∩ p

nk
k for some distinct maximal ideals p1, . . . ,pk

of R and some positive integers ni (1 ≤ i ≤ k). By the Chinese Remainder Theorem, we have R/I �
R/pn1

1 ⊕· · ·⊕R/p
nk
k . Now using Theorem 4.3, we conclude that every cyclic R-module is weakly IN (see

also Theorem 2.11).

Combining Theorem 4.3 and Remark 4.4, we obtain the following corollary.

Corollary 4.5. Let R be a Dedekind domain and let M be a nonzero finitely generated R-module. Then the
following are equivalent:
(1) M is weakly IN;
(2) M is cyclic or M � I where I is a nonzero fractional ideal of R.

5 CS Trivial Extensions

Let R be a ring and let M be an R-module. The abelian group R ⊕M can be endowed with the
following product: (a,x)(b,y) = (ab,ay +bx). The result is a ring called the trivial extension of R by M
denoted by R ∝M. R becomes a subring of R ∝M and M an ideal such that M2 = 0. If I is an ideal
of R and N is a submodule of M such that IM ⊆ N , then (I,N ) = {(a,x) ∈ R ∝M | a ∈ I, x ∈ N } is an
ideal of A = R ∝M and we have AnnA(I,N ) = (AnnR(I)∩AnnR(N ),AnnM(I)). In this section our main
result is a characterization of CS trivial extensions. To prove it, we need the following three lemmas.

Lemma 5.1. Let R be a ring and let M be an R-module such that A = R ∝M is a CS ring. Then M is a
weakly IN R-module.

Proof. Let N and L be two submodules of M such that N ∩L = 0. Then (0,N ) and (0,L) are two ideals
of A satisfying (0,N ) ∩ (0,L) = 0. By Proposition 2.1, AnnA(0,N ) + AnnA(0,L) = A. It follows that
(AnnR(N ),M) + (AnnR(L),M) = A and hence AnnR(N ) +AnnR(L) = R. Therefore M is weakly IN.

Lemma 5.2. Let R be a ring and let M be a faithful R-module. Then the following are equivalent:
(1) A = R ∝M is a CS ring;
(2) M is a weakly IN R-module;
(3) M is a strongly CS R-module.
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Proof. (1)⇒ (2) See Lemma 5.1.
(2)⇔ (3) This follows from Corollary 2.10.
(3) ⇒ (1) Let I be an ideal of A and let V = {x ∈ M | (0,x) ∈ I}. Then V is a submodule of M

and I ∩ (0,M) = (0,V ). Since M is strongly CS, there exists e = e2 ∈ R such that V ⊆ess eM. First
let us show that I ⊆ (e,0)A = (eR,eM). Consider an element (a,x) of I . Then, for any element z of
M, (a,x)(0, z) = (0, az) ∈ I ∩ (0,M) = (0,V ). Thus az ∈ V and hence aM ⊆ V ⊆ eM. Consequently,
(1 − e)aM = 0. But M is a faithful R-module, so (1 − e)a = 0 and hence a = ea ∈ eR. Moreover,
(a,x)(1 − e,0) = (a(1 − e), (1 − e)x) = (0, (1 − e)x) ∈ I ∩ (0,M) = (0,V ). This gives (1 − e)x ∈ V ⊆ eM.
Thus x − ex ∈ eM and so x ∈ eM. Therefore I ⊆ (eR,eM). Now let us show that I ⊆ess (eR,eM). Let
(0,0) , (ea,ex) ∈ (eR,eM), where a ∈ R and x ∈M. If ea , 0, then eaM , 0 since M is faithful. So there
exists y ∈M such that eay , 0. But 0 , eay ∈ eM and V ⊆ess eM, so there exists t ∈ R such that 0 ,
teay ∈ V . Hence (0,0) , (0, ty)(ea,ex) = (0, teay) ∈ (0,V ) = I∩(0,M). Therefore (0,0) , (0, ty)(ea,ex) ∈ I .
Now suppose that ea = 0. Then ex , 0. Since V ⊆ess eM, there exists u ∈ R such that 0 , uex ∈ V .
So (0,0) , (u,0)(ea,ex) = (0,uex) ∈ (0,V ) = I ∩ (0,M). Hence 0 , (u,0)(ea,ex) ∈ I . It follows that
I ⊆ess (e,0)A. Note that (e,0)2 = (e,0). Consequently, A is a CS ring.

Lemma 5.3. Let R be a ring and let M be a nonzero R-module. Let e2 = e ∈ R. Then the following hold
true:
(1) eR is strongly CS as R-module if and only if eR is a CS ring.
(2) Assume thatAnnR(M) = eR. Then (1−e)M is a faithful (1−e)R-module. Moreover, the ringsA = R ∝M
and eR× ((1− e)R ∝ (1− e)M) are isomorphic.

Proof. (1) Note that the R-submodules and the eR-submodules of eR are the same.
(⇒) Let I be an ideal of the ring eR. Since eR is a strongly CS R-module, there exists f = f 2 ∈ R such

that I is an essential R-submodule of f eR. Thus I is an essential eR-submodule of (f e)eR. Moreover,
f e = (f e)2 ∈ eR. Therefore eR is a CS ring.

(⇐) Let I be an ideal of R contained in eR. Then I = eI is an ideal of eR. Since eR is a CS ring, there
exists an idempotent f ∈ eR such that I is an essential eR-submodule of f eR. It is clear that I is also
an essential R-submodule of f eR.

(2) It is clear that R = eR ⊕ (1 − e)R and M = eM ⊕ (1 − e)M. By [4, Theorem 4.4], A = R ∝ M �
(eR ∝ eM) × ((1 − e)R ∝ (1 − e)M) (as rings). But eM = 0, so the ring A is isomorphic to the ring
eR× ((1− e)R ∝ (1− e)M). The first assertion is obvious.

Theorem 5.4. The following are equivalent for a ring R and an R-module M:
(1) A = R ∝M is a CS ring;
(2) M satisfies the following two conditions:
(a) AnnR(M) is a direct summand of R which is a CS ring, and
(b) M is a weakly IN R-module;
(3) M satisfies the following two conditions:
(a) AnnR(M) is a direct summand of R which is a CS ring, and
(b) M is a strongly CS R-module;
(4) M ⊕AnnR(M) is a weakly IN R-module;
(5) M ⊕AnnR(M) is a strongly CS R-module.

Proof. It is easily seen that {(e,0) ∈ A | e2 = e ∈ R} is the set of idempotents of A.
(1) ⇒ (2) (a) Suppose that AnnR(M) , 0. Clearly, (AnnR(M),0) is an ideal of A. Since A is a

CS ring, there exists an idempotent e of R such that (AnnR(M),0) ⊆ess (e,0)A = (eR,eM). Hence,
AnnR(M) ⊆ eR. We claim that eM = 0. Suppose, on the contrary, that eM , 0. Then (0, eM) is a
nonzero ideal of A which is contained in (eR,eM). Thus (0, eM)∩ (AnnR(M),0) , 0, a contradiction.
Therefore eR ⊆ AnnR(M). It follows that AnnR(M) = eR is a direct summand of R. Moreover, eR is a
CS ring by Lemmas 3.2(2) and 5.3(2).
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(b) follows from Lemma 5.1.
(2)⇒ (3) Use Corollary 2.10.
(3) ⇒ (5) By hypothesis, there exists e2 = e ∈ R such that AnnR(M) = eR. Thus AnnR(M) =

eAnnR(M). Moreover, since R = eR⊕(1−e)R, we haveM = (1−e)M. Also,M andAnnR(M) are strongly
CS R-modules by Lemma 5.3(1). So, by Theorem 3.3, M ⊕AnnR(M) is a strongly CS R-module.

(5)⇒ (4) This follows from Theorem 2.8.
(4) ⇒ (1) By Theorem 3.1, AnnR(M) + AnnR(AnnR(M)) = R. Then there exist a ∈ AnnR(M) and

b ∈ AnnR(AnnR(M)) such that a + b = 1. Let c ∈ AnnR(M) ∩ AnnR(AnnR(M)). Thus c = ca + cb = 0
and hence AnnR(M)∩AnnR(AnnR(M)) = 0. It follows that AnnR(M) is a direct summand of R. So
AnnR(M) = eR for some idempotent e of R. Note that eR is a weakly IN R-module by Proposition
2.4. Moreover, the R-submodules and the eR-submodules of eR are exactly the same. Also, we have
AnneR(L) = eAnnR(L) for anyR-submodule L of eR. We thus deduce that eR is a CS ring by Proposition
2.1. In addition, using Proposition 2.4 again, we see that (1 − e)M is a weakly IN (1 − e)R-module.
Note that (1− e)M is a faithful (1− e)R-module (see Lemma 5.3(2)). Then (1− e)R ∝ (1− e)M is a CS
ring by Lemma 5.2. Since the rings R ∝M and eR× ((1− e)R ∝ (1− e)M) are isomorphic (see Lemma
5.3(2)), it follows that R ∝M is a CS ring by Lemma 3.2(2).

Remark 5.5. Let R be a ring and let M be an R-module such that R ∝M is a CS ring. By Theorem
5.4, M is a strongly CS R-module. However, the ring R need not be a CS ring, in general, as it is
shown in the following example. Let R be a local ring which is not uniform (for example, we can
take R = K ∝ (K ⊕K), where K is a field) and let m be the maximal ideal of R. Consider the R-module
M = E(R/m) and the ring A = R ∝ M. By [14, Corollary 2 of Proposition 2.26], M is a faithful R-
module. Moreover, since M is a uniform R-module, M is strongly CS. Thus A is a CS ring by Lemma
5.2 (indeed, A is uniform). Since R is local, R is indecomposable and so R cannot be a CS ring since it
is not uniform (see Remark 2.3(3)). However, when the R-moduleM is flat, then the condition R ∝M
is CS forces R to become CS as it is shown in the following result.

Corollary 5.6. Let R be a ring and let M be a flat R-module. Then the following are equivalent:
(1) A = R ∝M is a CS ring;
(2) R and M are weakly IN R-modules and AnnR(M) is a direct summand of R;
(3) R and M are strongly CS R-modules and AnnR(M) is a direct summand of R.

Proof. (1)⇒ (3) By Theorem 5.4, M is a strongly CS R-module and AnnR(M) is a direct summand of
R. To show that R is CS, take two ideals I and J of R such that I∩J = 0. SinceM is a flat R-module, we
have IM ∩ JM = (I ∩ J)M by [16, Proposition 8.5]. Thus IM ∩ JM = 0. Consider the ideals I ′ = (I, IM)
and J ′ = (J, JM) of A. Since I ′ ∩ J ′ = 0 and A is CS, we have AnnA(I ′) +AnnA(J ′) = A (see Proposition
2.1). It follows that

(AnnR(I),AnnM(I)) + (AnnR(J),AnnM(J)) = A.

So AnnR(I) +AnnR(J) = R. Using again Proposition 2.1, we conclude that R is a CS ring. Hence R is
strongly CS.

(3)⇒ (2) This follows from Theorem 2.8.
(2)⇒ (1) Since R is weakly IN, R is a strongly CS ring by Remark 2.3(1). As AnnR(M) is a direct

summand of R, it follows that AnnR(M) is a CS ring (Proposition 2.4 and Lemma 5.3(1)). Now use
Theorem 5.4.

Corollary 5.7. Let H be a faithful ideal of R and let T (R) be the total ring of fractions of R. Then the
following are equivalent:
(1) R ∝H is a CS ring;
(2) R ∝ T (R) is a CS ring;
(3) R is a CS ring.
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Proof. Note that T (R) is a flat R-module (see [5, Corollary 3.6]).
(1) ⇒ (3) Let I and J be two ideals of R such that I ∩ J = 0. So IH ∩ JH = 0. But IH and JH are

two R-submodules of the faithful R-module H . Moreover, H is a weakly IN R-module by Lemma
5.2. Therefore AnnR(IH) +AnnR(JH) = R. But AnnR(IH) = AnnR(I) and AnnR(JH) = AnnR(J) as H is
faithful. Then AnnR(I) +AnnR(J) = R. By Proposition 2.1, we see that R is a CS ring.

(3)⇒ (2) It is clear that AnnR(T (R)) = 0. To prove that R ∝ T (R) is a CS ring, we only need to show
that T (R) is a strongly CS R-module (see Corollary 5.6). Let S denote the set of all non-zero-divisors
in R. Then T (R) = S−1R. Let I ′ be an ideal of T (R). Then I ′ = S−1I for some ideal I of R. But R is
a CS ring, so there exists e2 = e ∈ R such that I ⊆ess eR. It is easily seen that I ′ = S−1I ⊆ess eT (R).
Consequently, T (R) is a strongly CS R-module.

(2)⇒ (1) By Corollary 5.6, R is a weakly IN R-module. Since H is an R-submodule of R, H is also
a weakly IN R-module. According to Lemma 5.2, it follows that R ∝H is a CS ring.
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